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ABSTRACT
As system integration becomes an increasingly important
challenge for complex real-time systems, there has been a
significant demand for supporting real-time systems in virtu-
alized environments. This paper presents RT-Xen, the first
real-time hypervisor scheduling framework for Xen, the most
widely used open-source virtual machine monitor (VMM).
RT-Xen bridges the gap between real-time scheduling theory
and Xen, whose wide-spread adoption makes it an attrac-
tive platform for integrating a broad range of real-time and
embedded systems. Moreover, RT-Xen provides an open-
source platform for researchers and integrators to develop
and evaluate real-time scheduling techniques, which to date
have been studied predominantly via analysis and simula-
tions. Extensive experimental results demonstrate the fea-
sibility, efficiency, and efficacy of fixed-priority hierarchical
real-time scheduling in RT-Xen. RT-Xen instantiates a suite
of fixed-priority servers (Deferrable Server, Periodic Server,
Polling Server, and Sporadic Server). While the server al-
gorithms are not new, this empirical study represents the
first comprehensive experimental comparison of these algo-
rithms within the same virtualization platform. Our em-
pirical evaluation shows that RT-Xen can provide effective
real-time scheduling to guest Linux operating systems at a
1ms quantum, while incurring only moderate overhead for
all the fixed-priority server algorithms. While more complex
algorithms such as Sporadic Server do incur higher overhead,
none of the overhead differences among different server algo-
rithms are significant. Deferrable Server generally delivers
better soft real-time performance than the other server al-
gorithms, while Periodic Server incurs high deadline miss
ratios in overloaded situations.
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1. INTRODUCTION
Virtualization has been widely adopted in enterprise com-

puting to integrate multiple systems on a shared platform.
Virtualization breaks the one-to-one correspondence between
logical systems and physical systems, while maintaining the
modularity of the logical systems. Breaking this correspon-
dence allows resource provisioning and subsystem develop-
ment to be done separately, with subsystem developers stat-
ing performance demands which a system integrator must
take into account. Subsystem developers provide virtual ma-
chine images (comprising guest operating systems and ap-
plications) that the system integrator can then load onto the
appropriate physical machines. The result is an appropri-
ately provisioned system without unnecessary cost or com-
plexity. Recent years have seen increasing demand for sup-
porting real-time systems in virtualized environments as sys-
tem integration has become an increasingly important chal-
lenge for complex real-time systems. To support real-time
and embedded systems, a virtual machine monitor (VMM)
must deliver the desired real-time performance to the virtual
machine images to ensure that the integrated subsystems
meet their requirements.

This paper presents RT-Xen, the first hierarchical real-
time scheduling framework for Xen. RT-Xen bridges the gap
between hierarchical real-time scheduling theory and Xen,
the most widely used open-source virtual machine monitor.
On one hand, the real-time systems community has devel-
oped solid theoretical foundations for hierarchical schedul-
ing [15, 18, 23, 25, 35]. On the other hand, the wide-spread
adoption and large user base makes Xen [5] an attractive
platform for integrating soft real-time and embedded sys-
tems. RT-Xen’s marriage of hierarchical real-time schedul-
ing and Xen therefore enables real-time and embedded sys-
tems developers to benefit from both solid real-time schedul-
ing theory and a mainstream virtualization environment.
Moreover, RT-Xen also provides an open-source experimen-
tal platform for the researchers and integrators to develop



and evaluate hierarchical real-time scheduling techniques which
to date have been studied predominantly via analysis and
simulations only.

RT-Xen demonstrates the feasibility, efficiency, and ef-
ficacy of fixed-priority hierarchical real-time scheduling in
virtualized platforms. A key technical contribution of RT-
Xen is the instantiation and empirical evaluation of a set
of fixed-priority servers (Deferrable Server, Periodic Server,
Polling Server, and Sporadic Server) within a VMM. While
the server algorithms are not new, our empirical study repre-
sents to our knowledge the first comprehensive experimen-
tal comparison of these algorithms in a widely used full-
featured virtualization platform. Our empirical evaluation
shows that while more complex algorithms such as Sporadic
Server do incur higher overhead, overhead differences among
different server algorithms are insignificant in RT-Xen. Fur-
thermore, the Deferrable Server outperforms Xen’s default
Credit scheduler while generally delivering better soft real-
time performance than the other server algorithms, but the
Periodic Server performs worst in overloaded situations.

The rest of this paper is structured as follows. Section 2
compares RT-Xen with the state of the art in hierarchical
scheduling and real-time virtualization. Section 3 provides
background on the Xen scheduling framework, including its
two default schedulers. In Section 4, we describe RT-Xen,
a novel framework for scheduling and measuring the exe-
cution of real-time tasks, within which we demonstrate the
ability to implement different real-time schedulers including
Polling Server, Periodic Server, Deferrable Server, and Spo-
radic Server. In Section 5, we show how we can choose
a suitable scheduling quantum for our scheduler, present
detailed overhead measurements, and compare the perfor-
mance of different schedulers to each other and to analytic
predictions.

2. RELATED WORK
There has been a rich body of theoretical research on hier-

archical real-time scheduling that covers both fixed-priority
and dynamic-priority scheduling [1, 2, 4, 11, 15, 17–21, 23, 25,
26,28,29,31,35,36,43]. In this work we focus on fixed-priority
scheduling due to its simplicity and efficiency. As a start-
ing point for developing a hierarchical real-time schedul-
ing framework in Xen, our current implementation supports
only independent, periodic CPU-intensive tasks. Recent ad-
vances in hierarchical real-time scheduling theory address
more sophisticated task models involving resource sharing [6,
16, 33] and multiprocessors [7–9, 27, 34], which we plan to
consider in future work.

Hierarchical real-time scheduling has been implemented
primarily within OS kernels [3,30,40]. Aswathanarayana et
al. [3] show that a common hierarchical scheduling model for
thread groups can be implemented at either the middleware
or kernel level with precise control over timing behavior.
Note that these systems implement all levels of the schedul-
ing hierarchy within the same operating system. In sharp
contrast, RT-Xen splits the scheduling hierarchy into two
levels: one at the hypervisor level and the other within each
guest OS.

Recent efforts closely related to our work on RT-Xen in-
clude [12, 35] which examine real-time virtualization using
L4/Fiasco as the hypervisor and L4Linux as the guest OS.
Shin et al. [42] use a Periodic Server at the root level, and
compare it to a round robin scheduler and a fixed priority

scheduler. Crespo et al. [13] propose a bare-metal hypervi-
sor which also uses para-virtualization and dedicated device
techniques as in Xen. It runs on the SPARC V8 architec-
ture and adopts a fixed cyclic scheduling policy. Cucinotta
et al. [14] use the KVM hypervisor, with a Constant Band-
width Scheduler algorithm as the global scheduler. RT-Xen
differs from these works in that it builds on the schedul-
ing framework of Xen, whose broad user base and adop-
tion makes it an attractive virtualization platform for soft
real-time and embedded systems. Furthermore, RT-Xen in-
stantiates a suite of four server algorithms (Polling Server,
Periodic Server, Deferrable Server, and Sporadic Server) and
provides to our knowledge the first comprehensive empirical
comparison of these algorithms in a VMM. Our empirical
studies lead to important insights about both fixed-priority
hierarchical scheduling in general and the relative merits of
different server algorithms in terms of soft real-time perfor-
mance and efficiency in a VMM.

RT-Xen is complementary to other recent work on adding
real-time capabilities to Xen. Lee et al. [24] improve the
Credit scheduler for domains that run both CPU and I/O
intensive applications. Govindan et al. [22] enhance the
network I/O performance using a simple heuristic scheme:
scheduling domains by the number of pending packets. While
these approaches adopt heuristic techniques to enhance real-
time performance, RT-Xen leverages hierarchical real-time
scheduling algorithms based on real-time scheduling theory.
Those techniques also consider I/O issues which are not ad-
dressed by RT-Xen. As future work, we plan to build on
their insights to develop more rigorous real-time scheduling
support for I/O in RT-Xen.

3. BACKGROUND
This section provides background information on the Xen

hypervisor, the scheduling framework in Xen, and the two
default schedulers provided with Xen. It also describes the
tasks and guest OS scheduler.
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Figure 1: Architecture of a Xen System

Xen was developed by Barham et al. in 2003 [5] and has
become the most widely used open-source virtual machine
monitor (VMM). A VMM lies between the hardware and
guest operating systems, allowing multiple guest operating
systems to execute concurrently. The VMM controls essen-
tial processor and memory resources in a technique known as
para-virtualization, where a specific domain called domain 0
is created at boot time and is responsible for creating, start-
ing, stopping, and destroying other domains (also known as



guest operating systems). The guest operating systems are
modified to perform I/O through virtualized drivers, e.g.,
for virtual hard disks and network cards that pass on I/O
requests to the VMM. The VMM then redirects the I/O re-
quests to domain 0, which contains the actual drivers for
accessing the hardware. The architecture of Xen is shown
in Figure 1.

3.1 Scheduling Framework in Xen
The VMM must ensure that every running guest OS re-

ceives an appropriate amount of CPU time. The main schedul-
ing abstraction in Xen is the virtual CPU (VCPU), which
appears as a normal CPU to each guest OS. To take ad-
vantage of symmetric multiprocessing, each domain can be
configured with one or more VCPUs, up to the number of
underlying physical cores. A VCPU in Xen is analogous
to a process in a traditional operating system. Just as the
scheduler in a traditional operating system switches among
processes as they become ready or blocked, the scheduler in
Xen switches among VCPUs.
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Figure 2: Xen Schedulers

Xen provides a well-defined scheduling interface, as shown
in Figure 2. The left side shows the structure of the default
schedulers, while the right side shows the RT-Xen schedulers
discussed in detail in Section 4. A common schedule.c file
defines the framework for the Xen scheduler, which contains
several functions including do schedule, sleep, wake, etc. To
implement a specific scheduling algorithm, a developer needs
to implement a subscheduler file(for example, sched credit.c)
which defines all these functions, and then hook them up to
the Xen scheduling framework. A developer can also de-
sign specific VCPU data structures in the subscheduler file.
Among these functions, the most important ones for real-
time performance are:

• do schedule:This function decides which VCPU should
be running next, and returns its identity along with the
amount of time for which to run it.

• wake: When a domain receives a task to run, the wake
function is called; usually it will insert the VCPU into
the CPU’s RunQ (a queue containing all the runnable
VCPUs), and if it has higher priority than the cur-

rently running one, an interrupt is raised to trigger the
do schedule function to perform the context switch.

• pick cpu: According to the domain’s VCPU settings,
this function chooses on which physical core the VCPU
should be running; if it is different from the current
one, a VCPU migration is triggered.

• sleep: This function is called when any guest OS is
paused, and removes the VCPU from the RunQ.

Additional functions exist for initializing and terminating
domains and VCPUs, querying and setting parameters, log-
ging, etc.

Xen currently ships with two schedulers: the Credit sched-
uler and the Simple EDF (SEDF) scheduler. The Credit
scheduler is used by default from Xen 3.0 onward, and pro-
vides a form of proportional share scheduling. In the Credit
scheduler, every physical core has one Run Queue (RunQ),
which holds all the runnable VCPUs (VCPU with a task to
run). An IDLE VCPU for each physical core is also cre-
ated at boot time. It is always runnable and is always put
at the end of the RunQ. When the IDLE VCPU is sched-
uled, the physical core becomes IDLE. Each domain con-
tains two parameters: weight and cap, as shown in Figure 2.
Weight defines its proportional share, and cap defines the
upper limit of its execution time. At the beginning of an ac-
counting period, each domain is given credit according to its
weight, and the domain distributes the credit to its VCPUs.
VCPUs consume credit as they run, and are divided into
three categories when on the RunQ: BOOST, UNDER, and
OVER. A VCPU is put into the BOOST category when
it performs I/O, UNDER if it has remaining credit, and
OVER if runs out of credit. The scheduler picks VCPUs
in the order of BOOST, UNDER, and OVER. Within each
category, it is important to note that VCPUs are scheduled
in a round robin fashion. By default, when picking a VCPU,
the scheduler allows it to run for 30 ms, and then triggers
the do scheduler function again to pick the next one. This
quantum involves tradeoffs between real-time performance
and throughput. A large quantum may lead to poor real-
time performance due to coarse-grained scheduling. As is
discussed in Sections 4 and 5, for fair comparison, we used
the same quantum (1 ms) for the credit scheduler and our
schedulers.

Xen also ships with a SEDF scheduler, in which every
VCPU has three parameters: slice (equals budget in our
RT-Xen scheduler), period, and extratime (whether or not a
VCPU can continue to run after it runs out of its slice), as
is shown in Figure 2. The SEDF scheduler works much like
a Deferrable Server, where each VCPU’s slice is consumed
when running, preserved when not running, and set to full
when the next accounting period comes. Every physical core
also has one RunQ containing all the runnable VCPUs with
positive slice values. VCPUs are sorted by their relative
deadlines, which are equal to the ends of their current pe-
riods. Although SEDF uses dynamic priorities, and the fo-
cus of this paper is on fixed-priority scheduling, we include
SEDF in our evaluation for completeness. When conduct-
ing the experiments in Section 5, we configured the same
SEDF slice and period as our RT-Xen schedulers’ budget
and period, and disabled extratime to make a fair compari-
son. Please note that SEDF is no longer in active develop-
ment, and will be phased out in the near future [41].



3.2 Guest OS Scheduler and Tasks
From a scheduling perspective, a virtualized system has

at least a two-level hierarchy, where the VMM Scheduler
schedules guest operating systems, and each guest OS in
turn schedules jobs of its tasks, as depicted in Figure 3. We
will describe the tasks and guest OS scheduler here, and in-
troduce the VMM Scheduler in Section 4. Note that our hy-
pervisor scheduler does not require any assumptions on tasks
or guest OS schedulers. We implemented Rate-Monotonic
Scheduling on Linux only as an example of guest OS schedul-
ing for our experimental study. We also implemented peri-
odic tasks, as they are required by the schedulability analysis
presented in [15] which we used to assess the pessimism of
the worst-case analysis at the end of Section 5.

Guest OS Scheduler

Task 1 Task n

Guest OS Scheduler

Task 1 Task n

VMM Scheduler

Figure 3: System Model

Task Model
A set of periodic tasks runs on each guest OS. Every task
has a period, which denotes the job release interval, and a
cost, which indicates the worst case execution time to finish
a job. Each task has a relative deadline that is equal to its
period. In this work, we focus on soft real-time applications,
in which a job continues to execute until it finishes, even if
its deadline has passed, because deadline misses represent
degradation in Quality of Service instead of failure. As a
starting point for demonstrating the feasibility and efficacy
of real-time virtualization in Xen, we assume a relatively
simple task model, where tasks are independent and CPU-
bound, with no blocking or resource sharing between jobs.
Such task models are also consistent with existing hierarchi-
cal real-time scheduling algorithms and analysis [15, 23, 35].
In future work, we plan to extend RT-Xen to support more
sophisticated task models.

Guest OS Scheduler
Each guest OS is responsible for scheduling its tasks. The
current implementation of RT-Xen supports Linux. To be
consistent with existing hierarchical scheduling analysis [15],
we used the pre-emptive fixed-priority scheduling class in
Linux to schedule the tasks in the experiments described in
Section 5. Each guest OS is allocated one VCPU. As [10]
shows, using a dedicated core to deal with interrupts can
greatly improve system performance, so we bind domain 0 to
a dedicated core, and bind all other guest operating systems
to another core to minimize interference, as we discuss in
more detail in Section 4.2.

4. DESIGN AND IMPLEMENTATION
This section presents the design and implementation of

RT-Xen, which is shaped by both theoretical and practi-
cal concerns. Section 4.1 describes the four fixed-priority

Schedulers in RT-Xen, and section 4.2 describes the VMM
scheduling framework within which different root schedulers
can be configured for scheduling guest operating systems.

4.1 VMM Scheduling Strategies
In this paper, we consider four servers: Deferrable Server [39],

Sporadic Server [37], Periodic Server, and Polling Server [32].
These scheduling policies have been studied in the recent
literature on hierarchical fixed-priority real-time schedul-
ing [15, 23, 35]. For all of these schedulers, a server corre-
sponds to a VCPU, which in turn appears as a physical core
in the guest OS. Each VCPU has three parameters: budget,
period and priority. As Davis and Burns showed in [17],
server parameter selection is a holistic problem, and RM
does not necessary provide the best performance. Thus we
allow developers to assign arbitrary priorities to the server,
giving them more flexibility. When a guest OS executes, it
consumes its budget. A VCPU is eligible to run if and only
if it has positive budget. Different server algorithms dif-
fer in the way the budget is consumed and replenished, but
each schedules eligible VCPUs based on pre-emptive fixed-
priority scheduling.

• A Deferrable Server is invoked with a fixed period.
If the VCPU has tasks ready, it executes them until
either the tasks complete or the budget is exhausted.
When the guest OS is idle, its budget is preserved until
the start of its next period, when its budget is replen-
ished.

• A Periodic Server is also invoked with a fixed period.
In contrast to a Deferrable Server, when a VCPU has
no task to run, its budget idles away, as if it had an
idle task that consumed its budget. Details about how
to simulate this feature are discussed in Section 4.2.

• A Polling Server is also referred to as a Discarding Pe-
riodic Server [15]. Its only difference from a Periodic
Server is that a Polling Server discards its remaining
budget immediately when it has no tasks to run.

• A Sporadic Server differs from the other servers in that
it is not invoked with a fixed period, but rather its bud-
get is continuously replenished as it is used. We im-
plement the enhanced Sporadic Server algorithm pro-
posed in [38]. Implementation details again can be
found in Section 4.2.

4.2 VMM Scheduling Framework
As we described in Section 3, to add a new scheduler in

Xen, a developer must implement several important func-
tions including do schedule, wake, and sleep. We now de-
scribe how the four RT-Xen schedulers (Deferrable Server,
Periodic Server, Polling Server and Sporadic Server) are im-
plemented.

We assume that every guest OS is equipped with one
VCPU, and all the guest OSes are pinned on one specific
physical core. In all four schedulers, each VCPU has three
parameters: budget, period, and priority. Since the De-
ferrable, Periodic, and Polling Servers all share the same
replenishment rules, we can implement them as one sub-
scheduler, and have developed a tool to switch between them
on the fly. The Sporadic Server is more complicated and is
implemented individually, as is shown in Figure 2.
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Figure 4: Three Queues within One Physical Core

In all four schedulers in RT-Xen, every physical core is
equipped with three queues: a Run Queue (RunQ), a Ready
Queue (RdyQ), and a Replenishment Queue (RepQ). The
RunQ and RdyQ are used to store active VCPUs. Recall
that RunQ always contains the IDLE VCPU, which always
has the lowest priority and is put at the end of the RunQ.

• The RunQ holds VCPUs that have tasks to run (re-
gardless of budget), sorted by priority. Every time
do schedule is triggered, it inserts the currently run-
ning VCPU back into the RunQ or RdyQ, then picks
the highest priority VCPU with a positive budget from
the RunQ, and runs it for one quantum (we choose the
quantum to be 1ms, based on our evaluation in Sec-
tion 5).

• The RdyQ holds all VCPUs that have no task to run.
It is designed especially for Periodic Server to mimic
the “as if budgets are idled away” behavior. When the
highest VCPU becomes IDLE and still has budget to
run, we would schedule the IDLE VCPU on the RunQ
and consume the VCPU’s budget. This requires us
to store VCPUs even if they have no task to run, and
compare their priority with the ones on RunQ to decide
whether to schedule the IDLE VCPU or not.

• The RepQ stores replenishment information for all the
VCPUs on that physical core. Every entry in RepQ
contains three elements: the VCPU to replenish, the
replenishment time, and the replenishment amount to
perform. A tick function is triggered every scheduling
quantum to check the RepQ, and if necessary, perform
the corresponding replenishment. If the replenished
VCPU has higher priority than the currently running
one, an interrupt is raised to trigger the do schedule
function, which stops the current VCPU and picks the
next appropriate one to run.

Figure 4 illustrates the three different queues, as well as how
a VCPU migrates between the RunQ and the RdyQ.

Since the four different scheduling strategies share com-
mon features, we first describe how to implement Deferrable
Server, and then describe additional extensions for the other
three schedulers.

As is shown in line 5 of Algorithm 1, when the VCPU is
no longer runnable, its budget is preserved and the VCPU
is inserted into the RdyQ. The Polling Server differs from
the Deferrable Server in that in line 5, the VCPU’s budget
is set to 0. For the Periodic Server, in line 1, if the current
running VCPU is the IDLE VCPU, it would consume budget
of the highest priority VCPU with a positive budget on the

Algorithm 1 Scheduler Function For Deferrable Server

1: consume current running VCPU’s budget
2: if current VCPU has tasks to run then
3: insert it into the RunQ according to its priority
4: else
5: insert it into the RdyQ according to its priority
6: end if
7: pick highest priority VCPU with budget from RunQ
8: remove the VCPU from RunQ and return it along with

one quantum of time to run

RdyQ; in line 7, it would compare the VCPUs with a positive
budget on both RunQ and RdyQ: if RunQ one has higher
priority, return it to run, else, return the IDLE VCPU to
run.

Sporadic Server is more complicated in its replenishment
rules. We use the corrected version of Sporadic Server de-
scribed in [38], which showed that the POSIX Sporadic Server
specification may suffer from three defects: Budget Amplifi-
cation, Premature Replenishments, and Unreliable Temporal
Isolation. Since we are implementing the Sporadic Server
in the VMM level, the Budget Amplification and Unreliable
Temporal Isolation problems do not apply because we al-
low each VCPU to run only up to its budget time, and we
do not have to set a sched ss low priority for each VCPU.
To address the Premature Replenishments problem, we split
the replenishment as described in [38]. Our Sporadic Server
implementation works as follows: each time the do schedule
function is called, if the chosen VCPU is different from the
currently running one, the scheduler records the current
VCPU’s consumed budget since its last run, and registers a
replenishment in the RdyQ. In this way, the replenishment
is correctly split and a higher priority VCPU won’t affect the
lower priority ones. Interested readers are directed to [38]
for details.

For all four schedulers, whenever the wake function is
called and the target VCPU is on the RdyQ, it is migrated
to the RunQ within the same physical core. If its priority
is higher than the currently running VCPU, a scheduling
interrupt is raised.

We implement sched ds.c and sched ss.c in about 1000
lines of C code each, as extensions within the framework
provided by Xen. We also extend the existing XM utility
for on-the-fly manual adjustment of the budget, period, and
priority of each VCPU. All the source code for our sched-
ulers and the tools, along with the all the test programs
and generated random task sets is available as open-source
software at sites.google.com/site/realtimexen.

5. EVALUATION
In this section, we evaluate the RT-Xen scheduling frame-

work based on the following criteria. First, we measured
real-time performance with different scheduling quanta, rang-
ing from 1 millisecond down to 10 microseconds. Based on
the results, 1 millisecond was chosen as our scheduling quan-
tum. Second, a detailed overhead measurement was per-
formed for each of the four schedulers. Third, we studied the
impact of an overloaded domain on both higher and lower
priority ones. Finally, we present an empirical evaluation of
soft real-time performance under different system loads.



5.1 Experiment Setup

Platform
We performed our experiments on a Dell Q9400 quad-core
machine without hyper-threading. SpeedStep was disabled
by default and each core ran at 2.66 GHz. The 64-bit version
of Fedora 13 with para-virtualized kernel 2.6.32.25 was used
in domain 0 and all guest operating systems. The most up-
to-date Xen version 4.0 was used. Domain 0 was pinned to
core 0 with 1 GB memory, while the guest operating systems
were pinned to core 1 with 256 MB memory each. Data
were collected from the guest operating systems after the
experiments were completed. During the experiments the
network service and other inessential applications were shut
down to avoid interference.

Implementation of Tasks on Linux
We now describe how we implemented real time tasks atop
the guest operating systems. The implementations in the
hypervisor and Linux are separate and independent from
each other. The modifications to the hypervisor included
the server-based scheduling algorithms. We did not make
any changes to the Linux kernel (other than the standard
paravirtualization patch required by Xen), but used its ex-
isting APIs to trigger periodic tasks and assign thread pri-
orities (based on the Rate-Monotonic scheme) at the user
level. Currently, the scheduling tick (jiffy) in Linux dis-
tributions can be configured at a millisecond level. This
quantum was used as a lower bound for our tasks. We first
calibrated the amount of work that needs exactly 1ms on
one core (using native Linux), and then scaled it to gener-
ate any workload specified at a millisecond resolution. As we
noted in Section 4, the work load is independent and CPU
intensive. Using the well-supported POSIX interfaces on
Linux, every task was scheduled using SCHED FIFO, and
the priority was set inversely to its deadline: the shorter
the deadline, the higher the priority. With this setting, the
Linux scheduler performs as a Rate Monotonic Scheduler.
We used POSIX real time clocks to generate interrupts to
release each job of a task, and recorded the first job release
time. Recall that we assume we are dealing with soft real
time systems, so that even if a job misses a deadline, it still
continues executing, and the subsequent jobs will queue up
until their predecessors complete. When each job finished,
its finish time was recorded using the RDTSC instruction,
which provides 1 nano second precision with minimal over-
head. After all tasks finished, we used the first job’s release
time to calculate every job’s release time and deadline, and
compared each deadline with the corresponding job finish
time. In this way, we could count the deadline miss ratio
for each individual task. All the information was stored in
locked memory to avoid memory paging overhead. Based on
the collected data, we calculated the total number of jobs
that missed their deadlines within each OS. Dividing by the
total number of jobs, we obtained the deadline miss ratio
for each domain.

5.2 Impact of Quantum
In this experiment our goal was to find an appropriately

fine-grained scheduling quantum involving acceptable over-
head. We defined the scheduling quantum to be the time
interval at which do schedule is triggered, which represents
the precision of the scheduler. While a finer grained quan-

tum allows more precise scheduling, it also may incur larger
overhead. We defer a more detailed overhead measurement
to Section 5.3.

We varied the scheduling quantum from 1 millisecond
down to 10 microseconds to measure its effects. Two do-
mains were configured to run with different priorities. The
high priority one, configured as domain 1, was set up with
a budget of 1 quantum and a period of 2 quanta (a share of
50 %). To minimize the guest OS scheduling overhead, do-
main 1 ran a single real time task with a deadline of 100ms,
and its cost varied from 1ms to 50ms. For each utilization,
we ran the task with 600 jobs, and calculated how many
deadlines are missed. The low priority domain was config-
ured as domain 2 with a budget of 2 quanta and period of
4 quanta. It ran a busy loop to generate the most possi-
ble interference for domain 1. Note that under this setting,
whenever domain 1 had a task to run, it would encounter
a context switch every scheduling quantum, generating the
worst case interference for it. In real world settings, a do-
main would have larger budgets and would not suffer this
much interference. Since we ran only a single task within
domain 1, and the task’s deadline was far larger than the
domain’s period, the choice of scheduler did not matter, so
we used Deferrable Server as the scheduling scheme.
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Figure 5: Performance under Different Scheduling Quanta

Figure 5 shows the results for scheduling quanta varying
from 1ms to 10 µs. From this figure, we see a deadline miss
starting at 48 % for 1ms, 44 % for 100 µs, and 30 % for 10
µs. When 1 µs was chosen, the overhead is so large that
guest OS cannot even be booted. Based on these results,
we chose 1 ms as our scheduling quantum since it suffers
only 4 % loss ( 50%−48%

50%
), and provides enough precision for

the upper level tasks. Recall that this is the worst case
interference. Under the schedulability test below, we apply
a more realistic setting in which the interference is much
less.

5.3 Overhead Measurement
The focus of this work is fixed-priority pre-emptive hier-

archical scheduling, within which we can compare the differ-
ent server schemes. Therefore we consider the forms of over-
head which are most relevant to the fixed-priority scheduling
schemes: scheduling latency and context switches.

• scheduling latency : the time spent in the do schedule
function, which inserts the current VCPU back into
the RunQ or the RdyQ, picks the next VCPU to run
and updates corresponding status.

• context switch: the time required to save the context



Table 1: Overhead measurement for 10 seconds

Deferrable Periodic Polling Sporadic Credit SEDF
total time in do schedule 1,435 µs 1,767 µs 1,430 µs 1,701 µs 216 µs 519 µs

total time in context switch 19,886 µs 20,253 µs 19,592 µs 22,263 µs 4,507 µs 8,565 µs
total time combined 21,321 µs 22,020 µs 21,022 µs 23,964 µs 4,722 µs 9,084 µs

percentage of time loss in 10 seconds 0.21 % 0.22 % 0.21 % 0.23 % 0.04 % 0.09 %
do schedule overhead (max) 5,642 ns 461 ns 370 ns 469 ns 382 ns 322 ns

do schedule overhead (median) 121 ns 159 ns 121 ns 150 ns 108 ns 130 ns
99 % quantile values in do schedule 250 ns 328 ns 252 ns 303 ns 328 ns 192 ns

number of do schedule called 10,914 10,560 10,807 10,884 1,665 4,126
context switches overhead (max) 12,456 ns 13,528 ns 8,557 ns 11,239 ns 8,174 ns 8,177 ns

context switches overhead (median) 1,498 ns 1,555 ns 1,513 ns 1,569 ns 2,896 ns 2,370 ns
99 % quantile values in context switches 3,807 ns 3,972 ns 3,840 ns 3,881 ns 3,503 ns 3,089 ns
number of context switches performed 3,254 3,422 2,979 4,286 1,665 3,699

for the currently running VCPU and to switch to the
next one.

The scheduler first decides which VCPU to run next, and if
necessary, performs a context switch. Other sources of over-
head such as migration, cache effects and bus contention, are
not dramatically different for the different scheduler schemes,
and therefore we defer investigation of their effects to future
work.

Five domains were configured to run under the four sched-
ulers in RT-Xen, using the “even share” configuration as in
Section 5.5, Table 3. The total system load was set to 70 %,
and each domain ran 5 tasks. For completeness, we ran the
same workload under the Credit and SEDF schedulers and
measured their overheads as well. For the Credit scheduler,
we kept weight the same for all the domains (because they
have the same share ( budget

period
)), and set cap to 0 by default.

Recall that we changed the quantum to 1 ms resolution to
give a fair comparison (the original setting was 30ms). For
the SEDF scheduler, the same (slice, period) pair was con-
figured as (budget, period) for each domain, and extratime
was disabled.

Each experiment ran for 10 seconds. To trigger recording
when adjusting parameters for domain 0, a timer in sched-
uler.c was set to fire 10 seconds later (giving the system time
to return to a normal running state). When it fired, the ex-
periment began to record the time spent in the do schedule
function, and the time spent in each context switch. Af-
ter 10 seconds, the recording finished and the results were
displayed via “xm dmesg”.

We make the following observations from the results shown
in Table 1:

• The four fixed-priority schedulers do encounter more
overhead than the default Credit and SEDF ones. This
can be attributed to their more complex RunQ, RdyQ,
and RepQ management. However, the scheduling and
context switch overheads of all the servers remain mod-
erate (totaling 0.21 - 0.23 % of the CPU time in our
tests). These results demonstrate the feasibility and ef-
ficiency of supporting fixed-priority servers in a VMM.

• Context switch overhead dominates the scheduling la-
tency overhead, as a context switch is much more ex-
pensive than an invocation of the scheduler function.
Context switch overhead therefore should be the focus
of future optimization and improvements.

• The different server schemes do have different over-
heads. For example, as expected, Sporadic Server has
more overhead than the others due to its more com-
plex budget management mechanisms. However, the
differences in their overheads are insignificant (ranging
from 0.21 % to 0.23 % of the CPU time).

We observed an occasional spike in the duration measured
for the Deferrable Server, which may be caused by an inter-
rupt or cache miss. It occurred very rarely as the 99 %
quantile value shows, which may be acceptable for many
soft real-time systems. The Credit and SEDF schedulers re-
turn a VCPU to run for up to its available credits or slices,
and when an IDLE VCPU is selected, the scheduler would
return it to run forever until interrupted by others. As a
result, the number of times that the do schedule function is
triggered is significantly fewer than in ours.

5.4 Impact of an Overloaded Domain
To deliver desired real-time performance, RT-Xen also

must be able to provide fine grained controllable isolation
between guest operating systems. Even if a system devel-
oper misconfigures tasks in one guest OS, that should not
affect other guest operating systems. In this experiment, we
studied the impact of an overloaded domain under the four
fixed-priority schedulers and the default ones. 1

The settings introduced in Section 5.3 were used with only
one difference: we overloaded domain 3 by “misconfiguring”
the highest priority task to have a utilization of 10 %. Do-
main 3 ’s priority is intermediate, so we can study the impact
on both higher and lower priority domains. We also ran the
experiment with the original workload, which is depicted as
the normal case. The performance of the Credit and SEDF
schedulers are also reported for the same configuration de-
scribed in Section 5.3. Every experiment ran for 2 minutes,
and based on the recorded task information, we calculated
the deadline miss ratio, which is the percentage of jobs that
miss their deadlines, for each domain.

Table 2 shows the results: under the normal case, all four
fixed-priority schedulers and SEDF meet all deadlines, while
in the Credit scheduler, domain 1 misses nearly all dead-
lines. There are two reasons for this.

• All five VCPUs are treated equally, so the Credit sched-
uler picks them in a round-robin fashion, causing do-

1The default Credit scheduler also provides isolation for
longer periods, but not shorter ones.



Table 2: Isolation with RT-Xen, Credit, and SEDF

Domain 1 2 3 4 5

N
o
rm

a
l

Sporadic 0 0 0 0 0
Periodic 0 0 0 0 0
Polling 0 0 0 0 0

Deferrable 0 0 0 0 0
Credit 96 % 0.1 % 0 0 0
SEDF 0 0 0 0 0

O
ve

rl
oa

d
ed

Sporadic 0 0 49.8 % 0 0
Periodic 0 0 48.9 % 0 0
Polling 0.08 % 0 49.7 % 0.28 % 0

Deferrable 0 0 48 % 0 0
Credit 100 % 0 1.6 % 0 0
SEDF 0 0 0 0.08 % 0

main 1 to miss deadlines. However, in the fixed-priority
schedulers it has the highest priority, and would always
be scheduled first until its budget was exhausted.

• Domain 1 has the smallest period, and the generated
tasks also have the relatively tightest deadlines, which
makes it more susceptible to deadline misses.

Under the overloaded case, the Sporadic, Periodic, and
Deferrable Servers provided good isolation of the other do-
mains from the overloaded domain 3. For Polling Server
and SEDF, we see deadline misses in domain 1 and domain
4, but only in less than 0.3 % of all cases. We think this
is tolerable for soft real-time systems running atop an off-
the-shelf guest Linux on top of the VMM, since interrupts,
bus contention, and cache misses may cause such occasional
deadline misses. For the Credit scheduler, although it met
most of its deadlines in the overloaded domain 3 (benefit-
ing from system idle time with a total load of 70 %), do-
main 1 again was severely impacted, missing all deadlines.
These results illustrate that due to a lack of finer grained
scheduling control, the default Credit scheduler is obviously
not suitable for delivering real time performance, while all
four fixed-priority scheduler implementations in RT-Xen are
suitable.

5.5 Soft Real-Time Performance

Table 3: Budget, Period and Priority for Five Domains

Domain 1 2 3 4 5
Priority 1 2 3 4 5
Budget 2 4 6 8 10

Period
Decreasing 4 20 40 80 200

Even 10 20 30 40 50
Increasing 40 40 40 40 20

This set of experiments compared the soft real-time per-
formance of different servers. Note that our study differs
from and complements previous theoretical comparisons which
focus on the capability to provide hard real-time guarantees.
To assess the pessimism of the analysis, we also compare the
actual real-time performance against an existing response
time analysis for fixed-priority servers.

The experiments were set up as follows: five domains were
configured to run, with budget and priority fixed, but period
varied to represent three different cases: decreasing, even,

and increasing share ( budget
period

). All five domains’ shares add

up to 100 %, as shown in Table 3. Note that the shares do
not represent the real system load on the domain.

Task sets were randomly generated following the steps be-
low. A global variable α is defined as the total system load.
It varied from 30 % to 100 %, with a step of 5 %. For each
α, we generated five tasks per domain, making 25 in total.
Within each domain, we first randomly generated a cost be-
tween 5 and 10 for each of the five tasks (using α as a random
seed), then randomly distributed the domain’s share times
α (which represents the real domain load) among the five
tasks. Using every task’s cost and utilization, we could eas-
ily calculate its deadline. Note that all costs and deadlines
were integers, so there was some reasonable margin between
the real generated system load and the α value.

We can see that the task’s period is highly related to the
domain’s period and share. The decreasing share case is the
“easiest” one to schedule, where domain 1 has the largest
share and highest priority, so a large number of tasks are
scheduled first. Even share is the “common” case, where
every domain has the same share and we can see the ef-
fects of different priorities and periods. Increasing share is
the “hardest” case, where the lowest priority domain holds
the largest number of tasks. Also note that the increasing
share case is the only one that does not correspond to RM
scheduling theory in the VMM level.

For completeness, we again include results for the same
workload running under the Credit and SEDF schedulers as
well. For the Credit scheduler, the scheduling quantum was
configured at 1 ms. The weight was assigned according to
the domain’s relative share. For example, if a domain’s share
was 20 %, its weight took 20 % of the total weight. The cap
was set to 0 as in default setting, so each domain would take
advantage of the extra time. For the SEDF scheduler, we
configured the same (slice, period) pair as (budget, period)
for each domain, and again disabled extratime.

Each experiment ran for 5 minutes. Figure 6 shows the re-
sults for all three cases. When the system load was between
30 % and 50 %, all deadline miss ratios were 0 %. We omit-
ted these results for a better view of the graph. Note that
the Y axis ranges from 0 % to 80 %. The four solid lines rep-
resent our four fixed-priority schedulers, and the two dashed
lines represent the default Credit and SEDF schedulers.

We evaluated different schedulers based on two criteria:
(1) At what load does the scheduler see a “significant” dead-
line miss ratio? Since we are dealing with soft real-time
systems, we consider a 5 % deadline miss ratio as signifi-
cant, and define the maximum system load without signif-
icant deadline miss to be the soft real-time capacity of the
scheduler. (2) What is the scheduler’s performance under
the overloaded situation (e.g., 100 %)?

From Figure 6, we can see several things:

• The default Credit scheduler performs poorly in terms
of capacity, even when configured at a 1ms resolution.

• The SEDF scheduler maintains a good capacity of al-
most 90 %. With respect to its overload behavior, it is
comparatively worse than the fixed-priority schedulers
in most cases.

• The Deferrable Server scheduler generally performs well
among RT-Xen schedulers. It has equally good ca-
pacity, and the best overload behavior under all three
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Figure 6: Deadline Miss Ratio under Different Shares

cases, indicating that its budget preservation strat-
egy is effective in delivering good soft real-time per-
formance in a VMM. Note that while it is well known
that Deferrable Server can suffer from the “back-to-
back” pre-emption effect in terms of worst-case guar-
antees, such effects rarely happen in real experiments.

• Among RT-Xen schedulers, the Periodic Server sched-
uler performs worst in the overloaded situation. As we
discussed in Section 4, to mimic the “as if budget is
idled away” behavior, when a high priority VCPU has
budget to spend even if it has no work to do, Periodic
Server must run the IDLE VCPU and burn the high
priority VCPU’s budget. During this time, if a low pri-
ority VCPU with a positive budget has work to do, it
must wait until the high priority VCPU exhausts its
budget. While this does not hurt the hard real-time
guarantees, the soft real-time performance is heavily
impacted, especially under the overloaded situation,
due to the non-work-conserving nature of the Periodic
Server.

Table 4: Theory Guaranteed Schedulable System Loads

Deferrable Server Periodic Server
Decreasing [30, 45] [30, 50], [60, 75]

Even [30, 45] [30, 50], [60, 75]
Increasing [30, 45] [30, 50], [60, 75]

Since we use the same settings as in [15], we also ap-
plied that analysis to the task parameters for comparison.
Note that all the tasks are considered “unbound” because
the tasks’ periods are generated randomly, and we assume
the overhead is 0. Table 4 shows the results, where un-
der Deferrable and Periodic Server the task set should be
schedulable. Clearly, when theory guarantees the tasks are
schedulable, they are indeed schedulable using those sched-
ulers in RT-Xen. These results also show the pessimism of
the theory, where with Deferrable Server, for all three cases,
theory guarantees it is schedulable only if total system load
is under 45 %, while in reality it is schedulable up nearly
85 %.

6. CONCLUSIONS
We have developed RT-Xen, the first hierarchical real-

time scheduling framework for Xen, the most widely used
open-source virtual machine monitor (VMM). RT-Xen bridges
the gap between real-time scheduling theory and Xen, whose
wide-spread adoption makes it an attractive virtualization

platform for soft real-time and embedded systems. RT-Xen
also provides an open-source platform for researchers to de-
velop and evaluate real-time scheduling techniques. Exten-
sive experimental results demonstrate the feasibility, effi-
ciency, and efficacy of fixed-priority hierarchical real-time
scheduling in the Xen VMM. RT-Xen differs from prior ef-
forts in real-time virtualization in several important aspects.
A key technical contribution of RT-Xen is the instantiation
and empirical study of a suite of fixed-priority servers (De-
ferrable Server, Periodic Server, Polling Server, and Spo-
radic Server) within a VMM. Our empirical study represents
the first comprehensive experimental comparison of these
algorithms in the same virtualization platform. Our empir-
ical studies show that while more complex algorithms do
incur higher overhead, the overhead differences among dif-
ferent server algorithms are insignificant. However, in terms
of soft real-time performance, Deferrable Server generally
performs well, while Periodic Server performs worst under
overloaded situations. RT-Xen represents a promising step
toward real-time virtualization for real-time system integra-
tion. Building upon the initial success of RT-Xen, we plan
to extend it in several important future directions including
resource sharing, I/O, and the exploitation of multiproces-
sor and multicore architecture by leveraging recent advances
in hierarchical real-time scheduling theory.
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