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ABSTRACT 

Under the new U.S. Environmental Protection Agency (EPA) Cancer Risk Assessment 

Guidelines (U.S. EPA, 2005), the quantitative model chosen for cancer risk assessment is based 

on the mode-of-action (MOA) of the chemical under consideration.  In particular, the risk 

assessment model depends on whether or not the chemical causes tumors through a direct DNA-

reactive mechanism.  It is assumed that direct DNA-reactive carcinogens initiate carcinogenesis 

by inducing mutations and have low-dose linear dose-response curves, whereas carcinogens that 

operate through a nonmutagenic MOA may have nonlinear dose-responses.  We are currently 

evaluating whether the analysis of in vivo gene mutation data can inform the risk assessment 

process by better defining the MOA for cancer and thus influencing the choice of the low-dose 

extrapolation model. This assessment includes both a temporal analysis of mutation induction 

and a dose-response concordance analysis of mutation with tumor incidence. Our analysis of 

published data on riddelliine in rats and dichloroacetic acid in mice indicates that our approach 

has merit. We propose an experimental design and graphical analysis that allows for assessing 

time-to-mutation and dose-response concordance, thereby optimizing the potential for in vivo 

mutation data to inform the choice of the quantitative model used in cancer risk assessment. 

 

Key Words:  Cancer risk assessment, mode-of-action, mutagenic carcinogen, nonmutagenic carcinogen 
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INTRODUCTION 

Cancer risk assessment uses mode-of-action (MOA), defined as the sequence of key events 

leading to cancer (Cohen et al., 2003; U.S. EPA, 2005), for both qualitative and quantitative data 

analysis. Cancer often involves two basic key events, mutation and cell proliferation (Hanahan 

and Weinberg, 2000), the timing of which is critical to defining the MOA for a chemical 

carcinogen (e.g., Meek et al., 2003). Chemicals can induce cancer by inducing mutations as a 

direct result of their reaction with DNA, but a variety of other MOAs are possible.  For instance, 

chemicals can cause increased cell proliferation by acting directly as a mitogen, or by 

mechanisms such as hormone disruption, epigenetic alterations of cell cycle control mechanisms, 

or by binding to cellular receptors and altering signal transduction. Increased cell proliferation 

may result in tumors by facilitating the expansion of preexisting mutations, or may result in 

tumors by increasing the frequency of “spontaneous” mutations, for example by decreasing the 

time for repair of endogenously damaged DNA (Melnick et al., 1993; Thilly, 2003).   

 

Carcinogenic chemicals that are DNA-reactive and, as a direct result of this interaction, induce 

mutations that are causally involved in cancer, are defined as “mutagenic” carcinogens.  

Nonmutagenic carcinogens also may cause mutations, but these mutations are produced as a 

consequence of other key events induced by the agent and are not a direct result of the 

interaction of the agent with DNA.  For regulatory decision-making, distinguishing between 

chemicals that cause cancer via either a mutagenic or a nonmutagenic MOA is a key decision 

point for the dose-response evaluation.  In particular, under the U.S. Environmental Protection 

Agency’s (EPA’s) 2005 Cancer Guidelines, a linear approach is used for low-dose extrapolation 
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for mutagenic carcinogens, while a nonlinear approach may be used for nonmutagenic 

carcinogens (U.S. EPA, 2005).   

 

Much of the data used for establishing MOA (e.g., measurements of apoptosis and cell 

proliferation) is generated in the rodent tumor target tissue(s) (Meek et al., 2003).  In contrast, 

most determinations as to whether a chemical has a mutagenic cancer MOA are currently based 

on a weight-of-evidence (WOE) assessment of data from a number of  test systems, many of 

which are in the vitro assays used for hazard identification (Dearfield and Moore, 2005; Cimino, 

2006).  Although these assays provide useful information, it is necessary to extrapolate from 

these assays to address the key questions regarding MOA.  To determine whether or not a 

chemical acts via a mutagenic MOA, one would ideally determine not only whether the chemical 

is a mutagen, but whether it causes gene mutations in the target tissue for tumorigenesis, and 

whether those mutations play a causal role in cancer development.  To address these latter two 

considerations, we propose conducting experiments designed to evaluate the dose-response and 

temporal development of in vivo mutations in the tumor target.  The design also incorporates the 

evaluation of premutational events (DNA adducts and/or oxidative damage) and other biological 

effects (inflammation, cell proliferation and/or cytotoxicity), as well as an evaluation of the 

temporal association of these effects with the induction of mutations (if any) and the induction of 

preneoplastic lesions if such lesions occur prior to the formation of frank tumors.   All of the 

various endpoints should be evaluated in such a way as to obtain dose-response information that 

can be used to create a time-line for the occurrence of the events and the dose-response 

concordance of the events.  
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This holistic evaluation of the various effects following chemical exposure and the possible 

induction of mutation in the target tissue optimizes the information available for the MOA 

assessment. We feel that this approach provides a more scientifically rigorous assessment as to 

whether chemicals that are positive in the standard genetic toxicology battery and other classical 

mutation assays are capable of inducing mutation by direct DNA reactivity in the tumor target 

tissue, and whether these mutations play a causal role in tumorigenesis.  The approach also 

expands upon current approaches which evaluate primary DNA damage (DNA adducts and/or 

oxidative damage) but do not determine whether, in fact, mutations are actually induced in the 

target tissue.   

 

Before going further, we need to stress that the most scientifically rigorous approach for 

determining MOA is to assess all of the possible biological effects caused by the chemical 

treatment and that the most appropriate genetic targets to address the role of induced mutation in 

such assessments would be the oncogenes and the tumor suppressor genes involved in each 

specific tumor type.  It also is desirable to use these data to develop complete biologically-based 

dose-response (BBDR) models for conducting quantitative risk assessments for individual 

chemicals.  However, in many (most) cases the resources required for such extensive 

experimental efforts are not available and therefore regulatory decisions are often made in the 

absence of a BBDR model.  We feel that our approach is a reasonable compromise between 

obtaining a full BBDR and the current practice of conducting a weight-of-the evidence 

evaluation using data collected from a number of different experimental designs and without the 

benefit of knowing whether, in fact, the chemical in question is actually capable of inducing 

mutation in the target tissue. 
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Our manuscript is intended to outline a new strategy for using in vivo mutation data to inform 

cancer risk assessment. To that end, we have developed statistical approaches to use in vivo 

mutation data in the tumor target tissue as a part of the WOE for MOA assessment.  We have 

written this manuscript to stimulate thinking and discussion in the regulatory community.  

Because our approach is new, the exact experiments that we outline have not been undertaken 

and, therefore, the optimal data for assessing our approach are not available.  We will, however, 

utilize some existing data to demonstrate the general concepts of our approach. 

 

As already indicated, our strategy involves assessing the ability of a chemical to induce gene 

mutations (base pair substitutions, frameshifts, deletions and insertions that affect the function of 

a specific gene) in the tumor target tissue under the same treatment conditions used to induce 

tumors.  Transgenic shuttle vector models currently provide the best approach for measuring in 

vivo gene mutations.  In these models, gene mutations are detected using transgenes, such as  

lacI, cII, or gpt delta, that are incorporated into the nuclear DNA of every cell of the animal 

(Thybaud et al., 2003).  Unlike oncogene/tumor suppressor gene mutations, the shuttle vector 

mutations do not confer a differential growth phenotype to the cells (i.e., the mutations are 

genetically neutral) (Heddle et al., 2003), and these mutations can accumulate with time 

following chronic exposures (Zhang et al., 1996; Heddle et al., 2000; Chen et al., 2001), 

allowing a cumulative measure of mutant frequency (MF).  Although the targets for mutation in 

these models are bacterial genes and mutation detection is performed by rescue of the transgene 

and growth in indicator bacteria, extensive studies indicate that the mutations detected with these 

systems are induced in the animal, rather than being generated in the indicator bacteria (Hill et 
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al., 1999).  Also, validation studies indicate that the frequency and spectrum of mutations 

detected in the transgenes are a good approximation of mutations in endogenous genes, 

particularly for base pair substitutions and relatively small deletions and insertions (Skopek et 

al., 1995; Okongi et al., 2001; Chen et al., 2001).      

 

Chromosomal mutations (multi-gene deletions, translocations, mitotic recombination, and 

aneuploidy; events involving more than a single gene and often visible cytogenetically) are 

important in the etiology of tumors, particularly because they can induce loss of heterozygosity, 

a major factor in tumor development (Knudson, 2002).  Hazard identification strategies 

evaluating the ability of chemicals to cause genetic damage include the detection of both gene 

mutations and chromosomal mutations (Dearfield et al., 1991; Cimino, 2006).  However, in the 

selection of a quantitative model for cancer risk assessment, it is important to distinguish 

between gene mutation and chromosomal mutation as a key event.  The induction of gene 

mutations is thought to occur with linear kinetics (one-hit model), while the induction of 

chromosomal mutations often occurs in two steps (e.g., translocations are produced by 

chromosome breakage followed by joining to produce a new arrangement of chromosomal 

material) and are thought to occur with nonlinear kinetics [two- (or more) hit model]. The most 

commonly used transgenes (e.g.. lacZ, lacI,  and gpt) can be used to detect gene mutations, but 

not chromosomal mutations (Thybaud et al., 2003).  Thus, while the inability of transgenic 

mutation assays to detect chromosomal mutations is a disadvantage for hazard identification, it is 

a benefit for informing the MOA determination (and implications for low-dose extrapolation) for 

cancer risk assessment.   
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Under the U.S. EPA’s 2005 Cancer Risk Assessment Guidelines (U.S. EPA, 2005), 

determination of whether a chemical acts via a mutagenic MOA is important both for informing 

the approach to low-dose extrapolation (where the default is to assume that the chemical acts via 

a mutagenic MOA), and for applying Age-Dependent Adjustment Factors (ADAFs) for early life 

risk (where the default is to assume that the chemical does not act via a mutagenic MOA).  This 

determination follows the modified Hill criteria, and evaluates issues such as the strength, 

consistency, and specificity of association, dose-response relationship, temporal relationship, and 

biological plausibility and coherence.  To expand upon its guidance, EPA has recently released 

in the Federal Register for public comment a “Framework for Determining a Mutagenic Mode of 

Action for Carcinogenicity” (http://www.epa.gov/osa/mmoaframework/pdfs/MMOA-ERD-

FINAL-83007.pdf.). The study design presented in this article specifically addresses whether 

data for gene mutations in the target tissue are consistent with mutations being a key event for 

tumorigenicity, based on the criteria of temporality and dose-response concordance as outlined in 

EPA’s framework.   

 

Many of the high-profile chemicals currently being evaluated for human cancer risk (e.g., 

acrylamide, trichloroethylene, acrylonitrile) are either mutagens or are metabolized to chemicals 

that can induce mutation. It is not clear, however, whether or not these chemicals are mutagenic 

carcinogens; that is, it is not clear whether mutation is the key event for their tumorigenicity in 

animal models.  Indeed, there have been numerous suggestions in the literature that 

nonmutagenic MOAs are responsible for, or play a primary role in, the carcinogenicity of these 

chemicals (e.g., Shipp et al., 2006; Clewell and Andersen, 2004; Moore and Harrington-Brock, 

2000; Kirman et al., 2005).  However, using current methods for weighing the available genetic 
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toxicology data, even weak evidence for mutation via direct DNA reactivity would almost 

always result in the presumption of a mutagenic MOA.  (The possibility of multiple MOAs is 

considered in the Discussion section.)  To facilitate the development of a more rigorous approach 

for determining whether or not a chemical acts via a mutagenic MOA, we have evaluated the 

feasibility of using in vivo gene mutation data obtained from tumor target tissues. Specifically, 

we propose using in vivo mutation data and the modified Hill criteria of temporality and dose-

response concordance in evaluating the MOA for tumor induction.  It is our intent to stimulate 

discussion concerning the development of an optimal experimental design and modeling 

methods for comparing mutation and cancer data that will best inform the MOA assessment.  

 

PREDICTIONS  

Temporality  

There are multiple steps (stages) in cancer development.  When mutation is the key initiating 

event, as would be anticipated for a directly DNA-reactive carcinogen, mutations are induced 

early in the process, followed by a cascade of additional events resulting in the manifestation of a 

tumor.  There should be an increase in the frequency of gene mutations following relatively short 

treatment times and prior to the observation of preneoplastic lesions and tumors.  On the other 

hand, if a chemical causes an increase in the number of gene mutations only after an extended 

period of chronic exposure (likely preceded by toxicity and/or cell proliferation and possibly 

including clonal expansion, and alterations in gene expression), or no increase in gene mutations 

even following very long treatment times, this supports a nonmutagenic MOA. 

 

Dose-Response Concordance for Mutation and Tumor Induction 
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When gene mutation is the key event, the dose-response for mutation should lead that for 

tumors.  That is, gene mutations will be induced at doses equal to or lower than those required to 

form tumors.  Alternatively, if the dose-response assessment shows a positive response for 

tumors at doses lower than those required to cause gene mutations, this observation is consistent 

with a nonmutagenic MOA.  

 

PROPOSED EXPERIMENTAL DESIGN 

To our knowledge, no studies have been conducted specifically for evaluating the temporality 

and dose-response concordance of mutagenicity and carcinogenicity.  We propose such an 

experimental design.  To inform temporality, we define a new assessment, time-to-mutation, that 

capitalizes on the expectation that (1) chemicals that induce gene mutations in a relatively short 

time following the first exposure are more likely to be mutagenic carcinogens and (2) the finding 

of no increase in MF or an increase only after relatively prolonged treatment supports the 

determination that a chemical is a nonmutagenic carcinogen.   

 

Unfortunately, we do not have adequate experimental information to define the time-to-mutation 

for chemicals acting by a mutagenic MOA versus chemicals acting via a nonmutagenic MOA.  

Based on very limited data, the recommended design for hazard identification studies using 

transgenic mutation assays is 28 days of treatment followed by a 3-day expression period 

(Thybaud et al., 2003).  To support our contention that chemicals that are promoters (or other 

stimulators of cell division) may increase the mutant frequency following long, but not short 

exposure times, an analysis of several apparently nonmutagenic carcinogens found that 

oxazepam, phenobarbital, and Wyeth 14,643 induced weak mutagenic responses in Big Blue 
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mice after 6 months of treatment (Singh et al., 2001). We propose using several mutation 

sampling points to evaluate time-to-mutation during chronic exposure to the test agent.    A 

reasonable first approach may be to use 1-, 2-, 4-, and 6-month exposures, with the possibility of 

stopping the exposure after an increase in MF is observed.  This timing will be reconsidered as 

experiments are conducted to better define the optimal exposure times.  It should be noted that a 

negative response for mutant induction in the target tissue, even after extended exposure, 

provides strong evidence that the tumors are being induced via a nonmutagenic MOA. 

 

For the dose-response concordance evaluation, doses will be selected based on those used in the 

tumor bioassay.  Using 6 or more dose groups, with perhaps fewer than the typical 5-6 animals 

per group, will enhance the precision with which the overall dose-response curve can be 

estimated (Kavlock et al., 1996). Doses below those that were positive in the cancer bioassay 

will be included for the evaluation to increase the accuracy of dose-response assessment in the 

low-dose region.  To facilitate direct comparison of the data, the exposure conditions will be 

designed to match the conditions under which the positive cancer data were obtained.  Ideally, 

the experiments will be performed in the same species, using the same exposure conditions, and 

assaying the same tissues (and perhaps types of cells) in which tumors were observed.  Both the 

Big Blue and delta gpt assays can be conducted in F344 rats and B6C3F1 mice (Dycaico et al., 

1994; Thybaud et al., 2003; Hayashi et al., 2003), making it likely that transgenic rodents can be 

used with the same genetic backgrounds employed for the tumor study.     

 

Experiments will be designed individually for each test substance and will be based on the 

information  available for that chemical.  Often, information concerning the types of DNA 
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adducts that are produced in the target or other tissues in vivo will be available already.  There 

may be information concerning the ability of the chemical to induce oxidative damage or 

cytotoxicity, cell proliferation and inflammation.  Some chemicals (such as DCA) have already 

been extensively evaluated for preneoplastic lesions and/or other pathologically observable 

effects.  The final design for a specific chemical will incorporate all of the relevant possible 

endpoints and will be conducted so each of the endpoints can not only be placed on a timeline 

incorporating mutation, but also so that a dose-response evaluation can provide insight into what 

effects occur at what exposure time and at what dose.  Because the time to mutation or other 

effects will certainly be influenced by the dose, it is important that there are sufficient data to 

fully assess temporality and dose response for every endpoint.  For a mutagenic MOA to be 

established, it must be clear that the induction of mutation occurs prior to the induction of tumors 

(or preneoplastic lesions) at each dose. 

 

Dose-response analysis will employ all of the data (including mutation) obtained at each time 

point and will be used for assessing temporality.  Dose-response analysis combined with time to 

the induction of primary DNA damage, time-to-mutation, and time to the induction of the other 

relevant biological effects should provide information as to whether mutation is likely to be the 

key event in the etiology of specific target site tumors.  These targeted mechanistic studies, 

together with toxicokinetic data and other information, could contribute to the overall WOE 

determination for cancer MOA.  Mutational spectrum analysis may provide additional 

information as to whether any small increase in MF is, in fact, indicative of chemical-induced 

mutations or an expansion of preexisting mutations.  
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CASE STUDIES 

While studies following the above design have not yet been conducted, the general concept can 

be illustrated by analyses of published gene mutation and tumor data.  Unfortunately, these 

studies lack many of the key features of the design presented above, and should be thought of 

more as exploring the concept rather than a full demonstration of the approach.  We present two 

case studies, one (riddelliine) that we believe is consistent with the chemical being a mutagenic 

carcinogen and one (dichloroacetic acid) that is more consistent with the chemical being a 

nonmutagenic carcinogen.  

 

Riddelliine 

Riddelliine is a naturally occurring, mutagenic pyrrolizidine alkaloid that can contaminate human 

food (reviewed in Fu et al., 2004).  For our analysis, we used liver mutation data from Big Blue 

rats exposed for 12 weeks (Mei et al., 2004a).   MF is expressed as the number of mutant lambda 

phages  per 1 x 106  phages recovered from the livers of rats. In the Big Blue F344 rat model 

each recoverable phage has a single mutational target gene (in this case the cII gene), and each 

cell contains approximately 20 phages (Dycaico et al., 1994), providing multiple cellular targets 

for mutations. The cancer data were obtained from a National Toxicology Program (NTP) two-

year carcinogenicity study (NTP, 2003; Chan et al., 2003).  A weakness in the analysis of these 

data sets is that the tumors from the NTP study are hemangiosarcomas and arise in the liver 

vascular tissue while the mutation analysis was conducted using whole liver.  Our approach will 

consider examining mutations in particular cell types where feasible and where the tumor data 

indicate that particular cell types are involved. A study of riddelliine mutagenesis in rat liver 

indicates that mutation induction is much higher in endothelial than parenchymal cells (Mei et 
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al., 2004b); thus the MF measured in the whole liver may have been an underestimate of the MF 

in liver vascular cells.  The MF and cancer data are summarized in Table 1. 

 

Dichloroacetic Acid (DCA) 

DCA is a mutagenic drinking water disinfection by-product (Moore and Harrington-Brock, 

2000). The mutation data used for our analysis came from the liver of Big Blue mice exposed to 

DCA via their drinking water for 4, 10, and 60 weeks (Leavitt et al., 1997) and the cancer data 

are from DeAngelo et al., (1999).1   The MF and cancer data are summarized in Table 2. 

 

MATERIALS AND METHODS 

Time-to-mutation 

We plotted the 3 time points (4-, 10-, and 60-week exposures) for DCA MF (Figure 1a).  

Unfortunately, there is only one time point for riddelliine MF (a 12-week exposure). To provide 

some comparison between these two chemicals, we plotted the riddelliine MF at 12 weeks of 

exposure with the DCA MF at 10 weeks of exposure (Figure 1b). For both comparisons, we 

plotted the induced MF (the observed frequency of mutant transgenes less the background MF) 

to better visualize the actual increase in MF above the concurrent background (which varies with 

age and animal model). 

 
 
Dose-Response Concordance 

Although the EPA Cancer Guidelines identify dose-response concordance as a major part of the 

MOA analysis, there is currently no recognized optimal approach for comparing dose-responses 

                                                 
1 We thank Dr. Anthony DeAngelo for providing the primary liver carcinoma data from his bioassay of mice 
exposed to DCA via their drinking water (published in DeAngelo et al., 1999).   
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generated by different biological measurements.  While qualitative (or semiquantitative) 

comparisons may be useful, more information potentially may be derived from quantitatively 

modeling the responses. As a first step towards addressing the issues associated with evaluating 

dose-response concordance, the following approach was implemented.   

 

Following standard EPA practice (U.S. EPA, 2005), a multistage model was fit to each tumor 

data set.  The degree of the polynomial in that model was set to one less than the number of dose 

groups.  Note that such a model predicts the probability of tumor response as a function of dose.  

The EPA software, BMDS (U.S. EPA, 2003), was used to obtain and evaluate the model fits. 

 

For MF, a continuous (or pseudocontinuous) endpoint, a quadratic model was used to relate the 

mean response to the dose level, i.e., m(d) = b0 + b1*d + b2*d2
, where d is dose, m(d) is the mean 

response (MF) at dose d, and the bi parameters are to be estimated.  It was assumed that the MF 

observations were normally distributed around those means with a variance independent of dose 

level.  BMDS was used to fit this model to the data for riddelliine and DCA. 

 

The model fit to the MF data predicts mean response as a function of dose.  It was considered 

appropriate, for considering dose-response concordance between the mutation response and the 

tumor response, to express the modeling results in terms of the probability of an “adverse” 

response.  The idea underlying the conversion of a continuous response to the probability scale is 

familiar from the definition of benchmark doses for continuous endpoints derived from the so-

called hybrid approach (Kodell and West, 1993).  It is equivalent to specifying some background 

probability of adverse response (the definition of which is discussed below), thus implicitly 
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identifying a cutoff value for an adverse response.  Then, using the model-estimated standard 

deviation and dose-related change in the means, the increased probability of having an adverse 

response is calculated as a function of dose. 

 

Model Fitting  

The data were fit using BMDS, free software from the U.S. EPA (U.S. EPA, 2003).  Summaries 

of the fitted model estimates are given here.  Figure 2 shows the fit of the models to the data. 

 

Riddelliine Cancer Model:  P(d) = 1 – exp( – 0.2405*dose2 – 1.1958*dose3). 

Goodness of fit p-value: 0.8124 

 

Riddelliine Mutant Frequency Model:  m(d) = 33.2521 + 84.7974*dose – 15.2044*dose2; the 

constant variance, v(d), was estimated to be 140 for all d. 

Goodness of fit p-value: 0.1539 

 

DCA Cancer Model:  P(d) = 0.2772 + (0.7228)[1 – exp( – 0.6147*dose – 0.2017*dose2 –  

0.0844*dose3 – 0.00008*dose5)].  

Goodness of fit p-value: 0.5789 

 

DCA Mutant Frequency Model:  m(d) = 41.10 + 10.8057*dose + 1.3943*dose2; the constant 

variance, v(d), was estimated to be 115 for all d. 

Goodness of fit p-value: NA (same number of parameters as independent mean model; 

model predictions were the same as that model so the fit to observed means was perfect). 
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Calculation of Probability of Response for Mutant Frequency 

The conversion of the modeled dose-response for the mean (and variance) of MF as a function of 

dose was accomplished using the following equation: 

 

 P(d) = 1 – N(m(d), v(d), m(0) + v(0)*N-1(0, 1, 1-b)) 

 

where N(x, y, z) is the probability that a normal random variable with mean x and variance y will 

be less than z; N-1(r, s, t) is the inverse normal function giving the value such that the cumulative 

probability that a normal random variable with mean r and variance s will be equal to t; and b is 

the assumed background probability of response.  The values of m(d) and v(d) are as determined 

by the fit of the dose-response models to the MF data, shown above. 

 

A key consideration in conducting the modeling for the MF data was the definition of the 

background response rate.  A background response rate of 0.01 is often implicitly assumed in 

benchmark dose analyses for continuous endpoints (U.S. EPA, 2000).   However, it is not clear 

that this is appropriate for the current application, because the question being addressed is not 

what level of the MF per se is adverse, but what level would lead to an adverse response 

(increase) in tumor incidence.  Therefore, in addition to the 0.01 background response, the 

implications of using alternative background responses were considered. 

 

RESULTS  

Time-to-Mutation 
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For DCA, there was no increase in the MF at either 4 or 10 weeks, but there was an increase in 

MF at 60 weeks (Leavitt et al., 1997).  This provides evidence that the time-to-mutation for DCA 

may be very long (Figure 1a).   Thus, the time-to-mutation curve is consistent with DCA being a 

nonmutagenic carcinogen, since an increase in MF was detected only following long-term 

exposure.  As shown in Figure 1b, riddelliine induces a clear positive response at the earliest 

(and only) evaluated time point (12 weeks of exposure) while DCA is nonmutagenic after a  

comparable time period (10 weeks of exposure). Although different units are used on the x-axis 

for the two chemicals, it is appropriate to compare the curves, which show the mutagenic 

response in the tumorigenic dose range. 

 

Dose-Response Concordance 

Riddelline 

Qualitative comparison of the dose-response data (Table 1 and Figure 2a) indicates that liver MF 

(at 12 weeks of treatment) leads liver tumor incidence.  Of the doses tested (0.1, 0.3, and 1.0 

mg/kg/day), a statistically significant increase in tumors was observed only at 1.0 mg/kg/day, 

while all three doses produced statistically significant dose-related increases in MF.   Results of 

the dose-response modeling for the two endpoints are shown in Figure 2a.  The calculated 

probabilities of an adverse response are shown in Figure 3a.  The two curves shown for the 

probabilities associated with MF correspond to two choices of the background rate of response, 

either 0.058 (the 95% upper bound on the observed rate of response of 0 out of 50 observed in 

the cancer control group) or 0.01.   
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With either assumed background response rate for MF, the curve for mutation “leads” the curve 

for cancer.  At any given dose, the likelihood of observing an adversely high MF is greater than 

the likelihood of detecting a tumorigenic response.  Thus, both the qualitative analysis and the 

modeling results are consistent with a mutagenic MOA for tumor induction. 

 

Dichloroacetic Acid 

Complete qualitative comparison of the DCA data is difficult because MF measurements were 

not made on doses less than 1.0 mg/ml.  Sixty weeks of dosing with 1.0 or 3.5 mg/ml of DCA in 

drinking water produced significant increases in liver MF, while doses of 0.5 to 3.5 mg/ml of 

DCA produced dose-related increases in liver tumor incidence (Table 2 and Figure 2b).  

Plots of the dose-response data and model predictions based on maximum likelihood estimation 

are given in Figure 2b for both endpoints. The calculated probabilities of an adverse response are 

shown in Figure 3b.  Again, two curves are shown for MF, differing because of different 

assumptions about the background rate.  In one case, the background probability of response was 

set equal to the background incidence of the tumors in the control group (0.26); in the other case, 

the background rate is the “default” choice of 0.01.   

 

When the background rate of response for MF is assumed to be small (0.01), the dose-response 

for cancer leads the dose-response for mutation.  When the background rate of response for MF 

is assumed to be equal to that of the tumor endpoint, the mutant and cancer dose-response curves 

are essentially indistinguishable.  Even though the analysis for DCA appears less clear than that 

for riddelliine, it still can be concluded that the dose-response concordance for DCA is different 

from that for riddelliine and is more consistent with a nonmutagenic MOA.  In support of this 
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conclusion, the observed increase in mutations occurred relatively late in the exposure; 10 weeks 

of treatment with 3.5 mg/ml DCA did not significantly increase liver MF (Figure 1b). 

 

DISCUSSION 

Based on an understanding of tumor etiology, we propose a new experimental approach for using 

mutation data to inform cancer MOA, with particular attention to evaluating whether the dose-

response and temporality for the gene mutation data are consistent with mutation being a key 

event for the formation of tumors.  While research is needed to define an optimal design for the 

experimentation and analysis, we can identify key components of the approach. The species, 

strain, route of exposure, dose range, and the tissues evaluated for mutation will be selected 

based on the cancer bioassay.   A sufficient number of doses (based on the cancer bioassay) will 

be employed to provide an assessment of both the time-to-mutation and the dose-response.  It is 

important to include enough doses to provide confidence in dose-response modeling and, in 

particular, to include one or more doses below those required to induce tumors.  The time-to-

primary DNA damage, time to mutation, and time to other relevant biological effects 

(temporality) and dose response concordance information can be used as outlined in the EPA 

Cancer Guidelines (U.S. EPA, 2005) and the new EPA Framework Document 

(http://www.epa.gov/osa/mmoaframework/pdfs/MMOA-ERD-FINAL-83007.pdf.) as a part of 

the WOE evaluation for the MOA Framework.  In light of the complexity of these assays and the 

time and expense involved in conducting these experiments, we envision that the approach 

described here would be of interest only for chemicals that have been identified as mutagens in 

short-term tests and as carcinogens, but for which there is controversy regarding the chemical’s 

MOA.  In such cases, the approach improves the scientific basis for establishing an MOA. 
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There are some issues related to these comparisons that are specific to evaluations of gene 

mutation data.  In particular, the mutations being measured are markers for the tumors, but are 

not on the direct pathway to the tumors, since they are in a reporter gene.  However, as noted 

above, these reporter genes provide a reasonable approximation of the MF in the target gene(s), 

and, in particular, measure the types of mutations likely to be involved in producing linear dose-

responses. We concede that obtaining time-to-mutation and dose-response concordance 

information using the appropriate oncogenes/tumor suppressor genes would remove a degree of 

uncertainty from the assessment, but, from a technical standpoint, such analyses are extremely 

challenging (McKinzie et al., 2001).   We also concede that our approach does not readily 

distinguish between chemicals that are directly DNA reactive and those that are not “directly 

DNA reactive” yet rapidly induce mutations, perhaps via an oxidative MOA for mutation.  By 

incorporating measures of oxidative damage and assessing time to oxidative damage and time to 

mutation induction and the dose-response concordance of both endpoints, we feel that we can 

provide information that contributes to the WOE assessment as to whether the induction of 

mutation is “direct” or “indirect”.  The incorporation of antioxidants into the experimental design 

may assist with this assessment.  In spite of these issues, we believe that our approach provides a 

practical means for providing MOA assessments that are far more scientifically rigorous than the 

current WOE evaluation of standard genetic toxicology assay data to determine whether the 

chemical has a mutagenic MOA for the induction of tumors.   

 

Other issues relevant to the dose-response comparisons apply in general to the evaluation of 

potential key events that are continuous endpoints.  To date, comparisons of dose-response for 



 22

continuous endpoints typically have used a NOAEL/LOAEL approach (e.g., for chloroform, 

U.S. EPA, 2006).  However, in light of the well-known limitations to the NOAEL/LOAEL 

method (Crump, 1984), it would be useful to bring a quantitative analytical approach to the 

evaluation of dose-response concordance between potential key events and tumors.  

Determination of an appropriate approach for identifying the number of animals with the 

background level of adverse response, and how to define that background level, is an important 

consideration for the quantitative analyses of key events described by continuous data.  Little 

research exists to inform this decision.  Our examples show that background probability 

assumptions in the modeling of a continuous endpoint can affect the appearance of dose-

response concordance.   

 

In order to begin to evaluate the impact of assumptions regarding the background degree of 

adversity in MF, two approaches were used.  The first approach employed a background rate of 

0.01, as is done commonly for continuous endpoints.   A second approach used the background 

tumor rate (or an estimate thereof).  This approach was chosen to tie together the MF and tumor 

data, because the definition of adversely high MF is the MF that increases the risk of tumors.  If 

the mutation data were indicative of a mutagenic MOA, then the implicit rate of response 

(probability of “adversely” high MFs) should correspond to the rate of the induced tumor 

response.  Equating the background rate of response may be a feasible approach, and it avoids 

any default choice made in the absence of any knowledge of what values of a continuous 

endpoint might be considered adverse.   
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Even with this as a guide, however, there are still other issues.  In the riddelliine example, the 

observed tumor rate in the controls was 0.  However, it is not possible to assign 0 background 

probability of adversely high MFs.  The background probability of response implicitly defines a 

cutpoint above which the MF is “adverse.”  For any finite cutpoint, there will be some nonzero 

(albeit perhaps small) probability of an adverse response, meaning that the background 

probability must be nonzero.  In our analyses of riddelliine, we examined the impact of setting 

the background to some upper bound based on the concurrent control sample size.  (Our choice, 

0.058, is the 95% upper bound on the binomial probability when 0 out of 50 animals were 

observed to have the tumor of interest).  Examination of historical control data also might be 

useful for constraining the assumed background rate. 

 

We also have opted not to present statistical analyses of bounds on the probability curves shown 

here.  It may be important to consider more formal ways of approaching the question of whether 

one curve “leads” another.  Comparison of appropriately chosen upper and lower bounds on such 

curves is one approach that we have begun to explore.  Moreover, approaches that do not restrict 

attention to the tails of the continuous MF distributions and that integrate MF data and tumor 

response data in a likelihood estimation approach may be useful.  These ideas are important for 

fixing notions of dose-response concordance, not only for mutagenicity data and MOA 

determination, but whenever continuous and dichotomous responses are being compared.  We 

are continuing to explore the implications of these alternative approaches to evaluating dose-

response concordance in ongoing work. 
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Another important issue, not addressed in our current modeling, is the fact that some chemicals 

likely have a mixed MOA.  That is, they may induce cancer via both mutagenic and 

nonmutagenic MOAs.  To further complicate the modeling analysis, the degree to which these 

two MOAs contribute may be dependent upon dose.  For example, the mutagenic MOA may 

dominate with a low slope at low doses, with the nonmutagenic MOA contributing only at higher 

doses, but having a steeper slope.  We currently are considering these issues and are developing 

an additional strategy for dealing with this type of data. 

 

In conclusion, although the ideal in vivo mutation data sets are not available at present, we have 

conducted some preliminary analyses with existing data from experiments designed for hazard 

identification.  From these analyses, we conclude that our approach for using in vivo mutation 

data to inform cancer MOA assessment has merit and we plan to proceed with defining optimal 

studies and the methodology to analyze them.  While qualitative or semiquantitative comparisons 

of the data may suffice for some applications, we feel that analytical modeling will further aid in 

informing the cancer MOA evaluation.  Enhancements of dose-response approaches for mutation 

data, as well as for tumor data, should be used to extend the more qualitative assessments.  
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Table 1.  Liver Mutant Frequency (MF) and Hemangiosarcoma Data for Rats Dosed with 

Riddelliine 

 
 

MF data after 12 weeks of 

dosingb 

 

Hemangiosarcoma data after 104 weeks of 

dosingc 

 

 

 

Dose 

(mg/kg/day)a 

 

No. of rats 

MF ± SD  

( x10-6)d 

No. of rats 

examined 

No. of rats 

with tumors 

% with 

tumors 

 

0 

 

6 

 

  30 ± 10 

 

50 

 

  0 

 

  0 

0.1 6   47 ± 14* 50   0   0 

0.3 6   55 ±   8** 50   3   6 

1.0 6 103 ± 16*** 50 38 76† 

 
 
Significantly greater than control (Tukey test): *p<0.05, **p<0.01, ***p<0.001.  

Significantly greater than control (Poly-K test): †p<0.05. 

aRats were dosed 5 days per week with the indicated dose.  

bData from Mei et al. (2004a). 

cData from the National Toxicology Program (2003).   

dMF is expressed as the number of mutants per 106 phages.  Assays were conducted on 

transgenes recovered from whole liver, with each liver cell containing approximately 20 copies 

of the transgene. 
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Table 2.  Liver Mutant Frequency (MF) and Hepatocellular Carcinoma Data for Mice Dosed 

with Dichloroacetic Acid 

 

 

MF data after 60 weeks of 

dosinga 

 

Hepatocellular carcinoma data after 100 weeks 

of dosingb 

 

 

 

 

Dose (mg/ml) 

 

No. of mice 

MF ± SD  

( x10-6)c 

No. of mice 

examined 

No. of mice 

with tumors 

% with 

tumors 

 

0 

 

5 

 

41 ± 10 

 

50 

 

13 

 

  26 

0.05 ND ND 33 11   33 

0.5 ND ND 25 12   48† 

1.0 5 53 ± 10* 35 25   71†† 

2.0 ND ND 20 19   95†† 

3.5 6 96 ± 15** 11 11 100†† 

 

ND, not done 

Significantly greater than control (Cochran-Armitage test):  *p=0.05, **p=0.01.  

Significantly greater than the control (Fisher’s exact test):  †p=0.05, ††p<0.05 

aData from Leavitt et al. (1997).   

bWe thank Dr. Anthony DeAngelo for providing the primary liver carcinoma data from his 

research published in DeAngelo et al. (1999).   
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cMF is expressed as the number of mutants per 106 phages.  Assays were conducted in transgenes 

recovered from whole liver, with each liver cell containing approximately 40 copies of the 

transgene. 
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FIGURE LEGENDS 

 

Figure 1.  (A) Time-to-mutation for animals exposed to DCA.  The induced MF (the observed 

MF less the concurrent background MF) is plotted.  MF was evaluated at 4, 10, and 60 weeks of 

exposure.  Only the 60-week exposures of DCA were positive.  (B) The induced MF (the 

observed MF less the concurrent background MF) for animals exposed to either riddelliine or 

DCA for either 12 or 10 weeks, respectively, is shown to emphasize the difference in the 

riddelliine and DCA mutant induction responses. 

 

Figure 2. The observed MF and cancer incidence are plotted with the model predicted mutant 

frequency and cancer incidence. (A) Results for riddelliine, and (B) results for DCA.  

 

Figure 3.  (A)  Fitted dose-response curves for MF and cancer incidence on a probability scale 

for riddelliine.  Cancer dose-response (---------) is based on fitting a multistage model.  Two 

probability dose-responses for MF are shown, resulting from different assumptions regarding the 

background rate of response (0.058, -- -- --; or 0.01, -------).  (B)  Fitted dose-response curves for 

MF and cancer incidence on a probability scale for DCA.  Cancer dose-response (---------) is 

based on fitting a multistage model.  Two probability dose-responses for MF are shown, 

resulting from different assumptions regarding the background rate of response (0.26, -- -- --; or 

0.01, -------).  

 

 




