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Abstract. We present a new method of screening for malicious Android
applications that uses two types of information about the application: the
permissions that the application requests in its installation manifest and
a metric called percentage of valid call sites (PVCS). PVCS measures the
riskiness of the application based on a data flow graph. The information
is used with machine learning algorithms to classify previously unseen
applications as malicious or benign with a high degree of accuracy. Our
classifier outperforms the previous state of the art by a significant mar-
gin, with particularly low false positive rates. Furthermore, the classifier
evaluation is performed on malware families that were not used in the
training phase, simulating the accuracy of the classifier on malware yet
to be developed. We found that our PVCS metric and the SEND SMS
permission are the specific pieces of information that are most useful to
the classifier.
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1 Background

The Android operating system continues to gain market share among smart
phone users across the world. At the end of 2013, it had reached over 50%
market share in the United States and Great Britain and over 70% in Germany
and China [22]. In all four countries, Android gained more than 4% market
share over the previous year. With an increase in market share also comes an
increase in the attention of malware developers. There are hundreds of malicious
applications in the official and alternative Android marketplaces [15]. This work
presents a new way of detecting malicious Android applications, resulting in
higher accuracy than previous methods.

Our technique combines two very different types of information about An-
droid applications. The first one is the set of permissions that the application
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requests when it is installed (Section 2.2). The second, percentage of valid call
sites (PVCS) (Section 2.3), is a measure of an application’s riskiness, calculated
from its data dependence graph. While each kind of information is useful on its
own, when combining them, we are able to detect over 83% of malware with
only 1% false positive rate, a significant improvement over previous work (Sec-
tion 3.2).

1.1 Malware Classification

Traditional methods for detecting malware rely upon recognizing a specific sig-
nature that has been previously identified as belonging to a specific, known
malware. A limitation of this approach is that it cannot recognize previously un-
known malware. In contrast, heuristic-based or machine learning methods learn
general rules and patterns from examples of malware and clean files, which are
then used to automatically recognize previously unseen malware. The capability
of identifying unseen new malware is important for realizing proactive defense
of the mobile infrastructure.

When using machine learning, each application is represented as a vector of
feature values, which can come from dynamic analysis or static analysis. Dynamic
analysis involves running the application in a sandbox and recording informa-
tion about its behavior, such as battery and network usage [3]. Static analysis
uses features extracted without running the application, such as the list of per-
missions that the application requests upon installation or information about
the control flow of the program (e.g., 15). Both types of analyses are useful and
provide complementary insights about applications’ behaviors. Our work uses
static analysis.

1.2 Related Work: General Security

Machine learning techniques have been widely adopted in the computer security
literature since the work by Lee et al. [12]. Equipped with domain knowledge,
the methods extract domain specific features based on empirical observations of
malicious programs or traffic patterns.

For example, solutions described by Cova et al. [6] use binary classification
techniques to identify malicious Javascript code on the web. The features they
extracted from malicious code include the presence of redirection and obfusca-
tion. Xie et al. [24] used a Bayesian network to infer abnormal network traffic
patterns. Besides classifying programs and network traffic, learning-based se-
curity research also includes database intrusion detection [19] and SMS/social
network spam detection [20].

1.3 Related Work: Android Malware

Researchers have applied both static [2, 4, 9] and dynamic [13] approaches to
malware detection on Android devices. The approaches differ in the features ex-
tracted and the classification algorithms employed, leading to varying degrees of
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success. The data sets employed by the researchers were also of different qualities,
ranging from just a handful of malware that the researchers created themselves
up to data sets with hundreds of examples pulled from live marketplaces.

Schmidt et al. [17] used a data set of ELF files. It consisted of approximately
240 malware which targeted Linux systems (i.e., not specifically designed for the
mobile ARM architecture), and less than 100 Linux system commands from an
Android device. They used static analysis to construct binary features, one for
each function called by any file in the data set. That information was extracted
using readelf. They applied three classifiers (rule inducer, nearest neighbor,
and decision tree) to a few subsets of the features. All of their configurations
that achieved 80% or higher detection rate (i.e., true positive rate) also suffered
a false positive rate over 10%.

Burguera et al. [5] proposed the CrowdDroid system for identifying a spe-
cific type of malware: repackaged malware. Repackaged malware is created by
taking a benign application and repackaging it with additional malicious code.
The CrowdDroid approach uses dynamic features. A central system collects the
frequencies of several system calls from several users running the application
on different devices. It then uses k-means clustering with k = 2 to cluster the
results, with the goal of separating the benign instances of the application from
the malicious (repackaged) instances. Their experiments used only four author-
created malware and two real malware. While CrowdDroid successfully identified
all of the author-created malware, it produced a 20% false positive rate on one
of the two real malware (the more substantial application of the two).

Shabtai et al. [18] also used a small number of fabricated malware (i.e., four
applications) to test their Andromaly system, due to a lack of real malware at
that time. They used 88 hand-designed dynamic features, including memory page
activity, CPU load, SMS message events, network usage, touch screen pressure,
binder information, and battery information, among others. They pared down
the features using the information gain and Fisher scores for each individual
feature, selecting the features with the best scores. Then they applied several
classifiers: decision trees, näıve Bayes, Bayes nets, histograms, k-means, and
logistic regression. Even on a synthetic data set, their best configuration—näıve
Bayes after using Fisher score to select 10 features—still had over 10% false
positive rate, with approximately 88% accuracy.

Later research had the advantage of access to more actual malware. Like
Andromaly, Amos et al. [3] used hand-selected dynamic features (e.g., memory,
CPU, binder information), but evaluated performance on a larger data set: 1330
malware and 408 benign applications. They compared random forests, näıve
Bayes, multilayer perceptrons, Bayes nets, logistic regression, and decision trees.
As with the previously mentioned work, their methods suffer from a high false
positive rate: over 15% for all of their configurations. Their accuracy was 95%
on new traces from applications included in the training set, but no higher than
82% on traces from applications that were not included in the training set.

Sanz et al. [16] used a simple feature set: the permissions and features of
the device that the application requests upon installation. They are listed in the



4 B. Wolfe, K. Elish, and D. Yao

downloaded application’s manifest, so these features are extracted with static
analysis. Their data set consisted of 357 benign and 249 malicious applications.
They tried several classifiers: logistic regression, näıve Bayes, Bayes nets, sup-
port vector machines with polynomial kernel, k-nearest neighbors, decision trees,
random trees, and random forests. As with other work, the false positive rate
remains stubbornly high: their false positive rate is never below 11%, and even
that classifier only detects 45% of the malware. The best overall accuracy was
86%, using random forests.

Sahs and Khan [15] tried a substantially different approach, training a 1-
class support vector machine on benign applications in order to detect malware
as anomalies. They used a custom kernel that combines permissions information
with control flow graph information, both of which come from static analysis.
However, their false positive rate is nearly 50%, making their method untenable.

Wu et al. [23] report much better results—false positive rate below 1% and
accuracy of 98%—but they only report on the training set error. Without eval-
uating on a testing set or using cross-validation, the good results are likely due
to overfitting3 instead of a model that generalizes well to unseen malware.

Peng et al. [14] explored the use of different probabilistic generative models
for scoring the risk of different Android applications. They used the permis-
sions requested by the application as the binary features (i.e., static analysis).
Each model estimates the probability that an application would request those
permissions. Each model is trained on several thousand applications from the
marketplace, which the authors assume to all be benign. When a new applica-
tion requests permissions that have a low probability according to the model, it
is flagged as unusual or high risk. The probabilistic models range in complexity
from simple näıve Bayes through a hierarchical mixture of näıve Bayes models.
They used 378 malware applications mixed with different subsets of the benign
set to calculate cross-validation error. The hierarchical mixture of näıve Bayes
models performs the best, detecting 78% of malware with a false positive rate
of 4%. The simpler models also do well, achieving close to the same results.

1.4 Receiver Operating Characteristics (ROC) Curve

For classifiers that produce probability estimates—e.g., there is a 72% chance
this application is malware—instead of just a yes/no decision, the aggressiveness
of the overall system can be adjusted without modifying the classifier itself. To
do this, one simply adjusts the probability threshold at which an application
is declared malware. When the threshold is 0.0, everything is declared malware
(i.e., the most aggressive classifier). On the other extreme, when the threshold
is 1.0, nothing is declared malware. The default threshold is 0.5, picking the

3 Overfitting is a common problem in machine learning applications where the al-
gorithms memorize characteristics specifically of the training examples instead of
general trends. When evaluated on the training data, the algorithm uses those char-
acteristics to re-recognize the same examples. This gives a false sense of accuracy,
since the real evaluation should be on examples other than the training examples.
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Table 1: Summary of related work reporting moderate or low false positive rates.
TPR numbers read from a plot are approximate, indicated by ≈.
Citation AUC TPR values for FPR ≤ x Limitations

x = 0.01 x = 0.02 x = 0.05 x = 0.10 x = 0.15

Schmidt et al. [17] - 0.77 - - 0.99 1.00 ELF files only

Shabtai et al. [18] 0.913 - - ≈ 0.967 - 0.847
author-created
malware

Sanz et al. [16] 0.920 - - - - 0.50
Peng et al. [14] 0.954 < 0.5 ≈ 0.59 ≈ 0.79 ≈ 0.87 ≈ 0.90

most likely category according to the classifier. This ability is important for
malware classification because in different situations, different levels of aggres-
siveness would be appropriate. If one wants very high security, one might pick an
aggressive classifier that can detect all of the malware, but also mistakenly flags
several benign applications as malware (i.e., high false positives). On the other
hand, if the classifier is used as part of a larger security suite, a less aggressive
classifier would be preferred, producing fewer false positives.

While there are several ways to measure the quality of a classifier—accuracy,
false positive rate, precision, etc.—the receiver operating characteristic curve
(ROC curve) illustrates the trade off between false positives and false negatives as
one moves from a conservative classifier (i.e., nothing is malware) to an aggressive
classifier (i.e., everything is malware). (See Figure 1 for examples of ROC curves.)
One can examine the curves in several different ways. The most concise is to
calculate the area under the curve (AUC), which summarizes the quality of
the classifier at all different levels of aggressiveness. An AUC of 1.0 is optimal,
representing a perfect classifier.

One can also examine specific points on the ROC curve to find what fraction
of malware can be detected—the true positive rate or TPR—when limiting the
false positive rate (FPR) below some threshold. For example, one might want no
more than 2% FPR in a particular system, so looking at the TPR value on the
ROC curve when FPR=0.02 will estimate the detection rate of such a system.

1.5 Summary of Related Work

Table 1 summarizes the results from previous work. The table lists the TPR for
different values of the FPR, along with the AUC. When the ROC is not reported
in the given work, the closest FPR column is filled in. The best classifiers from
each publication that meet the FPR limit are reported, and the best AUC is
reported. Thus, the different columns may represent different classifiers. Publi-
cations where all of the FPR values were above 0.15 are omitted. As noted in
Section 1.3, there are many factors that influence the results, such as the makeup
of the data set and whether or not applications as a whole are classified (static
analysis) or execution traces from applications are classified (dynamic analysis).
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Thus, this table alone is an oversimplification of the results, but it highlights the
difficulty in achieving decent detection rates at FPR of 0.02 or less.

2 Methods

Our work utilizes a static analysis feature, called percentage of valid call sites
(PVCS) [8], described in Section 2.3. We also examine the most common fea-
tures used in previous static analysis work: the permissions that the Android
application requests upon installation (Section 2.2). We compare classifiers’ per-
formance when trained using PVCS with classifiers trained using the permissions
features, as well as a combination of the two. Adding the PVCS information to
the permissions information leads to classifiers that are substantially better than
the previous state of the art (Section 3.2).

2.1 Learning Process Overview

For each of the three feature sets—permissions, PVCS, and the combination of
both—we use the following learning process. To begin, the vector of feature val-
ues for each application in the training set is calculated. Then the set of vectors
is given to several classifier learning algorithms. We compared five classifiers:
support vector machines (SVMs), random forests, näıve Bayes, k-nearest neigh-
bors (KNN), and boosted decision trees (J48 with Adaboost). We used the Weka
implementation of each classifier [10]. These classifiers represent fundamentally
different approaches to classification, each of which has its own strengths and
weaknesses. Thus, we evaluate all of these classifiers to find the best kind for
classifying Android malware.

Three of the classifiers have hyperparameters that the user selects to tune
the classifier performance. We used 10-fold cross-validation on the training set to
pick these parameters, selecting the values that led to the highest cross-validation
AUC. For support vector machines, we explored values of C ∈ {10−3, 10−2, 10−1,

..., 103, 104} and γ ∈ {2−1, 2−2, 2−3, ..., 2−10}. For the random forests, we ex-
plored numbers of trees in {16, 32, 64, 128, 256}. For k-nearest neighbors, we
picked the best value of k from 1 through 7.

After picking the hyperparameters, there is one trained classifier of each type
for each feature set (15 total). These classifiers are then evaluated on the test set,
including the malware from families not present in the training set. Section 3.2
presents the results of this testing evaluation, but first we describe the feature
sets in more detail.

2.2 Permissions Bits

Each Android application is required to list in its installation manifest the per-
missions that it will need at any point during its execution. That list of permis-
sions is used by the Android system to restrict or allow access to system-wide
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resources like network connections, contact list, boot notifications, sending or re-
ceiving SMS text messages, etc. Thus, the permissions list indicates what system
resources an application is allowed to use. In addition to the standard Android
system permissions, users can define their own permissions. For example, there
are permissions specific to particular hardware manufacturers.

For each application, we compute a vector of bits, each of which represents a
particular permission. A 1 indicates that the application requests that permis-
sion and a 0 indicates that it does not. Sanz et al. [16] use the same encoding of
permissions information as their feature set. Sahs and Khan [15] use the same
encoding for system permissions, combining with their own features from user-
defined permissions and control flow graphs. Peng et al. [14] also use the same
encoding, but only for the 20 most frequently requested permissions. We in-
clude all the standard Android system permissions as well as any user-defined
permissions.

2.3 Percentage of Valid Call Sites

In addition to using permissions bits, we utilize a statistic of Android applica-
tions called percentage of valid call sites (PVCS) [8]. Android applications are
characterized by intensive user interaction. Researchers [7, 8] found that the
majority of the benign applications require user interaction in order to initiate
sensitive operations like network access. On the other hand, malicious applica-
tions require little to no user interaction before executing sensitive operations.
Hence, the PVCS metric is designed to capture the dependence relations be-
tween user triggers and sensitive operations. This metric represents the degree
of sensitive operations that are authorized by the user. It is a fine-grained metric
which provides more in-depth behavior information about the applications, as
opposed to Android permission information which does not capture the applica-
tions’ behavior.

To define the PVCS metric, we first define some other terms: operation, call
site, and valid call site. An operation is defined as a function call related to net-
work operations, file operations, and telephony services in an application. For
example, operations include APIs related to sending/receiving network traffic,
sending text messages, and accessing private information such as location infor-
mation. These are sensitive API calls that we want to examine in order to detect
malicious behavior.

A call site is defined as one instance of an operation. Each API operation may
have one or more call sites in an application. Each call site is checked to determine
if it is triggered by user actions by constructing a data dependence graph. A
data dependence graph (DDG) is a well-known program analysis technique which
represents data flows through a program [11]. The DDG is a directed graph
representing data dependence between program statements, where each node
represents a program statement, and an edge represents the data dependence
between two nodes.

Android has a special mechanism called Intent to provide communication be-
tween applications or components (Activity, Service, Receiver). Therefore, the
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DDG needs to be augmented in order to obtain the complete set of operations
that depend on user triggers through Intent. The Android Intent-based depen-
dence analysis tracks the control flow between Intent-sending methods in intra-
and inter-application communication. This Intent-specific control flow analysis
helps to bridge disjoint graph components and captures the data dependence
relations across multiple Android components.

The DDG is constructed for each application by utilizing the libraries pro-
vided by Soot [1], a static analysis toolkit for Java. Furthermore, the constructed
DDG is augmented with the Android Intent-based dependence analysis to get
one complete, connected DDG. More implementation details can be found in [8].

After building the DDG, each call site is labeled as valid or not valid. The
call site is called valid if there is a valid path in the data dependence graph from
a user trigger to the call site.

The PVCS metric is defined as follows [8]:

Definition 1. Percentage of Valid Call Sites PV CS ∈ [0%, 100%] of an appli-
cation is the percentage of valid call sites out of the total number of call sites
across all the operations. Let ki be the number of valid call sites for operation i

and let li be the number of total call sites for operation i. Given the n operations
used in an application, PV CS is computed as

PV CS =

∑n

i=1 ki∑n

i=1 li
(1)

For example, assume that there are 10 call sites in an application. If 9 out of
10 call sites are triggered by the user, the PVCS value of the application is 90%.
A high PVCS is desirable, as it generally indicates that there are not sensitive
operations going on without the user’s knowledge.

3 Experiments

3.1 Data Set

We used a collection of 3869 Android applications, which consists of 1433 ma-
licious applications and 2436 benign applications. The malicious Android ap-
plications were collected from the VirusShare repository4 and the Android Mal-
ware Genome Project5 [25]. The benign Android applications are free, real-world
applications collected from the Google Play market, covering various applica-
tion categories. These free applications include different levels of popularity, as
determined by the user rating scale. We used two existing malware detection
tools [21, 7] to scan the collected free applications. Applications that did not
trigger any alerts in those tools are kept in the benign set.

The applications were partitioned into training and test sets. For the clean
applications, a random 20% were selected for the test set, with the remainder

4 http://virusshare.com/
5 http://www.malgenomeproject.org/
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going into the training set. The malicious applications were split based on the
malware family. For each family with just one application, that application was
randomly assigned to training or testing. For all the other families, at least
one application was assigned to the test set. A few families of varying sizes
were completely held out of the training set (Table 5), so we could evaluate
the algorithm’s accuracy on completely unseen malware families. For each of
the other malware families, 20% of the applications were selected for the test
set, with the remainder going into the training set. In the end, there were 1948
benign and 1066 malicious applications in the training set, and there were 488
benign and 367 malicious applications in the test set.

3.2 Classification Results

After picking the best classifier of each type (Section 2.1), we evaluated their ac-
curacies on our test set (i.e., applications that were not used at all in the training
or parameter selection). The experiments answer the following questions:

– Which of the three feature sets (permissions, PVCS, or both) is best for
malware screening?

– When using the best feature set, which classifier type is best for malware
screening?

We ran two evaluations of the classifiers, using two different subsets of the
test data. They each use all the benign applications in the test set, but they
differ in which malware from the test set is used. The “unfamiliar” comparison
only uses the malware from families that were not represented in the training
data. The “familiar” comparison (Section 3.4) uses the other malware (i.e., their
families were represented in the training data).

Of the two, the unfamiliar is more important. In reality, we want to detect
new malware families that have been created after training on existing malware
families. Table 2 presents the results, including AUC and the true positive rate
(TPR) for different levels of false positive rate (FPR). The corresponding ROC
curves for the best performers are plotted in Figure 1.

While different classifiers perform the best at different FPR levels, all of
the best performers use both permissions bits and PVCS. That is, for
each FPR level, the model with the best TPR is always one that uses both
permissions bits and PVCS. Furthermore, the model with the best AUC also
uses the combined feature set.

For practical use, an FPR of even 5% is too high, as it would flag one out
of every 20 clean applications as malicious. Thus, the boosted decision trees
classifier trained upon permissions and PVCS is the best option for
detecting malware. It has the highest AUC (0.9850) and the highest TPR for
both the FPR=0.01 and FPR=0.02 levels, detecting 83.75% of the malware from
unfamiliar families at the FPR=0.01 level. This is in stark contrast to previous
work on malware screening of Android APKs, where the TPR at FPR=0.01 is
less than 50%, even when testing on malware families used in the training (Table
1, Peng et al. [14]).
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Table 2: Evaluation on unfamiliar test data, sorted by the TPR at FPR= 0.01.
The best value in each column is highlighted in bold.
Features Algorithm AUC TPR values for FPR= x

x = 0.01 x = 0.02 x = 0.05 x = 0.10 x = 0.15

PVCS KNN 0.9550 0.1625 0.5875 0.7750 0.9250 0.9750
Permissions Näıve Bayes 0.9030 0.1875 0.2750 0.5875 0.7125 0.7625
Permissions SVMs 0.9380 0.2375 0.4750 0.8000 0.8625 0.9000
Permissions KNN 0.9080 0.4250 0.5125 0.6500 0.8000 0.8125
Permissions Boosted Dec. Trees 0.9450 0.4750 0.7250 0.8500 0.8750 0.9000
PVCS Random Forest 0.9580 0.4875 0.6000 0.8125 0.9250 0.9750
PVCS Boosted Dec. Trees 0.9640 0.5125 0.5125 0.7125 0.8625 0.9875
PVCS Näıve Bayes 0.9600 0.5375 0.5750 0.6250 0.9000 0.9875
PVCS SVMs 0.9590 0.5375 0.6250 0.6625 0.7875 0.9875
Permissions Random Forest 0.9240 0.5500 0.5500 0.8375 0.8750 0.8875
Both Näıve Bayes 0.9790 0.6125 0.7375 0.8250 0.9875 1.0000

Both KNN 0.9590 0.6250 0.6250 0.8375 0.9000 0.9250
Both SVMs 0.9840 0.7500 0.7875 0.8250 1.0000 1.0000

Both Random Forest 0.9820 0.8125 0.8750 0.9500 0.9625 0.9750
Both Boosted Dec. Trees 0.9850 0.8375 0.8875 0.9250 0.9750 0.9875
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Fig. 1: The ROC curves for the classifiers trained on both permissions bits and
PVCS, evaluated on the unfamiliar data subset: true positive rate (TPR) versus
false positive rate (FPR).

Looking at Figure 1 and Table 2, one can see that for FPR values less than
5%, the boosted decision trees and random forest have higher TPR than the
other three classifiers by a considerable margin. It is noteworthy that those
two classification algorithms performed the best, since both are based upon
decision trees. These decision tree-based learning algorithms are designed to
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intelligently select some of the features to use for classification, in contrast with
KNN, SVMs, and näıve Bayes, which each construct a model using all of the
features to perform classification. This indicates that PVCS and some of the
permissions bits are useful for detecting malware, but other permissions bits are
not useful. The next section examines this issue in more detail.

3.3 Feature Analysis

Since the boosted decision tree model performed the best, we examined its struc-
ture to find insights about what contributed toward its good performance. The
boosted decision tree model consists of several decision trees; the overall pre-
diction of the model is a weighted vote of the classifications from the decision
trees. Each decision tree consists of several decision nodes, where the value of
one particular feature (a permission bit or the PVCS value) is examined. Com-
paring the feature value to a learned threshold decides which branch of the tree
is (recursively) used to make a decision. Leaf nodes are the decision: malware or
benign.

In order to determine which features are most useful in screening for malware,
we assigned a score to each feature (permission bit or PVCS value) that was used
in the model. Simply summing the number of times a feature is used in one of
the decision trees would be one option, but it does not account for the fact
that nodes higher in the tree are deemed more discriminative by the learning
algorithm. Thus, we weight each occurrence of the feature according to its depth
in the tree. Furthermore, the scores from each tree are weighted according to
that tree’s contribution to the overall decision of the classifier; those tree weights
come from the boosting learning algorithm. In mathematical form, the score for
a feature f is ∑

x∈N(f)

1

d(x) + 1
w(x) (2)

where N(f) is the set of decision tree nodes that examine feature f , d(x) is the
depth of x, and w(x) is the weight of the tree in which x is contained.

The model used 59 different features out of the 387 features in the training
data (15%). The features with the top 20 scores are listed in Table 3. The
highest scoring feature by far is PVCS. In fact, it was the root node feature
(i.e., most informative feature) in half of the decision trees in the model. System
permissions, as opposed to user-defined permissions, dominate the list, filling
out the top 10 features. The second highest scoring feature, the SEND SMS
permission, scores very high, about 50% higher than the next permission. This
is likely indicative of malware that send out text messages without the user’s
consent.

In addition to its prominence in the boosted decision trees, the importance
of PVCS is also seen when considering the classifiers trained only with PVCS
information. When comparing them with the classifiers trained only on permis-
sions (Table 2), the PVCS feature generally did better than the permissions
features. Specifically, four out of five of the PVCS classifiers have a higher TPR
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Table 3: Top scoring features from the best model (boosted decision trees trained
on permissions and PVCS). System permissions have the “android.permission”
prefix removed from their names in the table.

Rank Feature Score

1 PVCS 72.52
2 SEND SMS 21.07
3 READ PHONE STATE 13.79
4 ACCESS COARSE LOCATION 11.98
5 RECEIVE BOOT COMPLETED 11.45
6 ACCESS NETWORK STATE 10.45
7 INTERNET 10.19
8 SET ORIENTATION 8.91
9 READ CONTACTS 8.63

10 CAMERA 8.02
11 GET ACCOUNTS 7.33
12 WAKE LOCK 7.11
13 com.software.android.install.permission.C2D MESSAGE 6.84
14 GET TASKS 6.78
15 READ SETTINGS 6.65
16 READ SMS 6.38
17 CHANGE WIFI STATE 6.03
18 com.android.browser.permission.READ HISTORY BOOKMARKS 5.70
19 INSTALL PACKAGES 5.59
20 WRITE EXTERNAL STORAGE 5.22

for FPR= 0.01 than the permissions classifiers, with the notable exception of the
permissions random forest. Furthermore, all of the PVCS classifiers have higher
AUC than any of the permissions classifiers.

3.4 Classification of Known Families

While the ability of the classifier to detect unfamiliar malware families is most
important, we also want to verify that the classifier can detect new instances
of malware from families upon which it was trained. Table 4 shows the results
from evaluating the 15 models on the “familiar” subset of the test data. Figure 2
plots the corresponding ROC curves for the models trained on both permissions
and PVCS.

As when testing on the unfamiliar subset, the combination of permissions
and PVCS information leads to the best classifiers. Specifically, for each FPR
level, the best model uses the combination of feature sets. The best model at
screening for unfamiliar malware—the boosted decision trees—also has the best
AUC when screening for familiar malware. Furthermore, its TPR for FPR= 0.02
is the best among the 15 models, and the TPR of 0.9617 for FPR= 0.01 is within
half of a percent of the best model (0.9652). Thus, that model is not only the
best at screening for new malware families, it is also very nearly the best at
screening for malware from known families.
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Table 4: Evaluation on familiar test data, sorted by the TPR at FPR= 0.01.
The best value in each column is highlighted in bold.
Features Algorithm AUC TPR values for FPR= x

x = 0.01 x = 0.02 x = 0.05 x = 0.10 x = 0.15

PVCS KNN 0.9790 0.1533 0.7875 0.9059 0.9826 0.9930
Permissions Näıve Bayes 0.9680 0.6411 0.7770 0.8815 0.9373 0.9547
PVCS Random Forest 0.9860 0.7003 0.7909 0.9129 0.9861 0.9965
PVCS Näıve Bayes 0.9860 0.7631 0.7909 0.9164 0.9686 0.9965
PVCS SVMs 0.9820 0.7631 0.7700 0.8223 0.9652 0.9965
PVCS Boosted Dec. Trees 0.9860 0.7770 0.7770 0.9233 0.9582 0.9965
Both Näıve Bayes 0.9950 0.8815 0.9268 0.9895 0.9965 1.0000

Permissions Boosted Dec. Trees 0.9830 0.9059 0.9164 0.9617 0.9686 0.9756
Permissions KNN 0.9880 0.9164 0.9443 0.9547 0.9686 0.9721
Permissions SVMs 0.9840 0.9199 0.9373 0.9512 0.9617 0.9721
Permissions Random Forest 0.9900 0.9338 0.9443 0.9652 0.9686 0.9721
Both KNN 0.9950 0.9547 0.9652 0.9756 0.9756 0.9861
Both Boosted Dec. Trees 0.9980 0.9617 0.9826 0.9895 0.9965 0.9965
Both Random Forest 0.9980 0.9652 0.9756 0.9895 0.9930 0.9930
Both SVMs 0.9980 0.9652 0.9686 0.9930 0.9930 0.9965
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Fig. 2: The ROC curves for the classifiers trained on both permissions and PVCS,
evaluated on the familiar data subset.

3.5 Analyzing the Mistakes

We found 22 applications out of the 855 testing applications (2.6%) are clas-
sified incorrectly by the best-performing classifier. This section provides some
insights on the reasons why these applications are misclassified. There are 8
free benign applications misclassified as malware. The main reason behind this
is that these applications contain ads/analytics libraries in which sensitive op-
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erations have no valid user trigger according to our PVCS calculations. Hence,
these benign applications have low PVCS values, resulting in benign applications
with profiles similar to malware applications. As an example, com.jaredshack.-
androidtimecardfree is a timesheet application to track the time. It contains
the Google ad library in which some sensitive operations, such as getLatitude()
and getLongitude(), have invalid user triggers. Its PVCS value is 0.3 which is
considered low and similar to the values of malware applications.

The reason behind the 14 malware applications misclassified as benign is that
these malware applications are repackaged applications. Malware writers bun-
dle malicious code with existing benign applications, producing what is called a
repackaged application. Therefore, these malware applications have high PVCS
values since most of the sensitive operations inside these applications have valid
user triggers according to our calculation of PVCS. As a result, they exhibit simi-
lar profiles to benign applications. For example DroidKungFu malware is bundled
with com.sniper.awrvvitieetewa (a game application). Its PVCS value is 0.6
which is considered high, similar to the values of benign applications.

Just as we were able to combine PVCS with permissions information to
greatly improve classification accuracy, future work can look for further im-
provements in accuracy by adding additional information into the feature sets
for the classifiers. Our analysis suggests that information about the use of ad
libraries or very high similarity with other applications (e.g., repackaged applica-
tions) could be important pieces of information to add. In addition, information
from dynamic analysis could be added to our static analysis features, providing
a more complete picture of the application’s behavior. Such work would address
limitations of static analysis in general, like code that is dynamically loaded at
runtime, the use of native code, or extensive obfuscation. Of course, dynamic
analysis has its own weaknesses, such as the difficulty of realistically simulating
user behavior in a sandbox environment. Thus, while dynamic analysis could
improve detection rates, our work demonstrates that high detection is possible
using different kinds of static analysis features.

4 Conclusions and Future Work

We presented a new method for classifying Android applications as malicious
or benign that is more accurate than previous work. The method combines two
sources of information about the application: the percentage of valid call sites
(PVCS) measure and the permissions requested by the application. Both are
obtained through static analysis of the application, so there is no need to run
the application in order to compute this information. Either set of features alone
produced results that were comparable to the previous state of the art.

However, the primary contribution of this work is a demonstration that com-
bining the information from PVCS with the information from permissions results
in substantially better performance than previous work. The previous best work
detected less than 50% of the malware when limiting false positives to 1% [14],
whereas our best classifier detects 83.75% of the malware from unfamiliar fam-
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ilies and 96% of the malware from familiar families while maintaining less than
1% false positives.

For future work, we plan to explore other variations of program analysis-
based risk features for detecting Android malware, in combination with the per-
mission analysis of applications. We will also perform more extensive evaluation
on new applications from the Android Play market.

Appendix: Details of Malware Families in the Data Set

Table 5: Training/testing split for each malware family, listing the number of
applications. In addition to the families in the table, the families with only one
application were divided as follows: training set included the adrd, andcom,
foncy, lovetrap, nickispy, nickyspy, smswatcher, smszombie, youmi, and zsone
families; testing set included the airpush, anserverbot, droidcoupon, fakeapp,
fakelogo, fakesite, gamblersms, generic, sheridroid, and smsbomber families.

test train

bgserv 1 1
crusewin 1 1

gamex 1 1
koogame/koomer 1 1

walkinwat 2 0
wapsx 1 1
asroot 1 2

droiddream 3 0
droidkungfusapp 1 2

ggtracker 1 2
ksapp 1 2
kuguo 1 2
mania 1 2

mobiletx 1 2
opfake 1 2

gingerbreak 1 3
hipposms 1 3
infostealer 1 3

jifake 4 0
imlog 1 4

tapsnake 1 4
wooboo 5 0

adwo 2 4
droidkungfu 2 4

test train

smskey 2 4
droidkungfu2 2 5

leadbolt/ropin 2 5
penetho 2 5

yzhc 2 5
fakedoc 2 6

faketimer 2 7
geinimi 2 7
kmin 9 0

pjapps 2 7
smssend 2 7

gingermaster 2 8
fakeplayer 3 8
jsmshider 3 12

zitmo 4 12
droiddreamlight 4 13

droidkungfu4 17 0
golddream 4 13

droidkungfu1 4 15
droidrooter 30 0

droidkungfu3 9 33
plankton 11 41

basebridge 12 45
fakeinst 189 752
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