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a b s t r a c t

With the inclusion of actuators on wireless nodes, Wireless Sensor Networks (WSNs) are starting to
change from sense-and-report platforms to sense-and-react platforms. Applications for such platforms
are characterised by actuator nodes that are able to react to data collected by sensor nodes. Sensor and
actuator nodes use a variety of interactions, for example, intra-node, inter-node (1-hop to n-hop), and
global (all nodes). As a result, the functionality that coordinates the activities of the different nodes
towards common goals has to be efficiently distributed in the WSN itself. In addition, multiple sense-
and-react applications are being deployed within the same WSN, with each application characterised by
different requirements and constraints. The design and implementation of these applications is becoming
an increasingly complex task that would benefit from new approaches.

In this article, we describe a novel middleware that separates the interaction behaviour of sense-and-
react WSN applications from the components that implement the basic functionalities (sensing, reacting,
computation, storage). This is achieved using policies that govern the interaction behaviour of sense-and-

react WSN applications. The middleware is composed of a Policy Manager, a Publish/Subscribe Broker,
and a set of Extensions that reside on each node. The broker manages subscription information, while
extensions provide mechanisms orthogonal to the publish/subscribe core including diffusion protocols,
data communication protocols, and data encryption. We conduct a detailed evaluation of the performance

ow t
catio
of our framework and sh
explicit and flexible appli

. Introduction

Early applications developed for Wireless Sensor Networks
WSNs) were technically very simple. Because of the limited com-
utational power of the sensors at that time, WSNs were mainly
sed for collecting data about the sensed environment. The data
as then routed to a central sink device with more computational
ower (e.g., PDAs and laptops) for processing. Therefore, the func-
ionality deployed in each node was dedicated to collect the sensing
ata and to deliver the data to the sink.

With the advent of actuator nodes and the development of sen-
or nodes with more computational power, it is now possible to
mbed more complex functionality. For such WSNs, the sense-and-

eact application paradigm has emerged characterised by the fact
hat the data gathered by the sensing nodes can be used directly by
ctuator nodes that can react and change the sensed environment
Deshpande et al., 2005). Because of the more complex interactions

� A preliminary version of this paper appeared in CBSE 08.
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hat the framework is close to TinyOS in performance but leads to more
n designs.

© 2010 Elsevier Inc. All rights reserved.

between nodes and the stringent physical limitations that charac-
terise WSNs (i.e., in terms of power management) sense-and-react
applications are often developed in an ad-hoc manner optimised for
the specific environment of deployment. The code of such applica-
tions does not only deal with its basic functionality (i.e., collecting
data and reacting to it) but it is intertwined with details to deal with
other concerns such as data distribution and resource utilisation.
Moreover, it is becoming common to have multiple sense-and-
react applications deployed within the same WSN sharing some
of its nodes (i.e., an air conditioning application and a fire alarm
application sharing the same nodes for sensing the temperature).
As a result, flexibility, maintainability, and reusability properties
of the code for programming such applications are compromised
(Intanagonwiwat et al., 2003; Madden et al., 2005).

There is a need for a more rigorous software engineering
approach in the development of sense-and-react applications. As
advocated by the Separation of Concerns (SoC) principle, the core
functionality of an application should be specified in isolation from
details regarding extra-functional concerns (Dijkstra, 1982; Parnas,

1972). Typically, the code for extra-functional concerns is cus-
tomised and optimised for the specific environment where the
overall application is deployed. In separating the application func-
tionality from such details makes the code less prone to errors, and
leads to greater reuse and easier maintenance.

dx.doi.org/10.1016/j.jss.2010.10.023
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
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The first step in order to realise the SoC principle is to provide a
rogramming unit for encapsulating the application functionality.
he component-based approach provides an efficient program-
ing abstraction and encapsulation that is applicable to the WSN

omain (Hill et al., 2000). Application components can be used as
nit of functionality and fulfill the functionality requirements of
he node where they are deployed. For instance, a component can
e programmed for sensing data from the environment while com-
onents deployed on actuator nodes gather the data and react
ccordingly. The second step required is to add a layer of abstraction
hat can be used for coordinating the functionality of the application
omponents and to provide the required mechanisms for handling
xtra-functional concerns. However, the typical abstraction pro-
ided in WSN is that of the operation system TinyOS (Levis et al.,
005) to hide to the application layer low level details.

With its loosely coupled, event-driven messaging services, the
ublish/subscribe paradigm (hereafter referred to as pub/sub)
ffers to applications simple yet powerful primitives for commu-
ication. Although the pub/sub paradigm is well understood and
idely used, there are several aspects concerning notification dis-

ribution, delivery and security that can be implemented using
ifferent approaches. Each approach can be characterised by prop-
rties that satisfy the requirements of specific application domains
nd at the same time each imposes a set of requirements in terms
f resource utilisation. For instance, for a critical application it is
cceptable to use a reliable delivery protocol even if it requires
ore resources in terms of energy consumption and computa-

ional overhead. To make the implementation of a pub/sub system
exible enough to be used in application domains with different
equirements it is necessary that the implementation is able to offer
ultiple approaches to satisfy the needs of each target domain.
oreover, because several applications from different domains can

e deployed at the same time, it is desirable that the same instance
f such a pub/sub system can support several approaches to satisfy
he requirements of the deployed applications.

In this article, we describe a novel component-based frame-
ork for sense-and-react WSN applications realised through a
ub/sub middleware where extra-functional concerns are defined
eparately from application components.1 In particular, applica-
ion developers specify the interaction behaviours of components
nd which mechanisms are needed in their applications in terms of
olicies. Policies are rules that govern the behaviour of a system and
re an effective solution for separating the application functionality
rom low-level mechanisms (Sloman et al., 1993). The framework
ses an Event-State-Condition-Action policy model where poli-
ies connect application components to middleware components
rthogonally to the pub/sub paradigm. Policies effectively define s
ateful interactions among components to coordinate their activ-
ties and are used to fulfil system-wide goals. Once a specific
ehaviour is defined in a policy that policy can then be deployed or
dapted for other applications with similar characteristics.

The rest of this article is organised as follows. In Section 2, we
iscuss the motivations and requirements of our approach. Section
provides a description of the architecture of our framework. Pol-

cy syntax and semantics are described in Section 4. To validate our
pproach, we present in Section 5 a case study and some of the poli-
ies used for its realisation. An evaluation of the implementation
f our framework is presented in Section 6. Section 7 presents how

ur approach fulfils the set of requirements discussed in Section
. In Section 8, we compare our approach to related research. We
onclude in Section 9.

1 The framework described in this paper was firstly presented in Russello et al.
2008). In this paper, we have extended the description of the execution model,
resented an extended case study and provided a more detailed evaluation analysis.
and Software 84 (2011) 638–654 639

2. Motivations and requirements

Sense-and-react applications represent a class of embedded
control systems characterised by the realisation of a feedback-loop
between a sensing apparatus and a reacting apparatus. Some exam-
ples of sense-and-react applications are heating, ventilation, and
air conditioning (HVAC) (Deshpande et al., 2005), fire alarm sys-
tems, and burglar alarm systems. Nodes capable of sensing the
environment provide readings of some parameters forming the
sensing apparatus. Nodes equipped with actuators react to specific
events and change the environment according to user preferences.
As a software system, a sense-and-react application consists of two
parts: the main f unctionality and the control rules. The main func-
tionality represents the basic logic that is mapped into application
components deployed in each sensor node. For instance, an appli-
cation component deployed on a temperature node provides the
functionality to obtain the readings from the node hardware and
make it available to other nodes in the WSN. The control rules
map the sensed data to specific actions that should comply with
user preferences. When the functionality and control rules are not
intertwined then it becomes possible to share the functionality of
a node among different applications controlling the same envi-
ronment. For instance, the functionality of a temperature node
could be shared by both a HVAC and a fire emergency applica-
tion. The two applications have different control rules however
the functionality of the temperature node for both applications
is the same, e.g. providing readings for the temperature of the
environment.

From the above simple example, it emerges that the develop-
ment of sense-and-react applications for WSNs is challenging not
only for the constraints imposed by the physical devices but also
for the complexity of the interactions that can be realised among
different applications. In the following, we try to identify a set of
requirements to define key aspects for facilitating the development
of such applications.

R1: Minimise functionality to maximise reuse. In our framework,
the node functionality is encoded as an application component
deployed on the node. In order to maximise the reuse of such func-
tionality, component functionality should be agnostic of the control
rules enforced in the environment.

R2: Coordination through middleware. WSNs can be seen as
distributed systems. The publish/subscribe model offers a very
powerful abstraction for realising loosed-coupled distributed
applications and middleware implementations have been already
proposed in WSNs. In particular, the reactive style of interaction
makes the model attractive for sense-and-react applications. Noti-
fications sent by the sensing nodes can be used to trigger reactions
by actuators. The underlying middleware is also an ideal place
where the SoC principle can be realised. In particular, the mid-
dleware can provide to the application developers mechanisms
that would allow the selection of different strategies implement-
ing extra-functional concerns that can be subsequently enforced
at runtime. For example, if a particular notification strategy is
required, the middleware should offer such a strategy implemented
as a component. Application developers specify which particular
components have to be used with their applications in terms of poli-
cies. If necessary, new mechanisms can be developed and deployed
as well, independent of the application functionality implemented
by components.

R3: Stateful policies. The control rules in sense-and-react appli-
cations typically represent transitions through different states. For

instance, a sprinkler node that receives a temperature reading
higher than a certain threshold has to check that smoke is detected
before opening the water. This behaviour can be represented as two
transitions: (i) from a normal state to a pre-alarm state when the
temperature is above a safety threshold; and (ii) from a per-alarm
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Fig. 1. Syst

tate to an alarm state when the smoke detector provides a positive
eading. To increase reuse, control rules should be specified inde-
endently from application components. Policies represent ideal
andidates for specifying the control rules of the system. In this
ase, policies need to be able to capture states and specify how
ransitions through different states must be executed.

R4: Localised vs distributed computation. Sense-and-react appli-
ations are characterised by their capacity of reacting to stimuli
oming from the surrounding environment. Because actuators can
e in the proximity to where the data is generated, it is not neces-
ary to flood the network with all readings. However, in some cases
t is necessary that events have to be spread through the nodes
resent in the environment, such as fire alarms.

R5: Proactive interaction patterns. Although reactive interac-
ions characterise sense-and-react applications, there are still cases
here proactive interaction is preferred instead. This type of interac-

ion is common in sense-only applications where data is proactively
ensed by the components. We can also save energy on the sensing
odes by requesting data is generated only when needed.

In the following, we describe the architecture of our system to
atisfy the identified requirements.

. Architecture

Fig. 1 shows the architecture of our policy-based approach. It is
omposed of a set of components deployed on different nodes. In
ach node components are arranged in the following basic three
ayers: an application layer, a m iddleware layer and a basic layer.

The application layer contains the application components
eployed on a sensor node. Components are used for encapsulat-

ng the application functionality. As we show in Fig. 1, different
omponents can be deployed on different nodes depending on
he hardware supported by the hosting node. For instance, a tem-
erature application component is deployed on a node sporting a
emperature sensor. The sensor is responsible for providing tem-
erature readings to the application components. The application
omponent might act as a publisher for this type of notification.
n actuator application component can be deployed on actuator
odes where it can be responsible for controlling the actuator hard-
are according to current needs. In this case, actuator components

ct as subscribers of notifications representing the actual condi-
ions of the environment. All applications components interact

ith the underlying middleware layer through the Policy Enforce-
ent Points (PEP) (a description of an architecture reference for

olicy-based frameworks can be found in Yavatkar et al. (2000)).
hey are part of the policy manager and are used to capture all
iddleware interactions in order to evaluate the related policies.
chitecture.

The middleware layer consists of a Publish/Subscribe Broker, a
Policy Manager, and a set of Extensions described as follows.

3.1. Publish/Subscribe Broker

This provides an API to the application layer and manages sub-
scriptions. In our framework, a notification is called a topic. A
subscriber specifies its interest in a topic by issuing a subscribe
T where T is the tuple representing the topic. Although the sub-
scriber cannot directly express constraints on the content of a topic
using the API, constraints can still be expressed in policies. For
instance, if a subscriber should be notified only if the temperature
value is higher than 50, then it is possible to write a policy that
inspects the values of the temperature notifications and discard
the notifications with values lower than 50 (more on this in Section
5). This decoupling of component functionality from subscription
constraints increases the reusability of the components without
sacrificing the expressivity of the publish/subscribe abstraction. In
our framework content constraints are used for expressing control
rules in the form of policies. A publisher advertises its topic using
advertise T and it publishes the data using notify T. Subscrip-
tion and advertisements can be withdrawn using unsubscribe T
and unadvertise T, respectively.

3.2. Policy Manager

One of the main features of our framework is that the pub-
lish/subscribe core is decoupled from abstractions, semantics and
mechanisms related to notification delivery, subscription distribu-
tion, and communication protocols. This design decision increases
the flexibility of the approach since our middleware is not bound
to any specific mechanisms. Application developers can select the
appropriate mechanisms that best suit their application needs. In
contrast to the approach presented by Hauer et al. (2008) where
application components have to explicitly specify the mechanism
to be used, in our framework components are completely agnostic
of such specifications. Instead, we describe a policy-based approach
where policies are used for such specifications. The enforcement of
these policies is done by a Policy Manager. Each node contains a
Policy Manager to manage and enforce the policies for that node.
Policies can be specified to be enforced at specific points represent-
ing the component-to-broker and broker-to-broker interactions.
These points are monitored via Policy Enforcement Points (PEPs).

Each time a message is sent through these points, the correspond-
ing PEP intercepts the message and sends an event to the Policy
Manager. The Policy Manager uses the events to trigger the poli-
cies available in its repository defined for that PEP (more on how
policies are specified and enforced in Section 4). An important
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form (BNF) while the semantics is described by defining the run-
time behaviour of our Policy Manager. We will use as an example
throughout this section the ESCAPE policy in Fig. 3. This policy is
also represented as a state machine using our graphical tool (see
Fig. 4). This policy captures humidity variation with the following
Fig. 2. Overv

eature of our policy environment is that, the Policy Manager
upports the loading of new policies even at run-time without
he need of taking the running application off-line. This feature
ncreases flexibility of our framework and it makes particular
ppealing for WSN applications that require a high degree of
vailability.

.3. Extensions

These provide hooks to the framework for invoking com-
onents that implement protocols and services outside the
ublish/subscribe core. Each extension component is responsible
or providing and consuming information required for fulfilling
heir tasks and if necessary to perform specific actions. Fig. 2
hows some of the extensions currently available. Components are
rganised into two sets: Basic Pub/Sub Components and Library Com-
onents.

The Basic Pub/sub Components provide services that are neces-
ary for realising the publish/subscribe paradigm and are described
s follows:

A Diffusion Protocol Component (DPC) is responsible for routing
data between publishers and subscribers. Early work on diffu-
sion protocols used a two-phase pull model (Intanagonwiwat
et al., 2000), where subscriptions are distributed for the seeking
of matching advertisements. Once a matching advertisement is
found, the notifications are sent to the subscribers trying to find
the best possible paths. This type of protocol is not suitable for
all classes of application. In applications with many publishers
that produce data only occasionally, the two-phase pull model is
inefficient since it generates a lot of control traffic for keeping the
delivery route updates. For this class of applications, the push dif-
fusion protocol is more suitable in Heidemann et al. (2003). In the
push diffusion protocol, the subscriptions are kept locally and the
notifications seek subscribers. Other diffusion protocols have also
be proposed, such as a one-phase pull protocol (Heidemann et al.,
2003) (an optimised version of the two-phase pull), geograph-
ically scoped protocols (Yu et al., 2001), and rendezvous-based
protocols (Braginsky and Estrin, 2002; Ratnasamy et al., 2002).
Our current implementation provides a Push DPC (PushDPC) and
a Pull DPC (PullDPC) implementing the push and one-phase pull
protocols, respectively.
A Communication Protocol Component (CPC) implements the
delivery protocols of the messages generated by the publishers
and subscribers with certain delivery guarantees. For instance, in
certain cases subscriptions need to be updated frequently then
a CPC that implements unreliable delivery is acceptable. On the

other hand, if an application requires a more reliable subscrip-
tion distribution then a CPC that offers reliable delivery can be
used (at a higher costs in terms of resources). The former proto-
col is implemented by an unreliable CPC (UnreliableCPC), while
the latter is implemented by a Reliable CPC (ReliableCPC).
f Extensions.

Library Components provide extra features. In the following we
describe the components that are used in our case study discussed
in Section 5.

• The Sampling Buffer Component (SBC) provides functionality for
storing data samplings and computing certain predicates on the
stored values. For instance, it can be used for calculating if a recent
sampling differs more than a specified delta value from a stored
sampling. Similarly, it could just be used as a buffer that stores
samplings frequently accessed or that require a longer time to be
collected (i.e., audio signals).

• The Authentication Component (AC) and the Encryption Compo-
nent (EC) are used for implementing Secure Groups of sensors.
Secure groups are similar to secure multicasting groups (Rafaeli
and Hutchison, 2003). Each secure group is associated with a
secret key Kg. In this way, members of the same secure group are
able to perform encryption and authentication within the group.
The distribution of Kg is done using an out-of-band bootstrapping
process. For the encryption/decryption the component uses the
Skipjack algorithm provided by the TinyOS2 core.

4. Event-State-Condition-Action Policy Environment
(ESCAPE)

In this section, we define the syntax and the semantics of our
policy language. The syntax is defined by using a Backus–Naur
Fig. 3. An example of policy for detecting humidity variations.
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equirement: when a variation of humidity exceeds a given threshold
t should be detected and a notification sent.

.1. The ESCAPE Policy syntax

In Fig. 5, we define the grammar used to define Event-State-
ondition-Action (ESCAPE) policies. Terminals are enclosed within
uotes or boldface. Square brackets are used to denote optional
hoices while parenthesis denotes repetition.

A policy is composed of a name, variables and an ESCA list.
olicyVariables denote variable declarations that can be used

nside Condition and Action definitions. Our language supports
-style declarations with a wide range of primitive types (e.g., int,

oat, double, char and so on) and different type constructors (e.g.,
ector and record). For instance, the policy of Fig. 3 declares the
nteger variables prevValue and threshold. The former is used to
emember the last humidity reading while the latter the threshold
o represent the maximum difference allowed between two con-

1 Policy = PolicyName PolicyVariables ESCAli
2
3 ECSAlist = on Event SCAlist [ ECSAlist ]
4
5 SCAlist= CurrentState’-’NewState’:’ Condit
6
7 Event = PubSubEvent | Timeout
8
9 PubSubEvent = Direction PubSubOp Topic
10
11 TimeOut = timeout ’(’ unsignedint ’)’
12
13 Direction = B-C | C-B | B-extB | extB-B
14
15 PubSubOp = notify | advertise | subscribe
16
17 Topic = Topicname [ ’(’ ActualParameters ’
18
19 Outcome = ( discard | accept ) [ ’(’ Actua
20
21 Action = PubSubOp Topic with Extension {
22
23 PolicyName = Topicname = Extension = identi
24
25 PolicyVariables = C style variables
26
27 Condition = C style expression
28
29 CurrentState = NewState = unsignedint | stri

Fig. 5. The syntax to our language fo
midity variation policy.

secutive humidity readings. It is worth mentioning that variables
defined inside a policy are not shared with other policies unless the
modifier global is prefixed to the variable declaration. In this case,
the modifier also specifies the policies that share such a variable.

An ESCAlist is a list of (Event, SCAList)-pairs each starting
with the keyword on. When the event defined in the ESCAL-
ist is generated, then the action defined in the corresponding
SCAList is triggered if condition is true. In the following,
we describe in more detail the specification of Event and
SCAList.

4.1.1. Event
Two types of events can be defined: PubSubEvent and Timeout.
An PubSubEvent event defines pub/sub operations that are exe-
cuted both by the components and the brokers. A Timeout event
id of the form timeout (t) and is generated by the Policy Man-
ager itself when no pub/sub events are observed within the time
interval t.

st

ion ’→’ {Action;} Outcome; [ SCAlist ]

| unadvertise | unsubscribe

)’ ]

lParameters ’)’ ]

’,’ Extension} | C style statement

fier

ng

r specifying ESCAPE policies.
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the current and the previous reading exceeds the threshold (line
13). In this case, in line 15 the action executes a notification with
a topic that represents the excess in humidity (notify Excess).
Fig. 6. Events sent by PEPs for each pub/sub interaction type.

PubSubEvent events are generated by the PEPs that intercept
ll the executed pub/sub operations. Fig. 6 shows the placement of
he PEPs in our approach. The PEP placed between the application
omponents and their local pub/sub broker is called a Component-
o-Broker PEP. This PEP generates events tagged as C-B if the
irection of the operation is from the component to the broker (e.g.,
he component requests the local broker to send a notification to
he corresponding subscribers); when the direction of the opera-
ion is from the broker to the component then the event is tagged
s B-C (e.g., a notification is delivered by the local broker to the
omponent). Similarly, the Broker-to-Broker PEP captures pub/sub
perations between the local broker and the brokers deployed on
ther nodes. If the operation is executed from the local broker to an
xternal one (e.g., a subscription that is sent to the brokers where
ublishers for that notification are registered) then the event is
agged as B-extB; on the other hand, if the executed operation
epresents an incoming message from an external broker (e.g., a
otification that arrives from another broker) then the event is
agged as extB-B tag.

These tags are used for defining the Events in the ESCAList
sing the non-terminal Direction as specified in Fig. 5. PubSubOp
efines the type of pub/sub operations: notify, advertise, sub-
cribe, unadvertise, unsubscribe. A PubSubOp is followed by
he Topic composed of a TopicName and an optional list of Actu-

lParameters. For instance, the humidity Topic with its h value

n Fig. 3 is notified each time a component sends a humidity noti-
cation to its local broker.

Fig. 7. Message sequence chart of the eve
and Software 84 (2011) 638–654 643

4.1.2. SCAList
A SCAList is always associated with an Event and defines the

action that is executed when the corresponding event is gener-
ated by the PEPs. A SCAList can be defined as shown in Line 5
of Fig. 5: before the Action is executed the system has to check
that the policy is in the CurrentState and that the Condition is
true; when the Action is completed then the policy goes to state
NewState.

States can be identified using either strings or numbers and
together with policy variables are used to define the current pol-
icy state. Actions and conditions are written in a C-based platform
independent language and can refer to policy variables, event
parameters, execute any pub/sub operations, and call external
libraries. Pub/sub operations are specified using the syntax Pub-
SubOpTopicwithExtension where Extension specifies protocols
and services outside the pub-sub system (see Section 3 for details).
Procedures and functions are specified by using our language that
provides assignment, if-then-else and while statements. An action
must always end either with the outcome accept or discard. The
value accept specifies that the pub/sub operation that triggered
the policy can be completed after the action execution terminates.
When the policy specifies the value discard it means that the
pub/sub operation that triggered the policy cannot be completed
after the action.

To make things more concrete, let us refer to the
example of the policy defined in Fig. 3. Fig. 7 provides
a message sequence chart of the steps executed from
the event generation to the policy activation. When the
application component executes the operation notify Humid-
ity(h value), the Component-to-Broker PEP intercepts the
operation and generates the corresponding event that is sent
to the Policy Manager. The Policy Manager triggers the humidity
policy using the execute routine (that will be discussed in more
detail in the following section). This policy defines three SCAList
statements associated with the event. The first is applied when
the policy state is 0 (line 5). The action specifies that the variable
prevValue is set to the humidity readings h value. The second
is applied when the policy state is 1 and the absolute value of
the difference between the current and the previous humidity
readings does not exceed the threshold (line 9). In this case,
the value of the prevValue variable is updated. The third is
applied when the policy state is 1 and the difference between
When the Policy Manager completes the action discard or accept
reply is sent back to the PEP. If the reply is a discard then no

nt generation and policy activation.
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able in the sensor. When a new policy is loaded, then the Policy
Manager can execute its actions when the associated events are
generated. On the other hand, when a policy is disabled its actions
are no longer executed. The granularity of code enabling/disabling
Fig. 8. Policy execution pr

urther operation is executed. If the reply is an accept then the
ub/sub operation that triggered the policy is resumed. In this
ase, the notification operation is forwarded to the broker and
xecuted.

.2. Policy execution model

In the following, we describe our policy execution model, that is
he Policy Manager run-time behaviour. We denote with P the set of
ll policies and p1, . . ., pn are elements in P. A policy p in P defines a
et of events {e1, . . ., em}. Each event e has related a SCAlist contain-
ng a sequence of elements of the form (csi, nsi, conditioni, actioni),
epresenting the current state, the new state (after the action is
xecuted), the condition, and action, respectively. In order to refer
o one of these elements we prefix it with the event name followed
y the symbol “.”. For instance if e is an event defined in a pol-

cy p then p.e.conditioni and p.e.actioni denote the action and the
ondition related to i th element in the SCAlist of e as defined in p.

When the Policy Manager receives from the PEPs an event
urrentE, it invokes the execute procedure shown in Fig. 8. The
rocedure takes as an input an event currentE and defines a local

ist Outcome that will contain the outcomes of all policies evaluated
n the event currentE.

In the case that no policies define the event currentE, then the
elated pub/sub operation is performed and the procedure termi-
ates (line 4). On the other hand, for all policies p that define an
vent e equal to the current event currentE the Policy Manager exe-
utes the following steps. First of all, it retrieves the current state
S of the policy p and finds the first state-condition-action (in the
ollowing referred to as an element) related to p.e such that the
tate p.e.csi is equal to the current policy state CS and the condition
efined in the element p.e.conditioni is satisfied (line 9). If this is
he case, then the action p.e.actioni is executed (line 10). The out-
ome of the action p.e.actioni together with the identifier of policy
(p.name) is inserted on the Outcome vector (line 11). Finally, the

urrent state of the policy p is update to the state p.e.nsi (line 12).
If all the actions output the same value (either accept or dis-

ard) then no conflict is present in the vector and the decision is
eturned to the PEP (lines 14 and 15). On the other hand, if both
he statements are present in the vector then a conflict is present.
o solve such conflicts, our framework provides a Conflict Manager
hat is invoked by the execute procedure (line 16). Fig. 9 pro-
ides a message sequence chart of the steps executed for solving

onflicts.

The resolution of conflicts can be done using several strategies.
e allow the policy writer to specify which strategy should be used

ccording to the event that triggered the policy execution defin-
ng (event,strategy)-pairs. During execution, the Conflict Manager
re of the Policy Manager.

selects the strategy associated with the event that matches the cur-
rentE. The framework offers two strategy implementations but it is
possible to implement other strategies and make them available in
the framework.

The Default Strategy is associated with all events that are not
associated with any strategy. This strategy always outputs a dis-
card when at least one discard is present in the vector Outcome. A
simple variation of this strategy could be one where the percentage
of tolerated discard values is provided. For instance, if the value is
set to 30% and the percentage of discard values present in the vec-
tor is below that threshold then an accept is output. Otherwise
the strategy outputs a discard. The second strategy available in our
framework is the Table Strategy that utilises a table where a pol-
icy writer associates events with the value that should be returned
each time a conflict is detected.

More complex strategies can use Extension Components
described in Section 3. For instance, it is possible to specify a
resource-oriented strategy that takes into account the actual level of
battery charge of the sensor when a decision is taken. The battery
charge can be calculated by an Extension Component. In order to
reduce power consumption, each time a conflict is detected and the
remaining charge is below a giving threshold then the messages are
not transmitted and hence discarded.

The Policy Manager is responsible not only for enforcing policies
but also for loading new policies, disabling policies, and updating
existing policies at run-time.

Because we compile policies and because of the restrictions
imposed by the TinyOS2 implementation, it is not possible to down-
load new code while a sensor is in execution mode. This means
that the Policy Manager can dynamically load during run-time only
policies that are already compiled into the code bundle and avail-
Fig. 9. Message sequence chart of the conflict resolution procedure.
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Fig. 10. The ESCAP
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In the transportation service, a lorry transports a set of packages
each containing a cultural asset. As shown in Fig. 13, the lorry is
equipped with sensors and actuators on which several sense-and-
react applications are deployed. During transportation, the lorry is
Fig. 11. An example Policy.

an be extended to the level of each ESCA rule defined in a pol-
cy. In this way, our framework can support the updating of policy
efinitions during run-time.

.3. Tools and policy analysis

The ESCAPE framework provides tools that take as input policy
efinitions and generate code. There are 3 main steps performed
hese tools depicted in Fig. 10.

In the first step, the ESCAPE policy translator is applied to perform
oth syntactic and semantic checks and it translates the ESCAPE
olicies into a finite state machine to perform semantic checks
trictly related to the pub/sub operations such as correct opera-
ion ordering and well-formed policies. A correct operation ordering
heck analyses the correct ordering among operations, i.e., a notify
s preceded by a advertise. The well-formed policy check verifies
hat each action always ends with either an accept or discard.

In the second step, the GOANNA tool generates the state machine
mplementation. The GOANNA tool is composed of a front-end
nd a set of back-ends. The front-end provides three main compo-
ents: a GUI, a parser and a semantic analyser. The GUI implements
graphical tool to view the policy as a state machine in a graphical

orm. For instance, Fig. 11 shows an example of a ESCAPE policy
nd Fig. 12 shows the same policy loaded in the GOANNA GUI
s a state machine. The semantic component performs semantic

hecks on state machine specifications, such as state reachability
nd recursive event detection. State reachability ensures that each
vent-state-condition-action can be applied, i.e., all states inside
state machine definition can be reached. Recursive event detec-

Fig. 12. GUI provided by the GOANNA tool.
E tool chain.

tion avoids policies leading to livelock. In the simplest case, we
can have a policy in which an event e is defined, the new state is
equal to the current one (a transition that enters and exits in the
same state) and its action defines a notify of the same event e. In
this case, the policy can generate an infinite number of events e
without making any real progress. Generally speaking, a policy can
define a chain of events that produces livelock. The tool tries to visit
each state machine, detect possible livelock conditions and pro-
duce warnings. The back-end is used to translate the state machine
specifications into platform-specific code for different implemen-
tations. For instance, we have developed a TinyOS2 back-end and
Java back-end. The former produces a state machine implementa-
tion that can be loaded by the TinyOS2 operating system while the
latter by the Java VM.

In the third step, we apply the ESCAPE linker in order to produce
the code bundle comprising the Policy Manager and the policies
(in the form of state machine implementations). The ESCAPE linker
links together state machine implementations, the conflict man-
ager, all pub/sub services and the third-party libraries. Note that,
this step is not automatic. For instance legacy libraries may need to
be included by the users during the generation process.

5. Case study

This section presents a case study related to cultural asset trans-
portation service used to securely move cultural assets from one
venue (museum) to another. The service was developed as part of
the EU CUSPIS project (CUSPIS, 2007).
Fig. 13. Deployment of sensors and actuators for the CUSPIS case study.
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Fig. 14. Temperature polic

onitored by the Emergency Central Station (ECS) that is in contact
ith police and emergency units (such as fire fighter stations). To

end alarms to the ECS, the lorry is equipped with multiple alarm
nits that include a GSM transmitter and GPS sensor. The lorry
river can use a portable wireless computer, such as a PDA, to check
ensor readings and be notified in case of any alarms.

The following sense-and-react applications are deployed:

Fire Alarm Application is responsible for detecting and taking ini-
tial actions against the fire inside the lorry. Temperature sensors
provide readings for the actual temperature and smoke detectors
are used for sensing the presence of smoke. If the temperature
rises over a given threshold and the smoke detectors provide pos-
itive smoke readings then the water sprinklers must be activated
and a fire alarm sent. Issuing a fire alarm activates the alarm unit
that informs the lorry driver through the PDA and sends an alarm
message to the ECS.
Air Conditioning Application is responsible for maintaining
temperature and humidity within the lorry to given values. Tem-
perature sensors (shared with the Fire Alarm Application) and
humidity sensors provide readings of the air quality in the lorry.
An air conditioning unit (ACU) uses the readings from the sensors
to increase or decrease the temperature and humidity to keep
those values within the target values set by the driver.
Package Tampering Monitor is responsible for the integrity of the
packages containing the artefacts and to raise an alarm in case
the packages are tampered with. Each package contains sen-
sors that collect readings for temperature, humidity and light.
An indication that a package was opened can be signalled when
a reading deviates significantly from the previous values. For
instance, when the package is opened the amount of light and
temperature inside the package increases and such variation can
be captured by the sensor. If this is the case, then the sensor
notifies the driver’s PDA and the alarm unit. The latter sends an
alarm (together with the GPS position) to the ECS to summon the
intervention of the police.

In the following, we elaborate on the application requirements
nd policies showing how such requirements are met with our
pproach.

.1. Fire alarm application

This application makes use of the following sensing and actuator
evices to detect fire in the in lorry. Temperature sensors provide
eadings for the actual temperature and smoke detectors are used
or sensing the presence of smoke. If the temperature rises over a
iven threshold and the smoke detectors provide positive smoke
eadings then the water sprinklers must be activated and a fire
larm sent. Issuing a fire alarm activates the alarm unit that informs
he lorry driver (through his/her computer) and sends through the

SM link an alarm message combined with the actual GPS position
f the lorry.

The components deployed on the temperature sensors provide
eadings of the actual temperature. Each component is a publisher
f a notification of type TempForFireAlarm(t value). Subscribers
the fire alarm application.

of the temperature notifications for the fire alarm application are
the components running on the sprinklers. Instead of flooding the
network with every temperature sampling, only notifications with
meaningful values should be allowed to leave the publisher node.
In particular, for the fire alarm application, only samplings with
values over 50 should be allowed. By filtering out notifications we
minimise energy consumption. This behaviour is captured by the
policy in Fig. 14. When the component sends a notification, the
policy checks whether the value of the temperature is less than 50
(line 3). If this is the case, the notification is discarded. However,
when the sampled temperature is over 50 (line 6), the notifications
should be disseminated as quickly and reliably as possible. In this
case, the notifications are associated with the PushDPC component
that implements the push-model (line 7) using the ReliableCPC
for a reliable communication protocol.

The sprinkler nodes are responsible for operating the water
sprinklers when a fire alarm is detected. Two conditions have to
be verified before a fire alarm is sent: first the temperature must be
over 50 and second a smoke reading must be collected to confirm
the presence of flames in the lorry. This is important to avoid false
fire alarms that could be sent because the lorry is exposed to the
direct heat of the sun and the air conditioning unit is not working
properly. To make the code of the sprinkler component as simple
as possible in line with the philosophy of our approach, the verifi-
cation of the high temperature value and the presence of smoke is
specified in the SprinklerPolicy deployed on the sprinkler nodes
and shown in Fig. 15. The sprinkler component is simply a sub-
scriber of fire alarm notifications: when the component receives
such a notification the water sprinkler is opened. When the sprin-
kler component subscribes for the notification of type FireAlarm,
the policy captures such an action (line 2) and advertises the node
as a publisher of two notification types: FireAlarm (in this way the
node is both a publisher and a subscriber of this notification type)
and GetSmokeReading (lines 4 and 5). Moreover, the policy sub-
scribes to notifications of types TempForFireAlarm(t value) and
Smoke(s value) (lines 6 and 7). When the actions are completed
the policy goes from state 0 to 1. If a notification for the tempera-
ture value reaches the node (line 10), the policy is activated and a
notification of type GetSmokeReading is sent using push mode and
a reliable delivery protocol (lines 12). This notification proactively
triggers the smoke detectors to provide smoke samplings (more
details on this type of interactions are given below). When a notifi-
cation from the smoke detectors arrives (line 15), the policy checks
whether the smoke is detected (indicated by s value set to true). If
this is the case, a FireAlarm notification is sent (line 17). When this
notification is delivered to the sprinkler components the sprinklers
are activated.

In this scenario, the smoke readings are necessary only when an
action is about to occur. Generating this data continuously would
result in wasting energy. On the other hand, when the data is
required, fresh data needs to be generated. This type of proactive

interaction where the sensing device generates data on-demand is
typical of sense-only scenarios but they are still useful in sense-
and-react scenarios since data can be generated more efficiently.
To support this type of interactions maintaining all the advan-
tages of our approach, a policy as the one shown in Fig. 16 can
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Fig. 15. Policy deployed on the sprinkler nodes.
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Fig. 16. Policy depl

e used. The component running on the smoke detector registers
tself as a publisher of Smoke(s value) notifications. This adver-
isement triggers the activation of the SmokePolicy (line 2) that
ubscribes the node to notifications of type GetSmokeReading (line
). When a GetSmokeReading notification arrives (sent by the
prinklerPolicy policy described above), the policy generates
fresh sampling of the data via the getData() operation (line 9)

nd publishes this data through a notification (line 10).

.2. Air conditioning application

The air conditioning application uses temperature sensors
shared with the fire control application) and humidity sensors
or sampling the quality of the air in the lorry. The ACU controls
he quality of the air using readings from the sensors to increase

r decrease the temperature and humidity to keep those values
ithin the target values set by the driver’s GUI. The publishing of

he readings from these sensors can use a “send-on-delta-or-zero”
SDZ) approach. According to this approach, a notification is pub-
ished only if the difference between the actual value measured

Fig. 17. Temperature policy for the
n smoke detectors.

by the sensor either is more than a delta from the target value
or it is equal to zero. This approach is more efficient in terms of
energy consumption since a notification is published only if it is
really required. In fact, in the first case it means that the ACU has
to be activated to bring the monitored values within the desired
target; while in the second case the ACU can be switched off since
the desired target is reached.

This content-based filtering can be specified by a policy as
shown in Fig. 17. When the component sends a notification (line
3), the policy uses the predicate deviateOrZero (provided by the
Sampling Buffer Component (SBC)) to check whether the tempera-
ture value needs to be published (either deviates more than a delta
from or is equal to the target (line 4)). If not, then it is simply dis-
carded (line 5). When the notification has to be sent the pull model
with the unreliable communication protocol is used (implemented

by the PullDPC and UnreliableCPC, respectively) (line 9).

The target and delta values are set by the driver’s GUI applica-
tion. To this end, the temperature sensors need to be subscribers
for notifications from this application. This notifications are used
for setting these values. The policy in Fig. 18 takes care of subscrib-

air conditioning application.
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Fig. 18. Policy for setting the target and delta values for t

ng the sensors and updating the global variables accordingly. The
ariables target t and delta t (line 2) are shared between all the
olicies deployed in the same node. The policy registers the node as
subscriber for the temperature control values (line 5). When this
otification is delivered to the node, the target and delta variable
re updated accordingly (lines 10 and 11).

.3. Package tampering application

This application is responsible for monitoring the integrity of the
ackages containing the artefacts and for raising an alarm in case
he packages are tampered with. Each package contains sensors
hat collect readings for temperature, humidity and light. An indi-
ation that a package was opened can be signalled when a reading
eviates significantly from the previous values. For instance, when
he package is opened the amount of light and temperature inside
he package increases and such variation can be captured by the
ensor. If this is the case, then the sensor sends an alarm notifica-
ion. The alarm unit and the driver’s GUI respond to this notification
y sending out alarm information to the driver and the police.

However, care must be taken to avoid notification of false
larms. For instance, if the temperature in the package goes up it

ould be the effect due to the increase of temperature inside the
orry (i.e., the air conditioning unit is not working properly). If this
s the case, then the sensors in the other packages should also regis-
er an increase in temperature. Therefore, before sending the alarm
otification, the sensor that first registers an increase of tempera-

Fig. 19. The policy for setting off alarm notificati
perature readings used by the air condition application.

ture sets off a timer waits for notifications from the sensors in other
packages that signify an increase in temperature. If these notifica-
tions from other sensors arrive before the timer timeouts then no
alarm is sent. Otherwise, the alarm notification is sent.

This behaviour can be codified using a policy as shown in Fig. 19
(note that to improve readability we removed all details related to
diffusion and communication protocols). This policy captures only
the case for variations in temperature readings. The policy starts
registering the node as a publisher for the PackageAlarm notifi-
cation and as subscriber of the PackageTemperature(t value,
node id) notifications. The publishing of the temperature readings
uses a “send-on-delta” approach, where a notification is published
only if it varies more than a given delta from the previous published
notification. The predicate deviateDelta is used for checking
whether the difference between the actual reading and the pre-
vious published one is greater than delta. If the difference in not
more than delta, the notification is discarded (line 10). Otherwise,
if the notification deviates more than delta, the notification is sent
(line 12). At this stage, the following can happen:

• a notification arrives but is the one that was just sent by the node

itself (line 15). In this case, the state of the policy is not changed.

• a notification arrives from other nodes (line 18). This means that
the increase of temperature is not local to this package but other
sensors are registering it as well. Therefore this is a false alarm
and should be ignored.

ons when the packages are tampered with.
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Fig. 20. The policy for the crypto operation

the timer expires and a timeout event is sent (line 21). This means
that no other sensors registered the increase in temperature. In
this case a PackageAlarm notification is sent (line 23).

.4. Secure zoning

In WSNs, it is possible to realise a secure group communica-
ion where the participant nodes can protect the confidentially of
heir communication. The secure group communication scheme is
mplemented by means of symmetric encryption. A group is com-
osed of different members that share a secret key, e.g. each secure
roup G has related a secret key Kg. The distribution of the Kg is done
s an out-of-band bootstrapping process to the sensors where the
articipant components are deployed. Policies control the use of
ncryption/decryption operations provided by the Encryption com-
onent (EC) (see Section 3).

As an example of a policy for creating a secure zone of commu-
ication, let us consider the case of the sensors inside the cultural
sset packages discussed in the previous section. An attacker that
iscovers the values transmitted by the sensors inside the pack-
ge can put the package in an environment with the same values
voiding the detection of package unwrapping. In each sensor that
orms the package tampering monitoring application, the Secure-
roupPolicy shown in Fig. 20 is deployed together with the
amperingPolicy.

This policy executes the encryption/decryption operations on
he notifications that are sent/received by the sensors of the
roup. The group key K g is provided to each sensors before their
eployment in the packages. When the notification containing the
emperature of the package is going to be sent to other sensors, it
s intercepted by the policy and the values of the temperature and
he node id are encrypted with the group key (line 4 and 5). The
otification tuple with the last two fields encrypted is accepted. On
eceiving a PackageTemperature notification, the policy first tries
o test whether the values where encrypted with the key K g (line

). If this is the case, the action is executed where the values are
ecrypted (line 10 and 11) and the notification accepted (line 12). If
he values are not encrypted with the key of group G, then the con-
ition in line 14 would held true and the notification is discarded
line 15).

Fig. 21. Comparison between the ESCAPE, Te
otifications sent within the secure group.

6. Evaluation

The ESCAPE programming model is based on the component-
based approach where the extra-functional concerns of an
application are separated into components with well-defined inter-
faces. Components are then integrated into larger assemblies and
complete applications. In ESCAPE, application components imple-
ment the basic sensing and control functionality of sensors and
actuators. For instance, a temperature sensor would include an
application component that provides temperature readings. Extra-
functional concerns such as the protocols used for temperature
dissemination, and secure communication are specified sepa-
rately. The integration of components is performed by middleware.
Although affording greater clarity and flexibility, separation and
integration of concerns can also lead to additional overheads in
terms of CPU-time and memory usage. In this section, we elaborate
on the advantages of our programming model in comparison with
other two approaches (Section 6.1) and also quantify the overheads
that the approach carries (Section 6.2).

6.1. ESCAPE programming model

In this section, we discuss the advantages of our approach
compared to TinyOS and the TeenyLIME middleware (Costa et al.,
2007). We selected TeenyLIME because it was specifically designed
for sense-and-react applications in WSNs. TeenyLIME provides
a programming model based on the tuple space abstraction
where application components communicate by means of tuples.
TeenyLIME and other related approaches are also discussed in
Section 8. Fig. 21 summarises the properties offered by ESCAPE
compared with TinyOS and TeenyLIME.

Both ESCAPE and TeenyLIME achieve a clear separation of
application functionality by means of application components. For
instance, the functionality for providing temperature readings can
be encapsulated in a temperature component while humidity read-
ings can be encapsulated in another dedicated component. As such,

components are units of reusability that can be redeployed as is to
compose more complex application functionalities. Additionally,
ESCAPE provides two more units of reusability – ESCAPE poli-
cies and Extension Components. For example, the Push Diffusion
Protocol Component can be reused in any deployments where a

enyLIME and plain TinyOS approaches.



6 stems and Software 84 (2011) 638–654

f
a
d
a
c
f
c

a
a
o
s
a
t
E
t
b
t
E
b
c
n
f
e
e
a

i
p
c
a
g
b
c

m
h
m
f
a
t
n
e
I
i
c
A
c
m

6

o
W
S
1

d
a
a
k
t
l
m
E

50 G. Russello et al. / The Journal of Sy

ast delivery of the events is required. In TeenyLIME, such aspects
re more intertwined with the actual implementation of the mid-
leware. If a specific diffusion protocol has to be used then the
ctual implementation of the TeenyLIME middleware needs to be
hanged. Although TinyOS provides a component model, the model
ails to provide support for separating and reusing extra-functional
oncerns (Costa et al., 2007).

In terms of extendability, adding new application function-
lities in both TeenyLIME and ESCAPE can be achieved by
dding new application components. For instance, if the level
f light needs to be measured an application component that
enses and reports such values can easily be deployed in both
pproaches. However, if new extra-functional support is needed,
hen ESCAPE framework provides a cleaner approach by using
SCAPE policies. For instance, if events need to be encrypted
hen an encryption component can be simply added in ESCAPE
y implementing the appropriate Extension Component. Then,
he encryption component can be enabled by means of an
SCAPE policy. In TeenyLIME, new extra-functional concerns can
e added in the middleware without modifying the application
omponents. However, the code of the TeenyLIME middleware does
ot provide specific hooks for such extensions as in ESCAPE. There-

ore, adding code to enable the encryption of the tuples requires
xtensive recoding of the middleware. As for TinyOS, matters are
ven worst since the new code has to be added directly into the
pplication components.

As for flexibility, if an application needs to be re-deployed
n a new environment with different requirements then sup-
ort is needed for application adaptation. Application functionality
an be changed in all approaches by changing the corresponding
pplication components and/or configuration. ESCAPE however,
oes further by its inclusion of a policy-driven layer that can
e used to tailor and dynamically reconfigure extra-functional
oncerns.

Finally, an important consideration in WSNs is support for
ulti-hop WSNs. ESCAPE was designed from the onset as a multi-

op framework where events could be disseminated by dedicated
echanisms through all or part of the network of nodes. It allows

or the design of applications that can easily gather global, regional
nd subscribed-only information. TeenyLIME’s one-hop architec-
ure can automatically forward a tuple inserted into a node to a
odes one-hop. To globally distribute a tuple it is necessary to
xplicitly program every node to keep forwarding such a tuple.
n a pure TinyOS implementation, a multi-hop mechanism can be
mplemented by flooding the network with every message and
oding directly within the application code the routing control.
s a result, such a multi-hop mechanism is not efficient because
an waste resources of the nodes that are not interested in the
essage.

.2. Run-time evaluation

In this section we evaluate the overheads of ESCAPE in terms
f memory, CPU-time, message exchange and power consumption.
e perform our experiments using the fire alarm application (see

ection 5) running on Tmote Sky nodes and simulations of up to
20 sensors.

In Fig. 22, we show the overall system architecture and the stan-
ard ESCAPE components: the Policy Manager, the Broker, the Push
nd Pull diffusion protocols. Additional ESCAPE components can be
dded as needed by application or system requirements. The Bro-

er, the Push and Pull diffusion protocols are essential to implement
he reliable message passing infrastructure required by the pub-
ish/subscribe service. The Policy Manager evaluates policies and

anages their life cycle (i.e., it loads, executes and deletes policies).
ffectively the only memory overhead introduced is by the Policy
Fig. 22. ESCAPE architecture.

Manager since the other parts implement the system requirements
and would be required in equivalent approaches.

6.2.1. Memory overhead
In Fig. 23 we show information about the code and data size

of application components, some policies related to our case study
and the ESCAPE components. We emphasise that the Policy Man-
ager size is independent from policy specifications and all other
components. In other words the policy manager is a container that
manages the policy life cycle so that its size is always the same. In
our case the temperature components is bigger than the tamper-
ing policy since the temperature component must embed all code
needed to sense and to manage the timer (the sensing is performed
at each tick) while the policy only embeds a few if statements and
a few variables to implement state machines.

Overall our framework requires a small amount of additional
memory. In fact the Policy Manager only requires 1120 bytes while
the reliable communication infrastructure (the Policy Manager and
PushDPC) requires 2530 bytes, which is less than the Temperature
component.

6.2.2. Message exchange overhead
Message exchange overhead is a consequence of the diffusion

protocol required to route data between publishers and sub-
scribers. More specifically in the pull model, subscriptions must be
distributed and must be updated while delivery routes are updated.
In the push model subscriptions are kept locally but there is still
the additional overhead needed for the notifications to seek the
subscribers.

Our pull mode is implemented by an optimised flooding proto-
col that requires for each subscription n messages, with n equal to
the number of nodes. More specifically when a new subscription is
detected the local broker broadcasts a pull message containing the
address of the local node (2 bytes) and the ID of the subscription
(2 bytes). This message is forwarded by all brokers (no more than
once) in order to reach all potential publishers. After a publisher
receives the message it uses both the address and the interest of
subscribers in order to notify new events. In the case of dynamic
systems (publishers added at run time) the broker keeps sending
pull messages in order to maintain the table of the new subscribers
updated. Various optimisations are also performed. For instance
our compiler works out when different subscriptions can be sent
together in a single message. In this way the message overhead of
the pull mode is reduced to a single message that is sent to all nodes
for each new subscriber.

Our push mode is implemented by a different flooding proto-
col that requires for each new notification, n messages, where n is
equal to the number of nodes that subscribe to the message. More
specifically the new tuple is forwarded by all brokers in order to

reach all potential subscribers. Again various optimisations are per-
formed. For instance different notifications can be sent in the same
message.

In Figs. 24 and 25 we show the message overhead related
to our case study. More specifically, Fig. 24 shows the over-
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Fig. 23. Code and data size information.
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Fig. 24. Sprinkl

ead of messages related to the Sprinkler policy. All notifications
re performed using the push mode so that subscriptions and
dvertisements have no cost in term of messages while notifi-
ations cost exactly one message per node. Fig. 25 shows the
verhead of messages related to the SettingPolicy policy (related
o the air conditioning system). In this case a pull strategy is
dopted so that the initial subscription requires 1 broadcast
essage for each node but the notification requires a single
essage.

.2.3. Execution overhead

The execution overhead is a consequence of the Policy Man-

ger and the diffusion protocols. The Policy manager is executed
very time the instrumentation point detects a new pub/sub event.
ore specifically the instrumentation locally calls the Policy man-

ger which performs three main functions: (i) loads all policies; (ii)

Fig. 25. ACSTemp policy message overhead.
sage overhead.

verifies the policy conditions (whether or not the policy must be
executed); (iii) executes policy actions and changes policy states.
Conditions and actions can be arbitrary code, but are typically
simple and implement some aspect of the system requirements.
Therefore the overhead introduced by the Policy manager is con-
sequence of the time required to call the PolicyManager procedure
and load all policies.

In Fig. 26 we show the overhead added by our approach with
respect to a basic TinyOS implementation. We consider the require-
ment implemented by the FATempPolicy policy, that is, an alarm
is sent when the temperature is high. In our TinyOS solution this
has been implemented by linking together the application compo-

nents, the policy code and the communication layers. In the ESCAPE
solution we have added the extra layer of indirection implemented
by the Policy Manager. The same experiment was also performed
for the ACSTempPolicy policy.

Fig. 26. Policy manager overhead.
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(requirement R4).
Fig. 27. Average of the residual computational power for configuration.

.2.4. Power consumption
The diffusion protocol requires control messages to be sent in

rder to support the implementation of global policies, i.e., policies
hat can correlate data related to distributed sensors. For instance
n the fire alarm application no matter which sensors detect the
igh temperature and the presence of smoke the sprinkler must
e activated. Our approach allows the description of a distribution

ndependent policy where the sprinkler can get event notifications
hat can require low level multi-hop routing. This is an abstrac-
ion with respect to the plain TinyOS implementation which does
ot support multi-hop communication. In this section we relate
he overhead introduced by our diffusion protocol to the power
onsumption.

We ran systems simulating up to 118 smoke and temperature
ensors and 2 sprinklers. More specifically each smoke and tem-
erature sensor sent a random reading every 400 ms.

In Fig. 27 we show the comparison of our implementation and
he TinyOS one. This is performed on the percentage of the draining
f the sensors batteries, with respect to the percentage of mes-
ages sent. Note that transmission and reception operations are
uch more expensive than local computations. According to the

onsumption values expressed in Heinzelman et al. (2000) trans-
itter and receiver electronics consume an equal amount of energy

er bit, namely 5 nJ/bit. The experiment shows that our approach
nly has a small message exchange overhead since the TinyOS
mplementation still requires to broadcast the event to deliver
otifications. For instance Temperature and Smoke policies have
o message overhead with respect to the TinyOS implementation
ince they use of the push mode, i.e., they broadcast the message
nly when needed. The ACSTemp requires only a small amount
f control messages to setup the subscriptions but this results in a
ater increase since, once the addresses of the subscribers have been
elivered, notifications are sent using point-to-point communica-
ions instead of broadcasts.

.2.5. CPU time breakdown
We have measured the CPU times of our implementation. More

pecifically we have partitioned our code in three layers: appli-
ation, ESCAPE and TinyOS. The application layer contains all
pplication components, the ESCAPE layer contains the policy man-
ger and part of the diffusion protocol implementation all core
ervices and the reliable communication infrastructure. We have
imulated an increasing number of sensors (from 5 up to 118 tem-
erature and smoke sensors plus 2 sprinkler) and obtained the

esults shown in Fig. 28. This emphasises how the extra time spent
nside the ESCAPE implementation is a small with respect to the
est of the logic.
Fig. 28. CPU time breakdown.

7. Discussion

In this section, we will discuss how ESCAPE addresses the
requirements listed in Section 2. In order to maximise reuse
of application code, our framework makes a clear separation
between the application functionality and its control rules. The
code of application components fulfils basic functional require-
ments of an application: for example, a temperature component
simply provides temperature readings. Such a simple component
code has the advantage to be easily reused in other applications
because it does not contain details related to the actual deploy-
ment. Details regarding the environment in which the application
components are deployed will instead be specified using ESCAPE
policies. ESCAPE policies can impose how the functionality of a
component can be used by the applications. For instance, in order
to save energy the temperature reading can only be published
when its value is greater then a threshold. The threshold value
depends on type of application is going to do with that informa-
tion. For instance, a threshold value used for an air conditioning
application is lower than the threshold for a fire control applica-
tion. Ultimately, an ESCAPE policy represents a unit of reusability,
they provide a straightforward abstraction for specifying details
related to the deployment environment instead of having them
scattered through the application code fulfilling requirements
R1 and R3.

The publish–subscribe middleware provided in our frame-
work makes use of ESCAPE policies as a mechanism for weaving
extra-functional concerns into the application (requirement R2).
For instance, diffusion strategies, communication protocols, the
use of cryptographic primitives represent typical examples of
extra-functional concerns that can be implemented using sev-
eral strategies. Instead of having our middleware statically bound
to a specific strategy, we provide a set of different strategies
implemented as extendable plug-ins. During the execution of an
operation, ESCAPE policies are used for selecting the appropriate
strategy. For instance, a temperature notification can be deliv-
ered using an optimistic protocol when it is used for the air
conditioning application. On the other hand, when the tempera-
ture reading is used by a fire control application a more reliable
delivery strategy should be used. Because the strategies are not
hard coded into the middleware code, new strategies can be
developed and deployed making the middleware easily extensi-
ble. Moreover, the use of different strategies for distributing the
notifications supports both localised and distributed computations
Although the publish–subscribe abstraction is more suitable for
reactive interactions, there are still cases in which proactive inter-
actions are more suitable (requirement R5), for example, saving
energy in a sensing node and requesting it to generate the data only
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hen it is needed. ESCAPE policies address this requirement with-
ut the need to change any of the publish–subscribe primitives.
he policy for the smoke sensor described in Fig. 16 is a typical
xample.

. Related work

The TeenyLIME middleware (Costa et al., 2007) was specifically
esigned to address the requirements of sense-and-react applica-
ions for WSNs. TeenyLIME provides a programming model based
n the tuple space paradigm where sensors communicate through a
hared memory. TeenyLIME offers a simple but powerful model but
s limited in various aspects. The extra-functional mechanisms that
re provided by TeenyLIME are fixed to specific hard-coded mod-
les. For instance, in TeenyLIME tuples are distributed according to
communication protocol that supports only one-hop communi-

ations. In our case, notifications can be distributed using several
iffusion protocols, according to the needs of the applications. See
ection 6.1 for a more detailed comparison.

TinyCOPS (Hauer et al., 2008) is a publish–subscribe middle-
are that uses a component-based architecture for decoupling

he publish–subscribe core from choices regarding communication
rotocols and subscription and notification delivery mechanisms.
he middleware can be extended with components that provide
dditional services (e.g., caching of notifications, extra routing
nformation). The specification of which particular mechanism has
o be used is done by means of metadata information that the appli-
ation components have to provide through the publish–subscribe
PI. In our case, application components are agnostic of such extra-

unctional concerns since policies are used for specifying which
echanisms have to be used.
The Mires middleware (Souto et al., 2005) is also a

ublish–subscribe service. It uses the component architecture of
inyOS 1.x. Like our approach, it uses a topic-based naming scheme.
owever, differently than in Mires, we can support content-based
ltering by means of policies. Although it is possible to introduce
ew services like aggregation using extension components, the
hoice of the communication protocols is fixed.

MiLAN (Heinzelman et al., 2004) is a middleware for WSNs
hat provides application QoS adaptation at run-time. The mid-
leware continuously tracks the application needs and optimises
etwork usage and sensor stacks for an efficient use of the energy.
s such, MiLAN focuses more on a class of resource-rich wire-

ess networks that can support well the impact of the monitoring
verhead. In our approach, we concentrate more on sensors with
imited resources, where optimisations are mainly performed at
ompile-time.

. Conclusions and future work

In this article, we have described the ESCAPE component-based
ramework for WSNs based on publish–subscribe paradigm that
s used to support Event-State-Condition-Action policies. Compo-
ent applications implement the basic functionality of the wireless
odes (sense and reaction capabilities) while policies govern the
xtra-functional concerns of the application. Policies are specified
sing a finite state machine language that includes variables and
unctions in order to define complex policies. Policies are com-
iled by a translator that performs semantic checks and generates

ll code needed to execute them. We have applied our approach
o a number of larger case studies, including a sensor network
hat is deployed in lorries that transport cultural assets between

useums. ESCAPE currently runs on Tmote Sky motes running the
inyOS2 operating system.
and Software 84 (2011) 638–654 653
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