

Hardware-Software Co-Synthesis of Low Power Real-Time Distributed
Embedded Systems with Dynamically Reconfigurable FPGAs‡

Li Shang and Niraj K. Jha

Dept. of EE, Princeton University
{lshang, jha}@ee.princeton.edu

Abstract
In this paper, we present a multi-objective hardware-

software co-synthesis system for multi-rate, real-time, low
power distributed embedded systems consisting of
dynamically reconfigurable FPGAs, processors, and
other system resources. We use an evolutionary algorithm
based framework for automatically determining the
quantity and type of different system resources, and then
assigning tasks to different processing elements (PEs) and
task communications to communication links. For
FPGAs, we propose a two-dimensional, multi-rate cyclic
scheduling algorithm, which determines task priorities
based on real-time constraints and reconfiguration
overhead information, and then schedules tasks based on
the resource utilization and reconfiguration condition in
both space and time. The FPGA scheduler is integrated in
a list-based system scheduler. To the best of our
knowledge, this is the first multi-objective co-synthesis
system, which uses dynamically reconfigurable devices to
synthesize a distributed embedded system, to target
simultaneous optimization of system price and power.
Experimental results indicate that our method can reduce
schedule length by an average of 41.0% and
reconfiguration power by an average of 46.0% compared
to the previous method. It also yields multiple system
architectures which trade off system price and power
under real-time constraints.

1. Introduction
Hardware-software co-synthesis entails automatic

derivation of the hardware-software architecture of
distributed embedded systems to satisfy multi-objective
goals, such as performance, price and power. Allocation,
assignment and scheduling are the three key steps in the
hardware-software co-synthesis design flow. Allocation
determines the type and number of PEs and
communication links in the system architecture.
Assignment determines the mapping of tasks
(communications) to PEs (links). Scheduling determines
the time when tasks and communications are executed.

An FPGA is a commonly used PE in distributed
embedded systems. Compared with ASICs, FPGAs offer a
parallel and flexible hardware platform. In order to reduce
the reconfiguration overhead, many new reconfigurable
architectures have been proposed [1]-[5]. In dynamically

‡ Acknowledgements: This work was supported by DARPA under
contract no. DAAB07-00-C-L516.

reconfigurable FPGAs, the embedded configuration
storage circuitry can be updated selectively in a few clock
cycles, without disturbing the execution of the remaining
logic. Such FPGAs offer the potential for higher
performance as well as the ability to efficiently support
multi-mode requirements for embedded systems [6]. With
the success of battery-based personal computing devices
and wireless communication systems, low power has
become a key issue in system design. Although its
flexibility makes dynamically reconfigurable FPGAs a
good solution for portable applications, the power
consumption problem cannot be neglected. On-line
reconfiguration not only introduces a delay overhead in
task execution, but also a power overhead (which can
account for half of the FPGA power consumption). This
makes the FPGA power optimization problem more
complex than that for general-purpose processors or
ASICs.
1.1 Previous Work

The problem of dynamically reconfigurable FPGAs is
addressed both in high-level synthesis [7]-[9] and system-
level synthesis [16]-[21]. However, in system-level
synthesis, the problem is much more complex. The
execution time, power consumption, and reconfiguration
overhead for each task and also the resource utilization
and reconfiguration condition in the FPGA need to be
considered. Allocation/assignment and scheduling, which
are known be to NP-complete [10], need to be addressed
in both the time and space domains.

Most hardware-software co-synthesis algorithms do not
tackle FPGAs [11]-[15]. In those that do [16]-[21], system
price is the single optimization objective. In [16], multiple
tasks are not allowed to execute concurrently on the same
FPGA. The approach in [18] uses mixed integer linear
programming, which does not scale well to larger program
sizes. Also, many algorithms make the simplifying
assumption that the embedded system consists of just one
processor and one FPGA [19]-[21].
1.2 Our Approach and Contributions

We use an evolutionary algorithm to tackle the
problem of allocation and assignment. Such an algorithm
has been shown to produce high-quality solutions in small
run-times for the co-synthesis problem [14]-[16]. Multi-
objective system requirements, such as price and power
consumption, can be simultaneously optimized with this
method. No limitation is imposed on the quantity of
system resources. Since scheduling is performed in the
inner loop of co-synthesis, a relatively accurate heuristic
scheduler with a low time complexity is a must. Second,

efficient methods for reducing the delay and power
overheads of dynamic reconfiguration are required. We
propose a two-dimensional multi-rate cyclic scheduling
heuristic. Depending on the resource and reconfiguration
information, the scheduler treats each task fairly and tries
to globally minimize the reconfiguration overhead.

Our co-synthesis system simultaneously optimizes
system price and power consumption under real-time
constraints. Multiple non-dominated solutions are
provided to the system designer with different trade-offs
between system price and power.

The rest of this paper is organized as follows. In
Section 2, we define the various terms and models used in
our co-synthesis system. In Section 3, we present an
overview of the co-synthesis tool. In Section 4, we
describe the scheduling algorithm. We provide the
experimental results in Section 5. Finally, we conclude in
Section 6.

2. Preliminaries

In this section, we define the concepts and models used
in our co-synthesis system.
2.1 Input Specification

The input specification is assumed to be in the form of
a set of task graphs, as shown in Figure 1. A task graph is
a directed acyclic graph, in which a node denotes a task
while an edge between tasks represents data dependency
and the amount of data transmitted. Each task graph has a
period, which represents the interval between the earliest
start times of its consecutive executions. In real-time
systems, hard deadlines are associated with some of the
tasks. An embedded system containing multiple task
graphs with different periods is called multi-rate. The least
common multiple (LCM) of the different task graph
periods is defined as the hyperperiod. A valid static
schedule is defined over a hyperperiod [22].
2.2 Resource Library Model

In addition to task graphs, a co-synthesis algorithm
also needs to be fed information from a resource library.
This library consists of general-purpose processors,
dynamically reconfigurable FPGAs, communication links
and memories that can be used for co-synthesis.

Task
1_0

Task
1_1

Task
1_3

Task
1_2

e1_0 e1_1

Task
2_0

Task
2_1

Task
2_2

e2_0 e2_1

e1_2 e1_3 Deadline=13 Deadline=19
Period=15

Deadline=34 Period=30

Hyperperiod = 30

Figure 1: Task graphs

In dynamically reconfigurable FPGAs, a one-
dimensional reconfiguration model is commonly used as
shown in Figure 2 [1,3,5]. In this model, the atomic
reconfiguration storage unit that can be dynamically
updated is a frame. The reconfiguration of one frame does
not disturb the execution of other frames. A task may
reutilize a configuration pattern left behind by an earlier
task. Multiple frames can only be reconfigured one by
one. Each ready task needs to be loaded into contiguous

frames in the FPGA reconfiguration memory before its
execution. For each frame, the task has a specific
configuration pattern. If the required configuration pattern
cannot be found in the corresponding frame in the FPGA,
a pattern miss is said to occur. Similar to caches in
computers, compulsory, conflict, capacity and coherent
misses can occur in the reconfiguration memory of
FPGAs.

Fra m e 0

...

...
F ra m e 1

F ram e N

D
yn

am
ic

 r
ec

on
fig

ur
at

io
n

re
so

ur
ce

. . .

...

...

...

...

Figure 2: A dynamically reconfigurable FPGA mode

The following parameters are defined for each
dynamically reconfigurable FPGA in the resource library:
price, number of configuration frames, reconfiguration
bandwidth, number of reconfiguration bits for each frame,
number of I/Os, idle power, and reconfiguration power
per frame. For each task, the worst-case execution time,
average power consumption, and memory requirement to
store reconfiguration and computation data on each FPGA
type in the resource library are specified.

General-purpose processors are described by price and
a variable indicating whether or not it has a
communication buffer. For each task, the worst-case
execution time, average power consumption, preemption
time, and memory load are specified for each type of
processor in the resource library. Communication links are
described by price, packet size, average power
consumption per packet, worst-case communication time
per packet, pin requirement, idle power consumption, and
contact counts. Memory blocks are modeled by price,
power and size. The memory requirement for computation
and communication is specified for each task.

The information for each task, such as execution time
and power consumption etc., can be characterized with the
help of techniques such as those presented in [23]-[26].

3. Hardware/Software Co-synthesis Overview
Allocation, assignment and scheduling are the three

main steps that need to be carried out in co-synthesis. We
use an evolutionary algorithm based framework for
allocation and assignment [16]. However, in [16], only
system price was minimized. Also, it used an FPGA
model that supported the execution of only one task at a
time. This model is not suitable for the current generation
of FPGAs. Our co-synthesis system does not impose any
restrictions on the quantity of different system resources.
Thus, a combination of point-to-point links and buses
connect the various PEs in a distributed system. We
propose a new two-dimensional multi-rate scheduling
algorithm for dynamically reconfigurable FPGAs in an
embedded system. This aids the static system-level
scheduler. Scheduling is discussed in detail in Section 4.

An overview of our co-synthesis system is shown in
Figure 3. Co-synthesis solutions are organized in clusters.
Solutions within a cluster share the same allocation, but

have different assignments. Solutions are initialized first.
Then evolution operators, i.e., reproduction, mutation, and
information trading, are used to transform allocation and
assignment to obtain the next generation of solutions.
Within each cluster, the assignment information may be
mutated or traded between different solutions. Allocation
information may be mutated or traded between different
clusters. The rank of solutions is determined in a two-
dimensional space: system price and power consumption.
The Pareto-ranking method is used for this purpose. A
solution’s rank is equal to the number of other solutions
that do not dominate it (a solution dominates another if it
is better in both power consumption and system price).
Finally, when a pre-specified number of generations has
passed without improvement, invalid solutions, i.e., those
that do not meet the deadlines, are pruned out, and the
remaining non-dominated solutions are reported to the
system designer.

Allocation transformation

FPGA scheduling

Processor scheduling

Communication link
schedulingS

ch
ed

u
lin

g
 e

n
g

in
e

Assignment transformation

Solution prioritizingSolution Prioritizing

Initialization

Resource
library

Input
specification

Solution
pruning

Non-dominated
solutions

Figure 3: Hardware/software co-synthesis overview

4. Scheduling Algorithm
The static scheduling algorithm is invoked in the inner

loop of co-synthesis after the allocation and assignment
steps. Tasks (communication events) need to be scheduled
on different processors and FPGAs (communication
links). Processors and communication links represent a
sequential resource. Hence, they require a one-
dimensional scheduling problem to be solved. However,
scheduling for dynamically reconfigurable FPGAs is a
two-dimensional problem, including both the time and
space domains, as described next.
1. Scheduling sequence: At each scheduling point,
multiple ready tasks may reside in the candidate pool.
Each task may have different time, resource and
reconfiguration requirements, and power consumption.
Thus, changing the scheduling order may have a
significant impact on scheduling quality.
2. Location assignment policy: FPGAs are a parallel
hardware platform. When a candidate task needs to be
scheduled, there are many possible positions in the FPGA
where the circuit implementing the task can be located.
Assigning a task to a different location not only influences
the current task, but may also impact the tasks scheduled
either after or before it.

In this section, we dwell on the FPGA scheduling
problem in significant detail.
4.1 Motivational Example

We next present an example to motivate our scheduling
approach.
Example 1: Consider a system specification with three
simple task graphs as shown in Figure 4. The allocation
and assignment information for each task and
communication event is shown in Table 1. Tasks 1_0 and
3_1 are assumed to have the same configuration patterns,
while the configuration patterns for other tasks are
assumed to be different. The reconfiguration time for each
frame is 3.4 units. Based on the allocated PEs, the worst-
case execution time for each task is shown in Table 2. The
communication events C3_1 and C2_0 are executed on
the bus that links the three PEs (in general, a more
complex communication architecture can be synthesized).
Their communication times are 15 and 10 units,
respectively. Based on the traditional assumption in
distributed computing, we assume that the communication
time between two tasks assigned to the same PE is zero.
Two different scheduling approaches are applied to these
task graphs as described below (the first one based on
prior work and the second one based on our work).

Task
1_0

Task
1_1

Task
1_2

Task
2_0

Task
2_1

Task
3_0

Task
3_1

Task
3_2

Deadline=85
Period=150

Deadline=90
Period=150

Deadline=80 Deadline=100
Period=150

Hyperperiod = 150

C1_0

C1_1

C2_0 C3_0 C3_1

Figure 4: Task graphs

Table 1: Allocation and assignment information

Proc 1 Proc 2 FPGA Bus
2_1 3_2 Other tasks C2_0, C3_1

Table 2: Task execution time

Task 1_0 1_1 1_2 2_0 2_1 3_0 3_1 3_2

Worst-case exec. time 33 11 25 50 20 26 33 37

Scheduling approach I:
Scheduling sequence: The order of scheduling tasks is
based on static slack-based priority [27]. The priority of
task i is:)____(iii readyearliestTreadylatestTP −−=

where T_earliest_readyi is the earliest ready time of task i
and T_latest_readyi is its latest ready time. These two
values are computed by conducting a topological search
of the task graphs based on as-soon-as-possible (ASAP)
and as-late-as-possible (ALAP) scheduling.
Location assignment policy: Configuration patterns are
allowed to be loaded into the FPGA before the task ready
time. Configuration patterns left by earlier tasks can be
utilized by later tasks. If there are several candidate
positions in the FPGA where the task can be placed, the

heuristic is to find a position that allows the task to start as
soon as possible. This location assignment policy is
similar to the greedy heuristic proposed in [19].

Table 3 (first row) shows the schedule length,
reconfiguration resource utilization (lower the better), and
reconfiguration power consumption. The deadline is
violated in this case. Figure 5 shows the FPGA, processor
and bus schedule. The shaded blocks represent framewise
reconfiguration. Reconfigurations introduced by
compulsory misses are not shown, as they occur only once
in the beginning of the first hyperperiod. The numbers in
brackets indicate the sequence in which the tasks are
scheduled.

Task 1_0 (1)

Reconfiguration resource utilization

Task 3_2

C3_1 C2_0

Processor1 schedule

Processor2 schedule

Bus schedule

Hyperperiod

FPGA schedule

Task 1_2 (3)

Task
1_1 (2)

Task 2_0 (4)

Task 3_0 (5)

Task 3_1 (6)

Task 2_1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Figure 5: Scheduling result for Approach I

Scheduling approach II:
This is the approach we take.

Scheduling sequence: The order of scheduling tasks is
determined dynamically by task priorities, which consider
both real-time constraints and the reconfiguration
overhead information (details given in Section 4.2).
Location assignment policy: The global reconfiguration
information for all the tasks assigned to the FPGA is
considered, as is the current state of the FPGA.

Table 3 (second row) and Figure 6 indicate the
schedule quality for this approach.

Task 1_0 (1)

Task 2_0 (2)

Task
1_1 (4)

Task 3_1 (5)

Task 1_2 (6)

Reconfiguration resource utilization

Task 2_1

Task 3_2

C3_1 C2_0

FPGA schedule

Processor1 schedule

Processor2 schedule

Bus schedule

Hyperperiod

Task 3_0 (3)

10 20 30 40 50 60 70 80 90 100 110 120 130 1400 150

Figure 6: Scheduling result for Approach II
From the above example, we find, not surprisingly, that

different FPGA scheduling policies may dramatically
influence the scheduling quality, i.e., the satisfaction of
real-time constraints, reconfiguration resource utilization,
and reconfiguration power consumption. First, since

reconfiguration itself consumes a significant amount of
power, minimizing the reconfiguration overhead is
important for reducing system power consumption.
Second, solutions that cannot satisfy real-time constraints
necessitate faster (and generally more expensive) PEs.
This increases system price. A good scheduling approach
reduces scheduling length and indirectly the system price
and power consumption.

Table 3: Scheduling results

App. Deadline
Schedule

length
Reconfig.
utilization

Reconfig.
power

I Violation 117 48% 127 mW
II Satisfied 80 23% 61 mW

4.2 Two-Dimensional FPGA Scheduling Algorithm
 In this section, we describe the two-dimensional
scheduling algorithm for the dynamically reconfigurable
FPGAs in the embedded system. Scheduling sequence and
location assignment policy are the two important factors
that need to be considered.
4.2.1 Scheduling Sequence
 As in Approach I in Example 1, static slack-based
priorities are commonly used to order tasks for scheduling
on processors. The intuitive idea behind this approach is
that a task with a longer slack can tolerate some delay and
should yield to another task with a shorter slack. This
approach works well on sequential resources. However,
this approach is not suitable for FPGAs, which can
execute multiple tasks concurrently. In the static slack-
based priority approach, tasks along the critical path of
one task graph may always be scheduled before tasks in
other task graphs. This can prove to be quite sub-optimal
for FPGAs. Our experimental results show that scheduling
tasks from different task graphs in an interleaved fashion
in FPGAs leads to better global schedules.

Another difference between processors and FPGAs is
that in FPGAs, reconfiguration degrades performance and
increases power consumption. Hence, in order to reduce
the reconfiguration overhead, among the multiple ready
tasks, those that can utilize the configuration patterns that
already reside in FPGA should be preferred. This means
that the reconfiguration overhead should also influence
task priority. We propose a dynamic priority based
approach, which dynamically updates the task priority, as
follows.

 __

, jii

iii

tasktask

tasktasktask

interreconfoverheadreconf
timeexectimefinishlatestpriority

−
++−=

where
itasktimefinishlatest __ is the latest possible finish

time for task taski which is computed by conducting a
backward topological search of the task graph based on
the task graph deadline information.

itasktimeexec _ is the
worst-case execution time for taski on the assigned PE.

itaskoverheadreconf _ is the reconfiguration overhead of

taski. i,jtaskinterreconf _ is the inter-task reconfiguration time

between adjacent tasks, which is updated dynamically, as
follows. For each taski in the candidate pool that has the
same configuration patterns as taskj, which has been
removed from the candidate pool for scheduling on the

FPGA, the value of this variable is zero. In this approach,
both the real-time constraints and reconfiguration
overhead are considered, and tasks from different task
graphs are treated fairly.
4.2.2 Location Assignment Policy
 When a task is selected based on the above approach,
multiple candidate locations may exist in the FPGA. The
location assignment policy for a task not only influences
the current task, but also the scheduling result for other
tasks. Several factors need to be considered in the context,
as discussed next.
Reconfiguration prefetch: Each task needs to be loaded
into the FPGA first before starting its execution. When the
task implementation is large, the reconfiguration overhead
may be substantial even in dynamically reconfigurable
FPGAs. Reconfiguration prefetch can be employed to
alleviate this problem. The system can try loading the task
earlier and finish the reconfiguration before the ready time
of the task. This may allow the reconfiguration time for
the task to be hidden.
Configuration pattern reutilization: When a new task
needs to be loaded into an FPGA, its configuration
patterns need to be mapped into a set of contiguous
frames. If subsets of the requisite configuration patterns
already reside in the FPGA, loading of those data can be
avoided. This helps reduce the reconfiguration overhead.
Eviction candidate: If not enough free space is left in the
FPGA for new configuration patterns, some existing
configuration patterns need to be evicted from the device.
This problem is similar to the paging problem [28] and the
weighted caching problem [29]. However, for our
problem, all the frames assigned to a task need to be
contiguous, which makes the problem more complex. The
frames that need to be reconfigured for the incoming task
may contain configuration patterns from different tasks,
each executing at a different recurrent frequency (this is
the number of times the task executes in the hyperperiod).
When a configuration pattern with a higher recurrent
frequency is evicted, it may introduce a new
reconfiguration overhead later in the hyperperiod. We
define the eviction cost for a candidate position for this
task based on a weighted sum of all the configuration
patterns that need to be replaced, as follows:

∑=
=

frameend

framestarti
framei

freqrecurrentosteviction_c
_

_
_

where
iframefreqrecurrent _ is the recurrent frequency of the

configuration pattern in framei. The eviction_cost is the
weighted cost for this candidate position. The candidate
positions with lower eviction_cost should be preferred.
Fitting policy: The algorithm should try to avoid
fragmentation of the FPGA configuration memory when
choosing the candidate position from the FPGA.
Slack time utilization: Some of the possible candidate
positions for a ready task may already have configuration
patterns similar to the newly required ones. Using these
positions would lower the eviction cost. However, the task
may not be able to start execution immediately if assigned
to such candidate positions. A greedy policy may neglect
such candidate positions. This may adversely impact the
schedule quality for other tasks. This is because

reconfiguration hardware is a sequential resource.
Reconfiguration of one frame delays reconfiguration of
others. Therefore, reconfiguration overhead minimization
should have a high priority. Thus, a better approach to the
candidate position selection problem is to possibly choose
a slightly inferior solution for the given task which helps
find a better global solution.

The slack of a task indicates to what extent an inferior
solution can be tolerated for it. Since the task may share
the slack with other tasks, which may not have been
scheduled yet, the slack should not be completely used up
by the current task. The portion of the slack, which can be
utilized for the task in question, should be the slack
divided by the depth of the sub task graph (the root vertex
of the sub task graph is the current task,), as follows:

graphsub

task

jj depth

slack
timestarttimestarttolerate j

_

___ += ,

where start_timej is the ready time of taskj, depthsub_graph is
the depth of the sub task graph in terms of the number of
tasks, and

jtaskslack is the slack of taskj. tolerate_start_timej

is the delayed start time that taskj can tolerate.
Our FPGA location selection policy is based on the above
analyses. The influence of reconfiguration overhead on
the dispatch time of each task is minimized. Candidate
positions with lower weighted reconfiguration overhead
and tolerable delay are always chosen. Reconfiguration
data can be effectively shared among tasks with similar
reconfiguration patterns. The reconfiguration overhead is,
therefore, effectively reduced and sometimes hidden. This
also minimizes reconfiguration power, a significant part of
the power consumption in FPGAs.
4.2.3 The Algorithm

The pseudo-code for the two-dimensional scheduling
algorithm is shown in Figure 7. First, root nodes from all
the task graphs are put into the candidate pool (line 2).
The priority of each task in the candidate pool is updated
dynamically (line 4), and the task, taski, with the highest
priority chosen (line 5). Since the parent tasks of taski may
be assigned to PEs other than taski itself, the
corresponding communication events need to be
scheduled on the communication resource first (line 6).
Then taski is scheduled on the candidate PE (line 7).
Finally, scheduling of taski leads to other tasks becoming
ready (line 8). The key part of the scheduling algorithm is
schedule_task(taski), whose working is illustrated next.

 }})(__ 8.
)(_ 7.

)(__ 6.
)_(5.

)_(_ 4.
){_(3.

__ 2.
(){_ .1

i

i
i

i

tasktaskreadyintroducepoolcandidate_
tasktaskschedule

taskioncommunicatinputsched
poolcandidateextracttask

poolcandidatencalculatiopriority
NULLtaskspendingwhile

nodesrootpoolcandidate
algorithmscheduling

←

←

≠
←

Figure 7: Pseudo-code of the scheduling algorithm

Consider task C in the partial FPGA schedule shown in
Figure 8. When this task is being loaded into the FPGA,
the reconfiguration overhead may be introduced before or
after the task, shown as shaded blocks.

ta sk B
tas k typ e 2

ca n d id a te
ta sk C

ta sk typ e
1

ta sk A
task typ e 3

H yp erp erio d

fram e 0
fram e 1
fram e 2
fram e 3
fram e 4
fram e 5
fram e 6

fra m e 8
fra m e 9
fram e 10

fram e 7

fram e 11
fram e 12
fram e 13

R e co n fig u ra tio n res o u rce

Figure 8: A task scheduling example

Two issues need to be considered for the
reconfiguration blocks introduced before task C. First, the
timespans of the empty slots in the different frames among
the possible candidate positions for task C may be
different. Since the reconfiguration hardware is a
sequential resource, reconfiguration of one frame will
delay the reconfiguration of other frames and even the
start time of the task. Second, the reconfiguration slots left
unused between the reconfiguration events and task C
cannot be utilized by tasks with different configuration
patterns. In our approach, the priority,

iframeP , to determine

the reconfiguration sequence of frames is defined as
follows:










=
=

<+−−
≥−−

=

 dhyperperio timestartts
dhyperperiotimereadytr

tstrtrtsdhyperperio
tstrtstr

P

ii

ii

ii

i

frameframe

tasktask

frametasktaskframe

frametaskframetask

frame

modulo __
 modulo __

_ _),__(
 _ _),__(

where tasktimeready _ is the ready time of the task,

iframetimestart _ is the start time of the empty time slot in

framei. The idea is that if the duration between the
reconfiguration slot start time and the task ready time is
short, reconfiguration of the corresponding frame needs to
be scheduled first. Otherwise, reconfiguration may not be
completed by the task ready time and hence delay task
execution. The reconfiguration slots in each frame are
scheduled before this ready task based on a nonincreasing
priority order. In order to hide the reconfiguration
overhead whenever possible, a function called
schedule_back() is used. This function looks backward for
the first available reconfiguration slot from tasktr _ to

iframets _ in the current frame. If the function returns false,

it means that reconfiguration cannot start during
]_,_[taskframe trts

i
. In this case, another function

schedule_front() is invoked. This looks for the first
available reconfiguration slot in the current frame from
r_ttask to the finish time of the empty timespan. With this
approach, the reconfiguration events are scheduled as
soon as possible before the task ready time and also as
closely as possible to this task, addressing both the issues
raised before. In Figure 9, before candidate task C, frames
8 and 9 are scheduled first then frames 0 to 3.
 We next discuss the issues involved in scheduling
reconfiguration slots after the task. To leave enough
flexibility for future tasks, the reconfiguration slots need
to be placed as close to the next task as possible. Also, a
priority needs to be defined to determine the scheduling

order for all the needed frames in order to tackle the
interrelationships among them, as follows:










=
=

<+−−
≥−−

=

dhyperperio timefinishtf
dhyperperio timereadytr

trtftftrdhyperperio
trtftrtf

P

ii

ii

ii

i

frameframe

tasktask

taskframeframetask

taskframetaskframe

frame

modulo__
 modulo__

__),__(
 _ _),__(

 where
iframetimefinish _ is the finish time of the empty

timespan in framei. Function schedule_back() is called for
each frame based on a nonincreasing priority order. It
chooses the first available reconfiguration slot from

iframetf _ to r_ttask in the current frame. With this approach,

in Figure 8, in frames 0 to 3, the reconfiguration slots after
task C are scheduled close to task A (note that tasks repeat
after the hyperperiod). In frames 8 and 9, the
reconfiguration slots are scheduled close to task B.

Function schedule_task(taski) contains two steps. First,
candidate_position_sort(taski) calculates the priority for
each candidate position. Its pseudo-code is shown in
Figure 9. In lines 3 to 6, the algorithm calculates the
priority of the frames in each candidate position. Then, for
each candidate position, it schedules reconfiguration slots
before the task based on the frame priorities (lines 7-9).
From all the frames in this candidate position, it chooses
the latest reconfiguration finish time to be the actual task
ready time for this position. Then it uses the location
assignment policy described in Section 4.2.2 to calculate
the priority for each candidate position (line 10). Second,
function schedule_task_p(taski) is invoked to schedule the
task. Its pseudo-code is shown in Figure 10. The candidate
position with the highest priority is chosen from
candidate_position_pool (line 3). The reconfiguration
slots before the task are scheduled first (line 4), then the
reconfiguration slots after the task (line 5). Finally, the
task itself is inserted into the schedule (line 6). If any of
these three steps fails, the frame at which the failure
occurs is chosen. The next time slot is searched from this
frame, and using this frame a new priority for the
candidate position is calculated (line 9). The candidate
position is inserted into the priority queue at the
appropriate location (line 10). Then a new candidate
position is chosen to try to schedule the task (line 11).

For the FPGA scheduling algorithm, the time
complexity is O(n2logn), where n is the number of tasks.
However, in the average case, it behaves like an nlogn
algorithm.

)}}}_(__ 10.
)} (_ 9.

){_(8.
){.__;.__(7.

})_(.__ 6.
)(___ 5.

) (___ 4.
){_;_(3.

){__;0(2.
){(__ .1

i

j

ii

ji

jj

j

ii

i

positioncandidateprioritypositionupdate
reconfigschedule

falseframereconfigif
endplpriorityslotjbeginplpriorityslotjfor

priorityslotinsertplpriorityslot
slotncalculatiopriorityslotpriorityslot

findslottimecandidateslot
finishpositionjstartpositionjfor

positionscandidatenumiifor
tasksortpositioncandidate

=
<=

=
=

≤=
<=

 Figure 9. Candidate position priority calculation

4.3 Scheduling Algorithms for Other Resources
FPGA scheduling is compatible with scheduling for

processors and communication links. We use the same
approach to schedule tasks (communication events) on
different processors (communication links). The only
difference is reconfiguration times can be made zero for
processors and links, and the scheduling problem is one-
dimensional (analogous to having only one frame in the
FPGA).

}}} 12.
) (___ 11.

)_(.__ .10
)) (_._(_ 9.

){(8.
)(__ 6.

)(___ 5.
)(___ 4.

)__(_ 3.
){__(2.

){(__ .1

continue
chosenpositioncandidatenext

positioncandidateinsertpoolpositioncandidate
slotnextpositioncandidateprioritycalculate

falseif
taskexectaskschedule

tasktaskafterreconfigschedule
tasktaskbeforereconfigschedule

poolpositioncandidateextractpositioncandidate
NULLpoolpositioncandidatewhile

taskptaskschedule

i

i

i

i

←
≠

Figure 10. Task scheduling

5. Experimental Results
 In this section, we present experimental results for our
FPGA scheduling algorithm and the hardware/software
co-synthesis system. The system is implemented in C++
using the standard template library (STL). The resource
library consists of various system resources available from
the industry and academia. We use processors, memory
blocks and communication links provided in [30]. The
parameters of our dynamically reconfigurable FPGA
model are based on Xilinx Virtex-E FPGAs [5]. The task
graphs, which are input to the co-synthesis system, are
generated by TGFF [30]. All the experiments were
performed on a Pentium-III 667MHz PC (512MB
memory) running Linux OS.
 We first demonstrate the performance of our FPGA
scheduling algorithm. We compare the results of
scheduling for Approach I (Sect. 4.1), which is based on
static slack-based priority, configuration prefetch, and
pre-configuration utilization [19], and our Approach II.
The results are shown in Table 4, which includes schedule
length, reconfiguration power consumption and CPU time.
Compared with Approach I, the improvements in schedule
length and reconfiguration power are shown in columns 4
and 7, respectively, and also in Figure 11. For these
examples, the number of task graphs varies from 4 to 6,
and the total number of tasks in these task graphs is
around 200. In Figure 11, the bars represent schedule
length and the lines represent reconfiguration power.

Table 4: FPGA scheduling results
Schedule length

(in 103 time units)
Reconf. power

(mW)
CPU time
(seconds) Ex.

I II Imp. I II Imp. I II
1 4815 1625 66.3% 101.4 12.0 88.2% 3.2 2.2
2 12530 5302 57.7% 186.7 88.1 52.8% 0.7 0.3
3 8353 5488 34.3% 114.8 81.3 29.2% 7.5 3.6
4 5992 2392 60.1% 88.4 37.3 57.8% 3.2 1.4
5 9139 6903 24.5% 120.2 94.0 21.8% 5.9 4.3
6 3282 2852 13.1% 223.3 193.3 13.4% 1.2 1.1
7 2066 1351 34.6% 33.1 19.9 39.9% 2.4 1.5
8 4270 1600 62.5% 99.3 33.1 66.7% 0.7 0.5
9 4600 4717 -2.5% 67.9 74.7 -10.0% 3.8 3.2
10 6444 2588 59.8% 110.3 0 100% 0.5 0.3

 Figure 11. FPGA scheduling results

As opposed to Approach I, our algorithm always meets
the real-time constraints (for Approach I, only solutions
for Examples 3, 5 and 9 meet the real-time constraints).
The average reduction in schedule length is 41.0% and the
average reduction in reconfiguration power is 46.0%.
Recall that reconfiguration power is frequently of the
same order as the task power consumption. Hence, it is
very important to reduce reconfiguration power.
Reduction of the schedule length helps the co-synthesis
system choose lower cost (and potentially slower) PEs
without violating the real-time constraints, thus reducing
the system price. In Example 9, our approach gets worse
results. The reason is that in this example, because of the
tight FPGA resource constraints, not much flexibility is
left for our scheduling algorithm to explore the globally
optimal solution. Since our approach may not choose a
locally optimal solution for each task, it may at times get a
worse result than Approach I which is much more greedy.
Also, our algorithm needs slightly less run-time. This is
because our algorithm looks ahead to the needs of future
tasks and makes it easier to schedule them. Since
Approach I is greedy and makes locally optimal choices, it
needs more time to schedule tasks encountered later.
 The results for our hardware/software co-synthesis
system are shown in Table 5. In this table, columns 2 and
3, respectively, show the corresponding system price and
power consumption of all the non-dominated solutions,
and the last column shows the CPU time for co-synthesis.
The system price is calculated by summing up the price of
all the processors, FPGAs, communication links and
memory in the distributed embedded system that is
synthesized. The system power consumption is calculated
by summing up all the execution, reconfiguration,
communication and idle energies in the hyperperiod and
dividing by the hyperperiod. Table 5 illustrates the ability
of our co-synthesis system to effectively explore the
design space. Our multi-objective optimization approach
achieves a good trade-off between system price and power
consumption. All real-time constraints are satisfied. The
run-time indicates that large task graphs can be handled in
a reasonable amount of time.

6. Conclusions
 We presented a multi-objective hardware/software co-
synthesis system for real-time distributed embedded
systems. A novel two-dimensional multi-rate cyclic
scheduling algorithm was proposed to tackle the
scheduling problem in dynamically reconfigurable
FPGAs. This algorithm not only minimizes schedule
length (thus allowing cheaper PEs), but also significantly

reduces reconfiguration power. Reconfiguration power is
the main bottleneck in exploiting the reconfiguration
capability of modern dynamically reconfigurable FPGAs.
Ours is the first co-synthesis system to target both price
and power optimization in distributed embedded systems
containing dynamically reconfigurable FPGAs.

Table 5: Hardware/software co-synthesis results

Example Price
(dollar)

Power
consumption

(mW)

CPU time
(minutes)

1 209
389

144.7
66.1 99.7

2 42
212

394.5
253.6 133.6

3

57
153
173
198
525

619.7
305.5
271.1
121.9
108.4

19.8

4
159
174
209

745.5
626.9
503.6

54.2

5
153
385
420

815.6
699.8
489.4

28.8

6
232
367
394

922.7
829.6
557.5

14.9

7 156
353

684.2
462.9 3.0

8 156
204

790.5
345.6 18.0

9
209
238
250

852.0
345.8
265.3

39.2

10 156 353.8 2.1

References
[1] J. Hauser and J. Wawrzynek, “Garp: A MIPS processor with
a reconfigurable coprocessor,” in Proc. Symp. Field-
Programmable Custom Computing Machines, pp. 12-21, Apr.
1997.
[2] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A
time-multiplexed FPGA,” in Proc. Symp. Field-Programmable
Custom Computing Machines, pp. 22-28, Apr. 1997.
[3] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee,
“CHIMAERA: A high-performance architecture with a tightly-
coupled reconfigurable functional unit,” in Proc. Int. Symp.
Computer Architecture, pp. 225-232, June 2000.
[4] T. Fujii et al., “A dynamically reconfigurable logic engine
with a multi-context/multi-mode unified-cell architecture,” in
Proc. Int. Solid-State Circuits Conf., Feb. 1999.
[5] Virtex-E data sheet, http://www.xilinx.com.
[6] Y. Shin, D. Kim, and K. Choi, “Schedulability-driven
performance analysis of multiple mode embedded real-time
systems,” in Proc. Design Automation Conf., pp. 495-500, June
2000.
[7] Z. Li, K. Compton, and S. Hauck, “Configuration caching
techniques for FPGA,” in Proc. Symp. Field-Programmable
Custom Computing Machines, Apr. 2000.
[8] X. Tang, M. Aalsma, and R. Jou, “A compiler directed
approach to hiding configuration latency in chameleon
processors,” in Proc. Int. Conf. Field Programmable Logic and
Applications, pp. 29-38, Aug. 2000.
[9] M. Kaul, R. Vemuri, S. Govindarajan, and I. Ouaiss, “An
automated temporal partitioning and loop fission approach for
FPGA based reconfigurable synthesis of DSP applications,” in
Proc. Design Automation Conf., pp. 616-622, June 1999.
[10] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Completeness, W.
H. Freeman and Company, NY, 1979.

[11] S. Prakash and A. Parker, “SOS: Synthesis of application-
specific heterogeneous multiprocessor systems,” J. Parallel &
Distributed Comput., vol. 16, pp. 338-351, Dec. 1992.
[12] T.-Y. Yen and W. Wolf, “Communication synthesis for
distributed embedded systems,” in Proc. Int. Conf. Computer-
Aided Design, pp. 703-708, June 1997.
[13] D. Kirovski and M. Potkonjak, “System-level synthesis of
low-power hard real-time systems,” in Proc. Design Automation
Conf., pp. 697-702, June 1997.
[14] R. P. Dick and N. K. Jha “MOGAC: A multiobjective
genetic algorithm for hardware-software co-synthesis of
distributed embedded systems,” IEEE Trans. Computer-Aided
Design, vol. 17, pp. 920-935, Oct. 1998.
[15] E. Zitzler and L. Thiele, “Multiobjective evolutionary
algorithms: A comparative case study and the strength pareto
approach,” IEEE Trans. Evolutionary Computation, vol. 3, no.
4, pp. 257-271, Nov. 1999.
[16] R. P. Dick and N. K. Jha, “CORDS: Hardware-software co-
synthesis of reconfigurable real-time distributed embedded
systems,” in Proc. Int. Conf. Computer-Aided Design, pp. 62-
68, Nov. 1998. �
[17] B. P. Dave, “CRUSADE: Hardware/software co-synthesis
of dynamically reconfigurable heterogeneous real-time
distributed embedded systems,” in Proc. Design, Automation &
Test in Europe Conf., pp. 97-104, Mar. 1999.
[18] N. Shenoy, A. Choudhary, and P. Banerjee, “An algorithm
for synthesis of large time-constrained heterogeneous adaptive
systems,” ACM Trans. Design Automation of Electronic
Systems, vol. 6, no. 2, pp. 207-225, Apr. 2001.
[19] B. Jeong, S. Yoo, S. Lee, and K. Y. Choi, “Hardware-
software cosynthesis for run-time incrementally reconfigurable
FPGAs,” in Proc. Asia & South Pacific Design Automation
Conf., pp.169-174, Jan. 2000.
[20] Y. B. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and
J. Stockwood, “Hardware-software co-design of embedded
reconfigurable architectures,” in Proc. Design Automation
Conf., pp. 507-512, June 2000.
[21] J. Noguera and R. Badia, “A HW/SW partitioning
algorithm for dynamically reconfigurable architectures,” in
Proc. Design, Automation & Test in Europe Conf., pp. 729-734,
Mar. 2001.
[22] E. L. Lawler and C. U. Martel, “Scheduling periodically
occurring tasks on multiple processors,” Information Processing
Letters, vol. 7, pp. 9-12, Feb. 1981.
[23] S. Malik, M. Martonosi, and Y.-T. Li, “Static timing
analysis of embedded software,” in Proc. Design Automation
Conf., pp. 147-152, June 1997.
[24] K. S. Khouri, G. Lakshminarayana, and N. K. Jha, “High-
level synthesis of low power control-flow intensive circuits,”
IEEE Trans. Computer-Aided Design, vol. 18, no. 12, pp. 1715-
1729, Dec. 1999.
[25] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of
embedded software: A first step toward software power
minimization,” IEEE Trans. VLSI Systems, vol. 2, no. 4, pp.
437-445, Apr. 1994.
[26] S. Gupta and F. Najm, “Power modeling for high-level
power estimation,” IEEE Trans. VLSI systems, vol. 8, no. 1, pp.
18-29, Feb. 2000.
[27] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN:
Hardware-software co-synthesis of embedded systems,” in Proc.
Design Automation Conf., pp. 703-708, June 1997.
[28] L. A. Belady, “A study of replacement algorithms for
virtual storage computers,” IBM Sys. J., vol. 5, pp. 78-101,
1966.
[29] N. Young, “The k-server dual and loose competitiveness
for paging,” Algorithmica, vol. 11, pp. 525-541, June 1994.
[30] R. P. Dick, D. R. Rhodes, and W. H. Wolf, “TGFF: Task
graphs for free,” in Proc. Int. Workshop HW/SW Co-Design, pp.
97-101, Mar. 1998.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

