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Abstract

The perceptual principles that allow people to group
visually similar objects into entities, or groups, have been
called the Gestalt Laws of perception.  Two well known
principles of perceptual grouping are proximity  and
similarity: objects that lie close together are perceived to
fall into groups; objects of similar shape, size or color are
more likely to form groups than objects differing along
these dimensions.  While the primary function of these
“laws” is to help us perceive the world, they also enter into
our communications.  People can build on assumptions
about each other’s perception of the world as a basis for
simplifying discourse: for example, we invariably refer to
collections of objects simply by gesturing in their
direction and uttering “those.”  The current work describes
an algorithm that simulates parts of the visual grouping
mechanism at the object level.  The system uses feature
spaces and simple ranking methods to produce object
groupings.  Computational aspects of this system are
described in detail and its uses for enhancing multi-modal
interfaces are explained.

Keywords: Perceptual grouping, gestalt perception,
multi-modal, simulation, human-computer interaction.

Introduction
In natural dialogue a person may point to some objects,
simply refer to them as those and ask someone to move
them, remove them, tell about them, etc.  The addressee’s
understanding of this behavior requires interpretation of a
multi-modal act—combining the utterance (“those”) with the
area addressed by the gesture (McNeill, 1992; Goodwin,
1981).  Perceptual grouping allows a person furthermore to
resolve a reference to multiple objects without requiring that
every item referenced be enumerated.  If a number of objects
lie close together in the direction pointed they will naturally
be considered constituting the referred group.1  If they lie
scattered but have a striking visual feature in common, they
will also combine to form a group.  Interestingly, the
gesture’s form will generally not change the listener’s

1 The focus here will be on pre-attentive visual processing
and visual features—other factors contributing to reference
resolution, such as dialogue history and functional attributes of
objects, will not be discussed.

interpretation of it because final resolution of the reference is
based on Gestalt grouping principles unrelated to the
gesture.

Research in gestalt perception dates back to Wertheimer
(1923).  Since then, perceptual organization research in
psychology has grown to include both classical
experimentation and computational modeling (Feldman &
Ballard, 1983; Rock, 1983; Marr, 1982; Palmer, 1981;
Tversky, 1977; Rosch et al., 1976).  Several computational
approaches to explaining perceptual grouping phenomena
have been offered (Treisman, 1990; Palmer, 1981; Tversky,
1977) and the focus has been both on finding features in the
visual scene that can be used to discern objects (Treisman,
1990), and on higher-level object recognition and
classification (Marr, 1982; Rosch et al., 1976).  The focus
in this paper, however, is vision simulation within the
confines of the computer’s world, where objects and their
attributes are well defined.

The notion of grouping displayed items according to
Gestalt principles was proposed by Dr. Richard Bolt of the
MIT Media Laboratory and first explored by Chin (1987) in
a preliminary fashion.  This paper describes a general
computational model of perceptual grouping and discusses
its use in human-computer interaction.  The algorithm
simulates the phenomena of proximity and similarity by
coding object features into multi-dimensional feature space
and ranking them according to proximity in that space,
producing perceptual groupings that can help resolve
references in multi-modal context.

Multiple Reference in Human-Computer
Interaction

In the currently popular “desktop metaphor” for computer
interfaces, the principle of perceptual grouping is heavily
used: functionally similar objects are grouped into common
spatial regions and marked with common visual features,
allowing the user to locate them easily and reference them
with pointing devices such as mice or trackballs.  Usually
such “references” are handled literally with no interpretation
on the part of the interface.  For situations where an
artificially imposed layout is impossible, such as in terrain
maps or architectural blueprints, referring to collections of
objects becomes cumbersome.  In these situations it would



Figure 1:  A typical pointing gesture may provide the
computer with a single point (shown by star).

Figure 2:  The user can say “Delete [gesture] these icons”
and do a gesture (dotted arrows) near a group of objects.  The

simulated perceptual grouping algorithm enables the
computer to infer which objects the gesture refers to—

independent of its precise form.

a b c

Figure 3:  The perceptual Gestalt law of similarity
comprises many features, three of which are shown here: In
spite of all objects in a, b or c being equidistant from each

other, color will make us see columns in a, shape will form
rows in b, and size will form columns in c.

The law of proximity allows us to see a, b and c as three
separate groups.

be helpful to be able to refer to objects multi-modaly, using
the conventions of social communication.

Multi-Modal Interaction
Work is underway to use perceptual grouping algorithms in
conjunction with multi-modal systems that recognize
speech, free-form hand gestures and analyze people’s gaze
(Sparrell, 1993; Koons et al., 1993; Bolt & Herranz, 1992,
Thórisson et al. 1992; for related work see Tyler et al.,
1991; Wahlster, 1991; Hauptman, 1989; Bolt, 1987; Chin,
1987; Bolt, 1984).  Bolt, as early as 1980 (Bolt, 1980),
described a system called Put That There where multi-modal
reference to single objects was possible.  In the Iconic
system (Sparrell, 1993) utterances can be mixed with free-
form gestures: if a user speaks the words “Move the chair”
while showing direction and amount of motion with a hand
gesture, the system can execute the action without any
further input.  A recurring problem in such interaction,
however, is the inability of the computer to “see” the world
in the same way as people do.  For example, groups and
groupings of objects that are obvious to users are invisible
to the machine.  As a result, discourse methods for reference
that build on assumptions of similarity between speaker and
hearer cannot be used.

A deictic gesture may in the simplest case produce a
single point on the screen (Figure 1) where the person
pointed (Thórisson et al., 1992).  This gesture could be
accompanied by speech or a key press that is predefined to
mean “multiple reference.”  A perceptual grouping algorithm
can make interpretation of the gesture both independent of
the gesture’s form and of the input method used: references
can be made with a mouse, touch screen, data glove or even
gaze (Koons & Thórisson, 1993; Thórisson et al., 1992)—
these will all look equivalent to the computer (Figure 2).

The expectation we should have of any algorithm designed
for this purpose is that its groupings are reasonably close to
what we would expect another person to make in a
conversation.  It is also a necessary requirement that the
algorithm takes no longer to produce an output than would
be considered normal in a human interaction.

Perceptual Grouping
Real-world images gathered with cameras for computer
vision systems are characterized by noise and
unpredictability, with complicating factors such as zooming,
panning and changes in lighting (Ballard & Brown, 1982).
In contrast, computer-generated objects on a graphical
display are free of these complicating issues.  Since graphic
objects have well-defined, accessible attributes such as size,
color, etc., the approach taken here lies at the object level,
taking the objects and their attributes as given.

The factors most often discussed in Gestalt perception
research are (1) proximity, (2) similarity, (3) good
continuation, (4) symmetry and (5) closure.  Discussions of
these can be found in Rock (1983) and Coren and Ward
(1989); this paper focuses on the first two.

Proximity, Similarity and Perceptual Linearity
The features of proximity and similarity are best explained
by example.  In Figure 3 the proximity of objects results in
the perceptual groupings marked a, b and c.  Since objects
can be similar in more than one way, similarity is a more
complex measure than proximity.  To simplify, we can say
that the visual features of (1) shape, (2) size, (3) color (hue),
(4) brightness (intensity), (5) orientation and (6) texture all
can work toward making objects look similar.  In this paper
I will address the first three.

In the current approach, feature spaces are assumed to be
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Figure 6:  Color is represented as a circular, one
dimensional space containing eight color values.
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Figure 4:  The objects {a, b, c, d} in the layout on the left
are represented as vertices in two-dimensional space.  All
vertices are connected with edges (Ei,j), generating a fully

connected graph.
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Figure 5.  From the calculated distance between object pairs
(a) a score is computed by normalization and inversion (b).

Figure 7:  The square and circle can be represented as
opposite ends on a shape continuum.

perceptually linear.  This means that the distance between
any two points in that space is based on our perception of it
rather than physical measurements.  For spatial position
there is close to one-to-one relationship between physical
distance and the perceived distance (Coren & Ward, 1989).
For other features, like brightness or loudness, the
relationship between the physical stimulus and the
perception of it is not linear; these have to be correlated in a
procedure known as magnitude estimation.  This is how the
Munsell color space is constructed (Foley et al., 1990),
which here provides the basis for brightness computations.

The Computational Model
The perceptual grouping algorithm works in four major
steps.  First (1), for all possible object pairings, it computes
the objects’ proximity (distance in the 2-D plane) and
produces a list of edges for each pair, with an associated
proximity score.  This score is inversely proportional to the
distance between objects.  Then (2) it computes the
similarity of each edge’s object pair along one featural
dimension (color, shape, brightness, size) present in the
layout, assigns a high score if the objects are similar—a low
if they are not, and weights the resulting score with that
pair’s proximity score.  The result are edge lists, one for
each feature, containing similarity scores weighted by
proximity.  These lists are subsequently ordered.  It then (3)
searches through each list looking for significant differences
between adjacent edge scores.  When such a difference is
found, the edges so far compared are grouped.  At last the
algorithm (4) compares the groups produced for each feature
and combines those that contain the same objects.

The approach taken here bears resemblance to some that
have previously been proposed.  Experimental evidence from

brain research seems to indicate the separate processing of
proximity and other features (Kosslyn & Koenig, 1992;
Treisman, 1990).  Treisman (1982; 1980), and Palmer
(1981), have proposed that in the brain, features are projected
into separate spaces that can each contain one feature plus
positional dimensions.  This theory concurs with the
algorithm described here.

Computing Proximity
The proximity score is a number between 0 to 1 that
represents a linear estimation of spatial proximity of objects
in the 2-D plane; high scores indicate closeness and low
scores separation.  To compute this, we start with a layout
of objects, as the example of circles shown in Figure 4.
The position of each object is viewed as a point in two-
dimensional (2-D) space (x, y).  This space can be drawn as
a non-directed graph, G={V, E}, where V is a set of objects
and E is the set of edges, or vertices connecting them.  For
the layout in Figure 4 we have V={a,b,c,d} and E={Ea,b,
Ea,c, Ea,d, Eb,c, Eb,d, Ec,d}.  Each edge receives a value
depending on the proximity of the two objects it connects.
First, the absolute distance between pairs of objects in 2-D
space is calculated: Dprox(i,j), where i and j are the two
objects (Figure 5a).  This distance is then normalized by the
longest distance (max[Dprox(i,j)]) and at last inverted by
subtracting the normalized distance from 1 (Figure 5b).
This represents the proximity score (Sprox) for any given
pair of objects in the layout and is given by: Sprox(e) = 1 -
(Dprox(i,j) / max[Dprox(i,j)]), where e is an edge and i and j
are the objects it connects.

Computing Similarity
The color space used here is a circular, discrete space (figure
6) where colors were chosen based on the basic color terms
in language (Kay & McDaniel, 1978).  A color score (Scol)
is given to an edge by computing the distance between the
colors (Dcol(i,j)) of object pairs that the edge connects,
normalizing with the longest edge and subtracting from one:
Scol(e) = 1 -  (Dcol (i,j) / max[Dcol(i,j)]).

Size and shape are also treated as discrete spaces.  While
color space is circular, however, shape (Figure 7) and size
spaces are not.  For simple shapes, such as the ones used



CEILING is initialized to a value higher than the
largest possible difference between adjacent edge
pairs.
STOP is a constant.

Procedure MAIN
WHILE (CEILING > STOP)

T1 ← 0
T2 ← 0
FIND-DIFFS
GROUP first G edges in E

Procedure 3.

E: A list of ordered edges.
N: The number of edges in E.
F: The feature being computed.
G[COUNT,F]: 2-D array containing groups of edges.
D: Difference between adjacent scores in the list.
T1, T2: First- and second-order difference buffers.
COUNT and i are counters.
G: Number of objects in E that should be grouped.
CEILING: Variable (see text).

D ← 0
T1 ← 0
T2 ← 0
COUNT ← 0
i ← 0

Procedure FIND-DIFFS
FOR i ← 1 TO (N - 1)

D ← (Swi - Swi+1)
IF (D > T1)

AND (D < CEILING)
AND (T2 < D - T1)

THEN T2 ← (D - T1)
CEILING ←D
T1 ← D
G ← i

Procedure GROUP
G[COUNT,F] ← first G edges in E 3

COUNT ← (COUNT + 1)

Procedures 1 and 2.

here, size can be represented along a single, linear dimension
from small to large.

The scores in continuous spaces such as brightness are
weighted by an exponential function, thus emphasizing high
scores and de-emphasizing low scores: Sbright(e) = 1 -
sqrt(Dbright(i,j)2 / max[Dbright(i,j)]2).

Finding Gestalts
Once a feature score has been computed for an edge, S(f), it
is weighted by the 2-D spatial proximity score (Sprox) of
that edge: Sw(f,e) = S(f,e) Sprox(e), where f is the feature
(color, shape, size, brightness) and e is the edge.  The
weighted scores of every feature are listed in descending order
such that for each feature we have a list L(f):  L(f) = {Sw(f,e’ )
>= Sw(f,e’’) >= Sw(f,e’’’ ) >= ... }.  A search procedure compares
adjacent pairs of edges in these lists, starting from the
greatest value, looking for the largest difference on each pass
(Procedures 1 and 2).  A second-order difference (the
difference between these differences) is used to determine
when the preceding edges should be considered as
constituting a significant group.  Because the edges are
ordered we are ensured that the most perceptually significant
groups are found first.

The extent of the search in each feature list is determined
by a constant (STOP, Procedure 3).  It’s value will depend on
the range of values used in the feature spaces and how long
we want to continue partitioning the layout into subgroups.
A variable (CEILING) keeps track of the highest difference

found so far and limits the search to a value below this every
time a new search is done on the same list.

Forming Groups
Once this algorithm has been run on each feature list, L(f), it
has produced one or more lists of edges for each feature that
constitutes a significant “perceptual group.”  A comparison
is then done among all the resulting groups.  If a group
occurs more than once (for example, if there is a group of
objects in the scene where all objects are circles and of the
same color), the two groups are merged.  An important
point is that when applying the above algorithm, only the
features that vary among the objects should be used in the
computations.  This means that if, for instance, all objects
are of the same size, size scores will not be used in the
computations.  To make the groupings useful in human-
computer dialogue it is necessary to add a goodness score
that indicates how well each group stands out from the rest.2

Such a score allows the algorithm to rank groups according
to how “perceptually good” they seem, and subsequently
make hypotheses about a user’s multi-modal references based
on context and dialogue history.

Results
The above algorithm produces surprisingly good results.
Two typical examples for demonstrating Gestalt principles
are shown in Figures 8 and 9 (groups are ordered according
to goodness in descending order from left to right, starting at
the top).  The third example (Figure 10) shows how the
algorithm avoids improper assumptions about group
adherence in semi-structured layouts.

In human-computer interaction, this level of performance
is sufficient to simulate multiple-object reference resolution
quite similar to that observed in human interaction.  The
computer can look at the ranked groups and take the best fit
to the current point on the screen.  If there is doubt about

2 This score is currently computed by averaging the values of
all links (Sw(f)) involved in creating a group.

3 Once the edges have been stored in G[COUNT,F], an
additional search is required to see if the number of edges is equal
to or larger than the number of objects they connect minus one
(Ne ≥ No - 1).  If not, the graph has isolated nodes and two or
more perceptually significant groups of objects will be
contained in a single cell of G[COUNT,F].
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Figure 8:  In this classical example demonstrating the
principles of proximity and similarity of size, the system

produces the same groupings that people are prone to make.

INPUT:

OUTPUT:

Figure 9:  Example demonstrating the interaction of
features competing for group adherence.  (After finding the
four most obvious groups, the system continues the search

and comes up with one subgroup before grouping all objects
together.  Notice that the two white circles at the bottom are

a tad closer together than the other objects.)

INPUT A OUTPUT A INPUT B OUTPUT B

Figure 10:  With unstructured input—objects varying along the dimensions of size, shape and brightness—the
system’s ability to compute realistic groupings becomes readily apparent.  In A the white objects are not all

considered constituting a “white” group because the gray pentagons intersect them.  When the white pentagon is
moved closer to the white circles (input B), the system will consider these a perceptually significant group,

even though their shapes differ.

which group is being referred to, it can go down the group
list to find the next-best fit.  A system could also highlight
the candidate groups and ask the user (with synthesized
speech or printed text) which one it is.  This way references
can be resolved without requiring users to repeat a command.

Limitations
Even given the very  restricted nature of the input that this
algorithm was designed to handle, it still has a number of
limitations.  One of these is using a fully connected graph
to compute groupings, generating an exponential growth of
edges with a linear increase of objects.  The problem can be
dealt with in part by using only edges that fall below a
certain percentage of the longest one.  Preliminary tests have
indicated that performance significantly deteriorates if the
longest edge used in the computations is less than 60% of
the largest distance between objects.  Thus, up to 40% of
the edges can seemingly be discarded without a serious effect
on the results.

The algorithm can take into account proximity and

similarity of objects—two of the five well-known grouping
principles of Gestalt perception.  An important third
candidate would be good continuation, which would make
recognition of lines formed by rows of objects more robust
than it is now.  Whether this, and other principles can be
incorporated remains to be seen.

Although the approach currently applies only to two-
dimensional layouts, it may very well extend to three-
dimensional spaces.  An important question then is how
well the computer’s simulated perception of grouping will
match the viewer’s, who is provided with only a projection
of the scene, leaving out some of the strongest cues for
depth such as stereopsis and motion parallax.

Another limitation in the current version of the algorithm
is the simplified treatment of shape space.  With complex



shapes, many issues, such as orientation and viewpoint, will
start to play a significant role.  It is not clear if these
problems can be handled in a simple way.

Conclusion
The current work is an attempt to bring human-machine
interaction closer to human-human communication by
drawing on research in discourse and computer vision.  The
simplicity and relative computational inexpensiveness of the
algorithm described allows it to produce reasonable
perceptual groupings in real-time during interaction.  It
highlights the point that in spite of limited computer
intelligence, human-computer interaction need not be limited
to direct manipulation or arbitrary communication
languages.
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