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ABSTRACT
This paper describes a portable, machine learning-based ap-
proach to Java optimisation. This approach uses an instance-
based learning scheme to select good transformations drawn
from Pugh’s Unified Transformation Framework[11]. This
approach was implemented and applied to a number of nu-
merical Java benchmarks on two platforms. Using this scheme,
we are able to gain over 70% of the performance improve-
ment found when using an exhaustive iterative search of the
best compiler optimisations. Thus we have a scheme that
gives a high level of portable performance without any ex-
cessive compilations.

General Terms
Languages, Performance

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers, optimisations; I.2.6 [Artificial Intelligence]: Learn-
ing

Keywords
Java, optimisation space, adaptive optimisation, instance-
based learning

1. INTRODUCTION
The demand for ever greater performance has led to an

exponential growth in hardware performance and architec-
ture evolution. Such a rapid rate of architectural change has
placed enormous stress on optimising compiler technology.
However, traditional approaches to compiler optimisations
are based on hardwired static analysis and transformation
which can no longer be used in a computing environment
that is continually changing. What is required is an ap-
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proach which evolves and adapts to applications and archi-
tectural change, without sacrificing performance.

This paper describes a machine learning-based approach
to Java optimisation which utilises prior knowledge of suc-
cessful optimisation. Java is a highly portable language yet
this is often at the cost of poor performance [10][22]. As
our approach automatically builds an optimisation strategy
based on platform-specific experience, we now have a com-
piler framework that allows portable performance as well.
Unlike feedback-directed and iterative compilation [12] ap-
proaches, we do not require multiple compilations and runs
of a particular program in order to find the best optimisa-
tion. Rather, we record the execution time behaviour of each
program with respect to selected transformations when it is
executed. As this information is accumulated over time, our
knowledge of how programs, transformations and this par-
ticular platform interact grows, allowing a compiler strategy
that adapts and improves with time.

Our approach uses instance-based learning within Pugh’s
Unified Transformation Framework [11]. This framework
provides a systematic description of a large optimisation
space that includes most loop and array transformations.
Using this scheme we are able to gain over 70% of the
performance improvement found when using an exhaustive
feedback-directed search using iterative compilation. Thus
we have a scheme that gives a high level of portable perfor-
mance without any excessive compilations.

The outline of this paper is as follows. Section 2 provides a
motivating example and section 3 describes the features used
by the learning technique. Section 4 presents the instance-
based learning optimisation approach. Section 5 evaluates
the performance of this approach, followed by a review of
related work in section 6 and some concluding remarks.

2. MOTIVATION AND EXAMPLE
The basic idea is to make a decision on how to optimise a

particular program based on previous experience. Each time
a program is optimised, the transformations applied and the
resulting performance are stored along with a description of
the program. On encountering a new program to optimise,
the database of previous cases are searched for similar pro-
grams. Transformations that were beneficial to similar pro-
grams are then considered for the current program at hand.
This idea has long been used in static compilation analysis
which usually examines a few key features of a program to
see if it fits a model for which an optimisation is known.

To illustrate this, consider the highly simplified example



A B
for (i=0; i<100; i++) {

0: a[i] *= b[i];

1: c[i] += d;

}

for (i=0; i<100; i++)

for (j=0; j<100; j++) {

0: a[i][j] += b[i][j];

1: c[i][j] *= a[i][j+1];

}

Features: Features:
lnd=1; a=3; r=3; s=2; c=false lnd=2; a=3; r=4; s=2; c=true

Transformation 0: (reversal) Transformation 0: (skewing)
T0: [i]→[0,-i,0] T0: [i,j]→[0,i,0,i+j,0]
T1: [i]→[0,-i,1] T1: [i,j]→[0,i,0,i+j,1]
Speedup: 0.95 Speedup: 0.87

Transformation 1: (statement reordering) Transformation 1: (tiling with 20 and 15)
T0:[i]→[0,i,1] T0:[i,j]→[0,20*(i div 20),0,15*(j div 15),0,i,0,j,0]
T1:[i]→[0,i,0] T1:[i,j]→[0,20*(i div 20),0,15*(j div 15),0,i,0,j,1]
Speedup: 1.04 Speedup: 1.15

C D
for (i=1; i<100; i++)

for (j=1; j<100; j++) {

0: a[i][j] += b;

1: a[i][j] *= c[j-1]+c[j]+d[i][j];

}

for (i=1; i<100; i++)

for (j=1; j<100; j++) {

0: a[i][j] /= b[i][j];

1: b[i][j] *= a[i][j-1]+a[i][j+1];

}

Features: Features:
lnd=2; a=3; r=5; s=2; c=false lnd=2, a=2; r=5; s=2; c=true

Transformation 0: (reversal)
T0:[i,j]→[0,i,0,-j,0]
T1:[i,j]→[0,i,0,-j,1]
Speedup: 0.92

Transformation 1: (distribution)
T0:[i,j]→[0,i,0,j,0]
T1:[i,j]→[1,i,0,j,0]
Speedup: 1.16

Figure 1: This figure shows four programs (A, B, C and D) together with their program features. These
features are lnd (loop nest depth), a (number of arrays used), r (number of array references used), s (number
of statements) and c (containing dependencies). The transformations applied and the speedup obtained are
shown for A,B and C. The compiler must now determine the transformation to apply to D.



shown in Figure 1. The four main boxes show the code and
details for four simple loops A, B, C and D. A, B and C have
already been executed by the system and their performance
noted for different transformations. Given this information,
the question is how should we transform program D?

To do this we must first determine which program is most
similar to D. Each program has a small list of features
summarising key characteristics. In our example just five
features are shown for each loop to simplify explanation:
lnd is the loop nest depth, a the number of distinct arrays,
r the number of array references, s the number of statements
and c a flag denoting whether there are flow dependencies.

Comparisons are made between D and the three loops A,
B and C. D matches A on just one feature s = 2, i.e. both
have two statements in their loop bodies. B and C also
have two statements in their loop bodies. In addition, like
D, they both are double nested loops (lnd(B) = lnd(C) =
lnd(D) = 2). In deciding between B and C, B matches D in
another feature c = true (i.e. there exists flow dependencies
between the two statements in their corresponding loops),
whilst C matches D in feature r = 5 (i.e. both contains five
array references in the loop body). The flow dependency
feature, c, is considered more important and we therefore
we assign it greater weight. Hence B is considered the most
similar program to D among the three.

We consider the two transformations applied to B and
the resulting speedup. (The details of the transformation
representation are given in section 3). The first transforma-
tion, skewing, has a speedup of 0.87, a slowdown, while the
second transformation, tiling, has a speedup of 1.15. We
therefore apply this tiling transformation to D.

This is a highly simplified example, where the program
segments are just simple loops. However, this approach can
be readily applied to general programs and sets of transfor-
mations.

The key characteristic of this approach is that optimisa-
tion decisions are based on real platform performance rather
than a static model or compiler heuristic. Furthermore,
as the number of programs encountered increases, so will
the database of examples improving the performance of the
scheme. The main technical questions are: how to describe
a program in a manner that is useful for optimisation; how
can we determine if one program is similar to another and
how is an appropriate transformation selected? These are
addressed in the following two sections.

3. FEATURES
A learning-based compiler has to correlate programs, the

optimisations applied and the resulting performance improve-
ment in a systematic manner. In machine learning terms,
the inputs or features of the problem are a description of
the program and transformation with the output being ex-
ecution time. The problem features have to be formally
specified to allow the application of instance-based learn-
ing. These features not only reveal the important details of
the program, but also help a compiler to classify for later
retrieval, as shown in [16][17].

3.1 Program features
The most suitable program abstraction depends on cir-

cumstances. Call-graphs, for instance, may be appropriate
for an inlining-based optimisation. As we focus on array-
based Java applications, it makes sense to concentrate on

the loop and array structure of the program. In this paper
we consider an abridged set of features used in [16], as listed
below.

1. memory access

(a) number of array references

(b) number of arrays used

(c) linear array access

(d) array elements reuses across iteration

(e) uniform data dependency

2. loop structure

(a) loop nest depth

(b) loop size (inner-most)

(c) perfectly nested loop(s)

(d) loop step(s)

(e) abnormal exit(s)

3. code

(a) number of arithmetic operations

(b) number of method calls

(c) conditional control structure in the loop

(d) number of statements in the loop nest

These features can be readily obtained from either the
program representation used in Pugh’s Unified Transforma-
tion Framework described below or most compiler internal
representations of a program. Our compiler automatically
extracts these features from the Java program.

3.2 Transformations
Pugh’s Unified Transformation Framework (UTF) [11] pro-

vides a uniform and systematic representation of iteration
reordering transformations and their arbitrary combinations.
It encompasses nearly all high level iteration reordering trans-
formations found in the literature and state-of-the-art com-
mercial compilers. Most importantly, it has a formal mech-
anism to represent and reason about each transformation
and their arbitrary combinations, although no dataflow op-
timisation is included.

UTF considers a statement’s iteration space as the set
of iterations for which the statement will be executed. All
the points in the space will be executed in a lexicographic
order. Therefore, a loop reordering transformation or trans-
formation sequence can be considered as a mapping from
the old iteration space to a new one. For each statement in
an n-nested loop, its mapping is expressed[11] as below:

T : [i0, ..., im] → [f0, ..., fn]|C (1)

where i0,..., im are iteration variables, f0, ... fn are func-
tions (usually quasi-affine functions) of iteration variables,
and C is an optional restriction. It represents the fact that,
if condition C is true, iteration [i0, ..., im] in the original
iteration space is mapped to iteration [f0, ..., fn] in the new
iteration space.

More specifically, a mapping has n/2 loop components
(quasi-affine functions of iteration variables) in odd-numbered
levels, and n/2+1 syntactic components (integer constants)



for (i=0; i<100; i++)

for (j=0; j<100; j++) {

0: a[i][j] += b;

}

for (i=0; i<100; i++)

for (j=0; j<100; j++) {

1: a[i][j] *= c[j-1]+c[j]+d[i][j];

}

Figure 2: Program C after loop distribution

in even-numbered levels. For example, consider program C

in Figure 1. The second transformation is of the form:

T0 : [i, j] → [0, i, 0, j, 0], T1 : [i, j] → [1, i, 0, j, 0]

Each of the two mappings represents what happens to the
two statements 0 and 1 after transformation with respect to
the iterators i and j. The integer entries on the right hand
side represent the syntactic structure after transformation.
As they differ in the first entry 0 vs 1, this means that they
do not share any outer iterators i.e. they have been loop
distributed as shown in Figure 2. For further details on this
notation, please see [11].

The variety within the mapping notation results in an op-
timisation space, in which each point stands for an arbitrary
combination of iteration reordering transformations in a uni-
fied manner. This space is significant and large enough to
contain useful minima points. The learning-based compiler
is to explore this space in its search for the best points. The
program features and transformation representation provide
a formal, succinct method of describing the task of program
optimisation in terms suitable for general machine learn-
ing. The next section describes how such a representation
is used.

4. INSTANCE-BASED LEARNING OPTIMI-
SATION (IBLO)

Instance-based learning [18] models a complex target func-
tion by a collection of less complex approximations. In the
learning-based compiler case, when a new program is en-
countered, the instance-based learning optimisation (IBLO)
approach identifies programs closest to it from previous eval-
uations. It then selects a suitable transformation based on
prior information about them, before applying it to the new
program. The three main tasks of IBLO are therefore clas-
sification, knowledge storage and transformation selection.

4.1 Classification
Classification is used to both record information about a

program for later use and as means to detect similar pre-
vious cases when trying to optimise the current program.
It is based on the observation that programs sharing com-
mon characteristics usually benefit from the same transfor-
mation(s)[14][15][16].

IBLO defines the similarity of a given program P to a
given category C as in Equation (1).

similarity(P,C) =
n�

i=0

(wi × match(fi(P ), fi(C))) (2)

where n+1 is the number of program features, wi are
weights assigned to these features, fi(P ) and fi(C) are the
values of feature fi for P and C respectively. match(a, b)
is 1 if a equals b, 0 otherwise.

If, similarity(P,C) = � n

i=0
wi, then P belongs to category

C, otherwise, P is similar to C. Clearly, the higher the value
of similarity(P,C), the more similar P is to C, and vice versa.

For example, consider the four code segments in Figure
1, if equal weight 1 is given to all 5 features, we have simi-
larity(A,D)=1, similarity(B,D)=3, from which we conclude
that B is more similar to D than A is. If there is another
program E whose features are lnd=2, a=2, r=5, s=2 and
c=true, we have similarity(D,E)=5, i.e. D and E belong to
the same category.

Similarity between two programs and two categories are
defined in a similar manner.

4.2 Knowledge storage
For each category, the compiler records all the transforma-

tions that have been applied to a program of this category as
well as their results. They are grouped into areas according
to their similarities. For instance, loop unrolling transforma-
tions differing only in the unrolling factor will be naturally
grouped together. Each area stores information about the
use of a specific transformation or transformation sequence.
For example, one area is created for loop tiling, one for loop
unrolling and another for transformation sequence of tiling
and unrolling. Each point in the area stands for a transfor-
mation or transformation sequence in one program of this
category, alone with a set of parameters and the correspond-
ing runtime feedback.

This compiler database is currently implemented as a hash
table which enables a quick program comparison with low
overhead. If space utilisation is at a premium, only a fixed
number of positive transformations that bring performance
improvement are stored.

A category will not be created and stored until the com-
piler has encountered a candidate programs; this also applies
to areas within each category. It is worth noting that the
maximum number of categories depends on the number of
program features as well as their values, rather than the
number of training examples.

This storage approach is simple and efficient. It provides
a fast and low-overhead classification based on a hash func-
tion of program features. This approach can be further im-
proved via storing information selectively, merging similar
categories, storing only the model built on the training ex-
amples when necessary, or deleting the least useful infor-
mation periodically. If the amount of data were to grow
excessively, it may need to be replaced by a more sophisti-
cated data management mechanism, but this is beyond the
scope of this paper.

4.3 Transformation selection
In order to select an appropriate transformation for a new

program P, IBLO first locates the category P belongs to, or
is most similar to, using the above classification mechanism.
If there exists such a category C, the transformation for P
will be chosen directly from its prior experience with pro-
grams in C. Otherwise, IBLO will find the most similar
categories to base its decision on.

For a given category, the probability that a transformation
provides a performance improvement to a program can be



considered as a function defined on the optimisation space.
According to the k -nearest neighbour algorithm[18], for any
point in this space, its performance improvement is deter-
mined by its neighbouring points. If the majority of them
improve performance, it is statistically likely that the trans-
formation this point represents can also bring performance
improvement. Thus the more crowded an area a point is in,
the more likely the transformation it stands for can improve
the performance of a program in this category.

Given that different transformations have different perfor-
mance impact to different programs, the significance S of a
given area X is simply defined as below:

S(X) =
1

m + 1

m�
i=0

f(xi) (3)

where X consists of a set of transformation points x0, x1,
... xm and f is the performance improvement of each point.

In the cases where more than one category is chosen for
the given program, a virtual category is constructed whose
areas are obtained by merging the corresponding areas of
these categories. For example, if, for a new program, IBLO
finds two most similar categories C0 (with 2 areas t and u)
and C1 (with 2 areas u and s), A virtual category will be
constructed with 3 areas t = C0.t, u = C0.u � C1.u, and s

= C1.s.
IBLO then selects a transformation from the chosen cat-

egory by dividing area X evenly into a number of sub-areas
in order to find the most crowded sub-area. This is repeated
until the densest sub-area contains a small number (e.g 5 or
6) of points, from which the transformation is selected ran-
domly. This heuristic random selection prevents overfitting
[18] of the the optimisation space. Figure 3 demonstrates
how this algorithm works. Suppose, for program D in Fig-
ure 1, the algorithm locates from its most similar program B
a category, whose most crowded area X is a two-dimensional
area corresponding to schedules of tiling the double-nested
loop with various tile size combinations. X is divided evenly
into four subareas which have 8, 3, 2 and 1 point respec-
tively, as shown on the left. The most crowded subarea X0
is chosen for further division and the result is shown on the
right. The resulting subareas X00, X01, X02 and X03 con-
tain 2, 1, 2 and 3 points respectively. No more division is
needed as each subarea now contains only a small number
of points. Because X03 is the most crowded of all, the al-
gorithm randomly selects one from these 3 points and uses
the corresponding tiling schedule as the schedule for D.

4.4 Strategy
In order to optimise a new program effectively, there should

be sufficient prior knowledge of previous optimisations on
which to base a judgment. There are many ways this can
be achieved. One reasonable approach would be to initially
allow an existing high level restructurer to optimise each
new program and to record its behaviour. After a suitable
number of cases were optimised, the learning approach could
be applied. This has the advantage that if the existing ap-
proach is reasonable, no time is wasted selecting transfor-
mations that incur significant slowdown. The main problem
with this approach is that although a wide range of different
programs will be encountered, the transformation selection
is hard-wired into the restructurer preventing a large enough
dataset to evaluate transformation behaviour.
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Figure 3: Example of transformation selection al-
gorithm: an area X (left) is evenly divided into
4 subareas, among which X0 is the most crowded
one. Therefore X0 is further divided into 4 subar-
eas, from which the transformation is chosen from
the most crowded one, i.e. X03.

An alternative approach is to try many transformations
on a set of suitably chosen programs or training examples.
The transformations could be selected randomly, or by a
range of competing pre-existing analyses. This has the ben-
efit of exploring the program and transformation space at
the expense of potentially many worthless optimisations.
However, as the training examples were suitably short in
execution time, this learning phase could be considered as
part of porting the system and is a one off cost.

We adopt this later scheme and use IBLO in a continuous
process which allows adaptation to system upgrade. During
the initial training phase, various transformations are ran-
domly selected and applied to a set of programs, and the
results are used as training examples. Later, when a new
program is encountered, a transformation will be selected
and applied, the result of which is used as a new training
example.

4.5 Discussion
It is worth noting that once trained, IBLO is easy and

quick. It simply extracts program features from the pro-
gram, makes comparisons to locate the best category (con-
stant time is needed with a hash table), splits the target
area for several rounds, before selecting a transformation
from the most crowded area.

Although IBLO can automatically adapt to a new ma-
chine, it does not apply the heuristics learned on one ma-
chine when optimising for another. To allow this, we would
need to introduce a set of features that sufficiently charac-
terise the architecture.

Once IBLO has been trained, it applies the learned heuris-
tic to each program encountered but does not update its
heuristic once training has been completed. Transforma-
tions for a new program are always selected from prior ex-
amples of the initial phase and do not utilise information
about programs encountered after training. For instance, if
IBLO has not learned the combined transformation of loop
tiling and unrolling during its training phase, it will never
provide such a transformation afterward. Therefore, the set
of available transformations remains intact although the set
of program categories may keep increasing. This drawback
of IBLO could be amended by a hybrid approach which in-
tegrates IBLO and heuristic random search[15], so that the



Program From
kernel3 Livermore
kernel5 Livermore
kernel6 Livermore
kernel7 Livermore
kernel8 Livermore
kernel9 Livermore
kernel10 Livermore
kernel11 Livermore
kernel12 Livermore
kernel19 Livermore
doIteration JGF::euler::doIteration(...)
runF JGF::euler::calcutateF(..)
runG JGF::euler::calculateG(..)
runR JGF::euler::calcutateR(..)
runS JGF::euler::calculateStateVar(..)
mm 300x300 matrix multiplication,

also kernel21 of Livermore

Figure 4: Summary of Benchmarks Used

compiler can consider not only the transformation chosen
by IBLO, but also its variants with different parameters or
with additional transformations.

5. EVALUATION
The learning technique described in this paper was imple-

mented in a Java restructuring compiler and evaluated on
two separate platforms across a range of benchmarks. The
experimental method used and the results for each platform
are described below.

5.1 Method
The first platform contains a Celeron processor (533MHz)

and 128M RAM with the Java 2 Runtime Environment
and Java Hotspot Client VM (1.3.0) running under Redhat
Linux 6.3. The second platform again has the Java 2 Run-
time Environment with Java Hotspot Client VM (1.4.1.1 01)
but contains a PentiumPro (200MHz) with 96M RAM run-
ning MS-Windows 2000.

Sixteen methods were chosen from the well known Liver-
more benchmark and Java Grande Forum Benchmark Suite
(JGF)[6] for evaluation. They are summarised in Figure 4.
The experiments were conducted on these sixteen bench-
marks in a cross-validation[18] manner, a typical method of
evaluating machine learning approaches. This means that
for each benchmark, the system has previously seen and op-
timised the other fifteen benchmarks which act as training
examples. This mimics the behaviour in a live system where
an optimisation is based on previous experience.

Initially, the training examples were classified into dif-
ferent categories. Figure 5 summarises the resulting cat-
egories as well as their similarities. Later when consider-
ing a program to be optimised, if the category it belongs
to contains other programs, IBLO simply chooses them as
its starting point for selecting an appropriate transforma-
tion. Otherwise IBLO chooses as its source of transforma-
tion three benchmarks selected from similar categories which
have most benefited from previous optimisations.

For example, if we wish to optimise kernel3, it belongs to
category 0 which contains another program kernel5, so the

Category Programs included Most similar
categories

0 kernel3, kernel5 6, 7, 11
1 kernel6 6
2 kernel7 4
3 kernel8 8, 9, 10
4 kernel9 2, 5, 7
5 kernel10 4
6 kernel11, kernel12 0, 7
7 kernel19 0, 6
8 doIteration 10
9 runF, runG, runS 4
10 runR 8
11 mm 9

Figure 5: Categories, benchmarks and the most sim-
ilar categories

Program Transformation source
kernel3 kernel5
kernel5 kernel3
kernel6 kernel11, kernel12
kernel7 kernel9
kernel8 runF, runG, doIteration
kernel9 kernel7, kernel10, kernel19
kernel10 kernel9
kernel11 kernel12
kernel12 kernel11
kernel19 kernel3, kernel5, kernel11
doIteration runR
runF runG, runS
runG runF, runS
runR doIteration
runS runF, runG
mm runF, runG, runS

Figure 6: Benchmarks and their transformation
sources

transformation for kernel3 is based on kernel5. However,
if we are optimising kernel9 (category 4), it has no other
program in its category, thus we select three programs from
categories 2, 5 and 7, i.e kernel7, kernel10 and kernel19.
Figure. 6 summarises the transformation sources for these
sixteen benchmarks in our cross-validation experiment.

Once one or more programs have been selected as suitable
candidates to base an optimisation on, a transformation is
selected as described in section 4.3. In this experiment, each
of these training examples has previously been optimised
and executed 100 times using a simple search strategy[15]
with the resulting speedups recorded. A transformation is
therefore selected from the area of the transformation space
giving the best prior performance.

5.2 Linux
The experimental results for the Linux platform are shown

in Figure 7 and 8. The Average column shows the speedup
obtained on average when using IBLO 1. In every case speedup

1As the final selection of transformation is stochastic, aver-
age behaviour is presented



Program IBLO Search
Best Average SD Best

kernel3 1.04 1.03 0.0035 1.09
kernel5 1.09 1.07 0.0106 1.14
kernel6 1.20 1.16 0.0111 1.17
kernel7 1.04 1.02 0.0075 1.06
kernel8 1.29 1.24 0.0255 1.29
kernel9 1.09 1.07 0.0172 1.21
kernel10 1.09 1.06 0.0165 1.13
kernel11 1.41 1.33 0.0604 1.45
kernel12 1.07 1.03 0.0258 1.08
kernel19 1.07 1.03 0.0258 1.07
doIteration 1.05 1.04 0.0053 1.06
runF 1.05 1.03 0.0072 1.07
runG 1.08 1.07 0.0049 1.09
runR 1.09 1.05 0.0096 1.09
runS 1.01 1.01 0.0020 1.02
mm 1.69 1.35 0.0784 1.21
Average 1.15 1.10 0.0195 1.14

Figure 7: Comparison between heuristic search and
learning in Linux, which shows that on average, 71%
of the performance improvement found via the iter-
ative search can be obtained by IBLO within just
one attempt.

is achieved. Given the small standard deviation of perfor-
mance (as shown in the SD column), this demonstrates that
a learning technique that selects an optimisation based on
prior knowledge is capable of delivering consistent perfor-
mance improvement. However, there are still some bench-
marks which IBLO fails to provide significant performance
improvement, for instance, kernel3, kernel7, kernel12, ker-
nel19, runF and runR. Yet higher performance is available
as shown in the Best column. For example, kernel12 has a
modest average performance improvement, 1.03, but IBLO
can select a transformation with double the performance,
1.07.

We wish to compare the performance of IBLO against
other approaches. As there are no commercially available
Java restructurers, we compare the algorithm against the
extensive iterative search of the optimisation space using
the simple search strategy[15]. This strategy selects trans-
formation in a random manner, favouring simple and short
transformation(s) than complex and longer ones. It gives
excellent performance but at the cost of potentially 1000s of
compile+run cycles, making it prohibitively expensive. It is
unlikely that any compiler would approach the performance
of such an extensive scheme and thus this is a rigorous test
of our approach. The results of such a search are given in the
column labelled Search Best where the best speedup found
after 1000 evaluations is presented. The results show that,
in six cases, IBLO is capable of achieving more than 85%
of the performance of the exhaustive search and over 60%
for three others with just one compilation. On average, the
search technique gives a speedup of 1.14 and IBLO 1.10.
Thus, if properly trained, IBLO is capable of achieving over
70% of the performance of the extensive search with just
one compilation. Furthermore, if we examine the best per-
formance of IBLO rather than the average, we see that it
can outperform the search-based approach in some cases.

Figure 8: In Linux, IBLO achieves similar results to
the heuristic search algorithm

5.3 Windows
The experimental results in Windows are presented in Fig-

ure 9 and 10, which show that IBLO is again able to find
performance improvement in the majority of cases. How-
ever, unlike Linux, there are a few cases where IBLO is
unable on average to find improvement; even the best trans-
formation fails to improve that of kernel19, runG and runS.
If we examine the exhaustive search performance, we also
see that it is unable to find a significant improvement in
the majority of cases. Thus IBLO only fails to provide a
significant improvement in those cases where there is none
available.

The results show that, in eight cases, IBLO is capable
of achieving more than 85% of the performance of the ex-
haustive search and over 60% for three others with just one
compilation. Overall, it finds 90% of the available perfor-
mance.

5.4 Comparison between Linux and Windows
IBLO achieves an average speedup of 1.10 in Linux and

1.09 in Windows. In some cases there is a significant differ-
ence in the performance obtained. In the case of kernel9, for
example, there is a difference of 0.28 (1.35 vs 1.07). IBLO
achieves significantly higher speedup for kernel3, kernel9 and
kernel12 under Windows than Linux. For the remaining four
(kernel6, kernel8, kernel11 and mm), the average speedup is
higher in Linux than in Windows. We believe this difference
in performance improvement between these two platforms is
mainly due to that the relatively cost of memory latency on
Linux is greater and benefit more from cache restructuring
based optimisations. However, on average the performance
improvements are remarkably similar and show the general
robustness of our technique. They show that, if properly
trained, IBLO is able to deliver significant improvement rel-
ative to an exhaustive search with just one compilation.



Program IBLO Search
Best Average SD Best

kernel3 1.17 1.17 0.0000 1.18
kernel5 1.10 1.10 0.0000 1.10
kernel6 1.03 0.98 0.0041 1.09
kernel7 1.05 1.05 0.0000 1.05
kernel8 1.13 1.12 0.0050 1.14
kernel9 1.35 1.35 0.0020 1.37
kernel10 1.07 1.06 0.0028 1.06
kernel11 1.18 1.18 0.0000 1.18
kernel12 1.18 1.18 0.0000 1.19
kernel19 1.00 0.99 0.0040 1.01
doIteration 1.03 1.03 0.0028 1.05
runF 1.01 1.00 0.0035 1.02
runG 1.00 0.99 0.0040 1.01
runR 1.09 1.07 0.0087 1.09
runS 0.99 0.99 0.0000 1.01
mm 1.11 1.10 0.0020 1.14
Average 1.09 1.09 0.0024 1.10

Figure 9: Comparison between heuristic search and
learning in Windows, which shows that, on average,
90% of the performance improvement found by the
iterative search can be obtained by IBLO within just
one attempt.

6. RELATED WORK
There have been a number of isolated attempts at em-

ploying machine learning within compiler research. Most of
them aim at solving specific optimisation problems instead
of steering optimising compiler at system-level. They vary
in both cost and efficiency.

A greedy local instruction scheduling approach iteratively
selects the best instruction from those available. This task is
considered in [19] as a supervised process of learning prefer-
ence relations over triples of partial schedules. A number of
classic machine learning approaches are applied in [19]. This
achieves good results though it relies on the hand coding of
processor specific features that would not port to other plat-
forms. It avoids the more difficult cyclic code structures and
could not improve its performance over time.

In [17] a simple learning scheme has been used to deter-
mine whether unrolling is a useful transformation for any
given loop. Although general loops are considered, the ap-
proach effectively models decisions as linear hyperplanes in
a transformations space. Training cases sharing common
characteristics are grouped into classes. Each class is then
labelled either positive if unrolling improves performance on
the majority of the class, or negative otherwise. In this way,
the learning task is cast into building a decision tree, each
leaf of which represents an unrolling heuristic and the corre-
sponding test on values of loop features. This approach has
a main drawback in that it works for simple single transfor-
mations with polynomial behaviour but may fail for more
complex coupled spaces [12].

Many digital signal processing transforms can be repre-
sented as matrices. Different factorisations of these matrices
vary significantly in runtime performance. They are rep-
resented as split trees in SPIRAL[23, 24], which explores
the factorisation space of the Walsh Hadamard Transform
(WHT) with a stochastic evolutionary algorithm. Reinforce-

Figure 10: IBLO achieves similar results to heuristic
searchin Windows

ment learning is used in [23] to learn to construct fast WHT
formulae for many data sizes after training on one data size.
This achievement comes at the cost of checking a large num-
ber of formulae, and its applicability has not been confirmed
on other DSP transforms.

Genetic algorithm[8] or stochastic approaches are known
to be effective machine learning approaches. For instance,
[7] tries to solve the phase order problem by selecting trans-
formations from a pool and applying them in a global man-
ner. The selection is steered by an adaptive genetic algo-
rithm which uses a probabilistic model built on runtime
feedback. Genetic programming, a particular form of genetic
algorithm, is used in [25, 26] to optimise priority functions
which a compiler uses to decide the best optimisation heuris-
tics. Another example of genetic algorithms is in the case
of instruction scheduling. Many list scheduling approaches
assign to each node a weighted sum of key parameters as
its priority. 24 parameters are used in [4] for a genetic al-
gorithm to search for the optimal weight combination for
a given scheduler/architecture pair. The results show that
genetic algorithm can bring adaptability to the instruction
scheduler.

Case-based reasoning has been used in [16] to complement
existing compilers and automatic parallelisers and help users
with the performance tuning process. It is very similar in
spirit to IBLO in that it uses a set of code properties as
indices of loop structure and code patterns in order to iden-
tify potential optimisation opportunities. However, unlike
IBLO, it is not fully automatic. The compiler writer needs
to specify in advance the transformations and the condi-
tions under which they should be applied. In addition, no
new knowledge can be obtained from runtime feedback. Fi-
nally in the area of machine learning, reinforcement learning
is used in [3] to adaptively optimise the performance of con-
ventional garbage collection techniques, based on memory
allocation information of the running application.



Closely related to learning the best optimisation is the
task of searching for the best. In iterative compilation [12]
the compiler tries to optimise a program by repeatedly ex-
ecuting different versions of it and using the feedback to
decide the next optimisation attempt. Various approaches
have been developed to explore different optimisation spaces,
for instance, genetic algorithm [7][20], tree-/grid-based search
[12][21], phasewise exhaustive search and random search [9],
etc. These approaches vary in the efficiency but can require
hundreds of iterations to gain a significant performance im-
provement. A compiler framework is presented in [13] in
which program information can be collected and stored in a
unified, low-level and typed representation in order to enable
life-long code optimisation. The machine learning approach
described in this paper would naturally fit into this scheme.

Finally, Java optimisation can be achieved via an efficient
virtual machine [2], or optimisation techniques such as JIT-
compilation[1] and parallelisation[5]. The virtual machine
approach is inevitably architecture-specific, parallelisation
approach also relies on architectural support, whilst JIT
compilation considers only light-weighted optimisations.

7. CONCLUSIONS
This paper has described a machine learning based ap-

proach to optimising Java programs. It has shown that
instance-based learning is a viable automatic approach to
building an optimising strategy. It is inherently portable,
adapting to any platform based on actual machine perfor-
mance rather than static analysis. It has shown that, if
properly trained (a modest fixed one-off training cost), such
an approach can achieve over 70% of the performance avail-
able when using aggressive exhaustive search approaches.

Due to the program features used and the high-level trans-
formations considered by UTF, IBLO is now restricted to
loop- and array-intensive Java programs. With the help of
a powerful compiler framework and other enhancements dis-
cussed below, it is believed applicable to generic programs.
Furthermore, with the experience accumulated during and
after the training period, it is believed able to optimise dif-
ficult real world applications over time.

Future work will investigate optimisations outside the UTF
framework and consider more general Java programs. More
program and architecture features will be included to exam-
ine IBLO’s applicability across various platforms. In order
to put IBLO into practice, we shall also consider training
example selection in order to balance the tradeoff between
the training set size and the efficiency of IBLO. We will also
examine other machine learning approaches such as Gaus-
sian process prediction as an alternative means of predicting
performance.
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