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There is a correlation between the creative and the screwball.
So we must suffer the screwball gladly.

Kingman Brewster, Jr. (1919 - 1988) President Yale University (1963-
1977), US Ambassador to Great Britan (1977-1981), Master of Univer-
sity College, London (1986-1988).

Abstract. We solve several open problems concerning the correlation
clustering problem introduced by Bansal, Blum and Chawla [1]. We give
an equivalence argument between these problems and the multicut prob-
lem. This implies an O(log n) approximation algorithm for minimizing
disagreements on weighted and unweighted graphs. The equivalence also
implies that these problems are APX-hard and suggests that improv-
ing the upper bound to obtain a constant factor approximation is non
trivial. We also briefly discuss some seemingly interesting applications of
correlation clustering.

1 Introduction

1.1 Problem definition

Bansal, Blum and Chawla [1] present the following clustering problem. We are
given a complete graph on n vertices, where every edge (u, v) is labelled either
〈+〉 or 〈−〉 depending on whether u and v have been deemed to be similar or
different. The goal is to produce a partition of the vertices (a clustering) that
agrees as much as possible with the edge labels. The number of clusters is not
an input to the algorithm and will be determined by the algorithm. I.e., we want
a clustering that maximizes the number of 〈+〉 edges within clusters, plus the
number of 〈−〉 edges between clusters (equivalently, minimizes the number of
disagreements: the number of 〈−〉 edges inside clusters plus the number of 〈+〉
edges between clusters).

Bansal et. al., [1], show the problem to be NP-hard. They consider the two
natural approximation problems:

– Given a complete graph on n vertices with 〈+〉/〈−〉 labels on the edges, find
a clustering that maximizes the number of agreements.
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Fig. 1. Two clustering examples for unweighted and weighted (general) graphs. In the
unweighted case we give an optimal clustering with two errors: one error on an edge
labelled 〈+〉 and one error on an edge labelled 〈−〉. For the weighted case we get a
different optimal clustering with three errors on 〈+〉 edges and total weight 5

– Given a complete graph on n vertices with 〈+〉/〈−〉 labels on the edges, find
a clustering that minimizes the number of disagreements.

For the problem of maximizing agreements Bansel et. al. ([1]) give a polyno-
mial time approximation scheme. For the problem of minimizing disagreements
they give a constant factor approximation. Both of these results hold for com-
plete graphs.

Bansal et. al. pose several open problems, including the following:

1. What can one do on general graphs, where not all edges are labelled either
〈+〉 or 〈−〉? If 〈+〉 represents attraction and 〈−〉 represents the opposite, we
may have only partial information on the set of all pairs, or there may be
pairs of vertices for which we are indifferent.

2. More generally, for some pairs of vertices, one may be able to quantify the
strength of the attraction/rejection. Is it possible to approximate the agree-
ment/disagreement in this case?

In this paper we address these two open questions with respect to minimizing
disagreements for unweighted general graphs and for weighted general graphs.



1.2 Problem variants

Following Bansal et. al., we define three problem variants. For all of these vari-
ants, the goal is to find a clustering that maximizes the number of agreements
(alternately, minimizes the number of disagreements). In the weighted case one
seeks to find a clustering that maximizes the number of agreements weighted by
the edge weights (alternately, minimizes the number of disagreements weighted
by edge weights).

– Unweighted Complete Graphs

Every pair of vertices has an edge between them, and every edge is labelled
either 〈+〉 or 〈−〉. An edge labelled 〈+〉 stands for attraction; the two vertices
should be in the same cluster. An edge labelled 〈−〉 stands for rejection; the
two vertices should be in different clusters.

– Unweighted General Graphs

Two vertices need not necessarily have an edge between them, but if so then
the edge is labelled either 〈+〉 or 〈−〉. If two vertices do not have an edge
between them then this represents indifference (or no information) as to
whether they should be in the same cluster or not.

– Weighted General Graphs

Two vertices need not necessarily have an edge between them. Edges in the
graph have both labels {〈+〉, 〈−〉} and positive real weights. An edge labelled
〈+〉 with a large weight represents strong attraction (the vertices should be
in the same cluster), an edge labelled 〈−〉 and a large value represents strong
rejection (the vertices should not be in the same cluster). No edge, or a weight
of zero for an edge represents indifference or no prior knowledge.

For each of these problem variants we focus on minimizing disagreements (as
distinct from the easier goal of maximizing agreements). We seek to minimize
the number of edges labelled 〈−〉 within the clusters plus the number of the
edges labelled 〈+〉 that cross cluster boundaries. In the weighted version we seek
to minimize the sum of the weights of edges labelled 〈−〉 within the clusters plus
the sum of the weights of the edges labelled 〈+〉 that cross cluster boundaries.

In the rest of this paper when we refer to the “correlation clustering problem”
or “the clustering problem” we mean the problem of minimizing disagreements
in one of the problem variants above. We will also say “positive edge” when
referring to an edge labelled 〈+〉 and “negative edge” when referring to an edge
labelled 〈−〉. Note that for both positive and negative edges, the weights are
always ≥ 0.

Remarks:

1. We remark that although the optimal solution to maximizing agreements is
the same as the optimal solution to minimizing disagreements, in terms of
approximation ratios these two goals are obviously distinct.

2. It is not hard to see that for all problem variants, a trivial algorithm for
maximizing agreements gives a factor of two approximation. Simply consider
one of the two clusterings: every vertex is a distinct cluster or all vertices
are in the same cluster.



3. It should be obvious that the problem of minimizing disagreements for un-
weighted complete graphs is a special case of minimizing disagreements for
unweighted general graphs, which is itself a special case of minimizing dis-
agreements for weighted general graphs.

4. We distinguish between the different problems because the approximation
results and the hardness of approximation results are different or mean dif-
ferent things in the different variants.

1.3 Our Contributions

In [1] the authors presented a constant factor approximation algorithm for the
problem of unweighted complete graphs, and proved that the problem for the
weighted general graphs is APX-Hard. They gave the problem of finding ap-
proximation algorithms and hardness of approximation results for the two other
variants (unweighted and weighted general graphs)as open questions.

Problem class Approximation
Hardness of
Approximation

Equivalence

Unweighted
complete graphs

c ∈ O(1) Open

Unweighted
general graphs

Open Open

Weighted
general graphs

Open APX-hard

Fig. 2. Previous Results [BBC 2002] — Minimizing Disagreements
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Fig. 3. Our Contributions. The equivalence column is to say that any c-approximation
algorithm for one problem will translate into a c

′-approximation approximation for the
other, where c and c

′ are constants.

We give an O(log n) approximation algorithm for minimizing disagreements
for both the weighted and unweighted general graph problems, and prove that



the problem is APX-hard even for the unweighted general graph problem, thus
admitting no polynomial time approximation scheme (PTAS). We do this by
reducing the correlation clustering problems to the multicut problem.

We further show that the correlation clustering problem and the multicut
problem are equivalent for both weighted and unweighted versions, and that
any constant approximation algorithm or hardness of approximation result for
one problem implies the same for the other. Note that the question of whether
there exists a constant factor approximation for general weighted and unweighted
graphs remains open. This is not very surprising as the multicut problem has
been studied at length, and no better approximation found, this suggests that
the problem is not trivial.

1.4 Some background regarding the multicut problem

The weighted multicut problem is the following problem: Given an undirected
graph G, a weight function w on the edges of G, and a collection of k pairs of
distinct vertices (si, ti) of G, find a minimum weight set of edges of G whose
removal disconnects every si from the corresponding ti.

The problem was first stated by Hu in 1963 [8]. For k = 1, the problem
coincides of course with the ordinary min cut problem. For k = 2, it can be
also solved in polynomial time by two applications of a max flow algorithm
[16]. The problem was proven NP-hard and MAX SNP-hard for any k ≥ 3 in
by Dahlhaus, Johnson, Papadimitriou, Seymour and Yannakakis [5]. The best
known approximation ratio for weighted multicut in general graphs is O(log k)
[7] . For planar graphs, Tardos and Vazirani [13] give an approximate MaxFlow
MinCut theorem and an algorithm with a constant approximation ratio. For
trees, Garg, Vazirani and Yannakakis give an algorithm with an approximation
ratio of two [6].

1.5 Structure of this paper

In section 2 we give notations and definitions, in section 3 we prove approxima-
tion results, and in section 4 we establish the equivalence of the multicut and
correlation clustering problems. Section 5 gives the APX-hardness proofs.

2 Preliminaries

Let G = (V,E) be a graph on n vertices. Let e(u, v) denote the label (〈+〉, 〈−〉)
of the edge (u, v). Let E〈+〉 be the set of positive edges and let G〈+〉 be the
graph induced by E〈+〉, E〈+〉 = {(u, v)|e(u, v) = 〈+〉}, G〈+〉 = (V,E〈+〉). Let
E〈−〉 be the set of negative edges and G〈−〉 the graph induced by E〈−〉, E〈−〉 =
{(u, v)|e(u, v) = 〈−〉}, G〈−〉 = (V,E〈−〉)

Definition 2.01 We will call a cycle (v1, v2, v3..., vk) in G a erroneous cycle

if it is a simple cycle, and it contains exactly one negative edge.



We let OPT denote the optimal clustering on G. In general, for a clustering C,
let C(v) be the set of vertices in the same cluster as v. We call an edge (u, v)
a positive mistake if e(u, v) = 〈+〉 and yet u 6∈ C(v). We call an edge (u, v)
a negative mistake if e(u, v) = 〈−〉 and u ∈ C(v). The number of mistakes of
a clustering C is the sum of positive and negative mistakes. The weight of the
clustering is the sum of the weights of mistaken edges in C;

w(C) =
∑

e(u,v)=〈−〉,u∈C(v)

w(u, v) +
∑

e(u,v)=〈+〉,u 6∈C(v)

w(u, v).

For a general set of edges T ⊂ E we will define the weight of T to be the
sum of the weights in T , w(T ) =

∑
e∈T w(e).

For a graph G = (V,E) and a set of edges T ⊂ E we define the graph G \ T
to be the graph (V,E \ T ).

Definition 2.02 We will call a clustering a consistent clustering if it con-

tains no mistakes.

3 A logarithmic approximation factor for minimizing

disagreements

3.1 Overview

We now show that finding an optimal clustering is equivalent to finding a minimal
weight covering of the erroneous cycles. An edge is said to cover a cycle if the
edge disconnects the cycle.

Guided by this observation will define a multicut problem derived from our
original graph by replacing the negative edges with source-sink pairs (and some
other required changes). We show that a solution to the newly formed multicut
problem induces a solution to the clustering problem, that this solution and
the multicut solution have the same weight, and that optimal solution to the
multicut problem induces an optimal solution to the clustering problem.

These reductions imply that the O(log k) approximation algorithm for the
multicut problem [7] induces an O(log n) approximation algorithm for the cor-
relation clustering problem. We prove this for weighted general graphs, which
imply the same result for unweighted general graphs. We start by stating two
simple lemmata:

Lemma 3.11 A graph contains no erroneous cycles if and only if it has a con-

sistent clustering.

Proof. Omitted.

Lemma 3.12 The weight of mistakes made by the optimal clustering is equal

to the minimal weight set of edges whose removal will eliminate all erroneous

cycles in G.

Proof. Omitted.
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Fig. 4. Two optimal clusterings for G. For both of these clusterings we have removed
two edges (different edges) so as to eliminate all the erroneous cycles in G. After the
edges were removed every connected component of G

〈+〉 is a cluster. Note that the two
clusterings are consistent; no positive edges connect two clusters and no negative edges
connect vertices within the same cluster.

3.2 Reduction from correlation clustering to weighted multicut

We give a reduction from the problem of correlation clustering to the weighted
multicut problem. The reduction translates an instance of unweighted correlation
clustering into an instance of unweighted graph multicut, and an instance of
weighted correlation clustering into an instance of weighted graph multicut.

Given a weighted graph G whose edges are labelled {〈+〉, 〈−〉} we construct
a new graph HG and a collection of source-sink pairs SG = {〈si, ti〉} as follows:

– For every negative edge (u, v) ∈ E〈−〉 we introduce a new vertex v
û,v

, a

new edge (v
û,v

, u) with weight equal to that of (u, v), and a source-sink pair

〈v
û,v

, v〉.

– Let Vnew denote the set of new vertices, Enew, the set of new edges, and SG,
the set of source-sink pairs. Let V

′

= V ∪ Vnew, E
′

= E〈+〉 ∪ Enew, HG =
(V

′

, E
′

). The weight of the edges in E〈+〉 remains unchanged. We now have
a multicut problem on (HG, SG).

We claim that given any solution to the multicut problem, this implies a solution
to the correlation clustering problem with the exact same value, and that an
approximate solution to the former gives an approximate solution to the later.

Theorem 3.21 (HG, SG) has a cut of weight W if and only if G has a clustering

of weight W , and we can easily construct one from the other. In particular, the

optimal clustering in G of weight W implies an optimal multicut in (HG, SG) of

weight W and vice versa.
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Fig. 5. The original graph from Figure 4 after the transformation

Proof. Proposition 3.22 Let C be a clustering on G with weight W then there

exists a multicut T ′ in (HG, SG) with weight W .

Proof. Let C be a clustering of G with weight W , where T is the set of mis-
takes made by C (w(T ) = W ). Let T ′ = {(u, v)|(u, v) ∈ T, (u, v) ∈ G〈+〉} ∪
{(v

û,v
, u)|(u, v) ∈ T, (u, v) ∈ G〈−〉}, i.e., we replace every negative edge (u, v) ∈

T , with the edge (v
û,v

, u). Note that w(T ) = w(T ′). We now argue that T ′ is a

multicut.
Assume not, then there exists a pair (v

û,v
, v) ∈ SG and a path from v

û,v

to u that contains no edge from T ′. From the construction of SG and HG, this
implies that the edge (v

û,v
, u) 6∈ T ′ and that there exists a path from u to v in

G〈+〉 \T . Note that (u, v) is a negative edge in G \T , so the negative edge (u, v)
and the path from u to v in G〈+〉 \ T jointly form an erroneous cycle in G \ T .
This is a contradiction since G \ T is consistent (Lemma 3.12) and contains no
erroneous cycles (Lemma 3.11). Note that the proof is constructive.

Proposition 3.23 If T ′ is a multicut in HG of weight W , then there exists a

clustering C in G of weight W .

Proof. We construct a set T from the cut T ′ by replacing all edges in Enew
with the corresponding negative edges in G, and define a clustering C by taking
every connected component of G〈+〉/T as a cluster. T has the same cardinality
and total weight T ′. Thus, if we show that C is consistent on G \ T we are done
(since w(C(G)) = w(C(G \ T )) + w(T ) = 0 + w(T ′) = W ).

Assume that C is not a consistent clustering on G \ T , then there exists an
erroneous cycle in G \ T (Lemma 3.11). Let (u, v) be the negative edge along
this cycle. This implies a path from u to v in HG (the path of positive edges of
the cycle in G \T ). We also know that (u, v) is negative edge, which means that
in the construction of HG we replaced it with edge (v

û,v
, u). The edge (v

û,v
, u)



is not in the cut (not in T ′) since (u, v) is not in T (as (u, v) ∈ G \T ). From this
it follows that there is a path from v

û,v
to v in HG. But the pair 〈vu,v, v〉 are a

source-sink pair which is in contradiction to T ′ being a multicut.

Proposition 3.22 and proposition 3.23 imply that

w(Optimal clustering(G)) = w(Multicut induced by opt. clustering(HG, SG))

≥ w(Minimal Multicut(HG, SG))

= w(Clustering on G induced by minimal multicut )

≥ w(Optimal clustering(G)),

where all inequalities must hold with equalities.

We can now use the approximation algorithm of [7] to get an O(log k) ap-
proximation solution to the multicut problem (k is the number of source-sink
pairs) which translates into an O(log |E〈−〉|) ≤ O(log n2) = O(log n) solution to
the clustering problem. Note that this result holds for both weighted and un-
weighted graphs and that the reduction of the unweighted correlation clustering
problem results in a multicut problem with unity capacities and demands.

4 Reduction from multicut to correlation clustering

In the previous section we argued that every correlation clustering problem can
be presented (and approximately solved) as a multicut problem. We will now
show that the opposite is true as well, that every instance of the multicut prob-
lem can be transformed to an instance of a correlation clustering problem, and
that transformation has the following properties: any solution to the correla-
tion clustering problem induces a solution to the multicut problem with lower
or equal weight, and an optimal solution to the correlation clustering problem
induces an optimal solution to the multicut problem.

In the previous section we could use one reduction for the weighted version
and the unweighted version. Here we will present two slightly different reduc-
tions from unweighted multicut to unweighted correlation clustering and from
weighted multicut to weighted correlation clustering.

4.1 Reduction from weighted multicut to weighted correlation

clustering

Given a multicut problem instance: an undirected graph H, a weight function w
on the edges of H , w : E → R+, and a collection of k pairs of distinct vertices
S = {〈si, ti〉, . . . , 〈sk, tk〉)} of H we construct a correlation clustering problem
as follows:

– We start with GH = H, all edge weights are preserved and all edges labelled
〈+〉.



– In addition, for every source-sink pair 〈si, ti〉 we add to GH a negative edge
ei = (si, ti) with weight w(ei) =

∑
e∈H w(e) + 1.

Our transformation is polynomial, adds at most O(n2) edges, and increases the
largest weight in the graph by a multiplicative factor of at most n.

Theorem 4.11 A clustering on GH with weight W induces a multicut on (H,S)
with weight ≤ W . An optimal clustering in GH induces an optimal multicut in

(H,S).

Proof. If a clustering C on GH contains no negative mistakes, then the set of
positive mistakes T is a multicut on H and w(c) = w(t). If C contains a negative
mistake, say (u, v), we take one of the endpoints (u or v) and place it in a cluster
of it’s own, thus eliminating this mistake. Since every negative edge has weight
≥ the sum of all positive edges, the gain by splitting the cluster will exceed the
loss introduced by new positive mistakes, therefore the new clustering C′ on G
has weight W ′ < W , and it contains no negative mistakes. Thus, we know that
C induces a cut of weight W ′.

Now let T denote the minimal multicut in (H,S). T induces a clustering
on GH (the connected components of G〈+〉 \ T ) that contains no negative mis-
takes. This in turn means that the weight of the clustering is the weight of the
positive mistakes, which is exactly w(T ). We now have w(Optimal multicut) =
w(Clustering induced by optimal multicut). Combining the above two arguments
we have that

w(Optimal multicut) = w(Clustering induced by optimal multicut)

≥ w(Optimal clustering)

≥ w(Multicut induced by the optimal clustering)

≥ w(Optimal multicut).

Thus, all inequalities must hold with equality.

4.2 Reduction from unweighted multicut to unweighted correlation

clustering

Given an unweighted multicut problem instance: an undirected graph H and
a collection of k pairs of distinct vertices S = {〈si, ti〉, . . . , 〈sk, tk〉} of H we
construct an unweighted correlation clustering problem as follows:

– For every v, 〈v, u〉 ∈ S or 〈u, v〉 ∈ S, (v is either a source or a sink) we add
n− 1 new vertices and connect those vertices and v in a clique with positive
edges (weight 1). We denote this clique by Qv.

– For every pair 〈si, ti〉 ∈ S we connect all vertices of Qsi
to ti and all vertices

of Qti
to si using edges labelled 〈−〉.

– Other vertices of H are added to the vertex set of GH , Edges of H are added
to the edge set of GH and labelled 〈+〉.
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Fig. 6. Transformation from the unit capacity multicut problem (on the left) to the
unweighted correlation clustering problem (on the right)

Our goal is to emulate the previous argument for weighted general graphs in
the context of unweighted graphs. We do so by replacing the single edge of high
weight with many unweighted negative edges. Our transformation is polynomial
time, adds at most n2 vertices and at most n3 edges.

Theorem 4.21 A clustering on GH with weight W induces a multicut on (H,S)
with weight ≤ W . An optimal clustering in G of weight W induces an optimal

multicut for (H,S) of weight W .

Proof. We call a clustering pure if all vertices that belong to the same Qv are in
the same cluster, and that if 〈v, w〉 ∈ S then Qv and Qw are in different clusters.
The following proposition implies that we can “fix” any clustering to be a pure
clustering without increasing its weight.

Proposition 4.22 Given a clustering C on G. We can “fix” that clustering to

be pure thus find a pure clustering C
′

on G such that w(C
′

) ≤ w(C).

Proof. For every Qv that is split amongst two or more cluster we take all vertices
of Qv to form a new cluster. By doing so we may be adding up to n − 1 new
mistakes, (positive mistakes, positive edges adjacent to v in original graph).
Merging these vertices into one cluster component will reduce the number of
errors by n − 1 at least.

If two Qv and Qw are in the same cluster component, we can move one of
them into a cluster of its own. As before, we we may be introducing as many as
n−1 new positive mistakes but simultaneously eliminating 2n negative mistakes.

Given a clustering C on GH we first “fix” it using the technique of proposition
4.22 to obtain a pure clustering C

′

. Any mistake for pure clustering must be a
positive mistake, the only negative edges are between clusters.



Let T be the set of positive mistakes for C ′, we now show that T is a multicut
on (H,S). No source-sink pair are in the same cluster since the clustering in pure
and removing the edges of T disconnects every source/sink pair. Thus, T is a
multicut for (H,S).

Let OPT be the optimal clustering on G. OPT is pure (otherwise we can
fix it and get a better clustering) and therefore induces a multicut on (H,S).
Let T denote the minimal multicut in (H,S). T induces a pure-clustering on G
as follows: take the connected component of G〈+〉 \ T as clusters and for every
terminal v ∈ S add every node in Qv to the cluster containing vertices v. It can
be easily seen that this gives a pure clustering, and that the only mistakes on
the clustering are the edges in T .

Thus, we can summarize:

w(Optimal multicut) = w(Clustering induced by optimal multicut)

≥ w(Optimal clustering)

≥ w(Multicut induced by optimal clustering)

≥ w(Optimal multicut).

All inequalities must hold with equality.

5 More on correlation clustering and multicuts

The two way reduction we just presented proves that the correlation clustering
problem and the multicut problem are essentially identical problems. Every exact
solution to one implies an exact solution to the other. Every polynomial time
approximation algorithm with a constant, logarithmic, or polylogarithmic ap-
proximation factor for either problem translates into a polynomial time approxi-
mation algorithm with a constant, logarithmic or polylogarithmic approximation
factor, respectively, for the other. (We use this prove an O(log n) approximation
in section 3).

From this it also follows that hardness of approximation results transfer from
one problem to the other. Since the multicut problem is APX-hard and remains
APX-hard even in the unweighted case it implies that unweighted correlation
clustering problem is itself APX hard.

An interesting observation is that [1] give a constant factor approximation
for the unweighted complete graph. This implies that the unweighted multicut
problem where every two nodes u, v, are either connected by an edge or 〈u, v〉
is a source/sink pair has a constant factor approximation.

On the other hand, correlation clustering problems where G〈+〉 is a planner
graph or has a tree structure has a constant factor approximation (as follows
from [13, 6]).

Addendum: We recently learned that two other groups, Erik D. Demaine
and Nicole Immorlica [3] and Charikar, Guruswami, and Wirth [12], have both
independently obtained similar results (using somewhat different techniques).
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