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The analysis of choice data in which no difference/preference responses, or ties, occur is considered in this

paper. A key issue addressed in the paper is the need for ‘‘identicality norms’’ for difference and prefer-

ence tests. These norms reflect the researcher’s expectation for the number of ties that would have

occurred in the experiment had the products tested been putatively identical. Without these norms,

the issue of how to account for ties can never be fully resolved. After this idea is developed, some meth-

ods from the statistics literature to account for ties are reviewed and the Thurstonian 2-AC (2-Alternative

Choice) model is discussed. Common practices of equal or proportional redistribution of ties are noted to

be either conservative or liberal, respectively, when the binomial distribution is used to evaluate results.

In particular, the exact probability function for the equal allocation method is given as a particular type of

mixing distribution, known as a convolution, of binomial probability functions. Regardless of which sta-

tistical method is used to test tied data, however, none of the current methods of analysis can account for

segmentation or the effect of heterogeneity in individual assessors. To study the possible effect of heter-

ogeneity, the data could first be tested against an identicality norm. Thus, this research clarifies the

assumptions that are made when conducting tests on paired comparison data with ties and provides

guidance on the choice of analytic method.

Ó 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Data obtained for many forced choice procedures such as the

2- and 3-alternative forced choice (2-AFC and 3-AFC), the duo–trio,

and the triangular methods are often tested using the binomial dis-

tribution or its normal approximation. In some applications of

either difference or preference testing it can often be the case that

a no difference or no preference option is offered. We will call this

outcome a tie in this paper and only use no difference and no pref-

erence terminology when necessary.

Ties are often important to consider in false advertising cases

brought under the provisions of the Lanham Act (Title 15 of the

United States Code). In these cases, an advertiser may be sued for

an alleged false claim that its product is superior on some perfor-

mance measure to a competitor’s product. In many cases, the basis

for such claims involves direct comparisons on preference or on

some other relevant measure of performance. In legal settings it

is often considered desirable to include a tied option in paired

comparison tests on the grounds that a large number of consumers

might have chosen that option were it available. Regardless of the

merits of this argument, the fact that this argument appears means

that researchers who can accommodate tied counts are better able

to support their positions. More generally, and outside the legal

realm, data that include tied counts are sometimes sought for the

additional information the tied counts might offer. As tied counts

provide greater resolution, it is reasonable to consider the possibil-

ity that data including ties might yield lower variances. In addition,

as we will see later in this paper, consideration of tied counts also

provides an opportunity to identify possible segmentation in the

test population. Despite the richer information potentially avail-

able in tied counts, however, the treatment of ties has been a

somewhat contentious issue. The goal of this paper then is to clar-

ify several of the issues in the analysis of tied counts.

To this end, in the first part of this paper we introduce the idea

of an ‘‘identicality norm,’’ which is the proportion of ties that might

be expected when the two samples in a choice experiment are

putatively identical, and we discuss both how this norm might

be established and why it is important. We then proceed to discuss

both statistical and psychological models in the presence of ties.

This discussion includes consideration of the exact distribution

for equal allocation of tied responses because it is currently com-

mon practice to redistribute ties equally and test the results

according to a binomial assumption. We then provide an example

before concluding.

2. Setting an identicality norm

We begin by observing that a result such as 45% (prefer A):45%

(prefer B):10% (no preference), which we will call 45:45:10, does
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not necessarily support an inference that the items are preferred

equally throughout the population. For example, this result could

also occur if one product was preferred by one segment while

the second product was preferred by a different segment. Such a

scenario is depicted in Fig. 1. In this example, we assume that there

is a single variable driving preference (such as sweetness) and that

the products differ on this attribute. For a segment that prefers a

sweeter product, we assume 7.5% prefer A, 82.5% prefer B, and

10% have no preference. We also assume that a second segment,

which comprises the remainder of the population, prefers a less

sweet product and in this segment the preferences are reversed.

If the two segments were of equal size then the total outcome

would be 45:45:10. Implicit in the interpretation of various statis-

tical approaches used to test a null hypothesis is the assumption of

an homogenous consumer group. In order to correctly interpret a

result, such as 45:45:10 we need additional information that al-

lows us to consider the possibility that the consumer group is

not homogenous. In particular, we need at least some expectation

of what the data would be if the products were putatively identical.

We call the expected probabilities of responses that occur in this

case an ‘‘identicality norm.1’’

One way of establishing an identicality norm for a specific cat-

egory is to conduct tests with identical products. An example of

such research was reported by Ennis and Collins (1980) for a series

of choice experiments with a tied option.2 Four large consumer

tests were conducted using four different brands, each of which

was manufactured in a single factory production run with brand

labeling disabled so the products could not be identified. The two

halves of the run were tested blind under letter–number codes, or-

der balanced, as if they had been different products. Among usual

consumers of these brands, 450 tested Brand 1, 488 tested Brand 2,

437 tested Brand 3, and 412 tested Brand 4. Products were evalu-

ated in home-use tests on a variety of attributes, including prefer-

ence, in a choice format which included a tied option. In order to

establish an identicality norm for each brand, the test results were

compared to theoretical outcomes in which the test products had

an equal likelihood of being chosen and the outcomes differed in

the probability of a tied result. The theoretical outcome corre-

sponding to the lowest v2 was found and these results are shown

in Table 1 for each brand using the labels ‘‘A’’ and ‘‘B’’ to represent

the two halves of the production run. Of course, these were not the

labels used to code the products in actual testing. The results were

remarkably consistent for all four independent tests. In all four

tests the identicality norm for preference was very close to

40:40:20 for the A, B, and no preference choices. For analytical char-

acteristics for which consumers may have more confidence in their

no difference decision, such as ‘‘slower burning,’’ the result was

consistently closer to 20:20:60 for all brands. As Table 1 shows,

the minimum v2 values were small, some close to zero, demon-

strating that the identicality norms fit the data very well.

At the beginning of this section we raised the possibility of mul-

tiple interpretations of a 45:45:10 outcome in a preference test. If

we knew to expect a 40:40:20 outcome when the products are

identical and, assuming a sufficiently large sample, we may be able

to reject an hypothesis corresponding to this identicality norm. For

a sample size of 100, for instance, the corresponding v2 value3

(with 2 degrees of freedom) is 11.25 (p < 0.004). A reasonable expla-

nation for this result is that there are multiple segments that differ in

their preferences for the products but that their combined effect

leads to the outcome observed. The products must be different even

though conventional statistical tests, which we discuss in Section

3.1, would not indicate a difference between the products regardless

of sample size. An equivalence test (Ennis, 2008; Ennis & Ennis, 2008,

2009) might even reject the hypothesis of non-equivalence, depend-

ing on the boundaries used to define equivalence and the sample

size. Considering that the result is significantly different from an

identicality norm, this would also be an incorrect inference. It is

important to note, however, that although the 40:40:20 identicality

norm was observed in the experiments discussed, it should be

viewed as a result specific to the methodology, category, and test

population used.4 Rather than to establish a ‘‘one-size-fits-all’’ iden-

ticality norm, the point of this section is to demonstrate the value of

identicality norms in general and to clarify the assumptions that are

made in their absence.

3. Treatment of ties

In this section we review the standard statistical treatments of

ties and demonstrate why the common practice of spitting ties

equally is conservative before exploring a psychologically based

model that accounts for tied responses.

3.1. Classical statistical approaches

A two-item choice experiment in which respondents are given

an option to select a tied category provides data for a non

Sweetness
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Direction 

Fig. 1. Results for a single segment for which sweetness drives preference

exclusively. Consumers in this segment prefer sweeter products; consumers in

the other segment prefer less sweet products in equal but opposite proportions.

There are equal numbers of consumers in each segment. The overall preference

result will be 45%:45%:10% for the total sample.

Table 1

For four product tests with identical products, the preference outcomes correspond-

ing to the minimum v2 fits to the data.

Sample Sample

size

Prefer A

(%)

Prefer B

(%)

No preference

(%)

Lowest

v2

Brand

1

450 40.5 40.5 19.0 0.1

Brand

2

488 40.8 40.8 18.5 0.0

Brand

3

437 40.1 40.1 19.8 0.2

Brand

4

412 39.7 39.7 20.6 3.2

Total 1787 40 40 20

1 See also Ennis and Ennis (2011).
2 See also Marchisano et al. (2003), Chapman and Lawless (2005), Alfaro-Rodriguez,

Angulo, and O’Mahony (2007), and Kim, Lee, O’Mahony, and Kim (2008), for examples

of related research.

3 T h e v 2 t e s t a g a i n s t t h e i d e n t i c a l i t y n o rm i s f o rme d a s

v2
2 ¼ ðOAÿEA Þ2

EA
þ ðONPÿENPÞ2

ENP
þ ðOBÿEBÞ2

EB
; where OA is the observed number of choice counts

for product A, EA is the expected number of choice counts for product A according to

the identicality norm, and so on.
4 See Marchisano et al. (2003), Chapman and Lawless (2005), Alfaro-Rodriguez,

Angulo, and O’Mahony (2007), and Kim, Lee, O’Mahony, and Kim (2008) for examples

of identicality norms in other categories.
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parametric test, the sign test, in which two items A and B are

scored relative to each other using plus (+) to mean A > B, minus

(ÿ) to mean A < B and 0 to mean a tie. Statistical analysis of this

type of data has been of interest for more than a half century

(Coakley & Heise, 1996; Davidson, 1970; Dixon & Mood, 1946;

Gridgeman, 1959; Irle & Klosener, 1980; Kousgaard, 1976; Krauth,

1973; Putter, 1955; Rao & Kupper, 1967; Rayner & Best, 1999). In

addition, there is current interest in improving recommended

methods of analysis in ASTM standards for this type of data, most

notably in advertising claims support but for other documents as

well. Putter (1955) noted that equal redistribution of ties as pro-

posed by Dixon and Mood (1946), i.e. splitting the tied counts

equally between the products tested, followed by a test based on

the binomial distribution led to reduced power, as shown by Hem-

elrijk (1952) and demonstrated recently using simulation ( Ennis,

D. M. & Ennis, J. M., 2010, Ennis & Ennis, 2010a, 2010b). This loss

of power, as we will discuss later, is due to the fact that the distri-

bution resulting from equal allocation is not binomial and typically

has a smaller variance than the corresponding binomial distribu-

tion. Putter considered another practice of randomly assigning ties

to the two groups with equal probability. He showed that this ran-

domization method had lower power than a non-randomization

method in which the ties were omitted. Putter described a statisti-

cal test based on omitted ties as a uniquely most powerful test and

proved it was uniformly more powerful than the randomization

method. Specifically, if n1 is the count for pluses and n2 is the count

for minuses, then Putter’s method uses the fact that:

n1 ÿ n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 þ n2

p ð1Þ

is asymptotically normal and employs a test based on this statistic.

This test is equivalent to a central v2 test based on expected values

of 0.5(n1 + n2) because,

½n1 ÿ 0:5ðn1 þ n2Þ�2
0:5ðn1 þ n2Þ

þ ½n2 ÿ 0:5ðn1 þ n2Þ�2
0:5ðn1 þ n2Þ

¼ ðn1 ÿ n2Þ2
n1 þ n2

; ð2Þ

and a central v2 random variable with one degree of freedom is a

squared standard normal random variable. A test based on the nor-

mal approximation to the binomial is also identical because

n1
n1þn2

ÿ 0:5
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:5Þð0:5Þ
n1þn2

q� � ¼ n1 ÿ n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 þ n2

p : ð3Þ

In addition, Putter clarified that the number of ties is itself a

random variable depending on an unknown parameter corre-

sponding to the probability of a tie.

3.2. Why equal splitting of ties is conservative

In order to understand the lack of power shown by Hemelrijk

(1952) for the equal splitting method, it is helpful to consider the

exact distribution that arises when tied votes are split equally.

More precisely, let X be the choice count favoring one of the items

and let q be the probability of a tied response. Since there will be a

left-over tied count whenever the number of tied counts is odd, as-

sume that one of the two items always receives the left-over count

and that this item is the one to which X corresponds. This choice as

to which item will receive a left-over count should be made con-

servatively. For example, in an advertising claim situation, a left-

over tied count should always be awarded to the competition.

Defining p as the choice probability among those with an opinion

in favor of the item corresponding to X we have, after equal split-

ting of the tied counts,

Pr½X¼r�

¼
X

n

k¼0

fnCkq
kð1ÿqÞnÿkgfðnÿkÞCrÿk=2ðpÞrÿk=2ð1ÿpÞðnÿkÞÿðrÿk=2Þg;keven

fnCkq
kð1ÿqÞnÿkgfðnÿkÞCrÿðkþ1Þ=2ðpÞrÿðkþ1Þ=2ð1ÿpÞðnÿkÞÿðrÿðkþ1Þ=2Þg;kodd

(

ð4Þ

The notation nCr refers to the number of combinations of n

items r at a time. In order to understand Eq. (4) consider that k,

the number of ties, is a binomial random variable that depends

on the parameter q. Eq. (4) then represents a particular type of

mixture distribution, known as a convolution,5 of binomial proba-

bilities across the range of possible values for k. The first binomial

probability in each term corresponds to the probability of there

being exactly k ties while the second binomial probability in each

term corresponds to the probability of there being exactly enough

counts in favor of the chosen product to make the total number of

counts, after equal splitting of ties, equal to r.

Using Eq. (4) we can see that the common practice of equally

allocating the tied counts and assuming a binomial distribution

for the resulting counts overestimates the variance and leads to

lower power. This is because the equal splitting of ties tends to

centralize the counts and hence reduces variance. For example,

Fig. 2 contrasts the exact probability distribution when p = 0.5,

q = 0.5, and n = 100 with the binomial distribution with choice

probabilities of 0.5 and n = 100. This figure demonstrates that

when the binomial distribution is used to evaluate the test statistic

from equal splitting, the cutoff for significance is set too high.

Hence equal splitting is conservative.6

Before leaving this section it is interesting to note that, using

(4), it is possible to form a new statistical test for tied data. In par-

ticular, one can fit both Eq. (4) and also a nested model, where p is

assumed to be 0.5 using the method of maximum likelihood. A sta-

tistical test of a null hypothesis of no difference is then accom-

plished by comparing the log likelihood values using the

principle that differences in the ÿ2 log likelihood values are

asymptotically v2 distributed with one degree of freedom. The sta-

tistical properties of this test, in particular how it compares to Put-

ter’s method with respect to power, are outside the scope of this

present paper and will be a topic of future research.

3.3. A psychological approach

Most statistical tests for the treatment of ties currently depend

only on the difference between the choice counts for the two items.

We have already seen how this dependence limits interpretability

when an identicality norm was discussed. In addition, it is not so-

lely a statistical issue to account for tied counts and to interpret the

outcome in choice experiments. For example, the tests considered

by Putter were nonparametric. His approach did not consider the

psychological processes involved in decision-making and how they

might generate counts in a choice experiment. A fairly straightfor-

ward extension of Thurstone’s 2-AFC (2-Alternative Forced Choice)

theory (1927) can accommodate categorical responses of tied

counts. In particular, we will refer to a two-alternative task with

a no difference option as the 2-AC (2-Alternative Choice). To model

2-AC data from a Thurstonian perspective, we assume that each

sample generates a percept drawn from a normal distribution.7

Let X and Y be distributions corresponding to each item in the test

with Z = Y ÿ X. In a difference test for example, a subject chooses

5 In our case we have a discrete convolution. For an in-depth discussion on

continuous convolutions and their properties, see Bracewell (1986, pp. 24–54).
6 Similar considerations show that proportional splitting of ties, i.e. redistributing

ties in a manner proportional to the results among the non-tied counts, underesti-

mates variance and hence is liberal. For simulations demonstrating this fact, see

Ennis, D. M. and Ennis, J. M. (2010), Ennis and Ennis (2010a, 2010b).
7 For an early and approximate version of the model we describe see Glenn and

David (1960).
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to respond ‘X’ or ‘Y’ or ‘No Difference’ depending on the relative loca-

tion of Z to criteria + s and ÿs on the difference continuum as shown

in Fig. 3.

From this process,

Pð\Y"Þ ¼ 1ÿU sÿ d
ffiffiffi

2
p

� �

ð5Þ

Pð\X"Þ ¼ U ÿðsþ dÞ
ffiffiffi

2
p

� �

ð6Þ

Pð\No Difference"Þ ¼ U sÿ d
ffiffiffi

2
p

� �

ÿU ÿðsþ dÞ
ffiffiffi

2
p

� �

; ð7Þ

where X � N(0,1) and Y � N(d, 1), so Z � N(d, 2). In the above,U(a) is

the standard normal distribution function evaluated from ÿ1 to a.

Note that identical mathematics apply in the case of a preference

test with a no preference option.Given counts for choosing X, Y

and the no difference categories, the modeling task is a matter of

finding the best estimates of d called d0, and of s, together with

the variances in these estimates. This is accomplished using the

method of maximum likelihood and the inverse of the Hessian

matrix of second partial derivatives at the solution to calculate

the variances (Kendall, Stuart, & Ord, 1987). Note that a significant

advantage of the Thurstonian 2-AC analysis is that a quantified

measure of effect size (d0) is obtained. This effect size can be com-

pared to effect sizes obtained from different methodologies (e.g.

Braun, Rogeaux, Schneid, O’Mahony, & Rousseau, 2004) and can

be used to estimate the power and sample size requirements for fu-

ture testing (Ennis, 1993).

As a test of whether the two items are different, we can com-

pare the difference in ÿ2 log (likelihood) values between the mod-

el in which d = 0 and s is estimated, and the full model in which

both d and s are estimated. Brockhoff and Christensen (Brockhoff

& Christensen, 2010; Christensen & Brockhoff, 2009) have pro-

posed a likelihood confidence interval approach based on the Gen-

eralized Linear Model (GLIM) that provides an alternative solution

to problems of this type. For the remainder of this paper, however,

we will use the ÿ2 log (likelihood) approach for hypothesis testing

involving the Thurstonian 2-AC model.

4. Example

Suppose that, in a preference test, 25 choices were made for

product A, 60 for product B and there were 15 no preferences. Sup-

pose further that past experience has established that for the cat-

egory in which we have conducted our test, the identicality norm

can be assumed to be 40:40:20. We first test our data against this

identicality norm and find a v2 value of 16.875 with two degrees of

freedom. In this case, p = 0.0002 and we have evidence that the

products did not perform identically.8 Continuing our investigation,

the Thurstonian 2-AC model estimates are d0 = 0.656, s = 0.298 and

the variance of d0 is 0.03. When d is assumed to be 0, ÿ2 log

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

0
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0
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0
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0
.1
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30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

0
.0

0
.0

4
0

.0
8

0
.1

2

Fig. 2. The exact probability distribution (upper) after equal splitting occurs when p = 0.5, q = 0.5, and n = 100 together with the binomial distribution (lower) when p = 0.5

and n = 100. Note that the difference in variance leads to a difference in the criterion for significance at a = 0.05 (the vertical lines). When the binomial criterion of 58 is

applied to the exact distribution, the result is conservative. Also note that the exact distribution is not quite symmetric because of the allocation of the left-over count when

the number of ties is odd.

-4 0 42- 2 6 

69%

13% 

18% 

-0.3 0.3

Fig. 3. The distribution of the difference between product A and B with d = 1 and

P(A greater) = 69%, P(No difference) = 13%, and P(B greater) = 18%. In this example,

s = 0.3.

8 Note that since we will conduct two hypothesis tests a conservative approach is

to use a Bonferroni correction to assess significance of our p-values.

4 D.M. Ennis, J.M. Ennis / Food Quality and Preference xxx (2011) xxx–xxx

Please cite this article in press as: Ennis, D. M., & Ennis, J. M. Accounting for no difference/preference responses or ties in choice experiments. Food Quality

and Preference (2011), doi:10.1016/j.foodqual.2011.06.006



(likelihood) = 202.38 and when d is not assumed to be 0,

ÿ2 log (likelihood) = 187.53. Based on the ÿ2 log (likelihood) test

described in Section 3.3, the null hypothesis that d 6 0 is rejected

(v2 = 14.85, z =
p
(v2) = 3.85, p < 0.001). Thus, we have significant

evidence that product B is in fact preferred to product A.

5. Conclusions and recommendations

Tests based solely on choice results with ties are only meaning-

ful under the assumption that the sample of consumers is homog-

enous with respect to their preferences (in a preference test) or

their perceptions of differences (in a difference test). This state-

ment applies to Putter’s test, equal allocation tests and the

ÿ2 log (likelihood) test we described for the Thurstonian 2-AC.

Thus a complete resolution of the disposition of ties cannot occur

until identicality norms are established for test protocols and prod-

ucts for which direct comparisons are required; without these

norms, it is necessary to make the strong assumption that the test

population is homogenous regarding preference and difference

detection. If an identicality norm has been established and a test

result differs from this norm, it can be said that the products did

not perform identically in the experiment. Further testing of the

data using the statistical methods described above can then estab-

lish whether the departure from identicality is a general result for

the population or is caused by the differential responses of differ-

ent segments. In particular, as we reviewed the classical statistical

methods for treating tied data, we noted that proportional reallo-

cation of ties is liberal and we showed why the common practice

of reallocating ties equally and using a binomial distribution to

evaluate results is conservative. Moreover, we observed that a

new statistical test of tied data, based on the exact distribution

of the split votes, is possible. Regardless of the method employed

to test for a directional difference, however, we clarified that if

the test against the identicality norm is significant but the subse-

quent directional difference test is not, there is evidence for seg-

mentation. See Fig. 4 for a decision tree summarizing this process.

In closing we reiterate that it is critical to note that under cer-

tain consumer population heterogeneity conditions, all of the tra-

ditional methods of directional difference testing for tied data

may be incapable of detecting real differences irrespective of sam-

ple size. In these situations, an identicality norm is crucial for

meaningful interpretation of results.
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