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Abstract

The similarity search has become a fundamental computational task in many applications. One
of the mathematical models of the similarity – the metric space – has drawn attention of many
researchers resulting in several sophisticated metric-indexing techniques. An important part of a
research in this area is typically a prototype implementation and subsequent experimental evaluation
of the proposed data structure. This paper describes an implementation framework called MESSIF
that eases the task of building such prototypes. It provides a number of modules from basic storage
management to automatic collecting of performance statistics. Due to its open and modular design it
is also easy to implement additional modules if necessary. The MESSIF also offers several ready-to-use
generic clients that allow to control and test the index structures and also measure its performance.

1 Introduction

The mass usage of computer technology in a wide spectrum of human activities brings the need of effective
searching of many novel data types. The traditional strict attribute-based search paradigm is not suitable
for some of these types since they exhibit complex relationships and cannot be meaningfully classified and
sorted according to simple attributes. A more suitable search model to be used in this case is similarity
searching which can be based directly on the data content rather than on extracted attributes.

This research topic has been recently addressed using various approaches. Some similarity search
techniques are tailored to a specific data type and application, others are based on general data models
and are applicable to a variety of data types. The metric space is a very general model of similarity which
seems to be suitable for various data and which is the only model available for a number of important
data types – e.g. in multimedia processing. This concept treats the dataset as unstructured objects
together with a distance (or dissimilarity) measure computable for every pair of objects.

Number of researchers has recently focused on indexing and searching using the metric space model
of data. The effort resulted in general indexing principles defining fundamental main-memory structures,
continued with designs of disk-based structures and also with proposal of distributed data-structures
which enable efficient management of very large data collections.

An important part of research in this area is typically a prototype implementation and subsequent
experimental evaluation of the proposed data structure. Individual structures are often based on very
similar underlying principles or even exploit some existing structures on lower levels. Therefore, the
implementation calls for a uniform development platform that would support a straightforward reusability
of code. Such a framework would also simplify the experimental evaluation, make the comparison more
fair and thus the results would be of greater value.

This reasoning led us to a development of MESSIF – The Metric Similarity Search Implementation
Framework. Its design pursue the following objectives:

• to provide basic support for the indexing based on metric space – let developers focus on the higher-
level design;

• to create a unified and semi-automated mechanism for measuring and collecting statistics;

• to define and use uniform interfaces to support modularity and thus allow reusing of the code;

• to provide infrastructure for distributed processing with focus on peer-to-peer paradigm – commu-
nication support, deployment, monitoring, testing, etc.;
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• to support complex similarity search in multi-metric spaces.

The rest of the paper maps all components of the MESSIF platform from basic management of metric
data in Sections 2 and 3, over the support for the distributed processing in Sections 4 and 5 to the multi-
metric support in Section 6 and user interfaces in Section 7. The text is subdivided into shorter parts each
of which describes one logical component of MESSIF – its theoretical background, specific assignment for
the framework (MESSIF Specification) and description of currently available modules that provide the
required functionality (MESSIF Modules). The architecture of the framework is completely open – other
modules can be integrated into the system in a straightforward way.

2 Metric Space

The metric space is defined as a pair M = (D, d), where D is the domain of objects and d is the total
distance function d : D ×D −→ R satisfying the following conditions for all objects x, y, z ∈ D:

d(x, y) ≥ 0 (non-negativity),
d(x, y) = 0 iff x = y (identity),
d(x, y) = d(y, x) (symmetry),
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

No additional information about the objects’ internal structure or properties are required. For any
algorithm, the function d is a black-box that simply measures the (dis)similarity of any two objects and
the algorithm can rely only on the four metric postulates above.

MESSIF Specification

Our implementation framework is designed to work with a generic metric space objects. The internal
structure of the objects is hidden and not used in any way except for the purposes of evaluation of the
metric function. In particular, every class of objects contains an implementation of the metric function
applicable to the class data.

For the purposes of quick addressing, every object is automatically assigned a unique identifier OID.
Since the metric objects are sometimes only simplified representations of real objects (e.g. a color his-
togram of an image), the objects also contain a URI locator address pointing to the original object – a
web address of an image for instance.

MESSIF Modules

• Vectors – numeric vectors of an arbitrary fixed dimension. Implemented vector metric functions:
Lp metric for any p, Linf metric, quadratic form distance with a given matrix, Earth Mover’s
Distance [17].

• Strings – variable length strings. Implemented metric functions: edit distance, weighted edit
distance with a specified cost matrix, protein distance function.

2.1 Collections and Queries

Let us have a collection of objects X ⊆ D that form the database. This collection is dynamic – it can
grow as new objects o ∈ D are inserted and it can shrink by deletions. Our task is to evaluate queries
over such a database, i.e. select objects from the collection that meet some specified similarity criteria.
There are several types of similarity queries, but the two basic ones are the range query Range(q, r) and
the k-nearest neighbors query kNN(q, k).

Given an object q ∈ D and a maximal search radius r, range query Range(q, r) selects a set SA ⊆ X
of indexed objects: SA = {x ∈ X | d(q, x) ≤ r}.

Given an object q ∈ D and an integer k ≥ 1, k-nearest neighbors query kNN(q, k) retrieves a set
SA ⊆ X : |SA| = k,∀x ∈ SA,∀y ∈ X \ SA : d(q, x) ≤ d(q, y).



MESSIF Specification

In MESSIF, we introduce concept of operations to encapsulate manipulations with a collection. An
operation can either modify the collection – insert or delete objects – or retrieve particular objects from
it. Every operation carries the necessary information for its execution (e.g. an object to be inserted)
and after its successful evaluation on the collection it provides the results (e.g. a list of objects matching
a range query). If the operation is a query, it also provides an implementation of its basic evaluation
algorithm – the sequential scan. It is a straightforward application of the particular query definition:
given a collection of objects, the operation inspect them one by one updating the result according to that
particular query instance.

MESSIF Modules

• Insert operation – used to insert an object into the database. The object being inserted is the
only argument of the operation.

• Delete operation – allows removal of an object from the database. The identifier OID of the
object to be deleted is provided.

• Range query operation – carries the query object q and the radius r. The sequential scan
implementation evaluates d(q, o) for every object o from the given set adding o to the result if the
distance is up to r. This distance is also used for the object relevance ranking.

• kNN query operation – contains the query object q and the number of nearest neighbors k. The
sequential scan implementation evaluates d(q, o) for every object o from the given set maintaining
the sorted result list of k objects with smallest distances.

• Incremental kNN query operation – the query object q is specified. Every time the operation is
executed, additional neighbors (a specified number of them) are added to the result. The sequential
scan is implemented exactly as the kNN query only skipping the objects already in the result set.

3 Metric Data Management

We have explained the concept of the metric-based similarity search. In this section, we will focus on
efficient management and searching of metric data collections. So far, we can use the aforementioned
framework modules to design a primitive data structure – it would execute the sequential scan implemen-
tation of a query on the whole collection of generic metric space objects. This works for small and static
data sets, but when the data is dynamic and its volume can grow, more sophisticated effectiveness-aimed
structures are needed. The framework offers additional modules to simplify the task of implementing such
structures – namely the data management support, reference objects choosing (including partitioning)
and the encapsulation envelope for algorithms that provides support for operation execution.

A vital part of every implementation is its performance assessment. Without any additional effort
required, the framework automatically gathers many statistic values from the summarizing information
about the whole structure to the details about local operation execution. In addition, every structure
can define its own statistics, which can take advantage of other framework modules.

3.1 Storing the Collections

Above, we have defined the collection as the finite subset of the metric domain X ⊆ D. Practically, the
collection is any list of objects of arbitrary length, which is stored somewhere. For example, the result of
any query is a collection too. Moreover, a union of two collections is also a collection and also its subset
is a collection.

MESSIF Specification

The collections of objects can be stored in data areas called buckets. A bucket represents a metric space
partition or it is used just as a generic object storage. The bucket provides methods for inserting one or
more objects, deleting them, retrieving all objects or just a particular one (providing its OID). It also
has a method for evaluating queries, which pushes all objects from the bucket to the sequential scan
implementation of the respective query. Every bucket is also automatically assigned a unique identifier
BID used for addressing the bucket. An example of a bucket is shown in Figure 1b. The buckets have
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Figure 1: Ball partitioning (a) and a bucket split (b).

usually limited capacity and MESSIF offers methods for splitting them if they overflow as depicted by
the figure.

MESSIF Modules

• Main memory bucket – bucket is implemented as a linked list of objects in main memory. Objects
are inserted at the end of the list and deletions, getting and searching are sequential.

• Disk storage bucket – implementation that stores objects persistently on a disk. Block organi-
zation is used together with a directory cashed in main memory. Insert and get operations require
only one block access, the other operations are sequential with pre-fetching.

3.2 Partitioning the Collections

As the data volume grows, the time needed to go through all objects becomes unacceptable. Thus, we
need to partition the data and access only the relevant partitions at query time. To do this in a generic
metric space, we need to select some objects – we call them pivots – and using the distance between the
pivots and the objects, we divide the collection. The two basic partitioning principles are called the ball
partitioning and the generalized hyperplane partitioning [20] and they can divide a set of objects into two
parts – see an example of ball partitioning in Figure 1a. Since the resulting partitions can be still too
large, the partitioning can be applied recursively until all the partitions are small enough.

At query time, the triangular inequality property of the metric function is exploited to avoid accessing
some partitions completely. All the remaining partitions are searched by the sequential scan. Even then,
some distance-function evaluations can be avoided using the triangular inequality property again provided
we have stored the distances between the pivots and the particular object. Since they are computed during
the partitioning anyway and the distance is a real number, it incurs no additional computation and only
a small extra space. We usually refer to this technique as the pivot filtering [8]. For a more detailed
explanation see [20].

MESSIF Specification

One of the issues in the metric-space partitioning is the selection of pivots, since it strongly affects the
performance of the query evaluation. There are several techniques [4] that suggests how to do the job
and the framework provides a generic interface allowing to choose an arbitrary number of pivots from
a particular collection (usually a bucket or a set of buckets). These pivots are usually selected so that
effectiveness of a specific partitioning or filtering is maximized.

MESSIF Modules

• Random pivot chooser – this technique allows to randomly pick one or more objects from a
collection of objects. It has O(1) complexity.

• Incremental pivot chooser – this algorithm [5] uses a so-called efficiency criterion that compares
two sets of pivots and designates the better of the two. It has a quadratic complexity with respect
to the size of the sample set.



• On-fly pivot chooser – remembers a predefined number of “best seen” pivots, which are updated
whenever an object is inserted into a collection (usually a bucket). It has a linear complexity with
respect to the objects inserted.

3.3 Metric Index Structures

The previous sections provide the background necessary for building an efficient metric index structure.
We have the metric space objects with the distance function abstraction, we can process and store dynamic
collections of objects using operations and we have tools for partitioning the space into smaller parts.
Thus, to implement a working metric index structure we only need to put all these things together.
Practically all algorithms proposed in the literature, see for example surveys [6, 13], can be easily built
using MESSIF.

MESSIF Specification

The building of an index technique in MESSIF means to implement the necessary internal structures
(the navigation tree, for instance) and create the operation evaluation algorithms. Since the buckets
(where the data is stored) can evaluate operations themselves, the index must only pick the correct
buckets according to the technique used and the actual internal state of the index. A MESSIF internal
mechanism also automatically detect the operations implemented by an algorithm (the algorithms do not
necessarily implement available operations) and also supports their parallel processing in threads.
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Figure 2: Example of Vantage Point Tree structure.

The simplicity of the implementation is demonstrated by the following example. A basic Vantage
Point Tree (VPT) algorithm [20] builds a binary tree, where every internal node of the tree divides the
indexed data into two partitions and objects are stored in leaves – see Figure 2 for an example, the space
partitioning for this particular tree is shown in Figure 1a. In MESSIF, we need to implement the inner
nodes, i.e. a data structure holding a pivot and a radius. Leaf nodes are the MESSIF buckets, so no
additional implementation effort is needed. Then, the insert and range query operations are implemented.
The navigation through inner tree nodes is quite easy, because it is only a condition-based traversal, and
both the operations can be executed on leaf nodes using the standard MESSIF bucket implementation.
The tree can be dynamic, thus splitting a leaf node can occur if its capacity limit is reached. Again, a
MESSIF-driven split is easy: first, we need to choose a pivot for the new inner node using MESSIF pivot
chooser. Then, a new bucket is allocated and the respective data is moved from the original bucket to the
new one (this is a condition driven move, which is also an atomic function in MESSIF) – see Figure 1b.

MESSIF Modules

• M-Tree – a full implementation of the famous M-Tree indexing technique [7]. Implemented oper-
ations: insert, delete, range search, kNN search, incremental kNN search.

• PM-Tree – enhanced version of the M-Tree algorithm with additional pivot filtering [18]. Imple-
mented operations: insert, delete, range search, kNN search, incremental kNN search.

• D-Index – hash-based metric indexing technique [9]. Implemented operations: insert, range search,
kNN search.

• aD-Index – modified version of the D-Index technique featuring dynamically-adjusting navigation
structures through linear hashing and multi-radii ball partitioning. Operations implemented: insert,
delete, range search, kNN search.



• VPT – a basic implementation of simple dynamic metric index, which is provided as the imple-
mentation example above. Implemented operations: insert, range search.

3.4 Performance Measurement and Statistics

We have described the potential and the building blocks provided by the framework for creating index
structures. However, essential part of every index is the performance statistics gathering. Statistics
allow either automatic or manual tuning of the index and that can also serve during the operation-cost
estimation (e.g. for a query optimizer). In the metric space, computation of the distances can be quite
time demanding. Therefore, the time necessary to complete a query can vary significantly and it is also
not comparable between different metric spaces. Thus, not only the time statistics should be gathered,
but also the distance computations of various operations should be counted.

MESSIF Specification

Framework provides an automatic collecting of various statistics during the lifetime of an index structure
– no additional implementation effort is needed. Any other statistics required by a particular index
structure can be easily added. However, their querying interface is the same as for the automatic ones
and they are accessible in the same way.

Specifically, every MESSIF module contains several global statistical measures. These are usually
counters that are incremented whenever a certain condition occurs. For example, the distance compu-
tations counter is incremented when a metric function is evaluated. Moreover, other statistics can be
based on the already defined ones – they can bind to an existing measure and then they will be updated
every time the parent statistic is modified. For instance, a pivot-choosing technique usually needs to
evaluate distances when selecting objects and we would like to know how many distance computations
were necessary for that particular selection. Thus, the chooser binds its own distance computations for
pivot choosing statistic to the existing distance computations counter from the metric module before the
choosing begin. Then it computes the pivots normally and after the computation is finished it unbinds its
statistics. In addition, the pivot chooser has its own statistics like the time spent while choosing pivots
or the number of times the choosing was called.

Another very important issue is the statistics gathering during evaluation of operations, e.g. queries.
Even though they can be executed simultaneously, MESSIF separates the respective statistics correctly
– the concept of binding is used again, but the statistics are updated only locally within an operation.

MESSIF Modules

• Query operation statistics – the query response time, number of distance computations, buckets
accessed and number of objects retrieved are automatically gathered for every query operation.

• Bucket statistics – numbers of inserts into a bucket, deletions and accesses are measured. Also
the sum of statistics of all queries evaluated on the bucket is stored.

• Algorithm statistics – the algorithm records the sum of all the statistics from buckets and oper-
ations related to it and all additional index-specific statistics.

4 Distributed Data Structures

The huge amounts of digital data produced nowadays make heavy demands on scalability of data-oriented
applications. The similarity search is inherently expensive and even though sophisticated dynamic disk-
oriented index structures can reduce both computational and I/O costs, the similarity indexing approach
requires some radical changes if a swift processing of large datasets is required.

The distributed computing provides not only practically unlimited storage capacity, but also signif-
icant augmentation of the computational power with a potential of exploiting parallelism during query
processing. The Structured Peer-to-Peer Networks seem to be a suitable paradigm because of its inherent
dynamism and ability to exploit arbitrary amounts of resources with respect to the size of the dataset
managed by the system.



4.1 Computing Network

The objective of this part of the MESSIF platform is to provide the infrastructure necessary for the
distributed data structures. The structured peer-to-peer networks consist of units (peers) equal in func-
tionality. Each peer has a storage capacity and has access to the computational resources and to the
communication interface. The concept of this basic infrastructure is depicted in Figure 3a.

The peer is identified by a unique address, and can communicate (using any underlying computer
network) directly with any other peer whose address it knows. Peers can pose queries into the system.
The request propagate arbitrarily through the system and some peers answer to the originator. The
framework should provide support for this behaviour.

MESSIF Specification

The MESSIF networking operates over the standard internet or intranet using the family of IP protocols.
Individual peers are identified by the IP address plus a port number. The entire communication is based
on messages using the TCP and UDP protocols.

Generally, every message originated by a peer is sent to an arbitrary number of target peers. A
receiver can either forward it further or reply to the originator (or both). If the sender expects receiving
some replies it generally waits for a set of peers not known at the time message emission. To support this
general message propagation algorithm, each message carries information about the peers it wandered
through. As the reply messages arrive to the sender, it can use the message paths to manage the list of
peers to await a reply from. The receiver is also able to recognize when the set of responses is complete.

As a message (carrying a query) propagates through the system, the visited peers can process some
data before resending the message. The computational statistics (as defined in Section 3.4) of the pro-
cessing at individual peers are collected automatically by the messages. After all replies arrive, the sender
analyzes the statistics together with the message paths in order to calculate overall statistics of the en-
tire message lifetime, for example: the hop count, the total number of the message sending, the total
number of distance computations in all involved peers and the parallel number of distance computations
– the maximal number of distance computations performed in a sequential manner during the message
processing.

MESSIF Modules

• Message – the encapsulation of the data plus the routing information and collected statistics from
the visited peers.

• Message dispatcher – encapsulates the peer’s identification and usage of the TCP and UDP
protocols; supplies the message sending service. It supports automatic UDP/TCP switching for
maximizing the throughput, pooling of the TCP connections and the UDP multicast.

• Reply receiver – a service for waiting for the replies to a particular message emitted by this peer.

4.2 Distributed Metric Structures

The modules described in the previous section form the infrastructure necessary for building peer-to-
peer data structures. These distributed systems are composed of nodes which consist of two logical
components:

• data storage – data managed by a local index structure,

• navigation structure – a set of addresses of nodes in the system together with routing rules.

Figure 3b depicts such an overlay index and its utilization of the computing infrastructure. Every node
is hosted by a physical computer that provides the CPU, the memory (volatile and persistent) and the
network access. They maintain their local collections of objects that together form the overall data volume
indexed in the distributed structure.

Any node can issue an operation (e.g. to insert an object) that is processed by the distributed index.
The navigation mechanism is applied in order to route the operation to the nodes responsible for the
respective data (e.g. a node holding the object’s space partition). In these nodes, the operation is
executed locally (e.g. the object is stored in the local data storage).
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MESSIF Specification

The realization of the node concept in MESSIF follows its logical structure. The node’s data storage can
employ buckets or any centralized indexes available as MESSIF modules as defined in Section 3.1 or 3.3,
respectively. Therefore, the task of processing the operations locally is inherently available within the
MESSIF functionality. The core of the distributed index is thus the navigation logic. It is responsible
for determining the addresses of the nodes that should be reached by a specific operation. Once known,
the MESSIF communication interface is used to contact the nodes and to wait for all the responses. The
navigation needs not to be direct – several rerouting steps can occur at the contacted nodes. However,
the essence of every distributed navigation algorithm is its ability to determine the correct address of the
requested data. Generally, the distributed structures built using MESSIF are aimed developing metric-
based similarity search, but also classical distributed hash table algorithms can be implemented.

MESSIF Modules

• GHT ∗ – the first metric-based distributed structure supporting the similarity search [2]. It uses
the native generalized hyperplane partitioning of the metric space.

• VPT ∗ – a modification of the GHT ∗ structure for the metric ball partitioning principle [3].

• MCAN – an index structure that transforms the metric-space objects to a low-dimensional vector
space, where the Content Addressable Network navigation algorithm can be used for similarity
search [12].

• M-Chord – another transformation technique that simplifies the metric similarity search task to
a Chord -powered distributed interval search in a simple number domain [16].

• Chord – a distributed hash table technique for a simple-key lookup [19].

• Skip Graphs – another distributed hash table technique for a key search [1].

5 Load Balancing for Similarity Searching

One of the issues considered in all structured peer-to-peer networks is the balancing of the load. In general,
it is an automated process which reacts to variable load of the system and exploits available operations in
order to keep the load distribution among the participating nodes as fair as possible. This effort can bring
reduction of the query response time and increase the query-throughput of the system. Load balancing
in the similarity-search structures has its specifics discussed in this section. The fundamental questions
to ask are “How to define the load?” and “What are the operation available for balancing?”.

Current load-balancing techniques define the load either as the data volume or as the number of



query-accesses per peer. However, evaluation of the metric distance function is typically computationally
intensive and thus the processing of a similarity query is very time-consuming and may vary significantly
for different queries at different nodes. Therefore, standard load definitions are not sufficient for our
requirements and the node’s load should be measured as the “computational load” of a given node.

Existing balancing strategies expect linearly-sorted and range-partitioned data which have the option
of shifting a part of the data from a node to its neighbor and the option of splitting a node into two half-
loaded nodes. Neither of these operations is available for the metric-based data structures. Therefore,
MESSIF has a novel load-balancing framework that suits the requirements and potential of peer-to-peer
structures for similarity search in metric spaces.

MESSIF Specification

The most common source of a node’s overloading is large data volume stored at the node. Part of the data
must be moved to another node. In a general metric-based structure, the only data-movement operation
is a split of the node. Therefore, MESSIF separates the logical layer of the distributed structure from
the physical infrastructure – several logical nodes can be hosted by one peer. The nodes then share the
computational and storage resources and the communication interface of the peer.

Furthermore, the MESSIF load balancing utilizes the concept of node replication. A replicated node
can forward a search query to a selected replica (hosted by another peer) instead of processing the query
locally.

The load-balancing mechanism treats the set of peers as fixed and exploits the following balancing
operations that affect the logical layer of the particular system:

split splits the data of a node (equally, if possible) and creates a new node at another peer;

leave removes a node from the system – either merges the node with some other node (if possible) or
re-inserts the data to the system after a node deletion;

migrate moves a node to another peer – typically a less loaded one;

replicate creates a replica of the specified node at another peer;

unify removes a specific replica of a given node.

The MESSIF balancing system analyzes the computational load of a node precisely in order to select
the best balancing action when an overload occurs. In general, processing of a query at a node may be too
time-consuming either since evaluation on the local data takes too much time or a query is waiting until
the processing of other operations finishes. According to this observation, the load is measured as two
separate quantities: proc load represents the average costs of the local processing of a query operation
and wait load represents the average time a query is waiting before processed.

Each peer monitors its load values and compares them with the current average load values in the
whole system. It reacts to overloading according to specific balancing rules which follow these basic
principles: If the local processing of a query at a given node is too long then the node must split. If the
frequency of queries hitting this peer is too high and thus the wait load is too large then some node can
be migrated to other peer or – if there is only one node at this peer – the node is replicated.

The MESSIF load-balancing system uses a specific distributed peer-to-peer algorithm [14] based on
gossips to maintain approximations of current system-average load values. The algorithm exploits stan-
dard messages (query, insert, management) to exchange the data and increases the load of the network
only negligibly. The messages also carry information about low-loaded peers in the system. Figure 4 sum-
marize the work of a balancing module at every peer. For more details on the sketched load-balancing
system see a separate paper [15].

MESSIF Modules

• Peer – frame for logical nodes of a distributed metric structure; manages the load statistics and
provides the communication interface to all nodes.

• Gossip module – management of the gossiping algorithm and current global-average load values.

• Balancing module – encapsulates the load balancing strategies and execution of balancing actions
when an overload occurs.
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6 Multi-Feature Similarity Search

In the previous, we have outlined the MESSIF-based index structures design. Thus, we are able to answer
basic similarity queries using a well-defined interface, regardless of what algorithm is used behind. This
can be advantageous for our next goal – the multi-feature similarity searching, where several similarity
sub-queries are executed on different features of the objects stored in the database. The obtained sub-
results are then combined to compute the overall similarity of the respective object. Let us imagine we
have a database of images from which we can extract their shape and color features forming two different
metric spaces with shape-distance and color-distance functions. Then we would like to answer complex
similarity queries like “give me all red-most circle-like objects”, because we can retrieve the red-similar
objects in color-feature metric space and the circle-similar objects in the shape features. Of course, we
need to combine the results from both the similarity queries – the red-most object can be the less circle-
like or vice versa. This is done using the aggregate similarity function and we can sort the retrieved
objects according to its results.

More formally, let Dm be a domain of multi-feature objects o = (o1, o2, ..., om), o1 ∈ D1, o2 ∈
D2, . . . , om ∈ Dm. There is a metric function di defined for every feature and the pairs (Di, di), i =
1, . . . ,m form respective metric spaces. To compute the overall similarity, the user specifies an m-ary ag-
gregate function t, which must be monotonous. For a given query object q with features q = (q1, q2, ..., qm),
the overall similarity between q and any object o can be computed as t(d1(q1, o1), d2(q2, o2), ..., dm(qm, om)).
The result of function t should be a non-negative real number and it expresses the similarity in the same
way as metric functions – the higher the value the more dissimilar the objects are.

To retrieve the k best-matching objects in multiple features, there were proposed two generic algo-
rithms – Fagin’s A0 Algorithm [10] and the threshold algorithm [11]. Since the threshold algorithm
enhances the A0 and since it stops earlier in most situations, we will focus on that one only. It works as
follows.

An incremental nearest neighbor search is initialized in every feature metric space for the respective
query feature qi. Then, every iteration consists of the following steps.

1. Next object (using the incremental nearest neighbor) is retrieved for every feature i = 1, . . . ,m.

2. Let di
max be the distance of that next object in feature i, then the threshold value θ = t(d1

max, ..., dm
max).

3. For every object from the first step, all distances for all other features are evaluated and the overall
similarity is computed using t.

The iterating stops if at least k objects with overall similarity lower then or equal to θ have been obtained.

MESSIF Specification

The general threshold algorithm can be implemented using the MESSIF building blocks. The incremental
nearest neighbor operation is supported by the framework. The framework can also serve to hold different
features of an object in different metric spaces – we can link the different features of the same objects
using the same OID. However, some additional support is needed for hosting multiple index structures
for different features and for the generalized aggregate similarity function. Currently, this is a work in
progress, and the design is as follows.



A separate index overlay is built for every feature of the stored objects. Object identifiers OID are
unique for any distinct object stored, but they are shared among the overlays. Whenever a new object
is stored into the whole structure, it is assigned the OID automatically. Then, the respective features of
the object are separately inserted into respective overlays. Therefore, all the overlays hold exactly the
same number of object features with exactly the same OIDs.

Moreover, a special primary-key search overlay is established to store all the features of every object.
Its search capabilities are different – the objects are indexed using their OIDs. Therefore, we can retrieve
all the features for the provided set of OIDs, which is vital for the third step of the threshold algorithm.
Of course, when a new object arrives, it is also inserted into this overlay according to its OID.
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Figure 5: Similarity overlays and primary-key overlay.

The whole architecture is depicted by Figure 5. Specific object features are indexed in the respective
overlays and all the features are stored together in the primary-key overlay. The search algorithm then
follows the aforementioned threshold algorithm with some slight modifications. First, the incremental
nearest neighbor search retrieves more than just one object in one iteration. Also, all nearest neighbor
searches from the first step run in parallel. Once completed, the threshold value is updated, since we
know the maximal distances in respective features. Then, using the primary-key overlay, all the retrieved
objects’ features distances are computed in parallel. Only the threshold values of the objects are returned
back, they are sorted and the threshold is checked for stop condition. If the algorithm finishes, we have
the sorted list of best matching objects. Otherwise, additional nearest neighbors are executed, retrieving
more objects and the procedure is repeated.

There are still some research challenges – for example, the number of objects retrieved by the incre-
mental nearest neighbor query can be estimated using some heuristics, we can also save some queries on
the primary-key overlay (using the known maximal distances), etc. Also, every aforementioned overlay
can be load-balanced and we can tailor the specific index structures to every overlay.

MESSIF Modules

• Multi-Overlay Dispatcher – a peer coordinator for hosting several nodes of different index over-
lays on the same peer. Can be used to access a specific feature index structure and to execute an
operation on it.

• Multi-Feature Query Operation – operation encapsulating the threshold algorithm. It uses the
Multi-Overlay Dispatcher to execute object’s feature incremental nearest neighbor queries.

7 MESSIF User Interfaces

Finally, let us briefly mention the interfaces that can be used by the user to control the index structures
built using MESSIF. Since all the structures use the same interface, we can control them uniformly.
The designer can annotate the published parts of the newly implemented structure to provide a unified
description and help texts. For example, one of the initialization parameters of the M-Tree structure
is the size of its inner nodes. Since it is correctly annotated, the user will be provided with the option
of specifying the parameter. The MESSIF can also automatically detect all the operations that are
supported by a specific algorithm offering the user to work with them. Very important is also the ability
of the MESSIF to gather all sorts of statistics, which are available for the users too.

The MESSIF provides several user interfaces, capabilities of which vary from the most simple ones
allowing the user to write commands to a simple prompt to the complicated graphical client, which offers



comfortable manipulation with the running structure along with an easy-to-read statistics presented by
graphs. In a distributed environment, the user interface (client) can connect to running peers to control
them. The MESSIF also includes a special monitoring interface for distributed environment, allowing to
show status of the running peers.

MESSIF Modules

• Batch-Run Interface – a text-file driven batch that can initialize a structure, run operations on
it (inserts, queries, etc.) and log the results including statistics into text files.

• Telnet User Interface – a simple command prompt interface available through a TCP connection.

• Web User Interface – a graphical applet able to connect to a running index structure.

• Window User Interface – a Java GUI application with wizards for initializing a structure and
executing operations. It also contains a plotting unit for displaying statistics as graphs.

• Web Peer Monitor – web application available for monitoring the status of a distributed peer-
to-peer network.

8 Conclusions

The similarity search based on the metric space data-model has recently become a standalone research
stream, which arouses greater and greater interest. The number of data structures and indexing techniques
for metric data increases and an important part of such a research is a prototype implementation and
subsequent experimental evaluation of the structure’s performance.

Since we concern ourselves with this research area, we felt the need for a development platform that
would make the implementation easier. It should also support sharing and reusing of the code and make
the testing more efficient and comparison of the results more fair. In this paper, we have presented
MESSIF – The Metric Similarity Search Implementation Framework, which provides the following:

• encapsulation of the metric space concept – developers can use the data objects transparently
regardless of the specific dataset – new data types can be added easily;

• concept of operations – introducing a uniform interface to modify and query the data;

• management of the metric data – storing objects in buckets with automatic evaluation of basic
similarity queries and buckets-splitting based on the metric indexing principles;

• automatic performance measurement and collecting of various statistics including a uniform inter-
face for accessing and presenting the results;

• communication layer for distributed data structures – message navigation, automatic collecting and
merging of statistics;

• specialized load-balancing system for distributed index overlays;

• support for complex similarity queries in multi-metric spaces;

• user interfaces – designed to control both the centralized and the distributed data structures.

A number of data structures have been implemented using the MESSIF. Their implementations share
common code basis and can effectively utilize any other as subsystems, e.g. individual nodes of a dis-
tributed system can exploit any centralized structure for indexing and searching its local data. The use
and the testing of all systems based on the MESSIF is boosted up by having a unified system control,
input format of data, and output format of query results and statistics values.

The MESSIF is becoming the basic implementation infrastructure for a new European project SAPIR.
We would gladly provide the MESSIF source codes for research purposes upon request.
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metric spaces. ACM Computing Surveys (CSUR), 33(3):273–321, September 2001.

[7] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method for similarity
search in met ric spaces. In VLDB’97, Proceedings of 23rd International Conference on Very Large
Data Bases, August 25-29, 1997, Athens, Greece, pages 426–435. Morgan Kaufmann, 1997.

[8] Vlastislav Dohnal. Indexing Structures fro Searching in Metric Spaces. PhD thesis, Faculty of
Informatics, Masaryk University in Brno, Czech Republi c, May 2004.

[9] Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and Pavel Zezula. D-Index: Distance searching
index for metric data sets. Multimedia Tools and Applications, 21(1):9–33, 2003.

[10] Ronald Fagin. Combining fuzzy information from multiple systems. In Proceedings of the Fifteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5, 1996,
Montreal, Cana da, pages 216–226. ACM Press, 1996.

[11] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware. In
PODS ’01: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 102–113, New York, NY, USA, 2001. ACM Press.

[12] Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula. A content-addressable network for similarity
search in metric spaces. In Proceedings of the 3rd International Workshop on Databases, Information
Systems, and Peer-to-Peer Computing, Trondheim, Norway, 2005, pages 126–137, 2005.

[13] Gı́sli R. Hjaltason and Hanan Samet. Index-driven similarity search in metric spaces. ACM Trans-
actions on Database Systems (TODS’03), 28(4):517–580, 2003.

[14] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate informa-
tion. In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science, page 482, Washington, DC, USA, 2003. IEEE Computer Society.

[15] David Novák. Load balancing in peer-to-peer data networks. In MEMICS 2006, 2nd Doctoral
Workshop on Mathematical and Engineering Methods in Computer Science, pages 151–157, Brno,
Czech Republic, 2006. Faculty of Information Technology, Brno University of Technology.

[16] David Novak and Pavel Zezula. M-Chord: A scalable distributed similarity search structure. In
Proceedings of First International Conference on Scalable Information Systems (INFOSCALE 2006),
Hong Kong, May 30 – June 1, 2006, pages 1–10, New York, NY, USA, 2006. ACM Press.

[17] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for distributions with applications
to image databases. In ICCV ’98: Proceedings of the Sixth International Conference on Computer
Vision, page 59, Washington, DC, USA, 1998. IEEE Computer Society.
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