Finding Minimal Keys in a Relation Instance

C. Giannella and C.M. Wyss
May 14, 1999

Abstract

Mannila [11] cites as an open problem in Data Mining the problem of finding all
minimal keys in a relation instance using only time that is polynomial in the number
of relation attributes and number of minimal keys and sub-quadratic in the size of the
relation instance. This paper investigates the efficacy of an “A Priori”-type approach to
the problem, applied simultaneously in a level-wise top-down and bottom-up manner.

1 Introduction

1.1 Background and Motivation

The problem of finding all minimal keys given a relation schema, R, and a set of
functional dependencies, F', has been widely studied in the literature. However, the
problem of finding all minimal keys given a particular relation instance (without re-
course to a pre-existing set of functional dependencies) has barely been touched upon.
Yet Mannila cites the latter key-finding problem (given only a relation instance) as an
important open problem in data mining (see [11]).

It is hard, at first glance, to think of any important data mining applications of
finding minimal keys given a relation instance. In data mining, we are most often
interested in functional dependencies or association rules in large bodies of data, not
keys. What would be the advantage of having an efficient algorithm to find all minimal
keys in a large body of existing data?

One possible use of the minimal keys is to scale down the storage requirements
of the data, since the tuples could then be represented via a (presumably smaller)
set of attribute values. In fact, one wonders if some data mining could profitably be
carried out on key-set attributes (instead of having to include all attribute values in
the search).

Another application might be in terms of index creation. If one could deduce a set
of minimal keys that sufficiently overlapped the attribute space, then queries requiring
certain attributes be repeatedly accessed or compared could profit. For example, some
platforms allow one to specify which indices to create to optimize queries. If one knew
of minimal keys, one could then create appropriate indices.'

Although it is not immediately clear if these uses would justify the search for an
efficient minimal key-finding algorithm, in the rest of the paper we move away from
this issue, in favor of an investigation of the problem in its own right.

1.2 Definitions and Problem Statement

In the rest of the paper we assume the following definitions. Let R = {4,,... , A, } be
a relation schema and r an instance of R. A key of R with respect toris) # X C R
such that: for all tuples t1,ty € v, X[t1] = X[t2] = t1 = to. A minimal key of R with
respect to 7 is X C R such that: X is a key of R with respect to r and for all Y C X,
Y is not a key of R with respect to r. Often we will abbreviate the statement “X is
a (minimal) key of R with respect to ” to “X is a (minimal) key” when R and r are
clear from the context.

The problem indicated by Mannila ([11]) is the following (which we call the key
finding problem):

Given R (of size n) and r of size m, does there exist an algorithm for finding the set K
of all minimal keys of r, using time polynomial in max{n,|K|} and sub-quadratic
in m.

Note that an algorithm that solves the problem may still be infeasible in prac-
tise if |K| is exponential. A well-known result of Sperner [12] shows that the largest
incomparable set, J C P(R) (for any X, Y € JJ X CY = X =Y), is the set
{X € P(R)||X| = |[n/2]}. Demetrovics [6] proved that there is an instance r of R
for which the set of minimal keys is exactly J. Therefore, a sharp bound for the

()

A simple argument can be used to generalize the result of Sperner mentioned pre-
viously. Namely to show that the largest incomparable set J; C P(R) of size at most
1 <i<mn (for any X € J;,|X| < i) is the set {X € P(R)||X| = min{i, [n/2]|}}. Fur-
ther, Beeri, et. al. [4] provide a generalization of the result of Demetrovics mentioned
previously. They show that for any non-empty incomparable set, J, over a finite set R

number of minimal keys is given by:

1This suggestion regarding the use of minimal key sets was provided by Dennis Groth.

there is a relation instance, r, over R which has minimal keys precisely J. Therefore,
a sharp bound for the number of minimal keys of size at most 1 <7 < n is given by

(mm{iﬁn/%})'

This result will prove useful in the complexity analysis of the bottom-up algorithm
given later.

1.3 Related NP-Completeness Results

Since we are ultimately interested in determining whether the key finding problem
can be solved, examining related NP-completeness results is a valuable endeavor. The
following two questions are of interest.

1. Does there exist an NP-complete problem which can be solved if the key finding
problem can be solved?

2. If not, does there exists a problem, not known to be NP-complete but also not
know to be solvable in polynomial time, which can be solved if the key finding
problem can be solved?

A problem similar to the key finding problem is known to be NP-complete. Given
a relation schema R, k € N, and a relation instance (e.g. an Armstrong relation
characterizing a set of functional dependencies on R), the problem of determining
whether there is a minimal key of size at most k£ is NP-complete. We call this problem
the k-size key finding problem. It was discovered to be NP-complete by Beeri, et. al.
[4].

The crucial difference between the k-sized key finding problem and the key finding
problem is that if |K| (set of minimal keys) is exponential in n, a solution to the key
finding problem is permitted to take exponential time in n. In this case, a solution
to the key finding problem would not be an efficient solution to the k-sized key find-
ing problem. Therefore, an algorithm for solving the key finding problem does not
necessarily solve the k-sized key finding problem efficiently and so does not provide a
positive answer to question 1.

In order to get an answer to question 1, the k-sized key finding problem must
be restricted to the following problem (which we call the sparse k-sized key finding
problem):

Given R, k € N, r such that |K| is polynomial in maz{|R|,|r|}, is there a minimal
key of size at most k?

If this problem is NP-complete and the key finding problem can be solved, then
a positive answer to question 1 is obtained (e.g. P=NP). To investigate whether the

sparse k-sized key finding problem is NP-complete, we look at the NP-completeness
proof of the k-sized key finding problem given in [4].

Theorem 1 The k-sized key finding problem is NP-complete.

Proof: Given relation schema R, instance r, and k € N; let mz = maz{|R|,|r|}.
Checking whether a subset of R is a key and is of size less than or equal to k& can be
carried out in time O(mxlog(mz)). Hence the problem is in NP.

The remainder of the proof shows that the vertex cover problem is reducible to the
k-sized key finding problem is NP-complete. Recall the vertex cover problem. Given
an undirected graph G = (V, E) and k € N, does there exist a minimal vertex cover of
size at most k7 By minimal we mean that no proper subset is also a vertex cover. The
vertex cover problem is known to be NP-complete.

Given undirected graph G = (V, E) where V = {v;,...v,} and E = {e1,...¢;} a
relation schema R and instance rg is constructed. Rg has attributes V' and r4 has
g + 1 tuples. The first ¢ tuples correspond to the edges in E. The last tuple consists
of all zeros. Tuple ¢; for 1 < i < ¢ has the following form. Let e; = (v,,vp). Let x4
denote the entry in ¢; corresponding to attribute vy. If £ = a or £ = b, then z, = e;;
otherwise, zy = 0.

Consider the following example. Let G = (V = {v1,v9,v3,v4}, E = {e1 = (v1,v2), €2
(vo,v3),e3 = (v3,v4)}). Re and 7 are as seen in the table below. The column labels
correspond to the attributes in R and the rows to the tuples in r¢.

V1 V2 V3 U4
€1 €1 0 0

0 €9 €9 0
0 0 €3 €3
0 0 0 0

The following property holds for all VCv.

Lemma 1 V is a minimal vertez cover of G if and only if V is a minimal key of R¢
with respect to r¢.

Proof: (=:) Assume V is a minimal vertex cover of G. Let ;, t; be tuples in rg where
1<i<j<q+1. Suppose V[t;] = V[t;]. By construction, the only entries in #; and ¢,
which are the same contain 0. Hence V[t;] and V[t;] consist of all zeros. Since V is a
vertex cover of (G, then all edges are touched by V. Therefore, V[tz] cannot consist of
all zeros, which is a contradiction. It follows that Visa key of Rg with respect to rg.

Suppose there exists W C V where W is a key of Rg. Let e; be an edge of
G. Consider tuple #; in rq (1 < i@ < q). If W[t;] = Witgy1] then Wt;] consists

of all zeros. However, t; does not consist of all zeros since 1 < i < ¢g. Therefore,
(R—=W)[ti] # (R—W)[tg41], so, W cannot be a key. This is a contradiction. Assume
that Wt;] # Wltg41]. Since t,4; consists of all zeros, then Wt;] does not. It follows
that edge e; is touched by a vertex in W. W is a vertex cover of G. However, W C V,
so V is not a minimal vertex cover. This contradicts our original assumption. We
conclude that V is a minimal key.

(«:) Assume V is a minimal key of Rg with respect to r. Let e; be an edge in G
(1 < i < q). Consider tuple ¢; of r. Since V is a key and tq+1 consists of all zeros, then
similar reasoning to above shows that V[tz] does not consist of all zeros. Therefore,
edge e; is touched by some vertex in V. V is a vertex cover of G.

Suppose there exists W C V such that W is a vertex cover of G. Let ti,t; be a
tuples in rg where 1 < 7 < i < g+ 1. Since W is a vertex cover, then similar reasoning
to above shows that W[t;] does not consist of all zeros. Since i # J, it follows that:
W t;] # W{t;]. We conclude that W is a key. However, W C V, so, V is not a minimal
key. This contradicts the original assumption. We conclude that V is a minimal vertex
cover of G.

QED Lemma

Now back to the proof of the Theorem. Let £ € N. From the above lemma, it
follows that: there exists a minimal vertex cover of G of size at most £ if and only if
there exists a minimal key of Rg with respect to r¢ of size at most k. Since Rg and
rg can be constructed from G in polynomial time in maz{|V|,|E|}, then the vertex
cover problem reduces to the k-sized key finding problem.

QED Theorem

The important thing to note in this proof, is the lemma proven along the way. This
lemma implies that the set of minimal keys K of R is exactly the set of minimal vertex
covers of G. Hence a similar restriction as above on the vertex cover problem can be
used to answer question 1. Specifically, if the key finding problem can be solved and
the following problem (which we call the sparse vertex cover problem) is NP-complete,
then question 1 can be answered positively (e.g. P=NP).

Given an undirected graph G = (V, E) and k € N, such that the number of minimal
vertex covers of G is polynomial in maz{|V|,|E|}, is there a minimal vertex cover
of size at most k7

To the best of the authors’ knowledge, it is not known whether the sparse vertex
cover problem is NP-complete. So, question 1 remains open. On to question 2. To the
best of the authors’ knowledge, it is also not known whether the sparse vertex cover

problem is solvable in polynomial time. So, question 2 is answered positively.

A final note concerning related NP-completeness results. The key finding problem
places no restrictions on the domain of values over which tuples consist. We see above
that question 2 can be answered positively in this setting and question 1 is open.
However, if the domain is restricted to a finite set of values for all relation schemas and
instances, then the situation changes. Question 2 becomes open as well as question 1.
In particular consider the case where the domain of values is {0,1}. A relation schema
R and an instance r over R in which all tuples of r are made up of entries from {0, 1}
is called a Bernoulli database. Consider the following problem (which we call Bernoulli
key finding problem) which is a special case of the key finding problem.

Given Bernoulli database R (of size n), r of size m, does there exist an algorithm for
finding the set K of all minimal keys of 7, using time polynomial in maz{n, | K|}
and sub-quadratic in m?

Questions 1 and 2 remain open for the Bernoulli key finding problem despite the
fact that there do exist related NP-complete problems. For example, the following
problem is NP-complete:

Given Bernoulli database R, r, and k£ € N, does there exist a key of size at most k7

The proof involves reducing 3-SAT to this problem and is due to Ed Robertson
[8]. A connection to a sparse 3-SAT problem (which would provide a positive answer
to question 2) cannot, however, be made. The reason is that the Bernoulli database
produced by the reduction always has an exponential number of minimal keys.

The fact that question 2 can be answered for the general key finding problem but
not the Bernoulli key finding problem suggests that this special case is considerably
easier to solve.

1.4 Previous Work

The first four algorithms considered in this paper are based on a level-wise “A-priori”
approach similar to that used in mining association rules ([1], [2], and [9]). Man-
nila ([10]) relates the problem of minimal key-finding given a relation instance to the
problem of transversing hypergraphs.

Demetrovics et. al ([7]) present some interesting work concerning the average length
of keys in (random) databases. In particular, given a relation schema R such that
|R| = n, consider a Bernoulli database of size m and a random distributionp : {0,1}" —
{0,1} giving the probability that a particular tuple appears in the database. If it is
the case that 3N, Ny such that

for any particular tuple, ¢ (which surely is the case for any “reasonable” random
database generation) then the minimal keys cluster around 2logs(m) in size. Our
empirical study (using random Bernoulli databases) bears this research out (§3). Al-
brecht et. al ([3], [7]) use this fact in a Monte Carlo method for finding minimal keys,
which essentially looks for keys in the attribute subsets of size 2logs(m) first.

1.5 Overview of this Paper

In the next section, we present four algorithms based on the level-wise A-priori ap-
proach for association rule mining. The first uses a “top-down” strategy to search
through the power-set lattice P(R), the second uses a “bottom-up” strategy.

For both algorithms, the worst case performance is exponential in the number of
minimal keys (although sub-quadratic in |r|) . So they do not have the required time-
complexity of a solution to Mannila’s problem.

The third and forth algorithms combines both techniques in a hybrid search strat-
egy. The third combines the techniques in perhaps the most simple-minded way possi-
ble. The top-down and bottom-up parts run independently of each other and “meet”
in the middle of the power-set lattice. At this point their key sets are merged into
the output minimal key set. The forth algorithm combines the techniques in a more
complicated way. The top-down and bottom-up parts “communicate” with each other
while traversing the lattice. Each using the intermediate results of the other to prune
the search space. All of the four algorithms are proven to correctly find all minimal
keys, however none solve Mannila’s problem in the worst case.

In §3, we report the results of an empirical study of the a-priori-type algorithms.
This study generates (random) Bernoulli databases and answers various questions re-
garding the layout of the keys in these databases and the performance of our algorithms.
In particular, the minimal keys seem to be of the sizes predicted in [7], namely clustered
around 2logs(m) in size in randomized Bernoulli databases. Also, a levelwise approach
is seen to be infeasible from a space complexity point of view. Alternate depth-first
versions of the a-priori algorithms are given.

Finally, we report our conclusions regarding the a-priori approach to Mannila’s
problem, and indicate some directions future research on the problem might take.

2 A Naieve “A-Priori” Approach

The problem involves searching through the power-set lattice of R, P(R). From the
definition of minimal keys, there are two requirements of any subset X € P(R) to be
in the result set, K:

1. X must be a key.

2. X must be minimal (no proper subset of X is also a key).

From these two requirements we can extract the following two principles, which will
lead to dual pruning mechanisms on P(R).

Principle 1. If X € P(R) is not a key, then no Y C X is a key.

Principle 2. If X € P(R) is a minimal key, then no Y O X is a minimal key and no
Y C X is a key.

The idea behind our “A-Priori” approach (both top-down and bottom-up) is that,
at each level, we will use our partial result set and a suitable principle to generate a
frontier set which prunes the potential set of subsets of R that need be examined at
the next level. In essence, the frontier set, F', guarantees that for all minimal keys, X,
at some not-yet-reached level is a subset (top-down) or superset (bottom-up) of some
element in F'. As a result, only the subsets or supersets of F' need be examined at the
next level. This method (in conjunction with the dual pruning principles) is similar in
spirit to the level-wise Apriori framework for mining association rules (see [1], [2] and

[9))-

2.1 Searching Top-down

In this section we consider an algorithm that searches the power-set lattice P(R) top-
down, using principle 1 to prune the search. During iteration n — 1 > ¢ > 1 of the
algorithm, a frontier set, K;, of subsets of R is generated from the frontier set, K; 1,
of the previous iteration, 4 + 1. At the end of iteration i, K; will contain ezactly the
keys of size ¢. Principal 1 allows K; to be generated by only looking at the subsets of
elements in K;1q. By principal 1, any X C R of size i + 1 which is not a key will not
have any keys as subsets. Because K;,; contains exactly the set of keys of size 7 4+ 1
before the end of iteration 4, then X € K; ;. Therefore, any minimal key of size 1 will
be a subset of some element of K;;;. Looking at all the subsets of elements in K;; is
all that is required at iteration i to generate exactly the set of minimal keys of size i.

Since we are interested in finding all minimal keys, we must remove all elements of
K1 which have a subset in K; before going on to iteration ¢ — 1. This is carried out
by marking during iteration ¢ all elements in K;;; which contribute a subset to Kj;.
Hence, during iteration 4, K; is generated and all elements of K;; which have a subset
in K; are marked. After generating K;, before proceeding on to the next iteration, all
marked sets in K;; are removed. The output of the algorithm will be the union of all
K, sets.

Because only K;;1 need be looked at during iteration ¢, K;;; was referred to as the
frontier. The algorithm is presented in figure 1. Most of the notation is clear except,
perhaps | |, which refers to a non-duplicate removing union.

Input: R, a relation schema of size n and r an instance of R
of size m.

Output: K = ||, K;, the set of minimal keys of R with
respect to r.

Ki,...,K, 1:=0and K, := {R}
for i :=n — 1 down to 1 do
for V;; € K;;, do
for X;; C Y4 s.t. | Xyq| =i do
if X4 is a key w.r.t. r then
Ki = Kz Ll{Xtd}
mark Y,
endfor
endfor
10 remove all marked Y;; € K14

11 remove duplicates from K;
12 endfor

O 00~ O O = W N+

Figure 1: Top-Down Algorithm using A-Priori Pruning Approach

During the course of the for loop at line 4, many duplicate X's may be generated.
This is because different Y's may share subsets of size i. The problem of duplicate
removal is put off until step 11 so that all duplicates can be removed at the same time.
As a result the | | operation is used in line 6.

Clearly, at the end of iteration 7, K; contains exactly the keys of size 7 and there
does not exist an element of K;;; which has a subset in K;. These results generalize
into the following invariant which directly yields a correctness proof.

Lemma 2 For all n >4 > 1 the following statements hold at the end of iteration i of
the top-down algorithm:

1. Foralln > j >4 and each Y € Kj, there does not exist Z a key of size > i and
ZCY

2. For all keys Y of size n > j > 1, if there does not exist a key Z of size > 1 such
that Z CY, then Y € Kj.

Proof Sketch: A simple induction on ¢ will yield the desired result. The details are
not very illuminating and are omitted.

QED
The desired correctness proof falls out directly.

Theorem 2 At the termination of the top-down algorithm, K = | || K; equals the
set of minimal keys.

Proof: Let X € K at the termination of the algorithm, then X € K|y at the end of
iteration | X|. By 1. with i = 1 and j = |X|, there does not exist Z a key with Z C X.
X is a minimal key.

Let X C R be a minimal key. The antecedent of 2. holds with i = 1 and j = | X]|.
Hence, X € K|y at the termination of the algorithm.

QED

Now we analyze the top-down algorithm to get a worst case complexity. We assume
here and throughout the paper that the following are basic operations. This list is not
exhaustive. Tmplicitly assumed to be basic are all of the obvious operations (e.g.
arithmetic, etc.).

e arbitrary length tuple comparisons,

e arbitrary length attribute set comparison (X C Y for X,Y C R),

e attribute set length computation (| X/),

e | | operation,

e marking and checking for marking on arbitrary length attribute sets.

First some preliminary complexity computations. The removal of marked Y € K,
in line 10 can be done in worst case time O(|K;41/log(|Kit1|)) by recursively splitting
then merging similar to the split-merge technique used for merge sort. The removal of
duplicates from K; in line 11 can be done in time O(|K;|log(|K;|)). First sort K; (time

10

O(|Ki|log(|K;|))). Then scan K; marking all duplicates (time O(]|K;|)). Then using
the same technique as above, remove all marked sets (time O(|K;|log(|K;|))).

Recall that in the main problem statement, we are interested in the complexity
of our algorithms in terms of n, m, and |K|. At each iteration 1 < ¢ < n — 1, the
algorithm requires time

O(|Kit1[(i + 1)mlog(m) + |Kiy1|log(|Ki1]) + [Killog(|Kil)).

(1 + 1) is an upper-bound on the number of subsets of size i for each element in K;.
mlog(m) is the time required to identify whether a set X is a key by sorting the
instance r. The |K,11|log(|Ki+1]) + |Ki|log(]K;|) terms come from lines 10 and 11
as explained earlier. Due to removal of marked sets, K; is not monotonic in 7. Let
kma = maz_; (|K;[). The worst case running time of the algorithm is

n—1

O(Z kmm(z + 1)mlog(m) + kmazlog(kmw))'
i=1

Simplifying a bit we get a worst case running time of:
O(n*kmamlog(m) + (n)kmzlog(kms)).

In the event that k,,, is polynomial in | K|, our algorithm runs in time polynomial in
n and |K| and sub-quadratic in m. This is exactly what we need to solve our problem.
However, kp,, might be exponential in |K|. Consider a relational instance ;4 in which
K = {{A1},{A2},... ,{An}} (Jrta| contains a single tuple of all zeros). In this case
kma is exponential in |K| since |K|, /|| = (Lny/lﬂ) > n2" 1 (for large n). The algorithm
certainly does not solve the problem in this case. To get an idea of the complexity of
the algorithm independent of k., we compute the worst-case complexity in terms of
n and m only.

Clearly, |K;| < (?) for all j. Hence the worst case running time of the algorithm is
O(Z?;ll[(iZI)(i +)mlog(m) + (111)109((2'11)) + (?)109((?))}) C O(n2" 'mlog(m) +
nlog(n)2" ' + nlog(n)2"). Simplifying a bit we get a worst case running time of:

O(n2" mlog(m) + 2log(n)]).

Recall the instance 7,4 above. At each iteration, i, |K;y1| = (27;1) and |K;| = (7).
Hence the worst case running time in terms of n and m is attained. Since |K| = n,
then the algorithm runs in time exponential in the output size on ry3. Therefore, ryg is
a prototypical example of an instance which causes the worst behavior in the top-down
algorithm.

11

2.2 Searching Bottom-Up

In this section we consider an algorithm that searches the power-set lattice P(R)
bottom-up, using principle 2 to prune the search. The way in which the frontier is
maintained is different than the top-down algorithm. During iteration 1 < 7 < n of
the bottom-up algorithm, a frontier set, N K;, of subsets of R is generated from the
frontier set, N K;_1, of the previous iteration, s — 1. At the end of iteration 7, N K; will
contain ezactly the non-keys of size 4 and the empty set. Principal 1 allows N K; to be
computed during iteration ¢ by only looking at the supersets of elements of NK; ;. To
see this, let X be a non-key of size 7. By principal 1, every subset of X of size i — 1 is
not a key and so is in NK; 1 at the end of iteration ¢ — 1. Therefore, X is a superset
of some element in NK;_; at the end of iteration 7 — 1.

Principal 2 ensures that N K;_; is truly a frontier set during iteration i. Specifically,
any minimal key of size 4 must be a superset of some element of NK; 1. To see this,
let X be a minimal key of size 1. By principal 2, no Y C X of size 1 — 1 is a key and
hence every subset of X of size + — 1 is in NVK; 1 at the end of iteration 1 — 1. We are
guaranteed, then, to find all minimal keys of size 4 during iteration 1.

The only complication arises in ensuring that ezactly the minimal keys of size ¢ are
found during iteration 7. Let X be a set of size ¢ which is a superset of an element in
NK; 1. X will be looked at during iteration ¢. Checking whether X is a key is easy,
but does not ensure that X is a minimal key! There might exist a key Y C X of size
1 — 1. The problem occurs because X might have some subsets of size i — 1 which are
non-keys and some which are keys. Therefore, all subsets of size 7+ — 1 of X must be
checked. Given that X is a key, if all of these sets are non-keys, then X is a minimal
keys, otherwise not.

We have arrived a procedure for finding all of the minimal keys of size i, given
NK,;_ 1. For each Y, € NK; 1 consider each superset, X3, of size 7. If X3, is not a
key, then add X3, to NK;. Otherwise, if all subsets of Xy, of size i — 1 are non-keys,
then add X4 to the cumulative minimal key set K. The algorithm is presented in
figure 2.

As in the top-down algorithm | | is used in line 6 and duplicate removal is dealt
with all at once in line 11 (time O(|NK,|log(|NK;|))). Also, | | is used in line 8. There
may well be duplicates in K. Duplicate removal from K is handled all at once in line
12.

Now we prove the correctness of the bottom-up algorithm. The following two useful
facts, can be directly observed from the algorithm (proofs are omitted). At the end of
iteration 1 < 7 < n of the bottom-up algorithm:

e Fact 1: if X € K, then X is a key
e Fact 2: if X € NK;, then X is not a key.

The non-key invariance property in NK; (stated earlier) can now be established.

12

Input: R, a relation schema of size n and r an instance of
R of size m. Output: K, the set of minimal keys of R with
respect to r.

1 K :=0 and NK, = {0}, NK;,... ,NK,, :=10

2 for 7 :=1ton do

3 for YV}, € NK,;_, do

4 for X3, 2O Yy, s.t. | Xp| =i do

5 if X, is not a key w.r.t. r then

6 NK; .= NK; | { X}

7 else if VZ C X, with |Z] =i — 1, it follows
that: Z is not a key w.r.t. r then

8 K = K| { X}

9 endfor

10 endfor

11 remove duplicates from N K;

12 remove duplicates from K

13 endfor

Figure 2: Bottom-up Algorithm using A-Priori Pruning Approach

Lemma 3 For all 1 < 1 < n, at the end of iteration 1 of the bottom-up algorithm,
NK; ={X CR||X| =1 and X is not a key }.

Proof: A simple induction will show that for all 1 <i <n, {X C R||X| =1 and X is
not a key } C NK;. From fact 2, the other direction of the inclusion follows for all i.

QED

Finally, we can show that the algorithm is correct.

Theorem 3 At the termination of the bottom-up algorithm K is exactly the set of
minimal keys.

Proof: Let X € K at the termination of the algorithm. From fact 1, X is a key. We
must show that X is minimal. Suppose not, then there exists a key X C X of size
|X| — 1. Since X € K, then X was added to K during iteration |X|. Therefore step
7 must pass at some point during the iteration with X;, = X. Since X C X and
|X| = |X| — 1, then it follows that: X is not a key. This is a contradiction.

13

Let X be a minimal key. We shall show that X is in K at the end of iteration |X|.
If | X| = 1, then since € NKy, X is a key, and all subsets of X are non-keys, then X
will be added to K during the 1% iteration. Assume |X| > 1.

Since X is a minimal key, then the following statement holds:

VZ C X with |Z| = |X|—1,Z isnot a key . (})

From the invariance of NK lemma above, there exists Z C X of size |X| — 1 in
NK|x|_; at the end of the (|X| — 1)* iteration. Therefore, at some point during the
| X|"" iteration step 5 is reached with Yy, = 7 and X, = X. Since X is a key, then
step 5 will fail and step 7 will be reached. By statement () above, step 7 will pass.
Hence, X will be added to K.

It follows that the set of minimal keys is exactly K at the termination of the algo-
rithm.

QED

Now we analyze the bottom-up algorithm to find a worst-case running time. As in
the complexity analysis of the top-down algorithm, we are interested in the worst case
running time in terms of n, m, and | K|.

Let Ki denote K at the end of iteration 7. At each iteration 1 < i < m, the algorithm
requires O(|NK; 1]i[mlog(m) + imlog(m)] + |NK;|log(INK;|) + |K;|log(|K;|)).

The | N K;_1|i[mlog(m)+imlog(m)] expression comes from lines 3-10. The |N K;|log(|N K;|)
and K;|log(|K;|) expressions come from lines 11,12. Therefore, a worst-case running
time of the following is obtained.

O(mlog(m)[Y_ [NKi1[i*] + [Y [NKillog(INKi])] + [Y |Killog(IKi]))) (1)
i=1 i=1 i=1

Notice that K; is monotonic increasing in ¢ so for all j, |K;| < |K|. However, N K;
is not necessarily monotonic increasing in i. Let nk,,, = max] ,(|NK;|). The worst
case running time is:

n

O3 (nkyuglimlog(m) + *mlog(m)] + nkuulog(nkus) + | K llog(|K))).
=1

Simplifying a bit we get a worst case running time of:
O(n3nkmmm109(m) + nkmmlog(nkmm) + |K\log(|K\))

Similar to the top-down algorithm, if nk,,, is polynomial in |K|, then the bottom-
up algorithm solves our problem. However, nk,,, may be exponential in |K|. Consider

14

a relation instance 7y, with K = {{A1,... A,}} (|rpy/ is linear in n and in Bernoulli).
Clearly, [NK|,2|| = (Ln72j)’ 80, Nk, is exponential in |K|. To get an idea of the com-
plexity of the algorithm independent of nk,,,, we compute the worst-case complexity
in terms of n and m only.

To do so we examine 1 more closely. Upper-bounds on [NK; 1|,|NK;| and |K;| are
needed. Firstly, [NK; 1| < () Secondly, as mentioned earlier, a sharp bound on the

number of minimal keys of size at most ¢ is (mm{i Ln/QJ})' Hence |K;| < (mm{i Ln/QJ})'
We conclude that the algorithm requires in the worst case time:

n

0<m109<m>§(i) +Z(Juoat ()4)

; (mn{n Ln/?J})l““(mm{: n/2 J}>))' (3)

To simplify consider first the subexpression:

mlog(m) En: <Z " 1)12. (4)

=1

By [5] 4 is bounded above by mlog(m)n?2" 2. Now consider the second subexpres-

2_; (7)ot (7)) (5)

By Stirling’s approximation it follows that 5 is of order O(}_1" , (,",)(nlog(n) —
(n —i)log(n — i) —ilog(i))). Hence 5 has upper-bound O(nlog(n)2"). Now consider
the third subexpression:

2-2: (min{iin/%})log((mz'n{z'in/gj}) (6)

By splitting the sum and using Stirling’s approximation as above we obtain an

sion:

upper-bound on 6 of:

/21,
O(Z <z> (nlog(n) — (n —i)log(n — 1) — ilog(i)+

1=0

2 (LJ/LQ J) (nlog(n) = (n.— [n/2])log((n — |n/2])) = [n/2])log(|n/2])))-

15

Dropping the (n — i)log(n — i) — ilog(i) expression and simplifying the second
summation, we get upper-bound:

O(nlog(n) Wf C) +n2log(n)<tn72 J>).

i=0
Stirling’s approximation yields an upper-bound of:
O(n?log(n)2"1).

Plugging in the upper-bounds for the three subexpressions of and simplifying the
following upper-bound in terms of m and n for the worst-case running time of the
algorithm is obtained:

O(mlog(m)n?2" "2 4+ n’log(n)2" 1) (7)

Can this worst case running time be achieved? Recall instance 14, with minimal
key set {{A1,...,A,}}. Clearly, forall 1 <i<n—1, |K; =0 and for all 1 < i < n,
INK;, 1| = (:1) A straight-forward analysis will show that the algorithm comes
within a factor of nlog(n) of achieving the worst-case time in 7. We conclude that ry,
is a prototypical example which causes the worst behavior in the bottom-up algorithm.

2.3 Searching Top-down and Bottom-up

We have seen that the worst type of instances for the top-down algorithm are those
which have K = {{41},... ,{A4,}} (714 denoted an instance which has this minimal key
set). We have also seen that the worst type of instances for the bottom-up algorithm are
those which have K = {{A1,... ,A,}} (75, denoted an instance which has this minimal
key set). On these instances, the top-down and bottom algorithms, respectively, fail
to solve our original problem. However, the bottom-up algorithm handles instance 74
easily and vice versa. We are motivated then to consider a “hybrid” algorithm which
searches the power-set lattice P(R) top-down, and bottom-up using both principle 1
and 2 above. Our first and simplest approach is to have the top-down and bottom-up
algorithms search the top and bottom half of the power-set lattice, respectively, and
merge their results. The only interaction between the two algorithms occurs at the
very end when the top-down key set and bottom-up minimal key set are merged. This
algorithm is presented in figure 3. Since the top-down and bottom-up portions do not
interact, we frequently refer to this algorithm as the hybrid without communication
algorithm.

The correctness proof of the hybrid without communication algorithm follows al-
most directly from the correctness proofs of the top-down and bottom-up algorithms.
The only complication involves the merging in lines 24-29. However, this is only a
minor problem. The proof is, thus, omitted.

16

Input: R, a relation schema of size n and r an instance of R
of size m.
Output: K, the set of minimal keys of R with respect to r.

1 K, Ky,...,K, 1 =0;NKy={0}, NK;,... ,NK,, :=10)
and K, := {R}

COMMENT Lines 2-11 are the top-down portion

2 fori:=n—1downto [n/2] do

3 for V;; € K;,1 do

4 for Xtd - Y;gd s.t. |Xtd‘ =i do

5 if X4 is a key of R w.r.t. r, then

6 K; = K;| {Xw}

7 mark Y,

8 endfor

9 endfor

10 remove all marked Y, from K

11 remove all duplicates from K;

COMMENT Lines 12 - 22 are the bottom-up portion
12 for vy, € NK,_;_; do

13 for Xy, O Vi s.t. [Xp| =n—ido

14 if Xy, is not a key w.r.t. r then

15 NK, ;= NK, ;| {Xw}

16 else if VZ C X, with |Z] =n —i—1), we
17 have: 7 is not a key w.r.t. r then
18 K = K| { X}

19 endfor

20 endfor

21 remove duplicates from NK,,_;

22 remove duplicates from K

23 endfor

COMMENT 24-29 — merging of top-down and bottom-up
24 for i:=n — 1 downto [n/2] do

25 for X,y € K; do

26 if VZ € K, with |Z| < [n/2],Z € X4 then
27 K = K| |{Xw}

28 endfor

29 endfor

Figure 3: Simple “Hybrid” Algorithm using top-down and bottom-up pruning
17

One of the primary motivations for the hybrid without communication algorithm is
to combine the best features of the top-down and bottom-up algorithms. We investigate
now how close the algorithm has come to this goal. Specifically, we develop a lower-
bound on the running time. From this result, we describe a class of inputs on which
the algorithm fails exponentially to solve Mannila’s problem 2.

Theorem 4 Given R a relation schema (of size n) and r an instance of R (of size
m), the hybrid algorithm without communication (e.g. algorithm 3) requires time at
least Q(27/2).

Proof: Let a be a minimal key. There are two cases to consider.

1. Case: |a| < [n/2]. It follows that for every Z; D awof sizen—12>14¢ > [n/2] +1,

Z; € K; at the start of iteration +—1. Hence the top-down portion of the algorithm
must examine at least the following number of sets:

n—1
Z (" - a|)_
it N1

Since |a| < [n/2], then a lower-bound of 2"/2~1 — 2 can be obtained on the sum.
Therefore the algorithm requires at least (2"/2) time.

2. Case: |a| > [n/2]+1. It follows that for every Z,,_; C awofsize 1 < n—i < [n/2],
Zn—i € NKy_; at the start of iteration 7 — 1 By an analogous argument to the
previous case, we conclude that the bottom-up portion of the algorithm must
examine at least 27/2~1 —1 sets. Therefore, the algorithm requires at least Q(2"/2)

time.

QED

This theorem implies that on the class of inputs with a polynomial number of
minimal keys, the hybrid without communication algorithm fails exponentially to solve
Mannila’s problem. In particular the algorithm fails exponentially on instances ;4 and
Thy. We see clearly that the algorithm does not come close to achieving the goal of
combining the best properties of the top-down and bottom-up algorithm.

2.4 Adding Communication Between the Top-down, Bottom-
up Search

Let’s examine a bit more closely the behavior of the hybrid algorithm on instance
Tpy (over relation schema R = {A;,...,An}); recall that ry, has minimal key set

2The algorithm is deemed to fail exponentially on an input if the time required on the input is exponen-
tially greater than allowed.

18

{A1,... Ay} After iteration n — 1, K, 1 = 0 and NK; = {{4;}]1 < i < n}.
Because, K,,_1 = 0, it is clear that any set of size smaller than n — 1 is not a minimal
key. Therefore, the algorithm need not proceed any further. However, the bottom-
up portion will examine all sets of size < [n/2] in vain. This is a canonical example
illustrating the need for communication between the top-down and bottom-up portions.
In this example, K,, | = (), should signal the bottom-up portion to halt after the first
iteration.

More generally, we would like to utilize information contained in K; during the
bottom-up part of iteration ¢ and information contained in K and NK,_; 1 during
the top-down portion of iteration 7. Elements of K; are minimal keys down to size
i. Elements of NK, ; ; are non-keys and elements of K are minimal keys (of size
<n-(i+1)).

The next lemma shows how K; can be used to guide the bottom-up search.

Lemma 4 At the end of step 11 during iteration n — 1 > i > [n/2] of the hybrid
algorithm without communication, VYy, € NK,_;_1 if 1 X1q € K; s.t. Yy, C Xyq, then
VXpy 2 Yo of size n — i, Xy, 48 not a key.

Proof: Straight-forward and omitted.
QED

At the end of step 27 of iteration i of the hybrid without communication algorithm,
let f(l denote K (e.g. the set of minimal keys of size < n — 7). f(H_l can be utilized to
prune the top-down search by allowing certain elements of K;;; to be ignored during
iteration 1.

At first glance, we would like to be able to prune all Y3 € K;y1 s.t. there exists
Yiou € Ki+1 s.t. Ypu C Yy from consideration during the top-down part of the algorithm
at iteration ¢. Clearly such a Y4 cannot be a minimal key since Y}, is a key. However,
Y;q may have a subset, X, of size > [n/2] for which there does not exist Yy, € Ki
s.t. Y3, € X. Our first glance pruning approach is not sound (it is too ambitious).

At second glance, it is clear that Yy € K;;; can be pruned from consideration
during iteration %, if for every X C Y34 of size n — ¢ there exists Y3, € f(z'+1 s.t.
Y, € X. The rationale is that every X C Y;,4 of size n — 7 is not a minimal key and
n—1<mn-—[n/2] <[n/2]. Since the bottom-up portion will get every minimal key
of size < [n/2], then Y;4 will not have any minimal key subsets which will be missed.
The next lemma states precisely how f{i+1 can be used to guide the top-down search.

Lemma 5 At the end of step 23 of iteration n —1 > i+ 1> [n/2] + 1 of the hybrid
algorithm without communication, YYiq € Kijy1 if VX C Yyq of size n — 4,3y, € Kip1
s.t. Yoo C X, then VZ C Yyy of size > [n/2], Z is not a minimal key.

19

Proof: Straight-forward and omitted.
QED

This lemma suggests that all subsets of Y;; of size n — ¢ need be checked in the
pruning approach above. Such a cost would make the approach prohibitively expensive.
However, as will be shown later, the elements of NK,, ;1 allow this cost to be avoided.
The cost will amount at worst to O(n?|NK, _; 1|%). Since the NK, ; 1 sets need
be kept around by the algorithm anyway, the |[NK, ; {|? factor is not an overhead
problem.

We are now in a position to give a top-down, bottom-up, hybrid algorithm in which
the top-down part utilizes temporary information gathered by the bottom-up part and
vice versa. In particular this algorithm works very fast on instances 7,4 and ry,. This
algorithm is presented in figure 4. We frequently refer to this as the hybrid with com-
munication algorithm

Input: R, a relation schema of size n and r an instance of R of size m.
Output: K, the set of minimal keys of R with respect to r.

1 K,Ky,..., K, 1:=0and NKy = {0}, NKy,... ,NK,, := 0 and K,, := {R}
COMMENT Lines 2-13 are the top-down portion
2 for i :=n — 1 downto [n/2]| do

3 for Y, € K do

COMMENT Line 4 is communication with the bottom-up portion

4 if 1 = [n/2] or 3X C Y}, of size n — i, s.t. VYy, € K,
You € X, then

5 for X,y C Yyy s.t. | Xyq| =1 do

6 if X4 is a key of R w.r.t. r, then

7 Kz = Kz U{Xtd}

8 mark Yy,

9 endfor

10 else mark Yy

11 endfor

12 remove all marked Y34 from K; 4

13 remove all duplicates from K;

COMMENT Lines 14 - 26 are the bottom portion

14 for Y, € NK,,_;, 1 do

COMMENT Line 15 is communication with the top-down portion

15 if 31Xy € K; s.t. Yy, C Xy, then

20

16 for Xbu) Ybu s.t. |Xbu| =n—1do

17 if Xy, is not a key w.r.t. r then

19 Nanz = NKn,l |_|{Xbu}

20 else if VZ C X3, with |Z| =n—1i—1, we
21 have: Z is not a key w.r.t. r then
22 K = K| { X}

23 endfor

24 endfor

25 remove duplicates from NK,, ;

26 remove duplicates from K

27 endfor

COMMENT 28-33 merging of top-down and bottom-up
28 for i :=n — 1 downto [n/2]| do

29 for Xy € K; do

30 if VZ € K with |Z| < [n/2],Z ¢ X4, then
31 K = K| {Xu}

32 endfor

33 endfor

Figure 4: “Hybrid” Algorithm using top-down and bottom-up pruning with communication

A correctness proof of this algorithm can be obtained from the correctness proofs
of the top-down and bottom-up algorithms and lemmas 4, 5. In particular, nearly the
same invariance results are obtained.

Lemma 6 For alln —1> 1> [n/2] the following statements hold at the end of step
27 of iteration i of the hybrid algorithm with communication (e.g. figure 4):

1. For alln > j > i and each Y € K, there does not exist Z a key of size > i and
ZCY

2. For all keys Y of size n > j > 1, if there does not exist a key Z of size > 1 such
that Z CY, then Y € Kj.

3. NK,_; ={X CR||X|=n—1and X is not a key }.
Proof: Very similar to the proofs of lemmas 2.1 and 3. Some extra detail is needed to
handle the communication steps. However, these details are not very illuminating and

so the proof is omitted.

QED

21

From this invariance lemma, a correctness proof of the hybrid with communica-
tion algorithm follow directly (and is omitted). Additionally, some complexity results
explained later use this invariance lemma.

We are interested in a complexity analysis of the hybrid with communication al-
gorithm. In particular we are interested in how effective the communication is with
regard to Mannila’s problem. To do so we consider three questions:

1. On which inputs does the hybrid algorithm without communication exponentially
fail to solve Mannila’s problem but the hybrid algorithm with communication
solves the problem?

2. On which inputs does the hybrid algorithm with communication exponentially
fail to solve Mannila’s problem?

3. How does the worst-case running time of the hybrid with communication com-
pare to the worst-case without communication (e.g. when is the communication
overhead too much)? In particular, on which inputs does the hybrid algorithm
with communication exponentially fail but the hybrid without communication
does not?

2.4.1 Improvement Through Communication

To answer question 1., we develop a theorem which (together with theorem 4) describes
a sub-class of inputs for which the hybrid with communication solves Mannila’s problem
but the hybrid without communication exponentially fails. The theorem is based on
an observation concerning the behavior of the hybrid algorithm with communication
on inputs for which the minimal keys are either very large or very small (or both).
The communication allows the algorithm to ignore searching the “middle” part of the
power-set lattice of R. As a result, Mannila’s problem is solved on these inputs.

The next lemma makes precise the relationship of very small or very large minimal
keys and communication.

Lemma 7 Given 0 € (0,1/2) and R a relation schema (of size n) and r an instance of
R (of size m) such that: n > 16 and [flogn] < (n—2)/3 and all minimal keys of R with
respect to v are of size < [Blogn], or of size > n — [flogn]. Let i =n — [flogn] — 1.
At the end of iteration i of the hybrid algorithm with communication: K; = () and
NK, ; =10.

3 Proof: First we show that: after step 13 during iteration 7, K; = () (and hence, at
the end of iteration i, K; = ()). To do so, it suffices to show that nothing is added to
K; during steps 2-11.

3logn is assumed throughout to be of base 2.

22

Let Yy € Kiy1 at the start of iteration 7. Since n > 16, then i > [n/2], so,
the second condition of step 4 must be checked for Y;;. Let X C Yj, of size n — i(=
[flogn]+1). Since n—[flogn] > |X| > [flogn] (because n > 16), then, by assumption,
X is not a minimal key.

If X is a key, then 3Y;, € K at the start of iteration 7, such that: Y3, C X.
Therefore, step 4 will fail for X. Thus, no subset of Y;4 will be added to K; during
iteration 1.

Assume X is not a key. By assumption, it follows that VZ O X of size 4, Z is not
a key. Tt follows that: for all X C R of size < i — | X|, X is a subset of some Z D X of
size i (which is not a key). Therefore, for all X C R of size < i — |X|, X is not a key.
We know that:

i—|X| = i—[0logn] —1 (since |X| = [flogn] + 1)
= n—2[flogn] —2 (sincei=n — [Alogn] — 1)
(n—2)/3 (since [flogn] < (n —2)/3)

2
> [Blogn] (since n > 16).

It follows that: for all X C R of size < [flogn], X is not a key. Therefore, by
original assumption regarding the size of the minimal keys, it follows that there are no
keys of size < i. Hence, no subset of Y3 will be added to K; during steps 2-11.

We conclude that VY4 € K; 1, no subset of Y;; is added to K; during steps 2-11.

To complete the proof we need show that: at the end of iteration i, NK, ; = 0.
However, this follows from the fact (shown earlier) that at step 14 during iteration i,
K, = 0.

QED

The first main theorem can now be proved. This theorem describes a sub-class of
inputs on which the hybrid algorithm with communication solves Mannila’s problem.

Theorem 5 Given 0 € (0,1/2) and R a relation schema (of size n) and r an instance
of R (of size m) such that all minimal keys of R with respect to r are of size < [flogn],
or of size > n—[flogn]. The running time of the hybrid algorithm with communication
is at most: O(n8|K|mlogm + n"mlogm + n|K|log(|K|) + n|K|?).

Proof: Let n—14 >4 > [n/2]. Consider the amount of time required by the algorithm
during iteration 7 (without merging). There are two cases to consider.

1. Case: i > n — [flogn] — 1. A Naive analysis will yield that steps 3-13 require
time:

n .
0Kl (|, | JIKIG + Vmlagm) + | fog | Kisr) + | log K).

23

The (nﬁl)|K\ term comes from the communication overhead in step 4. Since
K < (nﬁl), then steps 2-13 require time at most:

o(,")2|K<z'+1>mmg<m>>.

) — 1

Since i > n — [flogn] — 1, then an application of Stirling’s approximation will
yield an upper-bound of

O(n®|K|mlogm).
A naive analysis will yield that steps 14-26 require time
O(INKp—i1|[K| (i+1) [mlogm+(i+1)mlog(m)]+|N K, _i|log(|N Kn_i|)+| K |log(| K1)).

Employing bounds in an analogous fashion to that above an upper-bound yields
an upper-bound of

O(n®mlogm + |K|log(| K|))-
We conclude that the algorithm requires time O(n’|K|mlogm + nSmlogm +
|K[log(|K1)).

2. Case: i < n — [flogn] — 1. By lemma 7 (for sufficiently large n), at the start
of iteration i, K;11 = () and NK,, ; 1 = {0}. It follows that steps 3-13 require
time at most O(1) and after step 13 during iteration 7, K; = (). Therefore, steps
14-24, require time at most O(1). Since NK,,_; = {0} (by lemma 7), then step
25 requires O(1) time. Step 26 will require time O(|K|log(|K|)).

We conclude that the algorithm requires time O(|K|log(|K|)) during iteration i.

Combining the cases and summing over all iteration, we have a running time on
steps 1-27 (e.g. everything except merging) of

O(n®|K|mlogm + n"mlogm + n|K|log(|K))
A naive upper-bound on the time required for merging is:
O(n|K|?).
Therefore, the algorithm requires a total running time of at most:
O(nS K |mlogm + n"mlogm + n|K|log(|K|) + n|K|?).

QED

24

Theorems 4 and 5 imply that, on the following class of inputs, C;, the hybrid algo-
rithm with communication solves Mannila’s problem but the hybrid algorithm without
communication exponentially fails. C; is the class of all relation schema, instance pairs
(R,) (of sizes n, m, respectively) where there exists 6 € (0,1/2) and:

e there exists only a polynomial number of minimal keys in n

e all minimal keys of R with respect to r are of size < [flogn], or of size > n —

[Blogn].

C: provides an answer to question 1. Take note that with R = {A4,,... ,A,}, both
(R, r4q) and (R, rp,) are in C;.

2.4.2 Lower-bound on the Running Time with Communication

To answer question 2., we develop a rough lower-bound on the running time of the
hybrid algorithm with communication. This bound implies that, for a reasonably
large class of inputs, the algorithm requires at least exponential time in n. Hence,
for instances in this class with only a polynomial number of minimal keys in n, the
algorithm fails exponentially to solve Mannila’s problem. However, on these inputs
the hybrid without communication also fails exponentially. So, the communication
overhead is not to blame for the exponential failure in the hybrid with communication
in this class. Nonetheless, the communication does not prevent exponential failure,
either.

Assume there exists a minimal key, «, of size bigger than one. The next lemma will
show that the communication does not allow any supersets of o to be pruned from K;
until iteration n — || — 1. This is essentially due to the fact that K will not contain «
until iteration n — |a|. As a result step 4 will pass for supersets Y;y of a since X can
be chosen as a subset of «.

Lemma 8 Given R a relation schema (of size n) and r an instance of R (of size m)
such that, there exists a minimal key « of size > 1, ¥Yn —1 > 1 > max{n —|a|, [n/2]},
at the start of iteration i of the hybrid algorithm with communication, S =def [X C
Rl X|=i+1and a C X} C K;y;.

Proof: By induction on .

e Base Case (i = n — 1): Follows immediately from the initialization conditions.

e Inductive Case: Let n —1 > i > maxz{n —|a|, [n/2]}. Assume that at the start
of iteration 1, ngl C Kjt1. Consider now the situation at the start of iteration
1 — 1.
Let Z € S!. By definition, |Z| =i and o C Z (so, Z is a key). Sincen —1 > i >
n — |al, then 1 <n —i < |a|, so, there exists X C « of size n — ¢ > 1.

25

Let Yj4 be a superset of Z of size i +1 (so a C Y;4). By definition, Y;q € Sit!. By
induction assumption it follows that at the start of the i iteration, Y;4 € K.
So at some point during the " iteration, step 4 will be reached with Y;; as above.
Since X is of size n — 1 and X C a C Yy, then X applies to step 4. Suppose
there exists Yy, € K such that Yy, C X, then Yy, € «a. Since Yy, € K, then Y;,
is a key, so, a is not a minimal key. This contradicts our original assumption, so,
for all V3, € K,Y,, ¢ X. Step 4 will thus pass.

Step 6 will be reached at some point with Y;4 as above and Xy = Z (since Z C Yy
and |Z| = i). Since Z is a key, then step 6 will pass, so, Z will be added to K;.
Therefore, Z € K; at the start of iteration + — 1. We conclude that at the start
of iteration i — 1, S C K;.

QED

Lemma 8 will give a lower-bound on the size of K; and so a rough lower-bound on
the running time as the next lemma shows.

Lemma 9 If there exists a minimal key of size, £ > 1, then the hybrid algorithm with
communication requires a running time of at least (where (;) 1s assumed to be zero for

e .
Q(Zi:max{nff, [n/2]} (nfifl))

Proof: Assume there exists, o, a minimal key of size £. By definition, Vn — 1 >

i > max{n —£,[n/2]},|S5| = (szfl) = (nﬁﬁl) Hence from lemma 8, at the start
n—{

nfifl)' Step 3, during iteration ¢, will need to look at at least
nt)) time.

n—i—1
As a result the algorithm will require time at least: Q(Z?;nlmx{nfe 'n/2]} (n—t))-

n—i—1

of iteration 4, |[K;+1| > (
(n—~{

n—z’—l) Y,q sets. Hence, at iteration ¢ the algorithm will require Q((

QED

Finally, we can prove our main theorem. This theorem specifies a reasonably large
class of relation instances on which the algorithm requires at least exponential time in
n.

Theorem 6 Let 0§ € (0,1/2). Given relation schema, R (of size n) and r a relation
instance of R (of size m) such that R has a minimal key of size |On| with respect to r,
then on R,r the hybrid algorithm with communication requires at least time Q(ZLGnJ*l).

Proof: Since R has a minimal key of size bigger than one (for sufficiently large n)
with respect to r where n — [#n] > [n/2], then by lemma 9, it follows that on R,r the

26

algorithm requires time at least:

Since n—[6n] > |#n]—1, then ("7?"J) > ([0njj;1)_ Therefore, we get a lower-bound

QED

This theorem implies that the following class of inputs, C9, cause the hybrid al-
gorithm with communication to exponentially fail to solve Mannila’s problem. Cs is
the class of relation schema, instance pairs (R, r) (of sizes n, m, respectively) where
30 € (0,1/2) and:

¢ R has a minimal key with respect to r of size [fn]
e |[n—06n|>[n/2].

Cy provides as answer to question 2..

2.4.3 Too Much Communication Overhead?

To answer question 3., we first compute the running time of the hybrid with commu-
nication algorithm with respect to the hybrid without communication algorithm. For
n—12>14>[n/2], let CommOuverT D, denote the worst case running time of step 4 of
iteration ¢ of the hybrid with communication algorithm. Let CommOwver BU; denote
the worst case running time of step 15 of iteration ¢ of the hybrid with communication
algorithm. These expressions represent the communication overhead.

Inspection of the hybrid with and without communication algorithms shows that the
running time (pre-merging) of the hybrid with communication algorithm at iteration 4
is at most a factor of CommQOuver BU;CommOQuerT D; more than the hybrid without
communication algorithm. A naive analysis shows that CommOQOwver BU; is

O(| Kil).

27

Determining a reasonable upper-bound on CommQOwver BU; is more challenging. To
do so, we show that for any Y4 € K;;1, all subsets of Y;4 of size n — ¢ need not be
examined. The close relation between NK,_;_; and f{i+1 allows a more reasonable
approach. The following lemma makes this approach more clear.

Lemma 10 Forn—1> 14> [n/2], at the end of iteration, i+ 1, (pre-merging) of the
hybrid with communication algorithm, YYyq € Kiyq:

X C Yy of sizen —i s.t. VY, € K, Yy, ;(_ X if and only if X C Yy of size n — 1
s.t. VX C X ofsizen—1—1, X € NK,_;,_1.

Proof: Straight-forward and omitted.
QED

Based on this lemma, the following algorithm can be used to check the conditional
of step 4 at iteration 7 of the hybrid with communication algorithm on Y.

1 for Y, e NK,, ;, 1

2 for X DY}, of size n — ¢

3 if VX C X ofsizen—i—1, X € NK,,_;_1, then
4 return true

5 endfor

6 endfor

7

return false

Therefore, A naive analysis shows that CommQuerT D; is
O(INKy—i-1[*(n —i)?).

We have that the running time (pre-merging) of the hybrid with communication
algorithm at iteration i is at most a factor of |K;|||[NK, ; 1|>(n —i)? more than the
hybrid without communication algorithm. Since the hybrid without communication
algorithm must look at K; and NK,,_; ;| during iteration ¢ anyway, then running time
of the hybrid with communication is within a power of five of the running time of the
hybrid without communication. In particular, there does not exists any instances on
which the hybrid with communication fails exponentially to solve Mannila’s problem
but the hybrid without communication does not.

We conclude that the communication overhead is not infeasible with respect to the
hybrid algorithm without communication.

28

2.4.4 Communication Conclusions

Providing communication between the top-down and bottom-up algorithms is a diffi-
cult problem. The hybrid with communication attempts to address this problem. In an
effort to gauge the effectiveness of this algorithm three questions were put forth. The
first two questions were designed to point out classes of inputs in which the commu-
nication works quite well and where the communication fails to work well, both with
regard to Mannila’s problem. The third question was designed to point out the size of
the communication overhead with respect to the running time of the hybrid algorithm
without communication.

A class of inputs, C;, provides an answer to question 1. This class, intuitively,
includes all inputs which have only minimal keys which are very small (roughly log(n)
in size) or (inclusive) very large (roughly n — log(n) in size). This result indicates that
some success is achieved. Namely, the addition of communication yields a solution to
Mannila’s problem on a fairly wide class of input instances.

A class of inputs, Cy, provides an answer to question 2. This class points out a
major weakness in the hybrid algorithm with communication. On instances with a
minimal key in the “middle” portion of the power-set lattice of R, the algorithm must
do an exponential amount of work in m. However, the communication overhead is
not to blame, because the hybrid without communication performs nearly as badly.
Nonetheless, the communication does not prevent exponential failure, either. In this
respect the communication added is too weak.

An answer to question 3 is provided as follows. The running time (pre-merging)
of the hybrid with communication algorithm at iteration ¢ is at most a factor of
|K;|||INK, i 1|?(n—i)? more than the hybrid without communication algorithm. There-
fore, the running time of the hybrid with communication is within a power of five of
the running time of the hybrid without communication. In particular, there does not
exist any inputs on which the hybrid with communication fails exponentially to solve
Mannila’s problem but the hybrid without communication does not.

A much more interesting (and difficult) result to obtain would be the tradeoff
between the communication overhead and the savings gained through pruning. For
this result a finer analysis of the communication overhead is needed. Getting at this
tradeoff analytically, is a difficult problem. One which we shall leave as future work.

In general we believe that the successes achieved though communication are note-
worthy. The idea of developing a hybrid level-wise approach to key-finding has its
merits. In order for this approach to be worthwhile, some assurance is needed that
the merits will move us significantly closer to a solution to Mannila’s problem. In this
regard, a much better understanding of the tradeoff between the communication over-
head and the savings gained through pruning is needed. At this point, our intuition
of this tradeoff is primitive. A more detailed analysis would be helpful in clarifying

29

this intuition. However, such an analysis is likely to be quite difficult. In our opinion,
it seems unlikely that developing a deeper understanding of this tradeoff will move us
significantly closer without substantial effort and innovation.

3 Empirical Results

3.1 Levelwise A-priori

The algorithm in figure 1 (§2.1) was implemented for the case of Bernoulli databases.
The code can be found in the following file:

/u/crood/courses/DataMining/imp/ver4/main.c

A randomized Bernoulli database (having no repeated tuples) is generated of the appro-
priate width and length, and then the top-down naieve key-finding function is applied.
Table 1 shows the results obtained. Note that we use an efficient key-checking algorithm
based on a version of quicksort. The algorithm is given in figure 5.

Input: X = {A4,..., Ax}, a set of attributes;
r ={t,...,t} a database instance
Output: TRUE if X is a key for r, FALSE otherwise

if (|r| > 2) return FALSE;
QuickSort(r, X); // Sort r on attributes in X
1=1;
J=12
while (i <=m — 1 and j <=m)
if t; = ¢; return FALSE; // duplicates will be next-to-next
return TRUE;

Figure 5: Key-checking predicate: determines if the set X is a key according to the database
instance r.

Table 1 shows results for the worst, average, and best cases of the top-down naieve
algorithm, respectively. Note that the worst case occurs when there is only one tuple in
the database, since in this case every subset of size 1 is a minimal key. The exponential
behavior of the algorithm can be clearly seen in the right hand column (total number
of subsets generated during the run). The running times (not shown) for the worst case
seem to be O(4™). The running time is higher than expected due to several reasons,
including:

30

e We must maintain the K; subsets that contain the levelwise frontier sets. This
requires quite a bit of overhead.

e Our method for generating the next level of subset candidates generates repeats.
A method for generating levelwise successor subsets from K; without any repeats
was not found; however, a depth-first method for generating subsets without
repeats is easy to code (§3.2).

Note that the average case (when m = 21n/41 g0 the expected minimal key size
is n/2 as in [7]) is exponential as well. The running times in this case seem to more
closely follow a O(2™) curve. The best case occurs when the minimal keys are large;
this is most likely to occur when m > 2["/21 (as discussed in [7]). In the best case, the
running time is O(nmlog(m)).

The other levelwise A-priori key-finding algorithms were not implemented. There
are two main reasons for this:

1. It was determined early on that keeping the levelwise frontier sets around for

the lifetime of the key-finding function was even more infeasible than the O(2")
running time. Maintaining the K; in the top-down naieve a-priori is difficult and
highly space-consuming.*
The space complexity problem is exacerbated by the fact that we have discovered
no good algorithm to generate the next level of (1 element larger) subsets given
a particular K; in a levelwise manner without generating duplicate subsets along
the way.

2. The second reason for not continuing with the implementation of the levelwise
a-priori algorithms is that we have discovered an interesting alternate approach:
that of partition trees. Partition trees are discussed in appendix A. These data-
structures arise when one views the key-finding search space not as the power-set
lattice of R, but as a partition tree, in which the various ways of partitioning the
relation instance 7 on the attributes in R are reflected.

In summary, the space complexity of the levelwise a-priori algorithms is a major
problem in continuing any implementation. In the next section (§3.2), we indicate how
depth-first versions of the top-down and bottom-up a-priori algorithms could be more
feasible (in particular with regard to the space issue), and illustrate a simple, “switch
hybrid” algorithm based on the expected size of minimal keys.

4There is also a mismatch in computing speed and memory resources: it is feasible, for example, to require
10° processor instructions routinely in an algorithm, but it is not feasible to require 10? bytes of storage
space routinely.

31

m n | |K| | average key number of
length subsets generated
10| 10 1 5111
11] 11 1 11254
121 12 1 24565
13 13 1 53236
141 14 1 114675
1 15| 15 1 245746

16 | 16 1 524273
17| 17 1 1114096
18| 18 1 2359279
191 19 1 4980718
20| 20 1
10| 41 5 2865
111 30 4 4524
12] 113 4 17792
13| 144 6 22033
14 | 456 6 65286

2[m/41 115 | 491 6 137361
16 | 972 6 347253
17 | 2060 8 494174
18 | 1800 8 708395
19 | 6181 8 2852585
20 | 8095 8 6631346
10 1 9 20
11 1 11 12
12 1 12 13
13 1 13 14
141 3 13 o4

2Mm/21+1 115 | 1 15 16
16 1 15 32
17 1 16 34
18 1 17 36
19 1 19 20
20 3 19 78

Table 1: Results of the top-down, naieve A-priori algorithm on randomized Bernoulli
Databases.

32

3.2 Depth First A-priori

In this section, we present depth-first versions of the top-down and bottom-up a-priori
search algorithms. Although their asymptotic running times are similar to those of the
levelwise algorithms, depth-first search through the power-set lattice of subsets of R is
more space efficient and allows us to solve the “subset duplication” problem. Further-
more, the depth-first versions of the a-priori algorithms will provide both motivation
for and contrast to the partition trees introduced in appendix A.

Given R = {A,, ..., A, }, we introduce an ordering on the attributes, e.g. A} < ... <
Aj,. This will allow us to generate all subsets of R without repeats. The depth-first,
bottom-up a-priori algorithm is given in figure 6.

Function DFBU(Att, X)

Input: Att, the current attribute;

X, the current subset to be checked;

Global variables: R = {A;, ..., A,} a relation schema;
r = {ty,...,t,m} an instance of R

Output: K, the set of minimal keys of r

if (Key(X, r)) insert X into result K;
else for A; > Att do
DFBU(A,, X U {A;});

Figure 6: Depth-first, bottom-up, a-priori key finding.

The algorithm in figure 6 builds subsets of R recursively, one attribute at a time.
The top-level call (in the main program function) is “DFBU(0, (})” where 0 is a special
attribute that is less than all other attributes (in our ordering), i.e. 0 < A7 < As <
... < A, to start the recursion off. The bottom-up “a-priori” principle is obscured by
the simplicity of the algorithm: note that in the base case of the recursion (where the
current attribute set X is a key), we do not make a recursive call, hence the subsets
larger than that X will not be generated. This is in accordance with the “a-priori”
principle that if X is a key then no proper superset of X can be a minimal key.

The depth-first, top-down, a-priori algorithm is similar; it is given in figure 7.

The top-down version looks very similar to the bottom-up version, but there are
two crucial differences. The top level call for the top-down version is “DFTD(0, R)”
(versus the top level call for the bottom-up version which started with X =). The
second crucial difference is that in the top-down version we are removing attributes
one-by-one recursively, as opposed to adding them in. The top-down a-priori principle
is not obvious in the simple algorithm in figure 7, but is encapsulated in the “found”
boolean value. If “found” is true at the end of the for loop, that means every subset

33

Function DFTD(Att, X)
Input: Att, the current attribute;
X, the current subset to be checked;
Global variables: R = {A;, ..., A,} a relation schema;
r = {ty,...,t,m} an instance of R
Output: K, the set of minimal keys of r

found = TRUE;

for A; > Att such that Key(X — {4,}, r) do
found = FALSE;
DFTD(4;, X — {4;});

if (found) insert X into result K;

Figure 7: Depth-first, bottom-up, a-priori key finding.

of size one less than X failed to be a key. In this case, X is the minimal key sought.
This is in accordance with the top-down a-priori principle, namely that a subset X is

a minimal key only if no proper subset of it is a key.

A simple hybrid algorithm, “SwitchHybrid” is given in figure 8.
uses the results of [7] to predict the average size of minimal keys. If these keys are
expected to be larger than n/2 in size (corresponding to 2[n/2] < m < 2M), the top-
down algorithm is called. If the keys are expected to be small (less than n/2 in size),

the bottom-up algorithm is called.

Function SimpleHybrid()

Global variables: R = {Ay, ..., A, } a relation schema;
r = {ty, ...t} an instance of R

Output: K, the set of minimal keys of r

if m > 2[7/2]
DFTD(0, R);
else
DFBU(0, 0);

Figure 8: Simple “switch” hybrid based on the expected minimal key size.

The function SwitchHybrid is simple, and will likely perform well in cases where the

34

SwitchHybrid

expected key size is either small or large recall the class Cq, page 25. SimpleHybrid
will perform well (polynomially) on most of the Bernoulli members of this class. When
the expected minimal key size is close to n/2, the algorithm’s performance will be
exponential in n. Recall the class Cy (page 27); SimpleHybrid will perform poorly on
the Bernoulli members of this class. In fact, SwitchHybrid’s performance in the average
case should meet or exceed that of the levelwise hybrid with communication (in the case
of Bernoulli databases). SwitchHybrid serves as a simpler and more feasible version of
the hybrid a-priori algorithms. It would be interesting to code a version, for use as a
benchmark for comparing the partition tree algorithms of appendix A.

Note that the SwitchHybrid only works in the case of Bernoulli databases. In the
general case, it is less clear what the expected size of minimal keys is. Furthermore, it
is unclear how deeper communication between the depth-first versions of the top-down
and bottom-up algorithms would be achieved.

4 Conclusions

4.1 Problems with the A-Priori Approach

There are several problems with the a-priori approach we have been pursuing in the
bulk of this paper, including:

1. Implementation issues with the levelwise approach:
(a) The space-complexity is prohibitive.

(b) The problem of generating repeated subsets is intrinsic and difficult to over-
come.

Both these issues can be overcome in the Bernoulli case with a depth-first imple-
mentation of the bottom-up and top-down a-priori algorithms, however for the
general case it is less clear what a depth-first version of the communication hybrid
would entail.

2. Communication issues with the hybrid algorithm: as discussed in §2.4.1, enabling
the top-down and bottom-up levelwise a-priori algorithms to communication in-
formation is tricky. Due to space problems mentioned earlier, this approach is
not of practical interest. However, there does seem to be theoretical motivations
for further study. In particular, the development of a deeper understanding of the
tradeoff between the communication overhead and savings gained though pruning
is interesting. On the other hand, such a development is likely to be a very diffi-
cult problem. It is unclear whether the potential discoveries would be of enough
interest to justify the effort.

35

3. One issue not previously discussed is the issue of informed versus uninformed
search. The a-priori algorithms are essentially uninformed, in the sense that they
do not take advantage of the actual database instance r in deciding which subsets
of R to generate. A more informed search is described in appendix A, where
the database instance is used in a more essential manner to actually generate
potential key candidates.

None of the a-priori algorithms seem to solve Mannila’s problem in the general case.

4.2 Further Directions

As indicated in the previous section, several problems with the a-priori approach to key
finding motivated a shift to more informed searching algorithms of the type presented
in appendix A. The partition tree algorithms are the subject of ongoing thought and
research. We see three avenues of further research on Mannila’s problem:

1. In some respects, Mannila’s key-finding problem seems poorly motivated. It
would be interesting to find some further areas where a solution to Mannila’s
problem could apply in an integral way.

2. The level-wise hybrid with communication algorithm has some interesting theo-
retical issues. Namely, developing a deeper understanding of the tradeoff between
the communication overhead and the savings gained through pruning. However,
the effort required is likely to be quite large. We shall not pursue this avenue
further. Mainly because the advances made with the partitioning algorithms of
appendix A seem a more promising direction of research.

3. The partition tree algorithms (appendix A) seem to be a reasonably efficient so-
lution to Mannila’s problem in the case of Bernoulli databases. Further study is
required to determine whether the partition tree algorithms actually solve Man-
nila’s problem for this class of databases.

4. Mannila’s key-finding problem for general databases has been linked to a problem
not yet known to be in P but also not yet known to be NP-complete. It seems
that the general case is significantly harder than the Bernoulli case, since no such
linkage exists for the case of Bernoulli databases. Another avenue of further study
would be to investigate the differences between the general and Bernoulli cases
of Mannila’s problem. Such a study would likely be closely tied with 2 (above).

In summary, studying the a-priori algorithms has been fruitful in two ways: first,
it has given us some insight into Mannila’s key-finding problems and the difficulties
with the general case, and second it has led to alternate algorithms which may be very
efficient in the Bernoulli case. We look forward to pursuing some (or all) of the avenues
listed above.

36

A Partition Trees

A.1 Basic Partition Tree Algorithm

What follows is a brief introduction to our work on partition trees, or P-trees. The
idea behind the P-tree algorithm is to use the database instance r in a more integral
fashion to guide the search through the powerset lattice. At each stage in the algorithm,
we partition the database instance (using the same partitioning idea as in quicksort)
according to an attribute. Note that the P-tree algorithms are specialized to the case
of Bernoulli databases, and will not work in the general case in their current form.
Note that we also assume there are no repeated tuples in the database instance r.

We need to introduce some notation. Given a set of tuples of r, s = {t1,...,¢x} C r,
the difference set of s, differSet(s) is the set of attributes that distinguish at least one
pair of tuples. That is:

differSet(s) = {A|3t1,t2 € s such that ¢,[A] # t9[A]}

Note that attributes not in differSet(s) cannot contribute to minimal keys for s.
We define two operations on sets of keys. Let K; and Ky be sets of keys (i.e. sets
of sets of attributes) and define:

Ki 0Ky, ={X|X € KUKy and AY € K; UK> such that Y C X}
Ki® Ky, ={XUY|X € K; and Y € K5 and
AX' e Ky,Y' € Ky such that X'UY'C X UY}

The operation “®” is essentially a minimalizing union, returning the keys in K; and
K5 that do not properly contain any other key in the union. The operation “®” is also
minimalizing. It is an “inner union”, in that the union takes place on the keys from
K, and K, (as opposed to K7 and Ko themselves).

Given these operations, the basic P-tree algorithm is given in figure 9. Note that
the search pattern is similar to the depth-first, bottom-up a-priori algorithm presented
in §3.2. The difference here is that we are partitioning the database instance at each
stage, using the database instance to constrain the search.

Note that in the average case of a randomized Bernoulli database, at each stage in
the recursive call the database will partition pretty much evenly into a left and right
half. Thus the height of the P-tree in this case is bounded by logs(m). The number
of nodes in the tree may still be exponential. The following section indicates some
optimizations and observations that are aimed at reducing (or further characterizing)
the branching factor in P-trees.

37

Function PTREE(Att, s)
Input: Att, the current attribute considered
s, a database partition (s C)
Global variables: R = {A;, ..., A,} a relation schema;
r = {ty,...,t,m} an instance of R
Output: K, the set of minimal keys of r

Base Cases:
if (|s| > 2" 4") // not enough attributes left
return (;
if (S = {tl,tg})
return differSet(s);
if (5= {1})

return U;{A;} where A; > Att

Recursive Case:
res = ;
for A; > Att such that A; € differSet(s) do
left keys = PTREE(A;, 04,-1(5));
right keys = PTREE(A;, 04,-0(5));
res = res O (left keys ® right_keys)

Figure 9: Basic P-tree algorithm

A.2 Optimizations
A.2.1 Communication between Left and Right Partitions

In the unoptimized P-tree algorithm above, the left and right partitions of s are both
fully searched. One optimization is to use the keys returned from the left partition
to guide the search for keys in the right partition. In particular, if all keys returned
from each left partition work for each corresponding right partition, then the algorithm
never has to branch (and thus is linear in n,m and |K]|).

In general, the keys returned from the left partition may fail to be keys for the
right partition. However, since the keys must work for the whole database, we do not
need to search for all the keys of the right partition, we only need to augment the keys
found in the left partition to be keys for the right partition. A bad case occurs where
keys from the left partition are mid-size (and there are a lot of them), but there is
only one large key in the right partition. In this case, a lot of effort has been spent

38

in the left partition needlessly. One direction for further study is thus to determine a
better heuristic for choosing one of the left and right partitions (e.g. the largest one),
and study the effect on the P-tree branching factor of using the keys from the chosen
partition to guide the search in the other partition.

A.2.2 Sampling Partitions for Maximally Overlapping Tuples

Another key optimization can be made if we relax Manilla’s restriction that the key-
finding algorithm must be sub-quadratic in |r| = m. If we allow O(m?) algorithms, we
can incorporate sampling into each node of the P-tree. In particular, given a database
partition s = {t1, ..., tx}, define

maxOverlap(s) ={X C R|3t;,t; € s such that t;,[X]| = ¢;[X]
and for no other pair ¢,,t, is it the case that
falY] = t,[¥] and [X] < Y]}

Thus, maxOverlap(s) contains the subsets of R which some pair of tuples agree on
and which are maximal (no pair of tuples agree on a larger set of attributes). Note
(1) maxOverlap(s) may contain more than one element, and (2) maxOverlap(s) can
be computed in time O(|s|?).

The idea is then to pick an element, X, of maxOverlap(s) at each stage of the P-tree
algorithm and use X to rule out attributes for branching. Note that if an attribute A
is in X, then there is some pair A will not partition. Thus we don’t bother branching
on A. However, A may be useful later, further down in the P-tree, so we must “keep
it around” for possible later branching. The solution is to allow the attribute ordering
0 < A} < ... < A, to change at each P-tree node. Any attributes that were already
branched on (earlier in the P-tree) must remain in that ordering, but “below” the
current node (i.e. attributes greater than the current attribute) we are now allowed
to modify the ordering to branch only on those attributes in X € maxQOverlap(s) (but
keep the other attributes beneath us if we need to branch on them later).

Note the following:

Lemma: If [s| > 3, then maxOverlap(s) contains elements of size n/2.

To see this, note that in a Bernoulli database we can only choose “0” or “1” for each
attribute value. Two tuples can have 0 overlap between them, but as soon as a third
is included it must overlap on at least 1/2 the attributes. Thus, using the maxOverlap
sets to guide the branching will result in 1/2 the branching of a normal P-tree at each
level.

This discussion has been regretably brief, but we look forward to investigating
P-trees in more depth and detail this summer.

39

References

[1]
2]

[3]

[4]
[5]
[6]

[7]

8]
[9]

[10]

[11]

[12]

Agrawal, R., T. Imielinski and A. Swami. “Mining Association rules between sets
of items in large databases. SIGMOD 93, pp. 207-216.

Agrawal, R., and R. Srikant. “Fast algorithms for mining association rules.” VLDB
94, pp. 487-499.

Albrecht M., M. Altus, B. Buchholz, A. Diisterhoft, K. Schewe, and B. Thalheim.
“Die Intelligente Tool Box zum Datenbankenwurf RAD.” Datenbank-Rundbrief,
13, F.G. 2.5 der GI, Kassel (1994).

Beeri, Dowd, Fagin, Statman “On the Structure of Armstrong Relations for Func-
tional Dependencies”, Journal of the ACM, Vol 31., No. 1, Jan 1984, 30-46

Brualdi “Introductory Combinatorics”, second edition, published by North Hol-
land, 1992

Demetrovics, J. “On the Number of Candidate Keys” Information Processing
Letters 7, 6, Oct. 1978, 266-269

Demetrovics, G.O.H. Katona, D. Miklos, O. Seleznjev, and B. Thalheim. “The
Average Length of Keys and Functional Dependencies in (Random) Databases.”
Lecture notes in Computer Science, vol 893, 1995.

Personal communication with Ed Robertson, April 1999.

Klemettinen, M., H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo.
“Finding interesting rules from large sets of discovered association rules.” CIKM
94, pp. 401-408.

Mannila, Heikki and Kari-Jouko Raiha. “Algorithms for Inferring Functional De-
pendencies from Relations.” In Data and Knowledge Engineering 12 (1994), pp.
83-99.

Mannila, Heikki. “Methods and Problems in Data Mining.”, Proceedings of In-
ternational Conference on Database Theory, January 1997, Afrati, Kolaitis (ed.),
Springer-Verlag

Sperner, E. Eine Satz uber Untermensen einer endlichen Menge Math. Zeit 27,
1928, 544-548

40

