
Finding Minimal Keys in a Relation InstanceC. Giannella and C.M. WyssMay 14, 1999AbstractMannila [11] cites as an open problem in Data Mining the problem of �nding allminimal keys in a relation instance using only time that is polynomial in the numberof relation attributes and number of minimal keys and sub-quadratic in the size of therelation instance. This paper investigates the e�cacy of an \A Priori"-type approach tothe problem, applied simultaneously in a level-wise top-down and bottom-up manner.1 Introduction1.1 Background and MotivationThe problem of �nding all minimal keys given a relation schema, R, and a set offunctional dependencies, F , has been widely studied in the literature. However, theproblem of �nding all minimal keys given a particular relation instance (without re-course to a pre-existing set of functional dependencies) has barely been touched upon.Yet Mannila cites the latter key-�nding problem (given only a relation instance) as animportant open problem in data mining (see [11]).It is hard, at �rst glance, to think of any important data mining applications of�nding minimal keys given a relation instance. In data mining, we are most ofteninterested in functional dependencies or association rules in large bodies of data, notkeys. What would be the advantage of having an e�cient algorithm to �nd all minimalkeys in a large body of existing data?One possible use of the minimal keys is to scale down the storage requirementsof the data, since the tuples could then be represented via a (presumably smaller)set of attribute values. In fact, one wonders if some data mining could pro�tably becarried out on key-set attributes (instead of having to include all attribute values inthe search). 1

Another application might be in terms of index creation. If one could deduce a setof minimal keys that su�ciently overlapped the attribute space, then queries requiringcertain attributes be repeatedly accessed or compared could pro�t. For example, someplatforms allow one to specify which indices to create to optimize queries. If one knewof minimal keys, one could then create appropriate indices.1Although it is not immediately clear if these uses would justify the search for ane�cient minimal key-�nding algorithm, in the rest of the paper we move away fromthis issue, in favor of an investigation of the problem in its own right.1.2 De�nitions and Problem StatementIn the rest of the paper we assume the following de�nitions. Let R = fA1; : : : ; Ang bea relation schema and r an instance of R. A key of R with respect to r is ; 6= X � Rsuch that: for all tuples t1; t2 2 r, X[t1] = X[t2]) t1 = t2. A minimal key of R withrespect to r is X � R such that: X is a key of R with respect to r and for all Y (X;Y is not a key of R with respect to r. Often we will abbreviate the statement \X isa (minimal) key of R with respect to r" to \X is a (minimal) key" when R and r areclear from the context.The problem indicated by Mannila ([11]) is the following (which we call the key�nding problem):Given R (of size n) and r of size m, does there exist an algorithm for �nding the set Kof all minimal keys of r, using time polynomial inmaxfn; jKjg and sub-quadraticin m.Note that an algorithm that solves the problem may still be infeasible in prac-tise if jKj is exponential. A well-known result of Sperner [12] shows that the largestincomparable set, J � P(R) (for any X;Y 2 J;X � Y) X = Y), is the setfX 2 P(R)jjXj = bn=2cg. Demetrovics [6] proved that there is an instance r of Rfor which the set of minimal keys is exactly J . Therefore, a sharp bound for thenumber of minimal keys is given by: � nbn=2c�:A simple argument can be used to generalize the result of Sperner mentioned pre-viously. Namely to show that the largest incomparable set Ji � P(R) of size at most1 � i � n (for any X 2 Ji; jXj � i) is the set fX 2 P(R)jjXj = minfi; bn=2cgg. Fur-ther, Beeri, et. al. [4] provide a generalization of the result of Demetrovics mentionedpreviously. They show that for any non-empty incomparable set, J , over a �nite set R1This suggestion regarding the use of minimal key sets was provided by Dennis Groth.2

there is a relation instance, r, over R which has minimal keys precisely J . Therefore,a sharp bound for the number of minimal keys of size at most 1 � i � n is given by� nminfi; bn=2cg�:This result will prove useful in the complexity analysis of the bottom-up algorithmgiven later.1.3 Related NP-Completeness ResultsSince we are ultimately interested in determining whether the key �nding problemcan be solved, examining related NP-completeness results is a valuable endeavor. Thefollowing two questions are of interest.1. Does there exist an NP-complete problem which can be solved if the key �ndingproblem can be solved?2. If not, does there exists a problem, not known to be NP-complete but also notknow to be solvable in polynomial time, which can be solved if the key �ndingproblem can be solved?A problem similar to the key �nding problem is known to be NP-complete. Givena relation schema R, k 2 N, and a relation instance (e.g. an Armstrong relationcharacterizing a set of functional dependencies on R), the problem of determiningwhether there is a minimal key of size at most k is NP-complete. We call this problemthe k-size key �nding problem. It was discovered to be NP-complete by Beeri, et. al.[4]. The crucial di�erence between the k-sized key �nding problem and the key �ndingproblem is that if jKj (set of minimal keys) is exponential in n, a solution to the key�nding problem is permitted to take exponential time in n. In this case, a solutionto the key �nding problem would not be an e�cient solution to the k-sized key �nd-ing problem. Therefore, an algorithm for solving the key �nding problem does notnecessarily solve the k-sized key �nding problem e�ciently and so does not provide apositive answer to question 1.In order to get an answer to question 1, the k-sized key �nding problem mustbe restricted to the following problem (which we call the sparse k-sized key �ndingproblem):Given R, k 2 N, r such that jKj is polynomial in maxfjRj; jrjg, is there a minimalkey of size at most k?If this problem is NP-complete and the key �nding problem can be solved, thena positive answer to question 1 is obtained (e.g. P=NP). To investigate whether the3

sparse k-sized key �nding problem is NP-complete, we look at the NP-completenessproof of the k-sized key �nding problem given in [4].Theorem 1 The k-sized key �nding problem is NP-complete.Proof: Given relation schema R, instance r, and k 2 N; let mx = maxfjRj; jrjg.Checking whether a subset of R is a key and is of size less than or equal to k can becarried out in time O(mxlog(mx)). Hence the problem is in NP.The remainder of the proof shows that the vertex cover problem is reducible to thek-sized key �nding problem is NP-complete. Recall the vertex cover problem. Givenan undirected graph G = (V;E) and k 2 N, does there exist a minimal vertex cover ofsize at most k? By minimal we mean that no proper subset is also a vertex cover. Thevertex cover problem is known to be NP-complete.Given undirected graph G = (V;E) where V = fv1; : : : vpg and E = fe1; : : : eqg arelation schema RG and instance rG is constructed. RG has attributes V and rG hasq + 1 tuples. The �rst q tuples correspond to the edges in E. The last tuple consistsof all zeros. Tuple ti for 1 � i � q has the following form. Let ei = (va; vb). Let x`denote the entry in ti corresponding to attribute v`. If ` = a or ` = b, then x` = ei;otherwise, x` = 0.Consider the following example. LetG = (V = fv1; v2; v3; v4g; E = fe1 = (v1; v2); e2 =(v2; v3); e3 = (v3; v4)g). RG and rG are as seen in the table below. The column labelscorrespond to the attributes in RG and the rows to the tuples in rG.v1 v2 v3 v4e1 e1 0 00 e2 e2 00 0 e3 e30 0 0 0The following property holds for all V̂ � V .Lemma 1 V̂ is a minimal vertex cover of G if and only if V̂ is a minimal key of RGwith respect to rG.Proof: ():) Assume V̂ is a minimal vertex cover of G. Let ti; tj be tuples in rG where1 � i < j � q+1. Suppose V̂ [ti] = V̂ [tj]. By construction, the only entries in ti and tjwhich are the same contain 0. Hence V̂ [ti] and V̂ [tj] consist of all zeros. Since V̂ is avertex cover of G, then all edges are touched by V̂ . Therefore, V̂ [ti] cannot consist ofall zeros, which is a contradiction. It follows that V̂ is a key of RG with respect to rG.Suppose there exists W (V̂ where W is a key of RG. Let ei be an edge ofG. Consider tuple ti in rG (1 � i � q). If W [ti] = W [tq+1] then W [ti] consists4

of all zeros. However, ti does not consist of all zeros since 1 � i � q. Therefore,(R�W)[ti] 6= (R�W)[tq+1], so, W cannot be a key. This is a contradiction. Assumethat W [ti] 6= W [tq+1]. Since tq+1 consists of all zeros, then W [ti] does not. It followsthat edge ei is touched by a vertex in W . W is a vertex cover of G. However, W (V̂ ,so V̂ is not a minimal vertex cover. This contradicts our original assumption. Weconclude that V̂ is a minimal key.((:) Assume V̂ is a minimal key of RG with respect to rG. Let ei be an edge in G(1 � i � q). Consider tuple ti of rG. Since V̂ is a key and tq+1 consists of all zeros, thensimilar reasoning to above shows that V̂ [ti] does not consist of all zeros. Therefore,edge ei is touched by some vertex in V̂ . V̂ is a vertex cover of G.Suppose there exists W (V̂ such that W is a vertex cover of G. Let ti; tj be atuples in rG where 1 � j < i � q+1. Since W is a vertex cover, then similar reasoningto above shows that W [tj] does not consist of all zeros. Since i 6= j, it follows that:W [ti] 6=W [tj]. We conclude that W is a key. However, W (V̂ , so, V̂ is not a minimalkey. This contradicts the original assumption. We conclude that V̂ is a minimal vertexcover of G.QED LemmaNow back to the proof of the Theorem. Let k 2 N. From the above lemma, itfollows that: there exists a minimal vertex cover of G of size at most k if and only ifthere exists a minimal key of RG with respect to rG of size at most k. Since RG andrG can be constructed from G in polynomial time in maxfjV j; jEjg, then the vertexcover problem reduces to the k-sized key �nding problem.QED TheoremThe important thing to note in this proof, is the lemma proven along the way. Thislemma implies that the set of minimal keys K of RG is exactly the set of minimal vertexcovers of G. Hence a similar restriction as above on the vertex cover problem can beused to answer question 1. Speci�cally, if the key �nding problem can be solved andthe following problem (which we call the sparse vertex cover problem) is NP-complete,then question 1 can be answered positively (e.g. P=NP).Given an undirected graph G = (V;E) and k 2 N, such that the number of minimalvertex covers of G is polynomial inmaxfjV j; jEjg, is there a minimal vertex coverof size at most k?To the best of the authors' knowledge, it is not known whether the sparse vertexcover problem is NP-complete. So, question 1 remains open. On to question 2. To thebest of the authors' knowledge, it is also not known whether the sparse vertex cover5

problem is solvable in polynomial time. So, question 2 is answered positively.A �nal note concerning related NP-completeness results. The key �nding problemplaces no restrictions on the domain of values over which tuples consist. We see abovethat question 2 can be answered positively in this setting and question 1 is open.However, if the domain is restricted to a �nite set of values for all relation schemas andinstances, then the situation changes. Question 2 becomes open as well as question 1.In particular consider the case where the domain of values is f0; 1g. A relation schemaR and an instance r over R in which all tuples of r are made up of entries from f0; 1gis called a Bernoulli database. Consider the following problem (which we call Bernoullikey �nding problem) which is a special case of the key �nding problem.Given Bernoulli database R (of size n), r of size m, does there exist an algorithm for�nding the set K of all minimal keys of r, using time polynomial in maxfn; jKjgand sub-quadratic in m?Questions 1 and 2 remain open for the Bernoulli key �nding problem despite thefact that there do exist related NP-complete problems. For example, the followingproblem is NP-complete:Given Bernoulli database R, r, and k 2 N, does there exist a key of size at most k?The proof involves reducing 3-SAT to this problem and is due to Ed Robertson[8]. A connection to a sparse 3-SAT problem (which would provide a positive answerto question 2) cannot, however, be made. The reason is that the Bernoulli databaseproduced by the reduction always has an exponential number of minimal keys.The fact that question 2 can be answered for the general key �nding problem butnot the Bernoulli key �nding problem suggests that this special case is considerablyeasier to solve.1.4 Previous WorkThe �rst four algorithms considered in this paper are based on a level-wise \A-priori"approach similar to that used in mining association rules ([1], [2], and [9]). Man-nila ([10]) relates the problem of minimal key-�nding given a relation instance to theproblem of transversing hypergraphs.Demetrovics et. al ([7]) present some interesting work concerning the average lengthof keys in (random) databases. In particular, given a relation schema R such thatjRj = n, consider a Bernoulli database of sizem and a random distribution p : f0; 1gn !f0; 1g giving the probability that a particular tuple appears in the database. If it isthe case that 9N1; N2 such that N12n � p(t) � N22n6

for any particular tuple, t (which surely is the case for any \reasonable" randomdatabase generation) then the minimal keys cluster around 2log2(m) in size. Ourempirical study (using random Bernoulli databases) bears this research out (x3). Al-brecht et. al ([3], [7]) use this fact in a Monte Carlo method for �nding minimal keys,which essentially looks for keys in the attribute subsets of size 2log2(m) �rst.1.5 Overview of this PaperIn the next section, we present four algorithms based on the level-wise A-priori ap-proach for association rule mining. The �rst uses a \top-down" strategy to searchthrough the power-set lattice P(R), the second uses a \bottom-up" strategy.For both algorithms, the worst case performance is exponential in the number ofminimal keys (although sub-quadratic in jrj) . So they do not have the required time-complexity of a solution to Mannila's problem.The third and forth algorithms combines both techniques in a hybrid search strat-egy. The third combines the techniques in perhaps the most simple-minded way possi-ble. The top-down and bottom-up parts run independently of each other and \meet"in the middle of the power-set lattice. At this point their key sets are merged intothe output minimal key set. The forth algorithm combines the techniques in a morecomplicated way. The top-down and bottom-up parts \communicate" with each otherwhile traversing the lattice. Each using the intermediate results of the other to prunethe search space. All of the four algorithms are proven to correctly �nd all minimalkeys, however none solve Mannila's problem in the worst case.In x3, we report the results of an empirical study of the a-priori-type algorithms.This study generates (random) Bernoulli databases and answers various questions re-garding the layout of the keys in these databases and the performance of our algorithms.In particular, the minimal keys seem to be of the sizes predicted in [7], namely clusteredaround 2log2(m) in size in randomized Bernoulli databases. Also, a levelwise approachis seen to be infeasible from a space complexity point of view. Alternate depth-�rstversions of the a-priori algorithms are given.Finally, we report our conclusions regarding the a-priori approach to Mannila'sproblem, and indicate some directions future research on the problem might take.2 A Naieve \A-Priori" ApproachThe problem involves searching through the power-set lattice of R, P(R). From thede�nition of minimal keys, there are two requirements of any subset X 2 P(R) to bein the result set, K:1. X must be a key. 7

2. X must be minimal (no proper subset of X is also a key).From these two requirements we can extract the following two principles, which willlead to dual pruning mechanisms on P(R).Principle 1. If X 2 P(R) is not a key, then no Y � X is a key.Principle 2. If X 2 P(R) is a minimal key, then no Y � X is a minimal key and noY (X is a key.The idea behind our \A-Priori" approach (both top-down and bottom-up) is that,at each level, we will use our partial result set and a suitable principle to generate afrontier set which prunes the potential set of subsets of R that need be examined atthe next level. In essence, the frontier set, F , guarantees that for all minimal keys, X,at some not-yet-reached level is a subset (top-down) or superset (bottom-up) of someelement in F . As a result, only the subsets or supersets of F need be examined at thenext level. This method (in conjunction with the dual pruning principles) is similar inspirit to the level-wise Apriori framework for mining association rules (see [1], [2] and[9]).2.1 Searching Top-downIn this section we consider an algorithm that searches the power-set lattice P(R) top-down, using principle 1 to prune the search. During iteration n � 1 � i � 1 of thealgorithm, a frontier set, Ki, of subsets of R is generated from the frontier set, Ki+1,of the previous iteration, i + 1. At the end of iteration i, Ki will contain exactly thekeys of size i. Principal 1 allows Ki to be generated by only looking at the subsets ofelements in Ki+1. By principal 1, any X � R of size i+ 1 which is not a key will nothave any keys as subsets. Because Ki+1 contains exactly the set of keys of size i + 1before the end of iteration i, then X 2 Ki+1. Therefore, any minimal key of size i willbe a subset of some element of Ki+1. Looking at all the subsets of elements in Ki+1 isall that is required at iteration i to generate exactly the set of minimal keys of size i.Since we are interested in �nding all minimal keys, we must remove all elements ofKi+1 which have a subset in Ki before going on to iteration i� 1. This is carried outby marking during iteration i all elements in Ki+1 which contribute a subset to Ki.Hence, during iteration i, Ki is generated and all elements of Ki+1 which have a subsetin Ki are marked. After generating Ki, before proceeding on to the next iteration, allmarked sets in Ki+1 are removed. The output of the algorithm will be the union of allKi sets.Because only Ki+1 need be looked at during iteration i, Ki+1 was referred to as thefrontier. The algorithm is presented in �gure 1. Most of the notation is clear except,perhaps F, which refers to a non-duplicate removing union.8

Input: R, a relation schema of size n and r an instance of Rof size m.Output: K = Fni=1Ki, the set of minimal keys of R withrespect to r.1 K1; : : : ; Kn�1 := ; and Kn := fRg2 for i := n� 1 down to 1 do3 for Ytd 2 Ki+1 do4 for Xtd � Ytd s.t. jXtdj = i do5 if Xtd is a key w.r.t. r then6 Ki := KiFfXtdg7 mark Ytd8 endfor9 endfor10 remove all marked Ytd 2 Ki+111 remove duplicates from Ki12 endforFigure 1: Top-Down Algorithm using A-Priori Pruning ApproachDuring the course of the for loop at line 4, many duplicate X 0s may be generated.This is because di�erent Y 0s may share subsets of size i. The problem of duplicateremoval is put o� until step 11 so that all duplicates can be removed at the same time.As a result the F operation is used in line 6.Clearly, at the end of iteration i, Ki contains exactly the keys of size i and theredoes not exist an element of Ki+1 which has a subset in Ki. These results generalizeinto the following invariant which directly yields a correctness proof.

9

Lemma 2 For all n � i � 1 the following statements hold at the end of iteration i ofthe top-down algorithm:1. For all n � j � i and each Y 2 Kj, there does not exist Z a key of size � i andZ (Y2. For all keys Y of size n � j � i, if there does not exist a key Z of size � i suchthat Z (Y , then Y 2 Kj.Proof Sketch: A simple induction on i will yield the desired result. The details arenot very illuminating and are omitted.QEDThe desired correctness proof falls out directly.Theorem 2 At the termination of the top-down algorithm, K = Fni=1Ki equals theset of minimal keys.Proof: Let X 2 K at the termination of the algorithm, then X 2 KjXj at the end ofiteration jXj. By 1. with i = 1 and j = jXj, there does not exist Z a key with Z (X.X is a minimal key.Let X � R be a minimal key. The antecedent of 2. holds with i = 1 and j = jXj.Hence, X 2 KjXj at the termination of the algorithm.QEDNow we analyze the top-down algorithm to get a worst case complexity. We assumehere and throughout the paper that the following are basic operations. This list is notexhaustive. Implicitly assumed to be basic are all of the obvious operations (e.g.arithmetic, etc.).� arbitrary length tuple comparisons,� arbitrary length attribute set comparison (X � Y for X;Y � R),� attribute set length computation (jXj),� F operation,� marking and checking for marking on arbitrary length attribute sets.First some preliminary complexity computations. The removal of marked Y 2 Ki+1in line 10 can be done in worst case time O(jKi+1jlog(jKi+1j)) by recursively splittingthen merging similar to the split-merge technique used for merge sort. The removal ofduplicates from Ki in line 11 can be done in time O(jKijlog(jKij)). First sort Ki (time10

O(jKijlog(jKij))). Then scan Ki marking all duplicates (time O(jKij)). Then usingthe same technique as above, remove all marked sets (time O(jKijlog(jKij))).Recall that in the main problem statement, we are interested in the complexityof our algorithms in terms of n, m, and jKj. At each iteration 1 � i � n � 1, thealgorithm requires timeO(jKi+1j(i + 1)mlog(m) + jKi+1jlog(jKi+1j) + jKijlog(jKij)):(i+ 1) is an upper-bound on the number of subsets of size i for each element in Ki+1.mlog(m) is the time required to identify whether a set X is a key by sorting theinstance r. The jKi+1jlog(jKi+1j) + jKijlog(jKij) terms come from lines 10 and 11as explained earlier. Due to removal of marked sets, Ki is not monotonic in i. Letkmx = maxnj=1(jKj j). The worst case running time of the algorithm isO(n�1Xi=1 kmx(i+ 1)mlog(m) + kmxlog(kmx)):Simplifying a bit we get a worst case running time of:O(n2kmxmlog(m) + (n)kmxlog(kmx)):In the event that kmx is polynomial in jKj, our algorithm runs in time polynomial inn and jKj and sub-quadratic in m. This is exactly what we need to solve our problem.However, kmx might be exponential in jKj. Consider a relational instance rtd in whichK = ffA1g; fA2g; : : : ; fAngg (jrtdj contains a single tuple of all zeros). In this casekmx is exponential in jKj since jKbn=2cj = � nbn=2c� � n2n�1 (for large n). The algorithmcertainly does not solve the problem in this case. To get an idea of the complexity ofthe algorithm independent of kmx, we compute the worst-case complexity in terms ofn and m only.Clearly, jKj j � �nj� for all j. Hence the worst case running time of the algorithm isO(Pn�1i=1 [� ni+1�(i + 1)mlog(m) + � ni+1�log(� ni+1�) + �ni�log(�ni�)]) � O(n2n�1mlog(m) +nlog(n)2n�1 + nlog(n)2n�1). Simplifying a bit we get a worst case running time of:O(n2n�1[mlog(m) + 2log(n)]):Recall the instance rtd above. At each iteration, i, jKi+1j = � ni+1� and jKij = �ni�.Hence the worst case running time in terms of n and m is attained. Since jKj = n,then the algorithm runs in time exponential in the output size on rtd. Therefore, rtd isa prototypical example of an instance which causes the worst behavior in the top-downalgorithm. 11

2.2 Searching Bottom-UpIn this section we consider an algorithm that searches the power-set lattice P(R)bottom-up, using principle 2 to prune the search. The way in which the frontier ismaintained is di�erent than the top-down algorithm. During iteration 1 � i � n ofthe bottom-up algorithm, a frontier set, NKi, of subsets of R is generated from thefrontier set, NKi�1, of the previous iteration, i�1. At the end of iteration i, NKi willcontain exactly the non-keys of size i and the empty set. Principal 1 allows NKi to becomputed during iteration i by only looking at the supersets of elements of NKi�1. Tosee this, let X be a non-key of size i. By principal 1, every subset of X of size i� 1 isnot a key and so is in NKi�1 at the end of iteration i� 1. Therefore, X is a supersetof some element in NKi�1 at the end of iteration i� 1.Principal 2 ensures that NKi�1 is truly a frontier set during iteration i. Speci�cally,any minimal key of size i must be a superset of some element of NKi�1. To see this,let X be a minimal key of size i. By principal 2, no Y (X of size i � 1 is a key andhence every subset of X of size i� 1 is in NKi�1 at the end of iteration i� 1. We areguaranteed, then, to �nd all minimal keys of size i during iteration i.The only complication arises in ensuring that exactly the minimal keys of size i arefound during iteration i. Let X be a set of size i which is a superset of an element inNKi�1. X will be looked at during iteration i. Checking whether X is a key is easy,but does not ensure that X is a minimal key! There might exist a key Y (X of sizei� 1. The problem occurs because X might have some subsets of size i� 1 which arenon-keys and some which are keys. Therefore, all subsets of size i � 1 of X must bechecked. Given that X is a key, if all of these sets are non-keys, then X is a minimalkeys, otherwise not.We have arrived a procedure for �nding all of the minimal keys of size i, givenNKi�1. For each Ybu 2 NKi�1 consider each superset, Xbu of size i. If Xbu is not akey, then add Xbu to NKi. Otherwise, if all subsets of Xbu of size i� 1 are non-keys,then add Xtd to the cumulative minimal key set K. The algorithm is presented in�gure 2.As in the top-down algorithm F is used in line 6 and duplicate removal is dealtwith all at once in line 11 (time O(jNKijlog(jNKij))). Also, F is used in line 8. Theremay well be duplicates in K. Duplicate removal from K is handled all at once in line12. Now we prove the correctness of the bottom-up algorithm. The following two usefulfacts, can be directly observed from the algorithm (proofs are omitted). At the end ofiteration 1 � i � n of the bottom-up algorithm:� Fact 1: if X 2 K, then X is a key� Fact 2: if X 2 NKi, then X is not a key.The non-key invariance property in NKi (stated earlier) can now be established.12

Input: R, a relation schema of size n and r an instance ofR of size m. Output: K, the set of minimal keys of R withrespect to r.1 K := ; and NK0 = f;g; NK1; : : : ; NKn := ;2 for i := 1 to n do3 for Ybu 2 NKi�1 do4 for Xbu � Ybu s.t. jXbuj = i do5 if Xbu is not a key w.r.t. r then6 NKi := NKiFfXbug7 else if 8Z � Xbu with jZj = i� 1, it followsthat: Z is not a key w.r.t. r then8 K := KFfXbug9 endfor10 endfor11 remove duplicates from NKi12 remove duplicates from K13 endforFigure 2: Bottom-up Algorithm using A-Priori Pruning ApproachLemma 3 For all 1 � i � n, at the end of iteration i of the bottom-up algorithm,NKi = fX � RjjXj = i and X is not a key g.Proof: A simple induction will show that for all 1 � i � n, fX � RjjXj = i and X isnot a key g � NKi. From fact 2, the other direction of the inclusion follows for all i.QEDFinally, we can show that the algorithm is correct.Theorem 3 At the termination of the bottom-up algorithm K is exactly the set ofminimal keys.Proof: Let X 2 K at the termination of the algorithm. From fact 1, X is a key. Wemust show that X is minimal. Suppose not, then there exists a key X̂ (X of sizejXj � 1. Since X 2 K, then X was added to K during iteration jXj. Therefore step7 must pass at some point during the iteration with Xbu = X. Since X̂ � X andjX̂ j = jXj � 1, then it follows that: X̂ is not a key. This is a contradiction.13

Let X be a minimal key. We shall show that X is in K at the end of iteration jXj.If jXj = 1, then since 2 NK0, X is a key, and all subsets of X are non-keys, then Xwill be added to K during the 1st iteration. Assume jXj > 1.Since X is a minimal key, then the following statement holds:8Z � X with jZj = jXj � 1; Z is not a key : (z)From the invariance of NK lemma above, there exists Ẑ � X of size jXj � 1 inNKjXj�1 at the end of the (jXj � 1)st iteration. Therefore, at some point during thejXjth iteration step 5 is reached with Ybu = Ẑ and Xbu = X. Since X is a key, thenstep 5 will fail and step 7 will be reached. By statement (z) above, step 7 will pass.Hence, X will be added to K.It follows that the set of minimal keys is exactly K at the termination of the algo-rithm.QEDNow we analyze the bottom-up algorithm to �nd a worst-case running time. As inthe complexity analysis of the top-down algorithm, we are interested in the worst caserunning time in terms of n, m, and jKj.Let K̂i denoteK at the end of iteration i. At each iteration 1 � i � n, the algorithmrequires O(jNKi�1ji[mlog(m) + imlog(m)] + jNKijlog(jNKij) + jK̂ijlog(jK̂ij)).The jNKi�1ji[mlog(m)+imlog(m)] expression comes from lines 3-10. The jNKijlog(jNKij)and K̂ijlog(jK̂ij) expressions come from lines 11,12. Therefore, a worst-case runningtime of the following is obtained.O(mlog(m)[nXi=1 jNKi�1ji2] + [nXi=1 jNKijlog(jNKij)] + [nXi=1 jK̂ijlog(jK̂ij)]) (1)Notice that K̂i is monotonic increasing in i so for all j, jK̂j j � jKj. However, NKiis not necessarily monotonic increasing in i. Let nkmx = maxni=1(jNKij). The worstcase running time is:O(nXi=1(nkmx[imlog(m) + i2mlog(m)] + nkmxlog(nkmx) + jKjlog(jKj))):Simplifying a bit we get a worst case running time of:O(n3nkmxmlog(m) + nkmxlog(nkmx) + jKjlog(jKj)):Similar to the top-down algorithm, if nkmx is polynomial in jKj, then the bottom-up algorithm solves our problem. However, nkmx may be exponential in jKj. Consider14

a relation instance rbu with K = ffA1; : : : Angg (jrbuj is linear in n and in Bernoulli).Clearly, jNKbn=2cj = � nbn=2c�, so, nkmx is exponential in jKj. To get an idea of the com-plexity of the algorithm independent of nkmx, we compute the worst-case complexityin terms of n and m only.To do so we examine 1 more closely. Upper-bounds on jNKi�1j; jNKij and jK̂ij areneeded. Firstly, jNKi�1j � � ni�1�. Secondly, as mentioned earlier, a sharp bound on thenumber of minimal keys of size at most i is � nminfi;bn=2cg�. Hence jK̂ij � � nminfi;bn=2cg�.We conclude that the algorithm requires in the worst case time:O(mlog(m) nXi=1 � ni� 1�i2 + nXi=1 �ni�log(�ni�)+ (2)nXi=1 � nminfi; bn=2cg�log(� nminfi; bn=2cg�)): (3)To simplify consider �rst the subexpression:mlog(m) nXi=1 � ni� 1�i2: (4)By [5] 4 is bounded above by mlog(m)n22n�2. Now consider the second subexpres-sion: nXi=1 �ni�log(�ni�): (5)By Stirling's approximation it follows that 5 is of order O(Pni=1 � ni�1�(nlog(n) �(n � i)log(n � i) � ilog(i))). Hence 5 has upper-bound O(nlog(n)2n). Now considerthe third subexpression:nXi=1 � nminfi; bn=2cg�log(� nminfi; bn=2cg�) (6)By splitting the sum and using Stirling's approximation as above we obtain anupper-bound on 6 of: O(bn=2cXi=0 �ni�(nlog(n)� (n� i)log(n � i)� ilog(i)+nXbn=2c+1� nbn=2c�(nlog(n)� (n� bn=2c)log((n � bn=2c)) � bn=2c)log(bn=2c))):15

Dropping the (n � i)log(n � i) � ilog(i) expression and simplifying the secondsummation, we get upper-bound:O(nlog(n) bn=2cXi=0 �ni�+ n2log(n)� nbn=2c�):Stirling's approximation yields an upper-bound of:O(n2log(n)2n�1):Plugging in the upper-bounds for the three subexpressions of and simplifying thefollowing upper-bound in terms of m and n for the worst-case running time of thealgorithm is obtained: O(mlog(m)n22n�2 + n2log(n)2n�1) (7)Can this worst case running time be achieved? Recall instance rbu with minimalkey set ffA1; : : : ; Angg. Clearly, for all 1 � i � n� 1, jK̂ij = 0 and for all 1 � i � n,jNKi�1j = � ni�1�. A straight-forward analysis will show that the algorithm comeswithin a factor of nlog(n) of achieving the worst-case time in 7. We conclude that rbuis a prototypical example which causes the worst behavior in the bottom-up algorithm.2.3 Searching Top-down and Bottom-upWe have seen that the worst type of instances for the top-down algorithm are thosewhich haveK = ffA1g; : : : ; fAngg (rtd denoted an instance which has this minimal keyset). We have also seen that the worst type of instances for the bottom-up algorithm arethose which have K = ffA1; : : : ; Angg (rbu denoted an instance which has this minimalkey set). On these instances, the top-down and bottom algorithms, respectively, failto solve our original problem. However, the bottom-up algorithm handles instance rtdeasily and vice versa. We are motivated then to consider a \hybrid" algorithm whichsearches the power-set lattice P(R) top-down, and bottom-up using both principle 1and 2 above. Our �rst and simplest approach is to have the top-down and bottom-upalgorithms search the top and bottom half of the power-set lattice, respectively, andmerge their results. The only interaction between the two algorithms occurs at thevery end when the top-down key set and bottom-up minimal key set are merged. Thisalgorithm is presented in �gure 3. Since the top-down and bottom-up portions do notinteract, we frequently refer to this algorithm as the hybrid without communicationalgorithm.The correctness proof of the hybrid without communication algorithm follows al-most directly from the correctness proofs of the top-down and bottom-up algorithms.The only complication involves the merging in lines 24-29. However, this is only aminor problem. The proof is, thus, omitted.16

Input: R, a relation schema of size n and r an instance of Rof size m.Output: K, the set of minimal keys of R with respect to r.1 K;K1; : : : ; Kn�1 := ;;NK0 = f;g; NK1; : : : ; NKn := ;and Kn := fRgCOMMENT Lines 2-11 are the top-down portion2 for i := n� 1 downto dn=2e do3 for Ytd 2 Ki+1 do4 for Xtd � Ytd s.t. jXtdj = i do5 if Xtd is a key of R w.r.t. r, then6 Ki := KiFfXtdg7 mark Ytd8 endfor9 endfor10 remove all marked Ytd from Ki+111 remove all duplicates from KiCOMMENT Lines 12 - 22 are the bottom-up portion12 for Ybu 2 NKn�i�1 do13 for Xbu � Ybu s.t. jXbuj = n� i do14 if Xbu is not a key w.r.t. r then15 NKn�i := NKn�iFfXbug16 else if 8Z � Xbu with jZj = n� i� 1), we17 have: Z is not a key w.r.t. r then18 K := KFfXbug19 endfor20 endfor21 remove duplicates from NKn�i22 remove duplicates from K23 endforCOMMENT 24-29 { merging of top-down and bottom-up24 for i := n� 1 downto dn=2e do25 for Xtd 2 Ki do26 if 8Z 2 K; with jZj � dn=2e; Z * Xtd then27 K := KFfXtdg28 endfor29 endforFigure 3: Simple \Hybrid" Algorithm using top-down and bottom-up pruning17

One of the primary motivations for the hybrid without communication algorithm isto combine the best features of the top-down and bottom-up algorithms. We investigatenow how close the algorithm has come to this goal. Speci�cally, we develop a lower-bound on the running time. From this result, we describe a class of inputs on whichthe algorithm fails exponentially to solve Mannila's problem 2.Theorem 4 Given R a relation schema (of size n) and r an instance of R (of sizem), the hybrid algorithm without communication (e.g. algorithm 3) requires time atleast
(2n=2).Proof: Let � be a minimal key. There are two cases to consider.1. Case: j�j � dn=2e. It follows that for every Zi) � of size n�1 � i � dn=2e+1,Zi 2 Ki at the start of iteration i�1. Hence the top-down portion of the algorithmmust examine at least the following number of sets:n�1Xi=dn=2e+1�n� j�ji� j�j�:Since j�j � dn=2e, then a lower-bound of 2n=2�1 � 2 can be obtained on the sum.Therefore the algorithm requires at least
(2n=2) time.2. Case: j�j � dn=2e+1. It follows that for every Zn�i (� of size 1 � n�i � dn=2e,Zn�i 2 NKn�i at the start of iteration i � 1 By an analogous argument to theprevious case, we conclude that the bottom-up portion of the algorithm mustexamine at least 2n=2�1�1 sets. Therefore, the algorithm requires at least
(2n=2)time.QEDThis theorem implies that on the class of inputs with a polynomial number ofminimal keys, the hybrid without communication algorithm fails exponentially to solveMannila's problem. In particular the algorithm fails exponentially on instances rtd andrbu. We see clearly that the algorithm does not come close to achieving the goal ofcombining the best properties of the top-down and bottom-up algorithm.2.4 Adding Communication Between the Top-down, Bottom-up SearchLet's examine a bit more closely the behavior of the hybrid algorithm on instancerbu (over relation schema R = fA1; : : : ; Ang); recall that rbu has minimal key set2The algorithm is deemed to fail exponentially on an input if the time required on the input is exponen-tially greater than allowed. 18

fA1; : : : ; Ang. After iteration n � 1, Kn�1 = ; and NK1 = ffAigj1 � i � ng.Because, Kn�1 = ;, it is clear that any set of size smaller than n� 1 is not a minimalkey. Therefore, the algorithm need not proceed any further. However, the bottom-up portion will examine all sets of size � dn=2e in vain. This is a canonical exampleillustrating the need for communication between the top-down and bottom-up portions.In this example, Kn�1 = ;, should signal the bottom-up portion to halt after the �rstiteration.More generally, we would like to utilize information contained in Ki during thebottom-up part of iteration i and information contained in K and NKn�i�1 duringthe top-down portion of iteration i. Elements of Ki are minimal keys down to sizei. Elements of NKn�i�1 are non-keys and elements of K are minimal keys (of size� n� (i+ 1)).The next lemma shows how Ki can be used to guide the bottom-up search.Lemma 4 At the end of step 11 during iteration n � 1 � i � dn=2e of the hybridalgorithm without communication, 8Ybu 2 NKn�i�1 if @Xtd 2 Ki s.t. Ybu � Xtd, then8Xbu � Ybu of size n� i, Xbu is not a key.Proof: Straight-forward and omitted.QEDAt the end of step 27 of iteration i of the hybrid without communication algorithm,let K̂i denote K (e.g. the set of minimal keys of size � n� i). K̂i+1 can be utilized toprune the top-down search by allowing certain elements of Ki+1 to be ignored duringiteration i.At �rst glance, we would like to be able to prune all Ytd 2 Ki+1 s.t. there existsYbu 2 K̂i+1 s.t. Ybu � Ytd from consideration during the top-down part of the algorithmat iteration i. Clearly such a Ytd cannot be a minimal key since Ybu is a key. However,Ytd may have a subset, X, of size � dn=2e for which there does not exist Ybu 2 K̂i+1s.t. Ybu � X. Our �rst glance pruning approach is not sound (it is too ambitious).At second glance, it is clear that Ytd 2 Ki+1 can be pruned from considerationduring iteration i, if for every X � Ytd of size n � i there exists Ybu 2 K̂i+1 s.t.Ybu � X. The rationale is that every X � Ytd of size n � i is not a minimal key andn � i � n � dn=2e � dn=2e. Since the bottom-up portion will get every minimal keyof size � dn=2e, then Ytd will not have any minimal key subsets which will be missed.The next lemma states precisely how K̂i+1 can be used to guide the top-down search.Lemma 5 At the end of step 23 of iteration n� 1 � i + 1 > dn=2e + 1 of the hybridalgorithm without communication, 8Ytd 2 Ki+1 if 8X � Ytd of size n� i;9Ybu 2 K̂i+1s.t. Ybu � X, then 8Z � Ytd of size � dn=2e, Z is not a minimal key.19

Proof: Straight-forward and omitted.QEDThis lemma suggests that all subsets of Ytd of size n � i need be checked in thepruning approach above. Such a cost would make the approach prohibitively expensive.However, as will be shown later, the elements of NKn�i�1 allow this cost to be avoided.The cost will amount at worst to O(n2jNKn�i�1j2). Since the NKn�i�1 sets needbe kept around by the algorithm anyway, the jNKn�i�1j2 factor is not an overheadproblem.We are now in a position to give a top-down, bottom-up, hybrid algorithm in whichthe top-down part utilizes temporary information gathered by the bottom-up part andvice versa. In particular this algorithm works very fast on instances rtd and rbu. Thisalgorithm is presented in �gure 4. We frequently refer to this as the hybrid with com-munication algorithmInput: R, a relation schema of size n and r an instance of R of size m.Output: K, the set of minimal keys of R with respect to r.1 K;K1; : : : ;Kn�1 := ; and NK0 = f;g; NK1; : : : ; NKn := ; and Kn := fRgCOMMENT Lines 2-13 are the top-down portion2 for i := n� 1 downto dn=2e do3 for Ytd 2 Ki+1 doCOMMENT Line 4 is communication with the bottom-up portion4 if i = dn=2e or 9X � Ytd of size n� i, s.t. 8Ybu 2 K,Ybu * X, then5 for Xtd � Ytd s.t. jXtdj = i do6 if Xtd is a key of R w.r.t. r, then7 Ki := KiFfXtdg8 mark Ytd9 endfor10 else mark Ytd11 endfor12 remove all marked Ytd from Ki+113 remove all duplicates from KiCOMMENT Lines 14 - 26 are the bottom portion14 for Ybu 2 NKn�i�1 doCOMMENT Line 15 is communication with the top-down portion15 if 9Xtd 2 Ki s.t. Ybu � Xtd, then20

16 for Xbu � Ybu s.t. jXbuj = n� i do17 if Xbu is not a key w.r.t. r then19 NKn�i := NKn�iFfXbug20 else if 8Z � Xbu with jZj = n� i� 1, we21 have: Z is not a key w.r.t. r then22 K := KFfXbug23 endfor24 endfor25 remove duplicates from NKn�i26 remove duplicates from K27 endforCOMMENT 28-33 { merging of top-down and bottom-up28 for i := n� 1 downto dn=2e do29 for Xtd 2 Ki do30 if 8Z 2 K with jZj � dn=2e; Z * Xtd, then31 K := KFfXtdg32 endfor33 endforFigure 4: \Hybrid" Algorithm using top-down and bottom-up pruning with communicationA correctness proof of this algorithm can be obtained from the correctness proofsof the top-down and bottom-up algorithms and lemmas 4, 5. In particular, nearly thesame invariance results are obtained.Lemma 6 For all n� 1 � i � dn=2e the following statements hold at the end of step27 of iteration i of the hybrid algorithm with communication (e.g. �gure 4):1. For all n � j � i and each Y 2 Kj, there does not exist Z a key of size � i andZ (Y2. For all keys Y of size n � j � i, if there does not exist a key Z of size � i suchthat Z (Y , then Y 2 Kj.3. NKn�i = fX � RjjXj = n� i and X is not a key g.Proof: Very similar to the proofs of lemmas 2.1 and 3. Some extra detail is needed tohandle the communication steps. However, these details are not very illuminating andso the proof is omitted.QED 21

From this invariance lemma, a correctness proof of the hybrid with communica-tion algorithm follow directly (and is omitted). Additionally, some complexity resultsexplained later use this invariance lemma.We are interested in a complexity analysis of the hybrid with communication al-gorithm. In particular we are interested in how e�ective the communication is withregard to Mannila's problem. To do so we consider three questions:1. On which inputs does the hybrid algorithm without communication exponentiallyfail to solve Mannila's problem but the hybrid algorithm with communicationsolves the problem?2. On which inputs does the hybrid algorithm with communication exponentiallyfail to solve Mannila's problem?3. How does the worst-case running time of the hybrid with communication com-pare to the worst-case without communication (e.g. when is the communicationoverhead too much)? In particular, on which inputs does the hybrid algorithmwith communication exponentially fail but the hybrid without communicationdoes not?2.4.1 Improvement Through CommunicationTo answer question 1., we develop a theorem which (together with theorem 4) describesa sub-class of inputs for which the hybrid with communication solves Mannila's problembut the hybrid without communication exponentially fails. The theorem is based onan observation concerning the behavior of the hybrid algorithm with communicationon inputs for which the minimal keys are either very large or very small (or both).The communication allows the algorithm to ignore searching the \middle" part of thepower-set lattice of R. As a result, Mannila's problem is solved on these inputs.The next lemma makes precise the relationship of very small or very large minimalkeys and communication.Lemma 7 Given � 2 (0; 1=2) and R a relation schema (of size n) and r an instance ofR (of size m) such that: n � 16 and d�logne < (n�2)=3 and all minimal keys of R withrespect to r are of size � d�logne, or of size � n� d�logne. Let i = n� d�logne � 1.At the end of iteration i of the hybrid algorithm with communication: Ki = ; andNKn�i = ;.3 Proof: First we show that: after step 13 during iteration i, Ki = ; (and hence, atthe end of iteration i, Ki = ;). To do so, it su�ces to show that nothing is added toKi during steps 2-11.3logn is assumed throughout to be of base 2. 22

Let Ytd 2 Ki+1 at the start of iteration i. Since n � 16, then i > dn=2e, so,the second condition of step 4 must be checked for Ytd. Let X � Ytd of size n � i(=d�logne+1). Since n�d�logne > jXj > d�logne (because n � 16), then, by assumption,X is not a minimal key.If X is a key, then 9Ybu 2 K at the start of iteration i, such that: Ybu (X.Therefore, step 4 will fail for X. Thus, no subset of Ytd will be added to Ki duringiteration i.Assume X is not a key. By assumption, it follows that 8Z � X of size i, Z is nota key. It follows that: for all X̂ � R of size � i� jXj, X̂ is a subset of some Z � X ofsize i (which is not a key). Therefore, for all X̂ � R of size � i� jXj, X̂ is not a key.We know that:i� jXj = i� d�logne � 1 (since jXj = d�logne+ 1)= n� 2d�logne � 2 (since i = n� d�logne � 1)� (n� 2)=3 (since d�logne < (n� 2)=3)� d�logne (since n � 16):It follows that: for all X̂ � R of size � d�logne, X̂ is not a key. Therefore, byoriginal assumption regarding the size of the minimal keys, it follows that there are nokeys of size � i. Hence, no subset of Ytd will be added to Ki during steps 2-11.We conclude that 8Ytd 2 Ki+1, no subset of Ytd is added to Ki during steps 2-11.To complete the proof we need show that: at the end of iteration i, NKn�i = ;.However, this follows from the fact (shown earlier) that at step 14 during iteration i,Ki = ;.QEDThe �rst main theorem can now be proved. This theorem describes a sub-class ofinputs on which the hybrid algorithm with communication solves Mannila's problem.Theorem 5 Given � 2 (0; 1=2) and R a relation schema (of size n) and r an instanceof R (of size m) such that all minimal keys of R with respect to r are of size � d�logne,or of size � n�d�logne. The running time of the hybrid algorithm with communicationis at most: O(n6jKjmlogm+ n7mlogm+ njKjlog(jKj) + njKj2).Proof: Let n� i � i � dn=2e. Consider the amount of time required by the algorithmduring iteration i (without merging). There are two cases to consider.1. Case: i � n � d�logne � 1. A Naive analysis will yield that steps 3-13 requiretime:O(jKi+1j� nn� i�jKj(i+ 1)mlog(m) + jKi+1jlog(jKi+1j) + jKijlog(jKij)):23

The � nn�i�jKj term comes from the communication overhead in step 4. SinceKi+1 � � nn�i�, then steps 2-13 require time at most:O(� nn� i�2jKj(i+ 1)mlog(m)):Since i � n � d�logne � 1, then an application of Stirling's approximation willyield an upper-bound of O(n5jKjmlogm):A naive analysis will yield that steps 14-26 require timeO(jNKn�i�1jjKij(i+1)[mlogm+(i+1)mlog(m)]+jNKn�i jlog(jNKn�ij)+jKjlog(jKj)):Employing bounds in an analogous fashion to that above an upper-bound yieldsan upper-bound of O(n6mlogm+ jKjlog(jKj)):We conclude that the algorithm requires time O(n5jKjmlogm + n6mlogm +jKjlog(jKj)).2. Case: i < n � d�logne � 1. By lemma 7 (for su�ciently large n), at the startof iteration i, Ki+1 = ; and NKn�i�1 = f;g. It follows that steps 3-13 requiretime at most O(1) and after step 13 during iteration i, Ki = ;. Therefore, steps14-24, require time at most O(1). Since NKn�i = f;g (by lemma 7), then step25 requires O(1) time. Step 26 will require time O(jKjlog(jKj)).We conclude that the algorithm requires time O(jKjlog(jKj)) during iteration i.Combining the cases and summing over all iteration, we have a running time onsteps 1-27 (e.g. everything except merging) ofO(n6jKjmlogm+ n7mlogm+ njKjlog(jKj))A naive upper-bound on the time required for merging is:O(njKj2):Therefore, the algorithm requires a total running time of at most:O(n6jKjmlogm+ n7mlogm+ njKjlog(jKj) + njKj2):QED 24

Theorems 4 and 5 imply that, on the following class of inputs, C1, the hybrid algo-rithm with communication solves Mannila's problem but the hybrid algorithm withoutcommunication exponentially fails. C1 is the class of all relation schema, instance pairs(R; r) (of sizes n, m, respectively) where there exists � 2 (0; 1=2) and:� there exists only a polynomial number of minimal keys in n� all minimal keys of R with respect to r are of size � d�logne, or of size � n �d�logne.C1 provides an answer to question 1. Take note that with R = fA1; : : : ; Ang, both(R; rtd) and (R; rbu) are in C1.2.4.2 Lower-bound on the Running Time with CommunicationTo answer question 2., we develop a rough lower-bound on the running time of thehybrid algorithm with communication. This bound implies that, for a reasonablylarge class of inputs, the algorithm requires at least exponential time in n. Hence,for instances in this class with only a polynomial number of minimal keys in n, thealgorithm fails exponentially to solve Mannila's problem. However, on these inputsthe hybrid without communication also fails exponentially. So, the communicationoverhead is not to blame for the exponential failure in the hybrid with communicationin this class. Nonetheless, the communication does not prevent exponential failure,either.Assume there exists a minimal key, �, of size bigger than one. The next lemma willshow that the communication does not allow any supersets of � to be pruned from Kiuntil iteration n� j�j � 1. This is essentially due to the fact that K will not contain �until iteration n� j�j. As a result step 4 will pass for supersets Ytd of � since X canbe chosen as a subset of �.Lemma 8 Given R a relation schema (of size n) and r an instance of R (of size m)such that, there exists a minimal key � of size > 1, 8n� 1 � i � maxfn� j�j; dn=2eg,at the start of iteration i of the hybrid algorithm with communication, Si+1� =def fX �RjjXj = i+ 1 and � � Xg � Ki+1.Proof: By induction on i.� Base Case (i = n� 1): Follows immediately from the initialization conditions.� Inductive Case: Let n�1 � i > maxfn�j�j; dn=2eg: Assume that at the startof iteration i, Si+1� � Ki+1. Consider now the situation at the start of iterationi� 1.Let Z 2 Si�. By de�nition, jZj = i and � � Z (so, Z is a key). Since n� 1 � i >n� j�j, then 1 � n� i < j�j, so, there exists X (� of size n� i � 1.25

Let Ytd be a superset of Z of size i+1 (so � � Ytd). By de�nition, Ytd 2 Si+1� . Byinduction assumption it follows that at the start of the ith iteration, Ytd 2 Ki+1.So at some point during the ith iteration, step 4 will be reached with Ytd as above.Since X is of size n � i and X (� � Ytd, then X applies to step 4. Supposethere exists Ybu 2 K such that Ybu � X, then Ybu (�. Since Ybu 2 K, then Ybuis a key, so, � is not a minimal key. This contradicts our original assumption, so,for all Ybu 2 K;Ybu * X. Step 4 will thus pass.Step 6 will be reached at some point with Ytd as above andXtd = Z (since Z � Ytdand jZj = i). Since Z is a key, then step 6 will pass, so, Z will be added to Ki.Therefore, Z 2 Ki at the start of iteration i � 1. We conclude that at the startof iteration i� 1, Si� � Ki.QEDLemma 8 will give a lower-bound on the size of Ki and so a rough lower-bound onthe running time as the next lemma shows.Lemma 9 If there exists a minimal key of size, ` > 1, then the hybrid algorithm withcommunication requires a running time of at least (where �xy� is assumed to be zero forx < y):
(Pn�1i=maxfn�`;dn=2eg � n�`n�i�1�):Proof: Assume there exists, �, a minimal key of size `. By de�nition, 8n � 1 �i � maxfn� `; dn=2eg; jSi+1� j = � n�`i+1�`� = � n�`n�i�1�. Hence from lemma 8, at the startof iteration i, jKi+1j � � n�`n�i�1�. Step 3, during iteration i, will need to look at at least� n�`n�i�1� Ytd sets. Hence, at iteration i the algorithm will require
(� n�`n�i�1�) time.As a result the algorithm will require time at least:
(Pn�1i=maxfn�`;dn=2eg � n�`n�i�1�).QEDFinally, we can prove our main theorem. This theorem speci�es a reasonably largeclass of relation instances on which the algorithm requires at least exponential time inn.Theorem 6 Let � 2 (0; 1=2). Given relation schema, R (of size n) and r a relationinstance of R (of size m) such that R has a minimal key of size b�nc with respect to r,then on R; r the hybrid algorithm with communication requires at least time
(2b�nc�1).Proof: Since R has a minimal key of size bigger than one (for su�ciently large n)with respect to r where n�b�nc � dn=2e, then by lemma 9, it follows that on R; r the26

algorithm requires time at least:
(n�1Xi=n�b�nc�n� b�ncn� i� 1�):Simplifying the sum a bit we get:
(b�nc�1Xj=0 �n� b�ncj �):Since n�b�nc � b�nc�1, then �n�b�ncj � � �b�nc�1j �. Therefore, we get a lower-boundon the running time of:
(b�nc�1Xj=0 �b�nc � 1j �) =
(2b�nc�1):QEDThis theorem implies that the following class of inputs, C2, cause the hybrid al-gorithm with communication to exponentially fail to solve Mannila's problem. C2 isthe class of relation schema, instance pairs (R; r) (of sizes n, m, respectively) where9� 2 (0; 1=2) and:� R has a minimal key with respect to r of size b�nc� bn� �nc � dn=2e.C2 provides as answer to question 2..2.4.3 Too Much Communication Overhead?To answer question 3., we �rst compute the running time of the hybrid with commu-nication algorithm with respect to the hybrid without communication algorithm. Forn� 1 � i � dn=2e, let CommOverTDi denote the worst case running time of step 4 ofiteration i of the hybrid with communication algorithm. Let CommOverBUi denotethe worst case running time of step 15 of iteration i of the hybrid with communicationalgorithm. These expressions represent the communication overhead.Inspection of the hybrid with and without communication algorithms shows that therunning time (pre-merging) of the hybrid with communication algorithm at iteration iis at most a factor of CommOverBUiCommOverTDi more than the hybrid withoutcommunication algorithm. A naive analysis shows that CommOverBUi isO(jKij):27

Determining a reasonable upper-bound on CommOverBUi is more challenging. Todo so, we show that for any Ytd 2 Ki+1, all subsets of Ytd of size n � i need not beexamined. The close relation between NKn�i�1 and K̂i+1 allows a more reasonableapproach. The following lemma makes this approach more clear.Lemma 10 For n� 1 > i � dn=2e, at the end of iteration, i+1, (pre-merging) of thehybrid with communication algorithm, 8Ytd 2 Ki+1:9X � Ytd of size n� i s.t. 8Ybu 2 K;Ybu * X if and only if 9X � Ytd of size n� is.t. 8X̂ � X of size n� i� 1, X̂ 2 NKn�i�1.Proof: Straight-forward and omitted.QEDBased on this lemma, the following algorithm can be used to check the conditionalof step 4 at iteration i of the hybrid with communication algorithm on Ytd.1 for Ybu 2 NKn�i�12 for X � Ybu of size n� i3 if 8X̂ � X of size n� i� 1, X̂ 2 NKn�i�1, then4 return true5 endfor6 endfor7 return falseTherefore, A naive analysis shows that CommOverTDi isO(jNKn�i�1j2(n� i)2):We have that the running time (pre-merging) of the hybrid with communicationalgorithm at iteration i is at most a factor of jKijjjNKn�i�1j2(n � i)2 more than thehybrid without communication algorithm. Since the hybrid without communicationalgorithm must look at Ki and NKn�i�1 during iteration i anyway, then running timeof the hybrid with communication is within a power of �ve of the running time of thehybrid without communication. In particular, there does not exists any instances onwhich the hybrid with communication fails exponentially to solve Mannila's problembut the hybrid without communication does not.We conclude that the communication overhead is not infeasible with respect to thehybrid algorithm without communication.
28

2.4.4 Communication ConclusionsProviding communication between the top-down and bottom-up algorithms is a di�-cult problem. The hybrid with communication attempts to address this problem. In ane�ort to gauge the e�ectiveness of this algorithm three questions were put forth. The�rst two questions were designed to point out classes of inputs in which the commu-nication works quite well and where the communication fails to work well, both withregard to Mannila's problem. The third question was designed to point out the size ofthe communication overhead with respect to the running time of the hybrid algorithmwithout communication.A class of inputs, C1, provides an answer to question 1. This class, intuitively,includes all inputs which have only minimal keys which are very small (roughly log(n)in size) or (inclusive) very large (roughly n� log(n) in size). This result indicates thatsome success is achieved. Namely, the addition of communication yields a solution toMannila's problem on a fairly wide class of input instances.A class of inputs, C2, provides an answer to question 2. This class points out amajor weakness in the hybrid algorithm with communication. On instances with aminimal key in the \middle" portion of the power-set lattice of R, the algorithm mustdo an exponential amount of work in n. However, the communication overhead isnot to blame, because the hybrid without communication performs nearly as badly.Nonetheless, the communication does not prevent exponential failure, either. In thisrespect the communication added is too weak.An answer to question 3 is provided as follows. The running time (pre-merging)of the hybrid with communication algorithm at iteration i is at most a factor ofjKijjjNKn�i�1j2(n�i)2 more than the hybrid without communication algorithm. There-fore, the running time of the hybrid with communication is within a power of �ve ofthe running time of the hybrid without communication. In particular, there does notexist any inputs on which the hybrid with communication fails exponentially to solveMannila's problem but the hybrid without communication does not.A much more interesting (and di�cult) result to obtain would be the tradeo�between the communication overhead and the savings gained through pruning. Forthis result a �ner analysis of the communication overhead is needed. Getting at thistradeo� analytically, is a di�cult problem. One which we shall leave as future work.In general we believe that the successes achieved though communication are note-worthy. The idea of developing a hybrid level-wise approach to key-�nding has itsmerits. In order for this approach to be worthwhile, some assurance is needed thatthe merits will move us signi�cantly closer to a solution to Mannila's problem. In thisregard, a much better understanding of the tradeo� between the communication over-head and the savings gained through pruning is needed. At this point, our intuitionof this tradeo� is primitive. A more detailed analysis would be helpful in clarifying29

this intuition. However, such an analysis is likely to be quite di�cult. In our opinion,it seems unlikely that developing a deeper understanding of this tradeo� will move ussigni�cantly closer without substantial e�ort and innovation.3 Empirical Results3.1 Levelwise A-prioriThe algorithm in �gure 1 (x2.1) was implemented for the case of Bernoulli databases.The code can be found in the following �le:/u/crood/courses/DataMining/imp/ver4/main.cA randomized Bernoulli database (having no repeated tuples) is generated of the appro-priate width and length, and then the top-down naieve key-�nding function is applied.Table 1 shows the results obtained. Note that we use an e�cient key-checking algorithmbased on a version of quicksort. The algorithm is given in �gure 5.Input: X = fA1; :::; Akg, a set of attributes;r = ft1; :::; tmg a database instanceOutput: TRUE if X is a key for r, FALSE otherwiseif (jrj > 2jXj) return FALSE;QuickSort(r, X); // Sort r on attributes in Xi = 1;j = 2;while (i <= m� 1 and j <= m)if ti = tj return FALSE; // duplicates will be next-to-nextreturn TRUE;Figure 5: Key-checking predicate: determines if the set X is a key according to the databaseinstance r.Table 1 shows results for the worst, average, and best cases of the top-down naievealgorithm, respectively. Note that the worst case occurs when there is only one tuple inthe database, since in this case every subset of size 1 is a minimal key. The exponentialbehavior of the algorithm can be clearly seen in the right hand column (total numberof subsets generated during the run). The running times (not shown) for the worst caseseem to be O(4n). The running time is higher than expected due to several reasons,including: 30

� We must maintain the Ki subsets that contain the levelwise frontier sets. Thisrequires quite a bit of overhead.� Our method for generating the next level of subset candidates generates repeats.A method for generating levelwise successor subsets from Ki without any repeatswas not found; however, a depth-�rst method for generating subsets withoutrepeats is easy to code (x3.2).Note that the average case (when m = 2dn=4e, so the expected minimal key sizeis n=2 as in [7]) is exponential as well. The running times in this case seem to moreclosely follow a O(2n) curve. The best case occurs when the minimal keys are large;this is most likely to occur when m > 2dn=2e (as discussed in [7]). In the best case, therunning time is O(nmlog(m)).The other levelwise A-priori key-�nding algorithms were not implemented. Thereare two main reasons for this:1. It was determined early on that keeping the levelwise frontier sets around forthe lifetime of the key-�nding function was even more infeasible than the O(2n)running time. Maintaining the Ki in the top-down naieve a-priori is di�cult andhighly space-consuming.4The space complexity problem is exacerbated by the fact that we have discoveredno good algorithm to generate the next level of (1 element larger) subsets givena particular Ki in a levelwise manner without generating duplicate subsets alongthe way.2. The second reason for not continuing with the implementation of the levelwisea-priori algorithms is that we have discovered an interesting alternate approach:that of partition trees. Partition trees are discussed in appendix A. These data-structures arise when one views the key-�nding search space not as the power-setlattice of R, but as a partition tree, in which the various ways of partitioning therelation instance r on the attributes in R are reected.In summary, the space complexity of the levelwise a-priori algorithms is a majorproblem in continuing any implementation. In the next section (x3.2), we indicate howdepth-�rst versions of the top-down and bottom-up a-priori algorithms could be morefeasible (in particular with regard to the space issue), and illustrate a simple, \switchhybrid" algorithm based on the expected size of minimal keys.4There is also a mismatch in computing speed and memory resources: it is feasible, for example, to require109 processor instructions routinely in an algorithm, but it is not feasible to require 109 bytes of storagespace routinely. 31

m n jKj average key number oflength subsets generated10 10 1 511111 11 1 1125412 12 1 2456513 13 1 5323614 14 1 1146751 15 15 1 24574616 16 1 52427317 17 1 111409618 18 1 235927919 19 1 498071820 20 110 41 5 286511 30 4 452412 113 4 1779213 144 6 2203314 456 6 652862dn=4e 15 491 6 13736116 972 6 34725317 2060 8 49417418 1800 8 70839519 6181 8 285258520 8095 8 663134610 1 9 2011 1 11 1212 1 12 1313 1 13 1414 3 13 542dn=2e+1 15 1 15 1616 1 15 3217 1 16 3418 1 17 3619 1 19 2020 3 19 78Table 1: Results of the top-down, naieve A-priori algorithm on randomized BernoulliDatabases. 32

3.2 Depth First A-prioriIn this section, we present depth-�rst versions of the top-down and bottom-up a-priorisearch algorithms. Although their asymptotic running times are similar to those of thelevelwise algorithms, depth-�rst search through the power-set lattice of subsets of R ismore space e�cient and allows us to solve the \subset duplication" problem. Further-more, the depth-�rst versions of the a-priori algorithms will provide both motivationfor and contrast to the partition trees introduced in appendix A.Given R = fA1; :::; Ang, we introduce an ordering on the attributes, e.g. A1 < ::: <An. This will allow us to generate all subsets of R without repeats. The depth-�rst,bottom-up a-priori algorithm is given in �gure 6.Function DFBU(Att, X)Input: Att, the current attribute;X, the current subset to be checked;Global variables: R = fA1; :::; Ang a relation schema;r = ft1; :::; tmg an instance of ROutput: K, the set of minimal keys of rif (Key(X, r)) insert X into result K;else for Aj > Att doDFBU(Aj, X [fAjg);Figure 6: Depth-�rst, bottom-up, a-priori key �nding.The algorithm in �gure 6 builds subsets of R recursively, one attribute at a time.The top-level call (in the main program function) is \DFBU(0, ;)" where 0 is a specialattribute that is less than all other attributes (in our ordering), i.e. 0 < A1 < A2 <::: < An, to start the recursion o�. The bottom-up \a-priori" principle is obscured bythe simplicity of the algorithm: note that in the base case of the recursion (where thecurrent attribute set X is a key), we do not make a recursive call, hence the subsetslarger than that X will not be generated. This is in accordance with the \a-priori"principle that if X is a key then no proper superset of X can be a minimal key.The depth-�rst, top-down, a-priori algorithm is similar; it is given in �gure 7.The top-down version looks very similar to the bottom-up version, but there aretwo crucial di�erences. The top level call for the top-down version is \DFTD(0, R)"(versus the top level call for the bottom-up version which started with X = ;). Thesecond crucial di�erence is that in the top-down version we are removing attributesone-by-one recursively, as opposed to adding them in. The top-down a-priori principleis not obvious in the simple algorithm in �gure 7, but is encapsulated in the \found"boolean value. If \found" is true at the end of the for loop, that means every subset33

Function DFTD(Att, X)Input: Att, the current attribute;X, the current subset to be checked;Global variables: R = fA1; :::; Ang a relation schema;r = ft1; :::; tmg an instance of ROutput: K, the set of minimal keys of rfound = TRUE;for Aj > Att such that Key(X � fAjg, r) dofound = FALSE;DFTD(Aj, X � fAjg);if (found) insert X into result K;Figure 7: Depth-�rst, bottom-up, a-priori key �nding.of size one less than X failed to be a key. In this case, X is the minimal key sought.This is in accordance with the top-down a-priori principle, namely that a subset X isa minimal key only if no proper subset of it is a key.A simple hybrid algorithm, \SwitchHybrid" is given in �gure 8. SwitchHybriduses the results of [7] to predict the average size of minimal keys. If these keys areexpected to be larger than n=2 in size (corresponding to 2dn=2e � m � 2n), the top-down algorithm is called. If the keys are expected to be small (less than n=2 in size),the bottom-up algorithm is called.Function SimpleHybrid()Global variables: R = fA1; :::; Ang a relation schema;r = ft1; :::; tmg an instance of ROutput: K, the set of minimal keys of rif m > 2dn=2eDFTD(0, R);elseDFBU(0, ;);Figure 8: Simple \switch" hybrid based on the expected minimal key size.The function SwitchHybrid is simple, and will likely perform well in cases where the34

expected key size is either small or large { recall the class C1, page 25. SimpleHybridwill perform well (polynomially) on most of the Bernoulli members of this class. Whenthe expected minimal key size is close to n=2, the algorithm's performance will beexponential in n. Recall the class C2 (page 27); SimpleHybrid will perform poorly onthe Bernoulli members of this class. In fact, SwitchHybrid's performance in the averagecase should meet or exceed that of the levelwise hybrid with communication (in the caseof Bernoulli databases). SwitchHybrid serves as a simpler and more feasible version ofthe hybrid a-priori algorithms. It would be interesting to code a version, for use as abenchmark for comparing the partition tree algorithms of appendix A.Note that the SwitchHybrid only works in the case of Bernoulli databases. In thegeneral case, it is less clear what the expected size of minimal keys is. Furthermore, itis unclear how deeper communication between the depth-�rst versions of the top-downand bottom-up algorithms would be achieved.4 Conclusions4.1 Problems with the A-Priori ApproachThere are several problems with the a-priori approach we have been pursuing in thebulk of this paper, including:1. Implementation issues with the levelwise approach:(a) The space-complexity is prohibitive.(b) The problem of generating repeated subsets is intrinsic and di�cult to over-come.Both these issues can be overcome in the Bernoulli case with a depth-�rst imple-mentation of the bottom-up and top-down a-priori algorithms, however for thegeneral case it is less clear what a depth-�rst version of the communication hybridwould entail.2. Communication issues with the hybrid algorithm: as discussed in x2.4.1, enablingthe top-down and bottom-up levelwise a-priori algorithms to communication in-formation is tricky. Due to space problems mentioned earlier, this approach isnot of practical interest. However, there does seem to be theoretical motivationsfor further study. In particular, the development of a deeper understanding of thetradeo� between the communication overhead and savings gained though pruningis interesting. On the other hand, such a development is likely to be a very di�-cult problem. It is unclear whether the potential discoveries would be of enoughinterest to justify the e�ort. 35

3. One issue not previously discussed is the issue of informed versus uninformedsearch. The a-priori algorithms are essentially uninformed, in the sense that theydo not take advantage of the actual database instance r in deciding which subsetsof R to generate. A more informed search is described in appendix A, wherethe database instance is used in a more essential manner to actually generatepotential key candidates.None of the a-priori algorithms seem to solve Mannila's problem in the general case.4.2 Further DirectionsAs indicated in the previous section, several problems with the a-priori approach to key�nding motivated a shift to more informed searching algorithms of the type presentedin appendix A. The partition tree algorithms are the subject of ongoing thought andresearch. We see three avenues of further research on Mannila's problem:1. In some respects, Mannila's key-�nding problem seems poorly motivated. Itwould be interesting to �nd some further areas where a solution to Mannila'sproblem could apply in an integral way.2. The level-wise hybrid with communication algorithm has some interesting theo-retical issues. Namely, developing a deeper understanding of the tradeo� betweenthe communication overhead and the savings gained through pruning. However,the e�ort required is likely to be quite large. We shall not pursue this avenuefurther. Mainly because the advances made with the partitioning algorithms ofappendix A seem a more promising direction of research.3. The partition tree algorithms (appendix A) seem to be a reasonably e�cient so-lution to Mannila's problem in the case of Bernoulli databases. Further study isrequired to determine whether the partition tree algorithms actually solve Man-nila's problem for this class of databases.4. Mannila's key-�nding problem for general databases has been linked to a problemnot yet known to be in P but also not yet known to be NP-complete. It seemsthat the general case is signi�cantly harder than the Bernoulli case, since no suchlinkage exists for the case of Bernoulli databases. Another avenue of further studywould be to investigate the di�erences between the general and Bernoulli casesof Mannila's problem. Such a study would likely be closely tied with 2 (above).In summary, studying the a-priori algorithms has been fruitful in two ways: �rst,it has given us some insight into Mannila's key-�nding problems and the di�cultieswith the general case, and second it has led to alternate algorithms which may be verye�cient in the Bernoulli case. We look forward to pursuing some (or all) of the avenueslisted above. 36

A Partition TreesA.1 Basic Partition Tree AlgorithmWhat follows is a brief introduction to our work on partition trees, or P-trees. Theidea behind the P-tree algorithm is to use the database instance r in a more integralfashion to guide the search through the powerset lattice. At each stage in the algorithm,we partition the database instance (using the same partitioning idea as in quicksort)according to an attribute. Note that the P-tree algorithms are specialized to the caseof Bernoulli databases, and will not work in the general case in their current form.Note that we also assume there are no repeated tuples in the database instance r.We need to introduce some notation. Given a set of tuples of r, s = ft1; :::; tkg � r,the di�erence set of s, di�erSet(s) is the set of attributes that distinguish at least onepair of tuples. That is:di�erSet(s) = fAj9t1; t2 2 s such that t1[A] 6= t2[A]gNote that attributes not in di�erSet(s) cannot contribute to minimal keys for s.We de�ne two operations on sets of keys. Let K1 and K2 be sets of keys (i.e. setsof sets of attributes) and de�ne:K1 �K2 = fXjX 2 K1 [K2 and 6 9Y 2 K1 [K2 such that Y (XgK1
K2 = fX [Y jX 2 K1 and Y 2 K2 and6 9X 0 2 K1; Y 0 2 K2 such that X 0 [Y 0 (X [Y gThe operation \�" is essentially a minimalizing union, returning the keys in K1 andK2 that do not properly contain any other key in the union. The operation \
" is alsominimalizing. It is an \inner union", in that the union takes place on the keys fromK1 and K2 (as opposed to K1 and K2 themselves).Given these operations, the basic P-tree algorithm is given in �gure 9. Note thatthe search pattern is similar to the depth-�rst, bottom-up a-priori algorithm presentedin x3.2. The di�erence here is that we are partitioning the database instance at eachstage, using the database instance to constrain the search.Note that in the average case of a randomized Bernoulli database, at each stage inthe recursive call the database will partition pretty much evenly into a left and righthalf. Thus the height of the P-tree in this case is bounded by log2(m). The numberof nodes in the tree may still be exponential. The following section indicates someoptimizations and observations that are aimed at reducing (or further characterizing)the branching factor in P-trees. 37

Function PTREE(Att; s)Input: Att, the current attribute considereds, a database partition (s � r)Global variables: R = fA1; :::; Ang a relation schema;r = ft1; :::; tmg an instance of ROutput: K, the set of minimal keys of rBase Cases:if (jsj > 2n�Att) // not enough attributes leftreturn ;;if (s = ft1; t2g)return di�erSet(s);if (s = ft1g)return [jfAjg where Aj > AttRecursive Case:res = ;;for Aj > Att such that Aj 2 di�erSet(s) doleft keys = PTREE(Aj , �Aj=1(s));right keys = PTREE(Aj, �Aj=0(s));res = res � (left keys
 right keys)Figure 9: Basic P-tree algorithmA.2 OptimizationsA.2.1 Communication between Left and Right PartitionsIn the unoptimized P-tree algorithm above, the left and right partitions of s are bothfully searched. One optimization is to use the keys returned from the left partitionto guide the search for keys in the right partition. In particular, if all keys returnedfrom each left partition work for each corresponding right partition, then the algorithmnever has to branch (and thus is linear in n;m and jKj).In general, the keys returned from the left partition may fail to be keys for theright partition. However, since the keys must work for the whole database, we do notneed to search for all the keys of the right partition, we only need to augment the keysfound in the left partition to be keys for the right partition. A bad case occurs wherekeys from the left partition are mid-size (and there are a lot of them), but there isonly one large key in the right partition. In this case, a lot of e�ort has been spent38

in the left partition needlessly. One direction for further study is thus to determine abetter heuristic for choosing one of the left and right partitions (e.g. the largest one),and study the e�ect on the P-tree branching factor of using the keys from the chosenpartition to guide the search in the other partition.A.2.2 Sampling Partitions for Maximally Overlapping TuplesAnother key optimization can be made if we relax Manilla's restriction that the key-�nding algorithm must be sub-quadratic in jrj = m. If we allow O(m2) algorithms, wecan incorporate sampling into each node of the P-tree. In particular, given a databasepartition s = ft1; :::; tkg, de�nemaxOverlap(s) =fX � Rj9ti; tj 2 s such that ti[X] = tj [X]and for no other pair tu; tv is it the case thattu[Y] = tv[Y] and jXj < jY jgThus, maxOverlap(s) contains the subsets of R which some pair of tuples agree onand which are maximal (no pair of tuples agree on a larger set of attributes). Note(1) maxOverlap(s) may contain more than one element, and (2) maxOverlap(s) canbe computed in time O(jsj2).The idea is then to pick an element, X, of maxOverlap(s) at each stage of the P-treealgorithm and use X to rule out attributes for branching. Note that if an attribute Ais in X, then there is some pair A will not partition. Thus we don't bother branchingon A. However, A may be useful later, further down in the P-tree, so we must \keepit around" for possible later branching. The solution is to allow the attribute ordering0 < A1 < ::: < An to change at each P-tree node. Any attributes that were alreadybranched on (earlier in the P-tree) must remain in that ordering, but \below" thecurrent node (i.e. attributes greater than the current attribute) we are now allowedto modify the ordering to branch only on those attributes in X 2 maxOverlap(s) (butkeep the other attributes beneath us if we need to branch on them later).Note the following:Lemma: If jsj > 3, then maxOverlap(s) contains elements of size n=2.To see this, note that in a Bernoulli database we can only choose \0" or \1" for eachattribute value. Two tuples can have 0 overlap between them, but as soon as a thirdis included it must overlap on at least 1/2 the attributes. Thus, using the maxOverlapsets to guide the branching will result in 1/2 the branching of a normal P-tree at eachlevel.This discussion has been regretably brief, but we look forward to investigatingP-trees in more depth and detail this summer.39

References[1] Agrawal, R., T. Imielinski and A. Swami. \Mining Association rules between setsof items in large databases. SIGMOD 93, pp. 207-216.[2] Agrawal, R., and R. Srikant. \Fast algorithms for mining association rules." VLDB94, pp. 487-499.[3] Albrecht M., M. Altus, B. Buchholz, A. D�usterh�oft, K. Schewe, and B. Thalheim.\Die Intelligente Tool Box zum Datenbankenwurf RAD." Datenbank-Rundbrief,13, F.G. 2.5 der GI, Kassel (1994).[4] Beeri, Dowd, Fagin, Statman \On the Structure of Armstrong Relations for Func-tional Dependencies", Journal of the ACM, Vol 31., No. 1, Jan 1984, 30-46[5] Brualdi \Introductory Combinatorics", second edition, published by North Hol-land, 1992[6] Demetrovics, J. \On the Number of Candidate Keys" Information ProcessingLetters 7, 6, Oct. 1978, 266-269[7] Demetrovics, G.O.H. Katona, D. Miklos, O. Seleznjev, and B. Thalheim. \TheAverage Length of Keys and Functional Dependencies in (Random) Databases."Lecture notes in Computer Science, vol 893, 1995.[8] Personal communication with Ed Robertson, April 1999.[9] Klemettinen, M., H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo.\Finding interesting rules from large sets of discovered association rules." CIKM94, pp. 401-408.[10] Mannila, Heikki and Kari-Jouko R�aih�a. \Algorithms for Inferring Functional De-pendencies from Relations." In Data and Knowledge Engineering 12 (1994), pp.83-99.[11] Mannila, Heikki. \Methods and Problems in Data Mining.", Proceedings of In-ternational Conference on Database Theory, January 1997, Afrati, Kolaitis (ed.),Springer-Verlag[12] Sperner, E. Eine Satz uber Untermensen einer endlichen Menge Math. Zeit 27,1928, 544-548
40

