
Discrete Particle Swarm Optimization

for Multi-objective Design Space Exploration

Gianluca Palermo, Cristina Silvano, Vittorio Zaccaria
Politecnico di Milano

Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133 - Milan, Italy

{gpalermo, silvano, zaccaria}@elet.polimi.it

Abstract
Platform-based design represents the most widely used

approach to design System-On-Chip (SOC) applications.
In this context, the Design Space Exploration (DSE) phase
consists of optimally configure a parameterized SOC plat-
form in terms of system-level requirements depending on the
target application. In this paper, we introduce the Discrete
Particle Swarm Optimization methodology (DPSO) for sup-
porting the DSE of an hardware platform. The proposed
technique aims at efficiently profiling the target application
and deriving an approximated Pareto set of system config-
urations with respect to the selected figures of merit. Once
the approximated Pareto set has been built, the designer can
quickly select the best system configuration satisfying the
constraints. Experimental results show that the proposed
DPSO technique can speed up the design space exploration
time up to 5X with an accuracy of up to 70% with respect to
a full search exploration for the selected benchmarks1.

1 Introduction
Currently, platform-based design represents the de-facto

approach to the design of modern System-On-Chip (SOC)
applications [9]. In this approach, a parameterized embed-
ded SOC architecture is optimally tuned to find the best
trade-offs in terms of the selected figures of merit (e.g.
energy, delay or area) for the given class of applications.
This tuning process is called the Design Space Exploration
(DSE) task. The overall goal of the DSE task consists of op-
timally configure the parameterized SOC platform in terms
of system-level requirements depending on the given appli-
cation.

In this paper, we propose a Discrete Particle Swarm Opti-
mization (DPSO) heuristic for supporting the DSE phase. In
particular, the approach mainly represents an extension and
adaptation of existing techniques based on Particle Swarm
Optimization [8] to the problem of the efficient architec-
tural exploration of an hardware platform. To the best of
our knowledge, the approach proposed in this paper repre-
sents the first attempt for applying a methodology based on

1This work was supported in part by the EC under grant for FP7-
216693-MULTICUBE Project.

Particle Swarm to the domain of Design Space Exploration
of embedded applications.

The paper is organized as follows. A review of the most
significant works appeared in literature concerning the DSE
problem is reported in Section 2. The proposed DPSO is
presented in Section 3, while Section 4 discusses some ex-
perimental results carried out to evaluate the efficiency with
respect to accuracy. Finally, some concluding remarks have
been reported in Section 5.

2 Background
The most trivial approach to determine the Pareto-

optimal configurations in a large design space consists of
the analysis of all feasible configurations. However, when
the design space is too large, heuristic methods must be
adopted to find acceptable near-optimal solutions.

Platune [7] is an optimization framework that intro-
duces the concept of parameter independence to derive ap-
proximate Pareto curves without performing the exhaus-
tive search over the whole design space. More recently
in [12] and [1] Platune has been extended by applying ge-
netic algorithms to optimize dependent parameters, resort-
ing to the default Platune policy when independent param-
eters are specified by the user. The work in [3] proposes to
use domain knowledge derived from the platform architec-
ture to design design space exploration as a decision prob-
lem. Each action in the decision-theoretic framework cor-
responds to a change in the platform parameters. Explo-
ration is modeled as a Markov Decision Process (MDP),
and the solution to such MDP corresponds to the sequence
of transformations to be applied to the platform to maximize
a certain value function. Finding a solution to the problem
requires to simulate the system only in particular cases of
uncertainty, massively reducing the simulation time needed
to perform the exploration of a system, while maintaining
near-optimality of the results.

The paper in [4] introduces an interface specification lan-
guage (PISA) that allows to separate the problem-specific
part of an optimizer from the problem-independent part.
This approach makes it possible to specify and imple-
ment representation-independent selection modules, which
form the essence of modern multi-objective optimization

11th EUROMICRO CONFERENCE on DIGITAL SYSTEM DESIGN Architectures, Methods and Tools

978-0-7695-3277-6/08 $25.00 © 2008 IEEE

DOI 10.1109/DSD.2008.21

641

Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 17, 2008 at 02:32 from IEEE Xplore. Restrictions apply.

algorithms. Recently, the authors of [14] have extended
the concept of design space exploration to include multi-
dimensional Pareto sets of mappings per application.

In our previos works [11, 10], Pareto Simulated Anneal-
ing and the Random Search Pareto have been proposed to
evaluate energy-delay tradeoffs for a set of multimedia ker-
nels.

3 Proposed Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a heuristic search

methodology that tries to mimic the movements of a flock
of birds aiming at finding food [8]. PSO is based on a
population of particles flying through an hyper-dimensional
search space. Each particle possesses a position and a ve-
locity; both variables are changed to emulate the social-
psychological tendency to mimic the success of other in-
dividuals in the population (also called swarm). More for-
mally, the position for particle i is changed by adding the
velocity vector to the current position:

~xi(t) = ~xi(t − 1) + ~vi(t)

while the velocity vector is updated with the following rule:

~vi(t) = W~vi(t − 1) + C1r1(~xpbesti
− ~xi(t − 1))

+ C2r2(~xgbest − ~xi(t − 1))

where W is called the inertia weight, C1 is the cognitive
learning factor, C2 is the social learning factor, r1, r2 are
random numbers in the range [0, 1], ~xpbesti

is the best po-
sition of particle i with respect to the minimization prob-
lem, ~xgbest is the global best found so far. As can be noted,
the formulation of the problem leads to solutions which try
to ’follow’ the leader’s xgbest position as well as attracting
solutions versus the personal best solution of the particle
~xpbesti

.
So far, several approaches have been proposed for ex-

tending the formulation of the PSO technique to the multi-
objective domain [13, 2]. Here we propose a technique
based on an ”aggregating” approach where the swarm is
equally partitioned in n subswarms, each of which uses a
different cost-function which is the product of the objec-
tives combined with a set of exponents randomly chosen. In
other words, given the original set of objectives {f1 . . . fm},
each sub-swarm i solves the following problem:

min
~x∈X

∏

j=1...m

f
pi,j

j (~x) (1)

where pi,j is a set of randomly chosen exponents. It can be
shown that solutions to Problem 1 lie on the Pareto surface
of the original problem. The approach presented in [2] uses,
instead, a linear combination of cost functions {f1 . . . fm}
which, however, can be heavily biased on highly valued
cost-functions disregarding low-valued ones.

The essential nature of the solution space of the problem
we want to solve is discrete, while the approaches presented
so far deal with a continuous search space.

We propose a Discrete Particle Swarm paradigm based
on the concepts of random walk theory. A random walk is
a path with the following properties:

• It has a starting point.

• The distance from one point to the next is constant

• The direction from one point to the next is picked up
at random.

In our algorithm, the position of the particle is still updated
with the traditional rule:

~xi(t) = ~xi(t − 1) + ~vi(t) (2)

while each component k of the velocity (direction) vector is
updated with the following rule:

vi,k(t) =

{

sign(xgbest,k − xi,k(t − 1)) if(rand() < p)
randint(−1, 1) otherwise

(3)
where p ∈ [0, 1] is a parameter of the algorithm. As can
be noted, the direction of the particle is updated following
two rules. The first rule, when applied, attracts the particle
versus the leader of the swarm (gbest). The second rule
forces the particle to follow a random walk. This ensures
us to jump out from local minima in the objective function
shown in Equation 1. As can be noted, there is no cognitive
learning factor but only a social learning factor. We will
address the introduction of cognitive factors in the future
research.

4 Experimental Results
In this section, we present the experimental results ob-

tained by implementing the proposed methodology in the
System Tuning Shell optimization framework.

For the experimental results, we used the Wattch [5] vir-
tual superscalar architecture as a simulation model of the
target system. The architecture model has been plugged into
the optimization framework by creating a suitable wrapper
or Driver. The Wattch Architecture Driver and the DPSO
exploration algorithm are independent to each other, so that
one Architecture Driver can be substituted by another with-
out changing the exploration algorithm. Similarly, given
one new exploration algorithm, the user can describe it in-
dependently of the target architecture and easily plugging it
in the framework.

The exploration of the Wattch architecture has been fo-
cused on those design parameters significantly impacting
the performance and the energy consumption at the system-
level. Each instance of the virtual architecture has been de-
scribed in terms of the following parameters:

• Procesor issue width sizes (2, 4, 8).

• Number of integer ALUs (1, 2) and multipliers (1, 2).

• Number of floating point ALUs (1, 2) and number of
multipliers (1, 2).

• Size of the I/D L1 caches (2K, 4K, 8K, 16K Byte)

• Size of the unified L2 cache (16K, 32K, 64K, 128K
Byte).

• Block size of the I/D L1 caches (16, 32 Byte)

• Block size of unified L2 cache (32, 64 Byte).

• Associativity of the I/D L1 caches (1-way, 2-ways for
the I-cache, 2-ways, 4-ways for the D-cache).

642

Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 17, 2008 at 02:32 from IEEE Xplore. Restrictions apply.

• Associativity of the unified L2 cache (4-ways , 8-
ways).

Globally, the architectural design space is composed of
196608 points to be evaluated.

The benchmark suite used is composed of the following
programs:

• FIR: A finite impulse response filter;

• Gamma: Numerical algorithm implementing the
gamma function;

• Gauss: Gaussian elimination algorithm used to deter-
mine the solutions of a system of linear equations;

• Quarcube: Quadratic and cubic equations solving rou-
tine;

• DCT: Numerical algorithm implementing Discrete
Cosine Transform.

The STShell framework has been applied to each of
the above benchmarks to derive the Energy [nJ] and De-
lay[cycles] cost functions.

To measure the distance between the Pareto-optimal
front and the approximated front we introduce the Average
Distance from Reference Set [6] (ADRS). Let us assume
A ⊆ Ω is a set of design vectors, while p(A) is the relative
non-dominated set, the function ADRS(., .) measures the
distance between the p(A) set and the Pareto-optimal set
Xp = p(Ω) as follows:

ADRS(Xp, p(A)) :=
1

|Xp|

∑

~xp∈Xp

(

min
~a∈p(A)

{d(~xp,~a)}

)

(4)
where:

d(~xp,~a) = max
j=1,...,m

{

0,
fj(~a) − fj(~xp)

fj(~xp)

}

(5)

and m is the number of objective functions.

ADRS

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Figure 1. Behavior of the Average Distance
From Reference Set metric averaged on the
selected set of benchmarks by varying the
number of points.

coverage

0

10

20

30

40

50

60

70

80

0 20000 40000 60000 80000 100000

Figure 2. Behavior of the coverage function
of the approximated DPSO Pareto set with re-
spect to the real Pareto-front, averaged on
the selected set of benchmarks.

Figure 1 shows the average behavior of the Average Dis-
tance From Reference Set metric averaged on the selected
set of benchmarks by varying the number of points analyzed
by our DPSO algorithm. To generate these data, we varied
the number of iterations of the algorithm (also called the
generation number) as well as the sub-swarm size and num-
ber. Also the probability p (Equation 3) has been varied by
assuming the values {0.1, 0.5, 0.8}. As can be seen, the
value of the Average Distance From Reference Set metric
is very low (< 0.70%) and reaches an asymptote at 0.30%.
This represents a good indication that our algorithm, even
with few iterations and swarm size, can generate a good ap-
proximation of the optimal Pareto front.

To further measure the performance of the DPSO algo-
rithm, we use the coverage metric [15]. Let us consider A,
B ⊆ Ω be two sets of design vectors and p(A), p(B) be
the corresponding nondominated set, the coverage function
C(., .) maps the ordered pairs (p(A), p(B)) to the [0,1] in-
terval as follows:

C(p(A), p(B)) :=
|{~b ∈ p(B);∃~a ∈ p(A) : ~a ≺ ~b}|

|p(B)|
(6)

The value C(p(A), p(B)) = 1 means that all the design
vectors in p(B) are dominated by the design vectors of
p(A). As opposite, C(p(A), p(B)) = 0 represents the situ-
ation when none of the points in p(B) are dominated by the
set p(A).

Figure 2 shows the average behavior of the coverage of
the approximated DPSO Pareto set with respect to the real
Pareto-front. The metric has been averaged across all the
benchmarks by varying the number of points analyzed by
our DPSO algorithm as in the previous metric. As can be
noted, the coverage drops under 50% before reaching the
20.000 analyzed points (i.e. 10% of the total design space)
while it goes under 30% for 40.000 points (20 % of the total
design space). In other words, the accuracy of the algorithm

643

Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 17, 2008 at 02:32 from IEEE Xplore. Restrictions apply.

in approximating the real Pareto front is more than 70 %
when the percentage of the analyzed design space is only
20%.

Finally, we considered as further metric, the average
euclidean distance between the approximated and the real
Pareto front. The function distance(., .) measures the dis-
tance between the approximated Pareto set B set and the
Pareto-optimal set A as follows:

distance(A,B)) := median~a∈A

(

min
~b∈B

{d(~b,~a)}

)

(7)

where d(a, b) is the euclidean distance, in the objective

function space, between points ~b and ~a. We use the median
operator since it is more robust with respect to outliers.

distance

0

5000

10000

15000

20000

25000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Figure 3. Behavior of the distance opera-
tor when the number of points analyzed in-
creases, averaged on the selected set of
benchmarks.

Figure 3 shows the behavior of the distance operator
when the number of points analyzed increases. As can be
noted, the function presents an exponential behavior which
drops to negligible values after 50.000 analyzed points
(25% of the search space).

5 Conclusions
In this paper we presented a Discrete Particle Swarm Op-

timization methodology (DPSO) for supporting the design
space exploration task (DSE). By means of the proposed
technique, we are able to efficiently profile the target appli-
cations and derive an approximated Pareto set of configu-
rations with respect to the selected figures of merit. Exper-
imental results have shown that the proposed DPSO tech-
nique is able to speed up the design space exploration time
up to 5X with an accuracy of up to 70% with respect to a
full search for the selected set of benchmarks.

References

[1] G. Ascia, V. Catania, and M. Palesi. A multi-objective ge-
netic approach for system level exploration in parameterized

system-on-chip. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(4):635–645,
2005.

[2] U. Baumgartner, C. Magele, and W. Renhart. Pareto opti-
mality and particle swarm optimization. IEEE Transactions
on Magnetics, 40(2):1172–1175, 2004.

[3] G. Beltrame, D. Bruschi, D. Sciuto, and C. Silvano.
Decision-theoretic exploration of multiprocessor platforms.
In CODES+ISSS ’06: Proceedings of the 4th international
conference on Hardware/software codesign and system syn-
thesis, pages 205–210, New York, NY, USA, 2006. ACM
Press.

[4] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. Pisa - a
platform and programming language independent interface
for search algorithms, 2003.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions. In Proceedings ISCA 2000: International Symposium
on Computer Architecture, pages 83–94, 2000.

[6] J. A. Czyak P. Pareto simulated annealing - a metaheuris-
tic technique for multiple-objective combinatorial optimisa-
tion. Journal of Multi-Criteria Decision Analysis, (7):34–
47, April 1998.

[7] T. D. Givargis and F. Vahid. Platune: a tuning framework
for system-on-a-chip platforms. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on,
21(11):1317–1327, November 2002.

[8] J. Kennedy and R. C. Eberhart. Particle swarm optimization.
In Proceedings of the 1995 IEEE International Conference
on Neural Networks, pages 1942–1948, 1995.

[9] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System level design: Or-
thogonolization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1523–1543, December 2000.

[10] G. Palermo, C. Silvano, S. Valsecchi, and V. Zaccaria. A
system-level methodology for fast multi-objective design
space exploration. In GLSVLSI ’03: Proceedings of the 13th
ACM Great Lakes symposium on VLSI, pages 92–95, New
York, NY, USA, 2003. ACM Press.

[11] G. Palermo, C. Silvano, and V. Zaccaria. A flexible
framework for fast multi-objective design space exploration
of embedded systems. In Proceedings of International
Workshop-Power And Timing Modeling, Optimization and
Simulation, PATMOS03, 10–12 2003.

[12] M. Palesi and T. Givargis. Multi-objective design space
exploration using genetic algorithms. In Proceedings of
the Tenth International Symposium on Hardware/Software
Codesign, 2002. CODES 2002, May 6–8 2002.

[13] M. Reyes-Sierra and C. A. Coello. Multiple-objective par-
ticle swarm optimizers: A survey of the state of the art.
http://www.lania.mx/∼ccoello/EMOO/reyes06.pdf.gz, 2006.

[14] C. Ykman-Couvreur, V. Nollet, T. Marescaux, E. Brock-
meyer, F. Catthoor, and H. Corporaal. Pareto-based applica-
tion specification for mp-soc customized run-time manage-
ment. Embedded Computer Systems: Architectures, Mod-
eling and Simulation, 2006 International Conference on,
pages 78–84, 2006.

[15] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algo-
rithms: A Comparative Case Study and the Strength Pareto
Approach. IEEE Transactions on Evolutionary Computa-
tion, 3(4):257–271, 1999.

644

Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 17, 2008 at 02:32 from IEEE Xplore. Restrictions apply.

