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Constrained Parametric Min-Cuts
for Automatic Object Segmentation

Joao Carreira and Cristian Sminchisescu

Abstract —We present a novel framework for creating and ranking plausible object hypotheses in an image using bottom-up generation
processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted
automatically, without prior knowledge about the properties of individual object classes, by solving a sequence of constrained parametric
min-cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a
continuous model to predict their plausibility (putative overlap with ground truth) based on their mid-level region properties, then diversify
the estimated overlap using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of
the art for low-level segmentation in the VOC 2009 and 2010 datasets. It achieves the same average best segmentation covering on
VOC2009 as the best performing technique to date [1], 0.61 when using just the top 7 ranked segments, instead of the full hierarchy in
[1]. Our method achieves 0.78 average best covering using 154 segments. An extended version of the basic algorithm achieves 83%
average per class object recall, using 200 segments per image on the VOC2010 segmentation dataset. In a related paper [2], it was
shown that the algorithm achieves notable results when used in a segmentation-based recognition pipeline. This pipeline achieved the
first place in the VOC2009 and VOC2010 image segmentation and labeling challenges.

Index Terms —Image Segmentation, figure-ground segmentation, learning
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1 INTRODUCTION of a region boundary are difficult to capture locally. On
the other hand, once sufficient image support is available,
Reliably identifying the spatial extent of objects in image |earning to distinguish ‘good’ segments that representigia
important for high-level vision tasks like object recogmit ple projections of real-world surfaces, from accidentahgm
A region that covers an object fully provides a characteristpartitions becomes in principle feasible. This motivates o
spatial scale for feature extraction, isolates the objestnf novel decomposition of the problem into two stages. In the
the potentially confusing background signal and allows fajist stage, we explore the space of regions that can inferred
information to be propagated from parts of the object to thgom local measurements, using cues such as good alignment
whole (a region covering a human fully makes it possible {gith image edges. The process of enumerating regions with
propagate the person identity from the easier to identiée fap|ausible alignment with the image contours is performed
area to the rest of the body). using exact combinatorial methods based on parametric max-
Given an image, the space of all its possible regions, fisw. Then, in the restricted space of generated regions, we
segments, is exponentially large. However, in our perckiv@se a learned combination of sophisticated mid-level featu
visual world not all image regions are equally likely to aristo induce a more accurate global ranking of those regions in
from the projection of a three-dimensional object. Objerts terms of their probability of being ‘object-like’.
usually compact and this results in their projection in thage
being connected; it is also common for strong contrast edges
to mark objects boundaries. Such properties reduce theeumb A key question, and one of our contributions, is how should
of plausible object regions greatly, but may not be sufficten image partitions be generated. Should region hypotheses be
unambiguously define unique optimal regions for each objesilowed to overlap with each other? Should one aim at multi-
in an image. region image segmentations early? We argue that segrmantati
In this paper, we follow a two step strategy by combining already a sufficiently challenging problem without such
a figure-ground, bottom-up approach to segmentation witlonstraints and global inter-region spatial consistermyukl
subsequent verification and ranking based on mid-levebregibe, perhaps, enforced at a later stage of processing, bgrhigh
properties. Key to an effective solution is the capability tlevel routines that have better spatial scope for this ¢aicu
leverage the statistics of real-world objects in the salact tion. We argue that attempts to enforce complex multi-negio
process. One possibility would be to learn the parametersanfnsistency constraints early may disallow the specdativ
the segmentation algorithm directly, by training a machingehavior necessary for sampling regions effectively, mive
learning model using large amounts of human annotated date inherently ambiguous nature of the low-level cues one
However, the local scope of dependencies and the intrithsicaypically operates on initially. Hence, differently fromast of
combinatorial nature of image segmentation diminishes thge existing approaches to segmentation, we derive metbods
effectiveness of learning in such ‘pixel spaces’ as margenerateseveral independent figure-ground partitipmather
interesting features such as the convexity and the smaosghnthan a battery of splits of each image into multiple, non-
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Obj”:bi:ty regions aligned with object boundaries. Unsupervised abbje
= higher

Parametric discovery [14] also requires good class-independent bbjec
Min-Cuts proposals. While the presentation focuses on the case aftobje
BRI T segmentation, the proposed method is general and can rank
Ralijng ”i lists of segments that follow the statistics of non-objésttff’
regions such as grass or sky, as long as appropriate ground
Degree of foreground bias. . truth training data statistics are provided.
lower An implementation of the proposed algorithm is made

publicly available via our website [15].

Paper Organization: Section§2 reviews the related literature,

Fig. 1. Our object segmentation framework. Segmen_ts are %)é introduces the CPMC algorithm used to generate an initial
tracted around regularly placed foreground seeds, witlowar ol of segments for an image afid presents the segment

. - PR
background seeds corresponding to image boundary edges, 10, . . . ;
all levels of foreground bias, which has the effect of pradgc ranking procedure. Sectigib gives experimental results and

seqments at different locations and spatial scales. Thi shows comparisons with the state of the art. An extension of
9 P | res tI?e basic algorithm to include bounding box constraintg]l an

set of segments is ranked according to their plausibility . X
being good object hypotheses, based on mid-level propzerti%he corresponding results are describedién We conclude

Ranking involves first removing duplicates, then diverisify and discuss ideas for future work §a.
the segment overlap scores using maximum marginal relevanc
measures. 2 RELATED WORK

The first image segmentation approach, published more than
, . 40 years ago by Muerle and Allen [16], was aimed to compute
overlapping regioris ‘object’ regions. Small patches having similar gray-lesigltis-
The overall framework we pursue is depicted in fig. Xics were iteratively merged, starting at a seed patch. dRegi
We first solve a large number of independent binary mi@‘rowing stopped when none of the neighboring candidate
cut problems on an image grid, at multiple scales. Thepgiches was sufficiently similar to the current region. The
are designed as energy functions efficiently solvable Wiﬁ}ocess was repeated until all pixels were assigned.
parametric min-cut/max-flow techniques. The resultingpoo This method took advantage of the fundamental grouping
of segments is minimally filtered to remove trivial solutoN heristic that neighboring pixels with different color anere
and ranked using a regressor trained to predict to what BXiBRely to belong to different objects. However it retrieved
the segments exhibit the regularities typical of real-@orlyery |ocal solutions and was not able to deal with textured
objects, based on their low and mid-level region propertieggions, and even less, take advantage of more sophisticate
Since ranking tends to place similar inputs in similar ra”"%bject statistics. Later, more accurate techniques erderge
we d.iversify the resulting segme.nt ranking using Maximqjood surveys can be found in [17], [18], [19]. However, most
Margmal Relevance measures, with the top ranked segmesihods still pursued a single optimal segmentation of an
retained. image into a set of non-overlapping regions that cover Iyful
The quality of the list of object hypotheses returned byan image partitioning). But a sufficiently good partitiogiis
our algorithm is evaluated empirically by measuring howot easy to find given the ambiguity of low and mid level cues.
accurate they are with respect to pixel-level ground trutthere were also no quantitative benchmarks to gauge pogres
human annotations, in object recognition datasets. We alggd most papers solely described qualitatively the mefits o

record performance as a function of the number of segmenige output segmentations, and only on a reduced number of
Results are reported on several publicly available bendksna jmages.

MSRC [4], the Weizmann Segmentation Database [5] and bothas 3 result, in the nineties, part of the recognition commu-

VOC2009 and VOC2010 [6], [7] where the proposed methqglty |ost hope that a reliable segmentation procedure wbald
is shown to significantly outperform the state of the art,levhifound and began investigating solutions that avoided bwtto
at the same time using significantly fewer segments. up segmentation altogether [20]. This trend led to the cirre
Several types of methods may benefit from outputs like thgevalence of bounding box detectors operating on sliding
ones provided by our algorithm. Object detectors usuanscwindows [8], [21]. These detectors rely on dense evaluation
a large number of bounding boxes in sliding window schemg$ classifiers over overlapping rectangular image regions,
[8], [9] without considering the plausibility of pixel gr@ing with consistency being usually enforced a posteriori by-non
within each. Semantic segmentation algorithms [10], [11jzaxima suppression. This may have initially suggestectieat
[12], [13] incorporate the outputs of these object detesstand  original partitioning requirements assumed by most segmen
may need to mediate the transition between the rectanguigfion algorithms can be bypassed. Sliding window methods
regions produced by the detector and the desired free-fogi indeed powerful for object localization for certain exip
like faces or motorbikes, but do not obviously generalize

1. The algorithm proposed in this paper has been recently®@plto {5 more complex objects and cannot be eas”y adapted for
generate multi-region segmentations by aggregating higtirggc sets of non-

overlapping figure-ground segmentations, modeled as maxiisales, with 9eneral 3d scene und_erSta_nding: €.g. i_nformation pr@m
competitive results [3]. rectangular image regions is not sufficient for operatiarzhs
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as manipulation of a cup by a robot, where precisely identifyroperties [33]. Generally the user assigns manually some
the cup handle in the image in order to grab it, is critical. pixels to foreground and background regions, these are en-
Such considerations made a revival of segmentation iceded into an energy problem, which is solved using a global
evitable. The trend has gained momentum during the pasinimization algorithm. The two steps are repeated ungl th
ten years, propelled by the creation of annotated benchamagkiality of the resulting binary segmentation is satisfacto
[6], [22], together with new segmentation performance met- Variants requiring less manual interaction have been de-
rics [6], [23]. A second important factor was the adoptioneloped, such as GrabCut [34], where a simple rectangular
of machine learning techniques to optimize performance seed around the object of interest is manually initializad a
benchmarks. A third factor was the relaxation of single paan observation model is iteratively fitted through expéatat
titioning requirements. A popular approach emerged by comraximization (EM). Bagoret al. [35] require a user to simply
puting several fully independent segmentations, possiblyg click a point inside the object of interest, and also use EM
different algorithms. This idea was pursued by Hoietnal. but to estimate a sophisticated self-similarity energyeseh
[24] for geometric labeling problems. Russdlal computed techniques can only optimize globally energies defined on
normalized cuts for different number of segments and imaggcal features such as contrast along the boundary and good
sizes [14] for unsupervised object discovery problems. Byixel fit to a color or texture model. Interesting relaxation
generating tens to hundreds of thousands of segments @pproaches exist for some energies whose minimization is
image, Malisiewicz and Efros [25] produce very good qualiti)P-hard, such as curvature regularity of the boundary [36].
segments on the MSRC dataset. The segments were obtaidediever many other more global properties may be more
by merging pairs and triplets of segments obtained using tbleallenging to directly optimize, such as convexity or sym-
Mean Shift [26], Normalized Cuts [27] and Felzenszwallbmetry, motivating our ranking procedure. We differ from
Huttenlocher’'s (FH) [28] algorithms. Steiet al. [29] solved existing methods not only in our efficient parametric max-
Normalized Cut problems for different number of segmentipw methodology to solve for multiple breakpoints of the
on a special affinity matrix derived from soft binary mattes;ost, thus exploring a much large space of plausible segment
whereas Rabinovickt al. [30] shortlisted segmentations thahypotheses in polynomial time, but also in using regression
tend to reoccur, hence are potentially more stable. based ranking methods on generic mid-level features taescor
The computation of multiple segmentations can also ke generated segments and fully automate the process. No
organized hierarchically. Shi and Malik [27] recursiveihg& manual interaction is necessary in our method.
relaxations of a Normalized Cut cost based on graphs con-One of the big challenges in segmentation is to leverage the
structed over pixel nodes. Shar@t al [31] proposed al- statistics of real world images in order to obtain more ceher
gebraic multigrid techniques to efficiently solve normatiz spatial results. Methods that learn low-level statistieveh
cuts problems at multiple levels of granularity, where dusp been applied to distinguish real from apparent contour$, [37
with increasingly more complex features are used at coar$@8], [39] and similar from dissimilar superpixels [24]. iPe
levels. Arbehez et al. [1] derive a segment hierarchy byand Veksler [40] proposed a learning procedure to select the
iteratively merging superpixels produced by an orientetewa best segment among a small set generated by varying the value
shed transform. They use the output of the learned globalBbone parameter, in the context of interactive segmentatio
[32] boundary detector and can represent the full hierarcModels based on mid-level properties have also been learned
elegantly in a single ultrametric contour map. The hierarcho distinguish good from bad regions [41]. High-level shape
is a natural representation for segmentation, as it leséff b  statistics can be incorporated into binary segmentatiodetso
compositional representations. Inaccuracies in one l@e usually as non-parametric distributions of templates,[f43],
to the incorrect merging of two regions in the previous Igvel[44]. Expressive part-based appearance models have aso be
however, tend to propagate to all coarser levels. Therefodeveloped [45], [46], [47], [48]. It is likely that these rhets
given the same segmentation technique, generating a singi@y require bottom-up initialization, which an algorithikel
hierarchy is likely to be less robust than generating indepeours can provide, as objects in real images exhibit large
dent segmentations. variability in pose, have high intra-class variation anel aften
Differently, our region sampling methodology generatesccluded. Effectively leveraging shape priors in the aiiti
multiple independent binary hierarchies constrained & dsteps of the visual processing pipeline may not always be
ferent positions in the image. Each level of the hierarcHgasible.
corresponds to a partitioning into figure and ground, whereOur method aims to learn what distinguishes meaningful
only the figure region is kept, and regions at finer levels aregions, covering full objects, from other accidental pixe
nested inside coarser levels regions (this is a result of agnoupings. Since our original publication [49], relatecad
parametric max-flow methodology). In this way, we aim téave been pursued also by Endres and Hoiem [50] who follow
better sample the space of plausible regions surroundicly ea processing pipeline related to ours, but employ a learned
pixel. We compute these partitionings using energies mostffinity measure between superpixels, rather than pixels,aa
related to the ones developed for interactive segmentatistnuctured learning approach on a similar maximum marginal
applications, where obtaining single figure-ground sohgiis relevance measure to diversify ranking. To generate figure-
a common goal. In these applications, max-flow algorithres aground segments, Levinshteat al. [51] developed a proce-
quite popular because they can obtain exact optima forinertdure based on parametric max-flow principles similar to ours
energy minimization problems involving region and boundahut use a graph where similarity measures are constructed
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on superpixels. In parallel work, Alexet al. [52] learn a
naive Bayes model to distinguish bounding boxes enclosi S\
objects from those containing amorphous background, withc ¢
knowledge of the shape and appearance of particular obj .S0.
classes. They also show how to sample bounding boxes fri
this model efficiently. Salient object detection [53] apmebes
are also relevant to our work, but they focus on selectic: >
criteria inspired by attention mechanisms. We are inste ,_*
interested in computing regions that cover well every (ije\I Y
in an image, independently of whether they ‘stand out’ fror..
the rest of the scene or not.

Fig. 2: Different effects of uniform and color-based unary
terms. For illustration, a single foreground seed was place
3 CONSTRAINED PARAMETRIC MIN-CUTS manually at the same location for two energy problems, one
(CPMCQC) with uniform and another with color unary terms. Shown
] ] _.are samples from the set of successive energy breakpoints
In order to generate a pool of segments with high prObab'“EYncreasing)\ values) from left to right, as computed by
of not missing object-quality regions, multiple consten ,rametric max-flow. Uniform unary terms are used in rows
parametric min-cuts (CPMC) problems are solved with diffef 5043 Color unary terms are used in even rows. Uniform
ent seeds and unary terms. This leads to a large and dive{§8ry terms are most effective in images where the backgroun

pool of segments of multiple spatial extent. The segmerts thy,q foreground have similar color. Color unary terms areemor
correspond to implausible solutions are subsequenthadigcl appropriate for objects with elongated shapes.
using simple ratio cut criteria. The remaining segments are

clustered so that all but representatives with low energy ar
retained, among the extremely similar ones. The final warkin
set of segments is significantly reduced, with the most ateur 0 if 2, =1, u¢ Vy

segments preserved. 00 if z, =1, u€),
Di(wu) =9 it 2y —0,ucy;, @
3.1 Setting up the Energy Functions flzw) + A if 2, =0, u¢Vy

For each image, alternative sets of pixels are hypothesized N€ foreground bias is implemented as a cost incurred by
to belong to the foreground—the foreground seeds. Then, f§f @ssignment of non-seed pixels to background, and ¢snsis
each set, we implicitly apply multiple levels of foregroundf @ Pixel-dependent valug(z,,) and an uniform offsek. Two
bias, by assigning different costs on all remaining pixels pdifferent functions f(z.,) are used alternatively. The first is
the ones assigned to background seeds. The foreground s&€@@stant and equal @ resulting in a uniform (variable) fore-
are placed on a grid, while the background seeds are géqund.bla}s. The second function uses color. SpecificaBBR
along the image border. For each combination of foregrou@lor distributionsp(z.,) on seedV; andpy(z.,) on seedv,

and background seeds we compute figure-ground segm@ff estimated and deriv&(z.,) = lnpy(z.) — Inpy(z.). The
tations, resulting from minimum cuts for multiple Va|ue§roba_blllty dlstrl_butlon of pIXE!j. belonglng to_the forgground
of the foreground bias—searching over multiple foregrourid d€fined ap; (i) = exp(—-min;([[7() —1(5)[[)), with v a

biases is intrinsic to our parametric max flow procedure. TI§@liNg factor, ang indexes representative pixels in the seed
optimization problem is formulated next. region, selected as centers resulting frokrraeans algorithm

Let I(V) — R? be an image defined on a set of pixblsAs (k is sgt to5 i_n our exper?ments). The background propability
commonly done in graph-based segmentation algorithms, {ﬁedef'm'ed S|m|le}rly. This choice of fupctlon is motivated
similarity between neighboring pixels is encoded into edgd €fficiency, being much faster to estimate compared to a
of a weighted grapliy = (V, £). Here, each pixel is a node inGaussian mixture model. ,
the set of node¥. The foreground and background partitions Color-based unary terms are more effective when the color
are represented by labelsand0, respectively. Seed pixeld; of the object is dlst!nctlve Wlth respect tq the backgrouasl,
are constrained to the foreground awg to the background well as when the object has thin parts. Uniform unary terras ar

by setting infinity energy to any labeling where they receiv&0ré useful in the opposite case. The complementary effects
the opposite label. Our overall objective is then to minienizCf tese two types of unary energy terms are illustrated in fig

an energy function over pixel labels, ...,z }, z; € {0, 1}, 'Th o i h . ¢ diff
with k being the total number of pixels. In particular, we € pairwise ternv,,, penalizes the assignment of different

optimize the following energy function: labels to similar neighboring pixels:
0 if 2, =z,

BX) =Y Dy + Y Vilwwa) (1) Vo (@u, 20) = { guv) 0 2y # T (3)

ugy (uw)ee with similarity between adjacent pixels given hyu, v) =

max(gPb(u),gPb(v
with A € R, and unary potentials given by: exp | — 2ex(gP().o i ))}- gPb returns the output of the
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multi-cue contour detector globalPb [32] at a pixel. Theasgqu  In practice we solve around 180 instances of problem (1)
distance is also an option that we experimented, with similéor each image, for 30\ values each (during processing, we
results, instead of thmax operation. Thdoundary sharpness skip duplicate breakpoints), defined on a logarithmic scale
parametew controls the smoothness of the pairwise term. The set of figure-ground segmentations is further enlarged b
The function defined by eq. 1 is submodular. Given a pair splitting the ones where the foreground has multiple cotaec
foreground and background seeds gfid,,), the cost can be components. The final pool has up to 10,000 segments.
minimized exactly for all values ok in the same complexity  As an alternative to multiple hard background seeds, it is
as a single max-flow problem, using a parametric solver [54ossible to use a single soft background seed. This can be a
In canonical form, parametric max-flow problems differ fronframe one pixel wide covering the border of the image, with
max-flow problems in that capacities from the source no@ch pixel having a finite penalty associated to its assighme
are allowed to be linear functions of a parameter, herds to the foreground. This construction is more efficient, as it
A (effectively our foreground bias) varies there are at mogecreases by5% the number of energy problems to solve.
(k — 1) different cuts in the transformed graph, wherés We used this type of background seeds in an extension of the
the number of nodes, although for the graphs encounteredbigsic algorithm, presented in sectig®.
vision problems there are generally far fewer (see also our
study in§3.3). The values ok for which the cut values change
are usually known asreakpoints When the linear capacity

Seed placement MSRC score  Weizmann score

: . i i Grid 0.85+ 0.1 0.93%+ 0.06
functions from the source are either non-increasing or non- NCuts 0.86+ 0.09 0.93+ 0.07
decreasing functions of, the problem is said to be monotonic. FH 0.87+ 0.08 0.93+ 0.07

Our energy problems are monotonic becaksemultiplied by 1ag| E 1: Effect of spatial seed distribution. The use of

the same valuel, in all unary terms. This important propertys,serpixel segmentation algorithms (e.g. Normalized @uts

|mpI|e.s that all cuts computed for a particular choice ofrseu g1y [28]) to spatially distribute the foreground seeds does n

and sink seeds are nested. significantly improve the average best segmentation cogeri
In this work we use theighest label pseudoflosolver [S5],  gcore on the MSRC dataset, over regular seed geometries.

which has complexity of0(mN log(NV)) for image graphs on weizmann, the average best F-measure is the same for

with N nodes andn edges. The complexity of the CPMCy| gistributions, perhaps because the objects are larde an

procedure is thusO(kmN log(N)), as we solve multiple 5y placement strategy eventually positions some seeds
parametric max-flow problems, for each of theombinations jnside the object.

of foreground and background seeds, and for different esoic
of f(z,). The pseudoflow implementation requires a seh of
parameters for which to compute cuts. For the stud§3ir8,
we use additionally an implementation based on Gatl@l
[56] for the parametric analysis of a push-relabel max-flog 3 Effect of )\ Schedule
solver which retrieves all breakpoints [57].
The graph construction that maps to the energy functiodée evaluated the effect of solving problem (1) for all
in (1) for each choice of foreground and background seedviglues, instead of a preset logarithmic schedule, on the
similar to the one on [33], and requires to augment the geaphtraining set of the PASCAL VOC 2010 segmentation dataset
with two special nodes, soureeand sinkt that are required to (the typical distinction into training and testing is noteseant
be in separate partitions for any binary cut. The unary gnertpr the purpose of this experiment, where the goal is only to
terms are encoded as edges between these special nodesiaalyze the number of breakpoints obtained using different
the nodes in V. search strategies). We usex6 regular grid of square seeds
and solve using two procedures: (A) values of\ sampled
) on a logarithmic scale (only the distinct energy optima are
3.2 Effect of Grid Geometry recorded) and, (2) al\ values, as computed as breakpoints
For theforeground seedswe chose small solid squares. Wef (1). We have computed the average computational time
have experimented with three different strategies to plaper seed, the ground truth covering score, and the number of
them automatically: rectangular grid geometry, centraifis breakpoints obtained under the twesearch strategies. The
superpixels obtained with normalized cuts, and centroids @sults are shown in table 2. They suggest that a priéset
variable size regions, closest to each rectangular gridipos schedule is a sensible option. Using oaly values produces
obtained using segments from the algorithm in [28]. As caimost the same covering as the one obtained using all
be seen in table 1, the differences in results are not signific values, it is4 times faster and generatdé®9% of the total
The background seedsre necessary in order to prevenhumber of breakpoints, hence fewer segments. We also plot
trivial cuts that leave the background set empty. We used fahe distribution of the number of breakpoints per seed inrigu
different types: seeds covering the full image boundasttiue 3, under the same experimental conditions. The frequency of
vertical edges, just the horizontal edges and all but theobot breakpoints has a unimodal (bell) shape, with meéan but
image edge. This selection strategy allows us to extraeotdj a slightly heavier tail in the direction of larger numbers of
that are only partially visible, due to clipping at diffetémage segments. There are never less than 15 breakpoints in this
boundaries. dataset.
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#Avalues  # breakpoints  Time (s)  Covering invariant and very selective) and retain up to 2,000 highest
20 12.3 18 0.713 scoring segments. Then we hierarchically cluster the satgme

all 114.6 75 0.720 ) L -
T objects T i =% =13 using overlap as a similarity measure, to form groups with al
# breakpoints aN 11210 12460 12529 142.83 segr_nents of at least 9.95 spatial overlap. For each clugger,
# breakpoint20 A 1227 1264  13.08 13.45 retain the segment with the lowest energy.
# images 717 147 68 32 The number of segments that pass the fast rejection step

TABLE 2: Covering results obtained on the training set of 'S usually small, being indicative of how simple or clutigre
VOC2010, based on éx6 grid of uniform seeds. The table aN image is. In general, simple datasets have lower average
compares the results of solving CPMC problems Zor number of segments. But even in the difficult PASCAL VOC
values of)\, sampled on a logarithmic scale, with the result£009 dataset, the average was 154.

obtained by solving for all possible values ®f Shown are 4

the average number of breakpoints per seed, and the average MID-LEVEL SEGMENT RANKING

time required to compute the solutions for each seed. ~ Gestalt theorists [59], [60] argued that properties such as
Computing all breakpoints for each seed provides modest Proximity, S|m|lar|ty,_symmetry and good continuation are
ground truth covering improvements, at the cost of key to visual grouping. One approach would be to model

generating a larger number of segments and at increased Such properties in the segmentation process [61], as long-
computation time. The second table shows that images ~ ange dependencies in a random field model. However, this
containing a larger number of ground truth objects tend to POses significant modeling and computational challengéth. W

exhibit more breakpoints per seed. a segment set generated using weaker constraints, leverag-
ing Gestalt properties becomes easier: rather than guide a
VOC10 Segmentation Dataset (training set) complex inference procedure based on higher-order, long-

400F 7 range dependencies, we only need to check conformance with
Gestalt regularities. It is therefore interesting to explbow
the qualitative Gestalt theories can be implemented and wha
] effects they produce in practice. An important question is
whether Gestalt properties can be used to predict if segment
have regularities typical of projections of real objects,a
manner that does not require prior knowledge about the class
] of the object in the image. This is a challenging problem,
since the visual aspects of objects are extremely diverse.
However, if object regularities can be identified, imagesido
8 be represented by a handful of segments, which are easier to
— ‘ ‘ interpret and process by higher-level visual routines than
0 100 AR bt braavpoine. o0 400 large set of pixels or superpixels.

In this work, we take an empirical approach: we compile

Fig. 3: Frequency of the parametric max flow breakpoints &, large set _Of features _and annotated _examples of segm_ents
f many objects from different categories, and use machine

each seed, on the training set of the VOC2010 segmentatjon . techni i their sianif Thre
dataset. These results were obtained usigg6auniform grid earning techniques to uncover their signimcance. 1hres se

of seeds. The number of breakpoints has mean 110, angfa{eatures (34 in total) are considered, repfesef‘“”g kgrap
heavier tail towards a larger number of breakpoints. region and Gestalt properties. Graph properties, in paaic
variations of cut values, have long been used as cost furkctio

in optimization methods for segmentation. Region propsrti
encode mainly the statistics of where and at what scale bjec
tend to appear in images. Finally, Gestalt properties delu
Generating a large set of segments increases the hit raliel-level cues like convexity and continuity, which can ede
of the algorithm, but many segments are redundant or dbject regularities (e.g. objects background segmentsisre
not obey the statistics of real-world surfaces imaged by ally non-convex and object boundaries are usually smoother
camera. For images with large homogeneous regions, than the boundaries of accidental, noisy, segments).
original hypothesis generation step can produce many sop@raph partition properties (8 features) include the cut
of the same segment because of the seeding strategy — e\gsoyn of affinities along the segment boundary) [62], thigo
seed placed inside the region would tend to generate th& (sum of affinity along the boundary divided by their
same segment for the same Moreover, sometimes visually number) [58], thenormalized cut(ratio of cut and affinity
arbitrary segments are created, as artifacts of the fouegro inside foreground, plus ratio of cut and affinity on backgrdu
bias strength and the seed constraints employed. [27], the unbalanced normalized cytut divided by affinity
We deal with these problems using a fast rejection stepside foreground) [31], and thboundary fraction of low
We first filter very small segments (up to 150 pixels irut, 4 binary variables signaling if the fraction of the cut is
our implementation), then sort the segments using a simpéeger than a threshold, normalized by segment perimeder, f
criterion (we have used the ratio cut [58] as this is scatéfferent thresholds.

350r

Frequency
N
o

150r

3.4 Fast Segment Rejection
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Region properties (18 featuresjnclude area, perimeter, rela- Feature importance for random forests regressor
tive coordinates of the region centroid in the image, boogdi
box location and dimensions, major and minor axis lengtl
of the ellipse having the same normalized second cent
moments as the region, eccentricity, orientation, conves,a
Euler number, diameter of a circle with the same area =9

500~ =
4001~ -
300~ 1
the region, ratio of pixels in the region to pixels in the tote 1oo—| !IIIIIII I! IIIII IIIIII -
boundl_ng box, perimeter and absolute dlstanC(_e to the cer 2 ggl:!%,gD P B3ttt EE nees 0!5 EEEke
of the image. Part of these features can be easily computec §~3g555582255559382828c58-§2:22828%83
: ; : o 2oRR88 2925523525 z0 23283380333
Matlab with theregionpropsfunction. S §gsS<3d 283333 XZ355s u2>3E88888&
G t I t 8f t i | d i I %g‘§§§§ ggggggq gao g_g 2233328
estalt properties (8 features)are implemented mainly as 23BBES x2%%bbh ag 3% ggoeggd
. - . . 30000 2 pQQ 2 3@@3 3=
normalized histogram distances based on Recomparison 82222 §g55 © 8932552
. )2 NSs== =~ ® LR N =
metric: x*(z,y) = >, % [63]. S3333 g 228823
Let the texton histogram vector on the foreground regic ~1hL gg3388
bety, and the one on the background fae Theninter-region “vw s 22

texton similarityis computed as the?(ts,t). Intra-region )
texton similarityis computed asy_, 1(¢7(i) > k), with 1 Fig. 4. Feature importance for the random forests regressor
area of the foreground in our implementation. The textoes &#xis Of the ellipse having the same normalized second dentra
codewords. ingly the most important. This feature used in isolatiorutess
Another two features we use aritter-region brightness in relat!vely poor rankin.gs however (see fig. 6). The Graph
similarity, defined asy?(by, by), with by andb, intensity his- Properties have small importance. The “Boundary fraction
tograms with256 bins, andintra-region brightness similarity of low cut” features, being binary, do _not contribute a_t all.
defined asy>, 1(by(i) > 0). Gestalt features have above average importance, partjcula
We also extract théntra-region contour energys the sum he contour energies.
of edge energy inside the foreground region, computed using
globalPb, normalized by the length of the region perimeter. . o .
We also extract amter-region contour energyas the sum of importance works quite poorly in isolation, however, asvamo
edge energies along the boundary normalized by the perimet fig- 6, suggesting some cues are not informative in isofeti
continuityandconvexity The first is the integral of the segmenfdge energy along the boundary, however, are assigned large
boundary curvature. We use an angle approximation to tfaPortance, as expected.
curvature [64] on triplets of points sampled regularly gves
pixels in our tests. Convexity is measured as the ratio dsare1. 2  Maximum Marginal Relevance Diversification
of the foreground region and its convex hull.
All features are normalized by subtracting their mean a
dividing by their standard deviation.

Tc!(;'e ranking results tend to place very similar segments in
e jacent positions. An effective way to increase the qualit
the first N segments is taliversify the ranking, which we
do based on Maximal Marginal Relevance (MMR) measures
4.1 Learning [67]. To our knowledge this is the first application of such a

We cast the problem of ranking the figure-ground hypothes&$hnique to image segmentation. Starting with the orlgina
as regression on the largesterlap a segment has with a top-scored segment, the MMR induces an ordering where the

ground truth object, against its features. The definitionwafr- "€t selected segment (with maximum marginal relevance) is
lap isO(S, G) = Igﬂgl [6]. This similarity function penalizes the one maximizing the original score minus a redundancy
) U] . . .

both under-segmlenta{tions and over-segmentations andhéiadieasure with respect to segments already selected. This pro

advantage of being scale invariant. We experimented wigkdure is iterated until all segments have been re-rankeel. T

both linear regression and random forests [65], a competitif€dundancy measure we employ is the overlap with the set of

non-linear model that predicts by averaging over multiplg'€Vious segments selected based on the MMR measure.

regression trees. Since the overlap induces a consistédnga  Formally, let 2 be the full set of figure-ground segmenta-

between all segments in the dataset, it is not necessaryeto {i@ns andf, C I the hypotheses already selected. kef;)

more specialized models that rank using pairwise prefesncP® our predicted score for a given figure-ground segmentatio

such as the ranking SVM [66]. ando(H,, H;) the overlap between two figure-ground segmen-
The importanceof our features as learned by the randorf@tions. The recgrsivg dgfinition for the next maximal maag)i

forests regressor [65], is shown in fig. 4. Some region propdflevance selection is given as [67]:

ties appear to be quite informative, particularly featusash

as segment wujth and height and the. location in thg IMagG 1/ R — argmax [0 s(H;) — (1—6) - max o(H;, Hj))]

The ‘Minor Axis Length’ feature, which gets the highest H;€H\H, H;€eHp
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The first term is the score and the second is the redundarityhas up to11 objects present in each of its nearly 600
Parameterf regulates the trade-off between the predicteithages. We use this dataset to evaluate the quality of the
score and the diversity measures in the fi¥sselections. For pool of segments generated, not individual rankings. Th€VO
exampled = 0 will make the ranking ignore individual scores,2009 dataset is challenging for segmentation, as it comtain
and select the next set element with minimal overlap with amgal-world images from Flickr, with 20 different classes of
of the previously chosen elements. In contrast= 1 will objects. The background regions are not annotated. MSRC and
always select the element with the highest score next. TH®OC2009 contain multiple ground-truth objects per image,
best trade-off depends on the application. If high prenis® therefore we use theegmentation coverindl] as an accuracy
desired then a higher weight should be given to the predictettasure. The extent of covering a set of ground truth segment
score, whereas if recall is more important, then a higheghtei S by a set of machine segment$ is defined as:

should be given to diversity. I is very small, then ranking 1
will be close to random. In our VOC experiments we have C(s,5) = 5 > IR| max O(R, R) 4)
cross-validated aft = 0.75. ReS

Ideas about selection of segments have been explored ifyhere NV is the number of pixels in the imageR| is the
the past, most notably by Ren and Malik [41]. They use gumber of pixels in the ground truth segmetitandO is the
random search algorithm to iteratively hypothesize segaenoverlap.
tions by combining different superpixels, and use a clagsifi
to distinguish good segme_:ntations from bad ones. Fo_r eaé:_li Segment Pool Quality
segment, a feature vector is extracted, a classificatiore $so ) i i )
computed, and the segmentation having the highest averdd§ dutomatic results obtained using CPMC on the Weizmann
score is selected. Images from the Berkeley SegmentatfiffaSet aré shown in table 3 together with the previous best
Dataset were used, with positive examples being matchdd wigSUlt: by Bagon et al [35], which requires the user to click
the corresponding human segmentation, and negative e&amﬁ point inside the object. We also compare to the method of

matched to a random human segmentation selected fronﬁa‘lge_rt etal _[5]’ which is automatic. Results for_ CMPC were
different image. obtained using an average of 53 segments per image. Vigibly,

We differ from [41] in several important aspects: we usgenerates an accurate po_ol of segments. Results on M.SRC and
a superset of previously proposed features, including hgr OC2009 are compared in table4 to Araetet al. [1], which

and region properties or convexity, we aim at obtainin§ arguably one of the state of the art methods for low-level
independent object-level segments, and learn directlyn fro egmentation. The methodology of the authors was followed,

object class recognition datasets. To learn how each s&gm%'?'ld we report ;}herz]i_veragﬁ best covirlggs.hV\_/e ulse a_llhtheelmlqu
obeys the statistical regularities of real-world objecise segmentsr:nt € |e1r_er11rc y r;atl;rne y their zgon(';bm E:I]Dlt/(ljc
train a regression model, not a classifier, hence we do (fmpute the score. The pool of segments produced by

need to synthesize negative examples. Finally, we prectanp significantly more accurate and has an order of magnitude

an accurate set of figure-ground segmentations, making ﬁ@’ir fsegrg%ntm?typoth(ises. dA f'ltﬁ:'ng pr(l))cedure coutld Eet
process more efficient. used for gPb-owt-ucm to reduce the number segments, bu

at a potential penalty in quality. The dependency between th
guality of segments and the size of the ground truth objects i
5 EXPERIMENTS shown in fig. 5.

We study both the quality of the pool of object hypotheses gen _

erated by CPMC, and the loss in quality incurred by selecting Weizmann _F-measure
. . . CPMC 0.93£ 0.009

the topmostV object hypotheses, as opposed to working with Bagonetal  0.87+ 0.010

a much larger pool. We use three publicly available datasets Alpertet al.  0.86+ 0.012

Weizmann’'s Segmentation Evaluation Database [5], MSRC [11

. S . /LBLE 3: Average of best segment F-measure scores over
and the YOC2009 train and validation sets for the objecsscla[he entire datasgt Bagon’s aI%orithm is interactive. Alpe
segmentation problem [6]. y ‘

results were obtained automatically. The table shows thrat f

Weizmann consists of 100 gray-valued images having ¢lch image, among the pool of segment hypotheses produced

single prominent foreground object. The goal is to generaﬁ; CPMC, there is usually one segment which is extremely

coverage of the. entire spatial support of the object in t_ curate. The average number of segments that passed the

image using a single segment, and as accurately as poss S rejection step was 53 in this dataset.

We compare the performance of CPMC with published results

from two state of the art segmentation algorithms. The tesul

are reported using the beBtmeasure criterion, F' = %, _ )

where P and R are the precision and recall of pixels in @-2 Ranking Object Hypotheses

segment relative to the ground truth [5]. Only the best RAfe evaluate the quality of our ranking method on both the

measure in each image is relevant for the final score, becauatdation set of the VOC2009 segmentation dataset, and on

there is only one object in each image. hold-out sets from the Weizmann Segmentation Database. The
The MSRC dataset is quite different, featuring 23 differentaining set of VOC2009 consists @60 images, resulting in

classes, including sonstuff classes, such as water and grass$14, 000 training examples, one for each segment passing the
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MSRC Covering N Segments Weizmann Segmentation Dataset
CPMC 0.85£ 0.1 57 ! ! ! !
gPb-owt-ucm  0.78t 0.15 670 E
VOC2009 Covering N Segments 1
CPMC 0.78% 0.18 154 .
gPb-owt-ucm  0.6% 0.20 1286 |
TABLE 4: Averagt—; best.|maltge covering scores on MSRC gos e e voCh Tanns oot
and VOC2009 train+validation datasets, compared to 5 0.4F » RF trained on Weizmann training set |
Arbelaezet al. [1], here gPb-owt-ucm. Scores show the bes g3 .EZ;L""(')’;S\?;J‘GV(V_%Z;I}gnguttf)a'“'”9 set (diversified) |
covering of ground truth by segments produced using eact 2,/ Rank on value (~Cut)
algorithm. CPMC results before ranking are shown, to Rank on value (Minor Axis Length)
. X 0.1~ Random Selection
evaluate the quality of the pool of segments from various —Upper bound
methods. % 10 20 30 40 50
Number of segments retained
00 VOC2009 training+validation set Fig. 6: Average best segment F-measure as we vary the number
. S of retained segments given by our ranking procedure. Result
-==Ground Truf . K . . ..
350 —cpme \ 7 were averaged over three different splits of 50 training &0d
=——gPb—-owt-ucm| .

testing images. Note that when working with our top-scored 5
segments per image, the results already equal the ones&tbtai
by the interactive method of Bagat al. [35]. Note also that
using this learned ranking procedure, it is possible to qesgp
the original pool of segments to a fifth (10 segments), at
negligible loss of quality.
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frequency of ground truth segment area
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. about 8 hours to train on the basic 34 features). The results
T e i e are shown in fig. 7. Clearly the new features help somewhat,

Ground truth segment area (pixels) producing results that are slightly better than the oneaioéd

by the linear regressor on the basic feature set. Howewseth

Fig. 5: Quality of the segments in VOC2009 joint train andre not better than a random forests model trained on the basi
validation sets for the segmentation problem, as a funafon feature set. This shows that the set of basic features iadire
the area of the ground truth segments. Medium and large sipgite expressive in conjunction with nonlinear models.
objects, that are more frequent, are segmented significantl Notice that by using this ranking procedure, followed by
more accurately by CPMC than by gPb-owt-ucm [1], in thidiversification, we can obtain object hypotheses of superio
case. quality of those provided by the segmentation algorithmilgf |
In fact, by using the toy segments produced by our ranking
procedure, we obtain the same accurdatyl, as obtained

fast rejection step. On the Weizmann Segmentation Datab¥S¥'9 the full hierarchy of, 286 distinct segments in [1].

we randomly selecb0 images, resulting ir2,500 training

examples, and we test on the remaining 50 images. & SUBFRAME-CPMC

Weizmann we compare a random forests regressor traindd have experimented with a different variant of the algo-
on the images in that dataset with a predictor trained oithm, the Subframe-CPMC, on the Pascal VOC2010 dataset.
VOC2009. The results in fig. 6 are similar, showing thafhe goal was to achieve high object recall while at the
the model is not overfitting to the statistics of the indivatlu same time preserving segmentation accuracy, with a mindset
datasets. This also shows that it is possible to learn to ratokvards detection applications. To score a detection ngsis
segments of arbitrary objects, using training regions fomy as correct, benchmarks such as the Pascal VOC require a
20 classes. The learned models are significantly better thamimum overlap between correctly classified regions aed th
ranking using the value of any single feature such as the gwbund truth regions. In addition, benchmarks disregard th
or the ratio cut. On VOC2009 we have also run experimendsea of the ground truth regions (e.g. an object \with pixels
where we have complemented the initial feature set with just as important as one occupying the full image), hence
additional appearance and shape features — a bag of dembkat matters is not so much achieving higbvering scores
SIFT [68] features computed on the foreground mask, a baghich explicitly take into account the size of the segmgnts
of Local Shape Contexts [69] computed on its boundary, abdt highoverlap

a HOG pyramid [70] with3 levels computed on the bounding Subframe-CPMC uses an additional type of seed, and is
box fitted on the boundary of the segment, for a total of 1,0%bnfigured to generate a larger number of segments. First
features. In this case, we trained a linear regressor f&imgn we make the overall process faster by solving the energy
(this is significantly faster than random forests, whichetak problems at half of the image resolution. Quantitative ltesu

o
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the segment foreground hypotheses. The first image on eacklrows the ground truth, the second and third images show
the most plausible segments given by CPMC, the last two imafewthe leastplausible segments, and the fourth and fifth
images show segmenitstermediatelyplaced by the ranking. The predicted segment scores arlagkspin overlay. The first
three images are from the VOC2009 validation set and raws and 6 show the diversified rankings, with = 0.75. Note

that in the diversified ranking, segments scored nearby tere more dissimilar. The last three rows show results froen t
Weizmann Segmentation Database. The algorithm has no kmimwvledge of the object classes, but on this dataset, It stil
shows a remarkable preference for segments with largeaspagrlap with the imaged objects. There are neither ctearior
vases in the training set, for example. The lowest rankedablbjypotheses are usually quite small reflecting perhapsrhge
statistics in the VOC2009 training set.
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VOCO09 Segmentation Dataset (validation set)

quality segments, as noticeable in table 5.

Additional Features: Working with a larger pool of segments
. poses additional demands on the accuracy of ranking. An
improvement we pursued was to enlarge the set of mid-level
features with shape and texture features. The dimensipnali
] of these features, together with the large number of trginin

o
o

o
o
E

Average of Best Covering
o
~

0.3« [Linear Regression (with shape and appearance features) examples, makes linear regression the most practicalitearn
/= | -Linear Regression . . . .
o Random Forests (diversified) procedure, as discussed in section 5.2. Histogram featu_res
4" |--Random Forests however, are known to be most effective when used with
0 |7 Rankon value (“Ratio Cuf certain nonlinear similarities, such as a Laplacian-RBé&k
oL__|=Upper bound kE(x,y) = exp(—=>_ |x; — y;]) [63]. Some of these similarity
0 50 100 150 i i i i
Number of Segments retained functions can nevertheless be handled with linear regressi

by first applying a randomized feature map that approximates

Fig. 7: Complementing the basic descriptor set with appeép—i\L?pl?c'ari'RtBF kernel [22]’ t[7§]t. b ¢ ds f h
ance and shape features improves the ranking slightly,Heut t S texture features we extracted two bags ot words for eac

basic set is still superior when used in conjunction with agno>c9ment: one defined over gray-level SIFT features and the

expressive random forests regressor. Further divergiftie other over color SIFT features, both sampled evergixels

ranking improves the average best covering given by the fi d at4 diifferent si:alesll((%_, 24'_36 anoliz54 hp|xels wide) to tized
top N segments significantly. ensure a degree of scale invariance. Each one was quantize

using a 300-dimensional codebook. As shape features we
computed two pyramid HOGs, both with gradient orientation

) ] guantized intc20 bins, the first with the background segment
were equivalent. We also changed the seeding strategy to ggggients masked out on a pyramid composed of four levels,

a single soft background seed. We also increased the nu a total of 1,700 dimensions. The other PHOG was
of foreground seeds, by using a grid 66 instead of the computed directly on the contour of the segment, with both
previously 5x5, and reduced the value of the parameter foreground and background gradients masked out and a
by 30% in eq. 3, resulting in more segments due to sharpgyramid of three levels for a total @20 dimensions. We map
boundaries. the joint vector of the two bags of words for texture features
We have also complemented the existing seeds i+ into a 2,000-dimensional randomized feature map drawn
frames background seeds composed of the outside of rectagom the Fourier transform of the Laplacian-RBF kernel [72]
gles covering no more tha®5% of the area in the image, and process similarly the two PHOGSs corresponding to shape

with a single square foreground seed in the center. Theg@tures. We also append our origirsa-dimensional feature
seeds constrain segments to smaller regions in the images@sresulting in a total of, 034 features.

they force the possible contours to lie inside the rectargul

region. This is especially helpful for segmenting smalles$ \vOC2010 Results: The overlap measure is popular for dis-
in cluttered regions. For this type of seed we also solygguishing hits from misses in detection benchmarks. | th
problems with and without a color unary term. Two altermativyOC2010 dataset, besides the overlap, we evaluate thd recal
types of subframe seeds were tried:5%5 regular grid of ynder two different hit-metrics50% segment overlap and
square subframes of fixed dimension, with width setl@&; 50% bounding box o\/eriap_ Using the0% segment o\/eriap
of the image, and bounding boxes from a deformable patgterion the algorithm obtains, average per clags,73%
detector [8], [71] with default parameters, set to the reginand 83.10% recall, using800 and 200 segments per image,
of high recall but low precision. For the detector, we discafespectively. Under 0% bounding box overlap criterion, the
class information and keep thi® top-scored bounding boxesa|gorithm achieve®1.90% using800 segments and7.65%,
smaller than a threshold, in this case25% of the image using 200 segments.
area. Subframe energy pI’Ob|emS are Optimized eﬁiciently byThe topQOO ranked Segments gave on avera@ Covering
shrinking all nodes corresponding to pixels in backgrounghdo.71 overlap, which improves upon the results of the basic
seeds into a single node, thereby reducing the size of thgraygorithm on the VOC20090(78 and0.66 with all segments).
significantly. Details are shown in figs. 12 and 13; images are shown in fig.
The parameteros, controlling the sharpness of the1l0. The learned estimated weights of the linear regressor fo
boundary, has an important influence on the number ofl features are displayed in fig.9.
generated segments. A value 8f5 with the color-based
seeds leads t@25 segments, average overlap 061 and
covering of 0.74, while for ¢ = 1 the method produces7 CONCLUSIONS
an average oR76 segments, average overlap 069 and We have presented an algorithm that casts the automatieimag
covering0.76. We usedr = 1 for the uniform seedsy = v/2 segmentation problem as one of finding a set of plausible
for the color seeds, and = /0.8 for the subframe seeds.figure-ground object hypotheses. It does so by learningrtk ra
This leads to a larger pool of segments, but also to highsgure-ground segmentations, using ground truth annatsitio
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Fig. 10: Segmentation results on images from the validasiehof the VOC2010 database. Tfiest column contains the
original images, thesecondgives the human ground truth annotations of multiple okjetttethird shows the best segment

in the Subframe-CPMC pool for each ground truth object,ftheth shows the best segment among the ones ranked in the
top-200. The proposed algorithm obtains accurate segnfie@ntsbjects at multiple scales and locations, even when #rey

spatially adjacent. See fig. 11 for challenging cases.
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10/10/2006 - 10/10/2006 - 10/10/2006
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Fig. 11: Examples, taken from the validation set of VOC204&Bere the CPMC algorithm encounters difficulties. Thist
column shows the images, teecondthe human ground truth annotations of multiple objectsthirel shows the best segment

in the entire Subframe-CPMC pool for each ground truth dbjine fourth shows the best segment among the ones ranked
in the top-200. Partially occluded objects (first two rowsjry objects (third row) and objects with low background trasst
(fourth and fifth row) can cause difficulties.
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Weights of Ranking Features for CPMC-subframe Average best segment overlap
0.15-0riginal feature set |
0.1r Texture — BOWs ] osk i - , |l ERERE o ,
£ 05t Shape - PHOGs i I il ]
=)
= I ] I I
= 0.6f I :
-0.05F b [l
oL ] 0.4f ]
(5 560 1600 1500 ZdOO _2560 SdOO 3560 4600
Feature Indices o2k Il All segments (avg 805) |
: [ Highest ranked 200
Fig. 9: Learned feature weights for the Subframe-CPM E:Ighdest rigléed 100
model. The original set of mid-level features and regio o MIIJ AL 1AL AR WA RN ALK A 0.-.&..6. 1”00”:) o v e
properties gets higher weights, texture features getrirger @»%:9/0/”0 A % ’%;9 %G%gﬁo%égsg@ %, %,,
diate weights and shape features get smaller weights. fEext 2N "‘9% % %o, 0.
features might help discard amorphaatsff regions such as
grass, water and sky. Fig. 12: Average overlap between ground truth objects and

: : the best Subframe-CPMC segments, on the validation set of
Quality Measure  Grid Subframes BB Detector  No Subframes \/OC2010. Certain classes are considerably harder to ségmen

Overlap 0.74 0.76 0.71 i i i ;
Covering . 0.84 0.82 by the algorithm, such as bicycles, perhaps due to their wiry
N segments 736 758 602 structure.

TABLE 5: Results on the training set of the VOC2010
segmentation dataset. Color and uniform seeds are
complemented with subframe seeds, either placed on a
regular grid or obtained from a bounding box detector. Usi
a regular grid gives only slightly inferior results compdute
using detector responses. Both result in a large improvémqn

in the recall of small objects, compared to models that do and the same number of problems is generated for all images,

not_ use subframes. This is reflected in the overlap measur%btwithstanding some having a single object and others
which does not take into account the area of the segmentsﬁaving plenty. An interesting extension would make the

process dynamic by making decisions on where and how

] ] ) » to extract more segments conditioned on the solutions of
available in object class recognition datasets and basedl 0feyious problems. This would be conceivably more efficient
set of low and mid-level properties. The algorithm uses & veLng would make the transition to video smoother. It may also

powerful new procedure to generate a pool of flgure—grou%eed up processing and it should also be possible to stop
segmentations—the Qonstrained Param_etric Min-Cuts (QPMga”y and degrade gracefully, when working on a temporal
This uses parametric max-flow to efficiently compute figurgy,qget. A conditional sequential process could also make fo

ground hypotheses at multiple scales on an image grid, falnore piologically plausible control structure.
lowed by maximum relevance ranking and diversification. We

have shown that the proposed framework is able to generate
compact sets of segments that represent the objects in geima
more accurately than existing state of the art segmentatibfCKNOWLEDGEMENTS

methods. Thesg sets of segment_s.have been used successfHily work was supported, in part, by CNCSIS-UEFISCU, un-
in a segmentation-based recognition framework [2], as We{k; project number PN 1I-RU-RC-2/2009, and by the European
as, more recently, for multi-region image segmentation [3] commission. under MCEXT-025481.

One difficulty of the current method is in handling of
objects composed of disconnected regions that may arise
from occlusion. While the energy minimization problems wtEFERENCES
solve sometimes generate such multiple regions, we chosg§{0 p arbelaez, M. Maire, C. Fowlkes, and J. Malik, “From tours to
separate them into individual connected components, Isecau regions: An empirical evaluation,” IFEEE International Conference on
they only rarely belong to the same object. In many such cases Computer Vision and Pattern Recognitjafune 2009, pp. 2294-2301.
. ible t t the obiect correctl WilthOTJ F. I__|, _J. _Carrelra, and C. Sminchisescu, Object_recognnas ranking
It may nOt_ be pOSS'Ib € 10 segmen X ) y ; holistic figure-ground hypotheses,” IREE International Conference on
top-down information (e.g. segmenting people embracedhinig  Computer Vision and Pattern Recognitjajune 2010.

require the knowledge of the number of arms a person h&8, J- Carreira, A. lon, and C. Sminchisescu, “Image segmentaty dis-
counted cumulative ranking on maximal cliques,” Computer Visind

and the Conﬁguratior!s they can be in). |t_might b(_a possible to Machine Learning Group, Institute for Numerical Simulatibmiversity
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