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Constrained Parametric Min-Cuts
for Automatic Object Segmentation

Joao Carreira and Cristian Sminchisescu

Abstract —We present a novel framework for creating and ranking plausible object hypotheses in an image using bottom-up generation
processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted
automatically, without prior knowledge about the properties of individual object classes, by solving a sequence of constrained parametric
min-cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a
continuous model to predict their plausibility (putative overlap with ground truth) based on their mid-level region properties, then diversify
the estimated overlap using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of
the art for low-level segmentation in the VOC 2009 and 2010 datasets. It achieves the same average best segmentation covering on
VOC2009 as the best performing technique to date [1], 0.61 when using just the top 7 ranked segments, instead of the full hierarchy in
[1]. Our method achieves 0.78 average best covering using 154 segments. An extended version of the basic algorithm achieves 83%
average per class object recall, using 200 segments per image on the VOC2010 segmentation dataset. In a related paper [2], it was
shown that the algorithm achieves notable results when used in a segmentation-based recognition pipeline. This pipeline achieved the
first place in the VOC2009 and VOC2010 image segmentation and labeling challenges.

Index Terms —Image Segmentation, figure-ground segmentation, learning

✦

1 INTRODUCTION

Reliably identifying the spatial extent of objects in images is
important for high-level vision tasks like object recognition.
A region that covers an object fully provides a characteristic
spatial scale for feature extraction, isolates the object from
the potentially confusing background signal and allows for
information to be propagated from parts of the object to the
whole (a region covering a human fully makes it possible to
propagate the person identity from the easier to identify face
area to the rest of the body).

Given an image, the space of all its possible regions, or
segments, is exponentially large. However, in our perceived
visual world not all image regions are equally likely to arise
from the projection of a three-dimensional object. Objectsare
usually compact and this results in their projection in the image
being connected; it is also common for strong contrast edges
to mark objects boundaries. Such properties reduce the number
of plausible object regions greatly, but may not be sufficient to
unambiguously define unique optimal regions for each object
in an image.

In this paper, we follow a two step strategy by combining
a figure-ground, bottom-up approach to segmentation with
subsequent verification and ranking based on mid-level region
properties. Key to an effective solution is the capability to
leverage the statistics of real-world objects in the selection
process. One possibility would be to learn the parameters of
the segmentation algorithm directly, by training a machine
learning model using large amounts of human annotated data.
However, the local scope of dependencies and the intrinsically
combinatorial nature of image segmentation diminishes the
effectiveness of learning in such ‘pixel spaces’ as many
interesting features such as the convexity and the smoothness

of a region boundary are difficult to capture locally. On
the other hand, once sufficient image support is available,
learning to distinguish ‘good’ segments that represent plausi-
ble projections of real-world surfaces, from accidental image
partitions becomes in principle feasible. This motivates our
novel decomposition of the problem into two stages. In the
first stage, we explore the space of regions that can inferred
from local measurements, using cues such as good alignment
with image edges. The process of enumerating regions with
plausible alignment with the image contours is performed
using exact combinatorial methods based on parametric max-
flow. Then, in the restricted space of generated regions, we
use a learned combination of sophisticated mid-level features
to induce a more accurate global ranking of those regions in
terms of their probability of being ‘object-like’.

A key question, and one of our contributions, is how should
image partitions be generated. Should region hypotheses be
allowed to overlap with each other? Should one aim at multi-
region image segmentations early? We argue that segmentation
is already a sufficiently challenging problem without such
constraints and global inter-region spatial consistency should
be, perhaps, enforced at a later stage of processing, by higher-
level routines that have better spatial scope for this calcula-
tion. We argue that attempts to enforce complex multi-region
consistency constraints early may disallow the speculative
behavior necessary for sampling regions effectively, given
the inherently ambiguous nature of the low-level cues one
typically operates on initially. Hence, differently from most of
the existing approaches to segmentation, we derive methodsto
generateseveral independent figure-ground partitions, rather
than a battery of splits of each image into multiple, non-
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Fig. 1: Our object segmentation framework. Segments are ex-
tracted around regularly placed foreground seeds, with various
background seeds corresponding to image boundary edges, for
all levels of foreground bias, which has the effect of producing
segments at different locations and spatial scales. The resulting
set of segments is ranked according to their plausibility of
being good object hypotheses, based on mid-level properties.
Ranking involves first removing duplicates, then diversifying
the segment overlap scores using maximum marginal relevance
measures.

overlapping regions1.
The overall framework we pursue is depicted in fig. 1.

We first solve a large number of independent binary min-
cut problems on an image grid, at multiple scales. These
are designed as energy functions efficiently solvable with
parametric min-cut/max-flow techniques. The resulting pool
of segments is minimally filtered to remove trivial solutions
and ranked using a regressor trained to predict to what extent
the segments exhibit the regularities typical of real-world
objects, based on their low and mid-level region properties.
Since ranking tends to place similar inputs in similar ranks,
we diversify the resulting segment ranking using Maximal
Marginal Relevance measures, with the top ranked segments
retained.

The quality of the list of object hypotheses returned by
our algorithm is evaluated empirically by measuring how
accurate they are with respect to pixel-level ground truth
human annotations, in object recognition datasets. We also
record performance as a function of the number of segments.
Results are reported on several publicly available benchmarks:
MSRC [4], the Weizmann Segmentation Database [5] and both
VOC2009 and VOC2010 [6], [7] where the proposed method
is shown to significantly outperform the state of the art, while
at the same time using significantly fewer segments.

Several types of methods may benefit from outputs like the
ones provided by our algorithm. Object detectors usually scan
a large number of bounding boxes in sliding window schemes
[8], [9] without considering the plausibility of pixel grouping
within each. Semantic segmentation algorithms [10], [11],
[12], [13] incorporate the outputs of these object detectors, and
may need to mediate the transition between the rectangular
regions produced by the detector and the desired free-form

1. The algorithm proposed in this paper has been recently employed to
generate multi-region segmentations by aggregating high-scoring sets of non-
overlapping figure-ground segmentations, modeled as maximal cliques, with
competitive results [3].

regions aligned with object boundaries. Unsupervised object
discovery [14] also requires good class-independent object
proposals. While the presentation focuses on the case of object
segmentation, the proposed method is general and can rank
lists of segments that follow the statistics of non-object,‘stuff’
regions such as grass or sky, as long as appropriate ground
truth training data statistics are provided.

An implementation of the proposed algorithm is made
publicly available via our website [15].
Paper Organization: Section§2 reviews the related literature,
§3 introduces the CPMC algorithm used to generate an initial
pool of segments for an image and§4 presents the segment
ranking procedure. Section§5 gives experimental results and
shows comparisons with the state of the art. An extension of
the basic algorithm to include bounding box constraints, and
the corresponding results are described in§6. We conclude
and discuss ideas for future work in§7.

2 RELATED WORK

The first image segmentation approach, published more than
40 years ago by Muerle and Allen [16], was aimed to compute
‘object’ regions. Small patches having similar gray-levelstatis-
tics were iteratively merged, starting at a seed patch. Region
growing stopped when none of the neighboring candidate
patches was sufficiently similar to the current region. The
process was repeated until all pixels were assigned.

This method took advantage of the fundamental grouping
heuristic that neighboring pixels with different color aremore
likely to belong to different objects. However it retrieved
very local solutions and was not able to deal with textured
regions, and even less, take advantage of more sophisticated
object statistics. Later, more accurate techniques emerged—
good surveys can be found in [17], [18], [19]. However, most
methods still pursued a single optimal segmentation of an
image into a set of non-overlapping regions that cover it fully
(an image partitioning). But a sufficiently good partitioning is
not easy to find given the ambiguity of low and mid level cues.
There were also no quantitative benchmarks to gauge progress
and most papers solely described qualitatively the merits of
the output segmentations, and only on a reduced number of
images.

As a result, in the nineties, part of the recognition commu-
nity lost hope that a reliable segmentation procedure wouldbe
found and began investigating solutions that avoided bottom-
up segmentation altogether [20]. This trend led to the current
prevalence of bounding box detectors operating on sliding
windows [8], [21]. These detectors rely on dense evaluation
of classifiers over overlapping rectangular image regions,
with consistency being usually enforced a posteriori by non-
maxima suppression. This may have initially suggested thatthe
original partitioning requirements assumed by most segmen-
tation algorithms can be bypassed. Sliding window methods
are indeed powerful for object localization for certain objects
like faces or motorbikes, but do not obviously generalize
to more complex objects and cannot be easily adapted for
general 3d scene understanding: e.g. information predicted on
rectangular image regions is not sufficient for operations such
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as manipulation of a cup by a robot, where precisely identify
the cup handle in the image in order to grab it, is critical.

Such considerations made a revival of segmentation in-
evitable. The trend has gained momentum during the past
ten years, propelled by the creation of annotated benchmarks
[6], [22], together with new segmentation performance met-
rics [6], [23]. A second important factor was the adoption
of machine learning techniques to optimize performance on
benchmarks. A third factor was the relaxation of single par-
titioning requirements. A popular approach emerged by com-
puting several fully independent segmentations, possiblyusing
different algorithms. This idea was pursued by Hoiemet al.
[24] for geometric labeling problems. Russelet al. computed
normalized cuts for different number of segments and image
sizes [14] for unsupervised object discovery problems. By
generating tens to hundreds of thousands of segments per
image, Malisiewicz and Efros [25] produce very good quality
segments on the MSRC dataset. The segments were obtained
by merging pairs and triplets of segments obtained using the
Mean Shift [26], Normalized Cuts [27] and Felzenszwalb-
Huttenlocher’s (FH) [28] algorithms. Steinet al. [29] solved
Normalized Cut problems for different number of segments,
on a special affinity matrix derived from soft binary mattes,
whereas Rabinovichet al. [30] shortlisted segmentations that
tend to reoccur, hence are potentially more stable.

The computation of multiple segmentations can also be
organized hierarchically. Shi and Malik [27] recursively solve
relaxations of a Normalized Cut cost based on graphs con-
structed over pixel nodes. Sharonet al. [31] proposed al-
gebraic multigrid techniques to efficiently solve normalized
cuts problems at multiple levels of granularity, where graphs
with increasingly more complex features are used at coarser
levels. Arbeĺaez et al. [1] derive a segment hierarchy by
iteratively merging superpixels produced by an oriented water-
shed transform. They use the output of the learned globalPb
[32] boundary detector and can represent the full hierarchy
elegantly in a single ultrametric contour map. The hierarchy
is a natural representation for segmentation, as it lends itself to
compositional representations. Inaccuracies in one level(due
to the incorrect merging of two regions in the previous level),
however, tend to propagate to all coarser levels. Therefore,
given the same segmentation technique, generating a single
hierarchy is likely to be less robust than generating indepen-
dent segmentations.

Differently, our region sampling methodology generates
multiple independent binary hierarchies constrained at dif-
ferent positions in the image. Each level of the hierarchy
corresponds to a partitioning into figure and ground, where
only the figure region is kept, and regions at finer levels are
nested inside coarser levels regions (this is a result of our
parametric max-flow methodology). In this way, we aim to
better sample the space of plausible regions surrounding each
pixel. We compute these partitionings using energies mostly
related to the ones developed for interactive segmentation
applications, where obtaining single figure-ground solutions is
a common goal. In these applications, max-flow algorithms are
quite popular because they can obtain exact optima for certain
energy minimization problems involving region and boundary

properties [33]. Generally the user assigns manually some
pixels to foreground and background regions, these are en-
coded into an energy problem, which is solved using a global
minimization algorithm. The two steps are repeated until the
quality of the resulting binary segmentation is satisfactory.

Variants requiring less manual interaction have been de-
veloped, such as GrabCut [34], where a simple rectangular
seed around the object of interest is manually initialized and
an observation model is iteratively fitted through expectation
maximization (EM). Bagonet al. [35] require a user to simply
click a point inside the object of interest, and also use EM
but to estimate a sophisticated self-similarity energy. These
techniques can only optimize globally energies defined on
local features such as contrast along the boundary and good
pixel fit to a color or texture model. Interesting relaxation
approaches exist for some energies whose minimization is
NP-hard, such as curvature regularity of the boundary [36].
However many other more global properties may be more
challenging to directly optimize, such as convexity or sym-
metry, motivating our ranking procedure. We differ from
existing methods not only in our efficient parametric max-
flow methodology to solve for multiple breakpoints of the
cost, thus exploring a much large space of plausible segment
hypotheses in polynomial time, but also in using regression-
based ranking methods on generic mid-level features to score
the generated segments and fully automate the process. No
manual interaction is necessary in our method.

One of the big challenges in segmentation is to leverage the
statistics of real world images in order to obtain more coherent
spatial results. Methods that learn low-level statistics have
been applied to distinguish real from apparent contours [37],
[38], [39] and similar from dissimilar superpixels [24]. Pen
and Veksler [40] proposed a learning procedure to select the
best segment among a small set generated by varying the value
of one parameter, in the context of interactive segmentation.
Models based on mid-level properties have also been learned
to distinguish good from bad regions [41]. High-level shape
statistics can be incorporated into binary segmentation models,
usually as non-parametric distributions of templates [42], [43],
[44]. Expressive part-based appearance models have also been
developed [45], [46], [47], [48]. It is likely that these methods
may require bottom-up initialization, which an algorithm like
ours can provide, as objects in real images exhibit large
variability in pose, have high intra-class variation and are often
occluded. Effectively leveraging shape priors in the initial
steps of the visual processing pipeline may not always be
feasible.

Our method aims to learn what distinguishes meaningful
regions, covering full objects, from other accidental pixel
groupings. Since our original publication [49], related ideas
have been pursued also by Endres and Hoiem [50] who follow
a processing pipeline related to ours, but employ a learned
affinity measure between superpixels, rather than pixels, and a
structured learning approach on a similar maximum marginal
relevance measure to diversify ranking. To generate figure-
ground segments, Levinshteinet al. [51] developed a proce-
dure based on parametric max-flow principles similar to ours,
but use a graph where similarity measures are constructed
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on superpixels. In parallel work, Alexeet al. [52] learn a
naive Bayes model to distinguish bounding boxes enclosing
objects from those containing amorphous background, without
knowledge of the shape and appearance of particular object
classes. They also show how to sample bounding boxes from
this model efficiently. Salient object detection [53] approaches
are also relevant to our work, but they focus on selection
criteria inspired by attention mechanisms. We are instead
interested in computing regions that cover well every object
in an image, independently of whether they ‘stand out’ from
the rest of the scene or not.

3 CONSTRAINED PARAMETRIC MIN-CUTS
(CPMC)
In order to generate a pool of segments with high probability
of not missing object-quality regions, multiple constrained
parametric min-cuts (CPMC) problems are solved with differ-
ent seeds and unary terms. This leads to a large and diverse
pool of segments of multiple spatial extent. The segments that
correspond to implausible solutions are subsequently discarded
using simple ratio cut criteria. The remaining segments are
clustered so that all but representatives with low energy are
retained, among the extremely similar ones. The final working
set of segments is significantly reduced, with the most accurate
segments preserved.

3.1 Setting up the Energy Functions

For each image, alternative sets of pixels are hypothesized
to belong to the foreground—the foreground seeds. Then, for
each set, we implicitly apply multiple levels of foreground
bias, by assigning different costs on all remaining pixels but
the ones assigned to background seeds. The foreground seeds
are placed on a grid, while the background seeds are set
along the image border. For each combination of foreground
and background seeds we compute figure-ground segmen-
tations, resulting from minimum cuts for multiple values
of the foreground bias—searching over multiple foreground
biases is intrinsic to our parametric max flow procedure. The
optimization problem is formulated next.

Let I(V) → R3 be an image defined on a set of pixelsV. As
commonly done in graph-based segmentation algorithms, the
similarity between neighboring pixels is encoded into edges
of a weighted graphG = (V, E). Here, each pixel is a node in
the set of nodesV. The foreground and background partitions
are represented by labels1 and0, respectively. Seed pixelsVf

are constrained to the foreground andVb to the background
by setting infinity energy to any labeling where they receive
the opposite label. Our overall objective is then to minimize
an energy function over pixel labels{x1, ..., xk}, xi ∈ {0, 1},
with k being the total number of pixels. In particular, we
optimize the following energy function:

Eλ(X) =
∑

u∈V

Dλ(xu) +
∑

(u,v)∈E

Vuv(xu, xv) (1)

with λ ∈ R, and unary potentials given by:

Fig. 2: Different effects of uniform and color-based unary
terms. For illustration, a single foreground seed was placed
manually at the same location for two energy problems, one
with uniform and another with color unary terms. Shown
are samples from the set of successive energy breakpoints
(increasingλ values) from left to right, as computed by
parametric max-flow. Uniform unary terms are used in rows
1 and 3. Color unary terms are used in even rows. Uniform
unary terms are most effective in images where the background
and foreground have similar color. Color unary terms are more
appropriate for objects with elongated shapes.

Dλ(xu) =















0 if xu = 1, u /∈ Vb

∞ if xu = 1, u ∈ Vb

∞ if xu = 0, u ∈ Vf

f(xu) + λ if xu = 0, u /∈ Vf

(2)

The foreground bias is implemented as a cost incurred by
the assignment of non-seed pixels to background, and consists
of a pixel-dependent valuef(xu) and an uniform offsetλ. Two
different functionsf(xu) are used alternatively. The first is
constant and equal to0, resulting in a uniform (variable) fore-
ground bias. The second function uses color. Specifically, RGB
color distributionspf (xu) on seedVf andpb(xu) on seedVb

are estimated and derivef(xu) = ln pf (xu)− ln pb(xu). The
probability distribution of pixelj belonging to the foreground
is defined aspf (i) = exp(−γ ·minj(||I(i)−I(j)||)), with γ a
scaling factor, andj indexes representative pixels in the seed
region, selected as centers resulting from ak-means algorithm
(k is set to5 in our experiments). The background probability
is defined similarly. This choice of function is motivated
by efficiency, being much faster to estimate compared to a
Gaussian mixture model.

Color-based unary terms are more effective when the color
of the object is distinctive with respect to the background,as
well as when the object has thin parts. Uniform unary terms are
more useful in the opposite case. The complementary effects
of these two types of unary energy terms are illustrated in fig.
2.

The pairwise termVuv penalizes the assignment of different
labels to similar neighboring pixels:

Vuv(xu, xv) =

{

0 if xu = xv

g(u, v) if xu 6= xv
(3)

with similarity between adjacent pixels given byg(u, v) =

exp
[

−max(gPb(u),gPb(v))
σ2

]

. gPb returns the output of the
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multi-cue contour detector globalPb [32] at a pixel. The square
distance is also an option that we experimented, with similar
results, instead of themax operation. Theboundary sharpness
parameterσ controls the smoothness of the pairwise term.

The function defined by eq. 1 is submodular. Given a pair of
foreground and background seeds andf(xu), the cost can be
minimized exactly for all values ofλ in the same complexity
as a single max-flow problem, using a parametric solver [54].
In canonical form, parametric max-flow problems differ from
max-flow problems in that capacities from the source node
are allowed to be linear functions of a parameter, hereλ. As
λ (effectively our foreground bias) varies there are at most
(k − 1) different cuts in the transformed graph, wherek is
the number of nodes, although for the graphs encountered in
vision problems there are generally far fewer (see also our
study in§3.3). The values ofλ for which the cut values change
are usually known asbreakpoints. When the linear capacity
functions from the source are either non-increasing or non-
decreasing functions ofλ, the problem is said to be monotonic.
Our energy problems are monotonic becauseλ is multiplied by
the same value,1, in all unary terms. This important property
implies that all cuts computed for a particular choice of source
and sink seeds are nested.

In this work we use thehighest label pseudoflowsolver [55],
which has complexity ofO(mN log(N)) for image graphs
with N nodes andm edges. The complexity of the CPMC
procedure is thusO(kmN log(N)), as we solve multiple
parametric max-flow problems, for each of thek combinations
of foreground and background seeds, and for different choices
of f(xu). The pseudoflow implementation requires a set ofλ
parameters for which to compute cuts. For the study in§3.3,
we use additionally an implementation based on Galloet al.
[56] for the parametric analysis of a push-relabel max-flow
solver which retrieves all breakpoints [57].

The graph construction that maps to the energy functions
in (1) for each choice of foreground and background seed is
similar to the one on [33], and requires to augment the graphG
with two special nodes, sources and sinkt that are required to
be in separate partitions for any binary cut. The unary energy
terms are encoded as edges between these special nodes and
the nodes in V.

3.2 Effect of Grid Geometry

For the foreground seeds, we chose small solid squares. We
have experimented with three different strategies to place
them automatically: rectangular grid geometry, centroidsof
superpixels obtained with normalized cuts, and centroids of
variable size regions, closest to each rectangular grid position,
obtained using segments from the algorithm in [28]. As can
be seen in table 1, the differences in results are not significant.

The background seedsare necessary in order to prevent
trivial cuts that leave the background set empty. We used four
different types: seeds covering the full image boundary, just the
vertical edges, just the horizontal edges and all but the bottom
image edge. This selection strategy allows us to extract objects
that are only partially visible, due to clipping at different image
boundaries.

In practice we solve around 180 instances of problem (1)
for each image, for 30λ values each (during processing, we
skip duplicate breakpoints), defined on a logarithmic scale.
The set of figure-ground segmentations is further enlarged by
splitting the ones where the foreground has multiple connected
components. The final pool has up to 10,000 segments.

As an alternative to multiple hard background seeds, it is
possible to use a single soft background seed. This can be a
frame one pixel wide covering the border of the image, with
each pixel having a finite penalty associated to its assignment
to the foreground. This construction is more efficient, as it
decreases by75% the number of energy problems to solve.
We used this type of background seeds in an extension of the
basic algorithm, presented in section§6.

Seed placement MSRC score Weizmann score

Grid 0.85± 0.1 0.93± 0.06
NCuts 0.86± 0.09 0.93± 0.07

FH 0.87± 0.08 0.93± 0.07

TABLE 1: Effect of spatial seed distribution. The use of
superpixel segmentation algorithms (e.g. Normalized Cutsor
FH [28]) to spatially distribute the foreground seeds does not
significantly improve the average best segmentation covering
score on the MSRC dataset, over regular seed geometries.
On Weizmann, the average best F-measure is the same for
all distributions, perhaps because the objects are large and
any placement strategy eventually positions some seeds
inside the object.

3.3 Effect of λ Schedule

We evaluated the effect of solving problem (1) for allλ
values, instead of a preset logarithmicλ schedule, on the
training set of the PASCAL VOC 2010 segmentation dataset
(the typical distinction into training and testing is not relevant
for the purpose of this experiment, where the goal is only to
analyze the number of breakpoints obtained using different
search strategies). We use a6x6 regular grid of square seeds
and solve using two procedures: (1)20 values ofλ sampled
on a logarithmic scale (only the distinct energy optima are
recorded) and, (2) allλ values, as computed as breakpoints
of (1). We have computed the average computational time
per seed, the ground truth covering score, and the number of
breakpoints obtained under the twoλ-search strategies. The
results are shown in table 2. They suggest that a presetλ
schedule is a sensible option. Using only20 values produces
almost the same covering as the one obtained using all
values, it is4 times faster and generates10% of the total
number of breakpoints, hence fewer segments. We also plot
the distribution of the number of breakpoints per seed in figure
3, under the same experimental conditions. The frequency of
breakpoints has a unimodal (bell) shape, with mean110, but
a slightly heavier tail in the direction of larger numbers of
segments. There are never less than 15 breakpoints in this
dataset.
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# λ values # breakpoints Time (s) Covering

20 12.3 1.8 0.713
all 114.6 7.5 0.720

# objects 1-2 3-4 5-6 7-13

# breakpoints allλ 112.19 124.60 125.29 142.83
# breakpoints20 λ 12.27 12.64 13.08 13.45

# images 717 147 68 32

TABLE 2: Covering results obtained on the training set of
VOC2010, based on a6x6 grid of uniform seeds. The table
compares the results of solving CPMC problems for20
values ofλ, sampled on a logarithmic scale, with the results
obtained by solving for all possible values ofλ. Shown are
the average number of breakpoints per seed, and the average
time required to compute the solutions for each seed.
Computing all breakpoints for each seed provides modest
ground truth covering improvements, at the cost of
generating a larger number of segments and at increased
computation time. The second table shows that images
containing a larger number of ground truth objects tend to
exhibit more breakpoints per seed.
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Fig. 3: Frequency of the parametric max flow breakpoints for
each seed, on the training set of the VOC2010 segmentation
dataset. These results were obtained using a6x6 uniform grid
of seeds. The number of breakpoints has mean 110, and a
heavier tail towards a larger number of breakpoints.

3.4 Fast Segment Rejection

Generating a large set of segments increases the hit rate
of the algorithm, but many segments are redundant or do
not obey the statistics of real-world surfaces imaged by a
camera. For images with large homogeneous regions, the
original hypothesis generation step can produce many copies
of the same segment because of the seeding strategy — every
seed placed inside the region would tend to generate the
same segment for the sameλ. Moreover, sometimes visually
arbitrary segments are created, as artifacts of the foreground
bias strength and the seed constraints employed.

We deal with these problems using a fast rejection step.
We first filter very small segments (up to 150 pixels in
our implementation), then sort the segments using a simple
criterion (we have used the ratio cut [58] as this is scale

invariant and very selective) and retain up to 2,000 highest
scoring segments. Then we hierarchically cluster the segments
using overlap as a similarity measure, to form groups with all
segments of at least 0.95 spatial overlap. For each cluster,we
retain the segment with the lowest energy.

The number of segments that pass the fast rejection step
is usually small, being indicative of how simple or cluttered
an image is. In general, simple datasets have lower average
number of segments. But even in the difficult PASCAL VOC
2009 dataset, the average was 154.

4 MID-LEVEL SEGMENT RANKING

Gestalt theorists [59], [60] argued that properties such as
proximity, similarity, symmetry and good continuation are
key to visual grouping. One approach would be to model
such properties in the segmentation process [61], as long-
range dependencies in a random field model. However, this
poses significant modeling and computational challenges. With
a segment set generated using weaker constraints, leverag-
ing Gestalt properties becomes easier: rather than guide a
complex inference procedure based on higher-order, long-
range dependencies, we only need to check conformance with
Gestalt regularities. It is therefore interesting to explore how
the qualitative Gestalt theories can be implemented and what
effects they produce in practice. An important question is
whether Gestalt properties can be used to predict if segments
have regularities typical of projections of real objects, in a
manner that does not require prior knowledge about the class
of the object in the image. This is a challenging problem,
since the visual aspects of objects are extremely diverse.
However, if object regularities can be identified, images could
be represented by a handful of segments, which are easier to
interpret and process by higher-level visual routines thana
large set of pixels or superpixels.

In this work, we take an empirical approach: we compile
a large set of features and annotated examples of segments
of many objects from different categories, and use machine
learning techniques to uncover their significance. Three sets
of features (34 in total) are considered, representing graph,
region and Gestalt properties. Graph properties, in particular
variations of cut values, have long been used as cost functions
in optimization methods for segmentation. Region properties
encode mainly the statistics of where and at what scale objects
tend to appear in images. Finally, Gestalt properties include
mid-level cues like convexity and continuity, which can encode
object regularities (e.g. objects background segments areusu-
ally non-convex and object boundaries are usually smoother
than the boundaries of accidental, noisy, segments).
Graph partition properties (8 features) include the cut
(sum of affinities along the segment boundary) [62], theratio
cut (sum of affinity along the boundary divided by their
number) [58], thenormalized cut(ratio of cut and affinity
inside foreground, plus ratio of cut and affinity on background)
[27], the unbalanced normalized cut(cut divided by affinity
inside foreground) [31], and theboundary fraction of low
cut, 4 binary variables signaling if the fraction of the cut is
larger than a threshold, normalized by segment perimeter, for
different thresholds.
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Region properties (18 features)include area, perimeter, rela-
tive coordinates of the region centroid in the image, bounding
box location and dimensions, major and minor axis lengths
of the ellipse having the same normalized second central
moments as the region, eccentricity, orientation, convex area,
Euler number, diameter of a circle with the same area as
the region, ratio of pixels in the region to pixels in the total
bounding box, perimeter and absolute distance to the center
of the image. Part of these features can be easily computed in
Matlab with theregionpropsfunction.
Gestalt properties (8 features)are implemented mainly as
normalized histogram distances based on theχ2 comparison
metric:χ2(x, y) =

∑

i
(xi−yi)

2

xi+yi
[63].

Let the texton histogram vector on the foreground region
be tf , and the one on the background betb. Theninter-region
texton similarity is computed as theχ2(tf , tb). Intra-region
texton similarity is computed as

∑

i 1(tf (i) > k), with 1

the indicator function, andk a threshold, set to0.3% the
area of the foreground in our implementation. The textons are
obtained through globalPb [1], which uses65 nearest neighbor
codewords.

Another two features we use are:inter-region brightness
similarity, defined asχ2(bf , bb), with bf andbb intensity his-
tograms with256 bins, andIntra-region brightness similarity
defined as

∑

i 1(bf (i) > 0).
We also extract theintra-region contour energyas the sum

of edge energy inside the foreground region, computed using
globalPb, normalized by the length of the region perimeter.
We also extract aninter-region contour energy, as the sum of
edge energies along the boundary normalized by the perimeter.

The other Gestalt features we consider arecurvilinear
continuityandconvexity. The first is the integral of the segment
boundary curvature. We use an angle approximation to the
curvature [64] on triplets of points sampled regularly every 15
pixels in our tests. Convexity is measured as the ratio of areas
of the foreground region and its convex hull.

All features are normalized by subtracting their mean and
dividing by their standard deviation.

4.1 Learning

We cast the problem of ranking the figure-ground hypotheses
as regression on the largestoverlap a segment has with a
ground truth object, against its features. The definition ofover-
lap isO(S,G) = |S∩G|

|S∪G| [6]. This similarity function penalizes
both under-segmentations and over-segmentations and has the
advantage of being scale invariant. We experimented with
both linear regression and random forests [65], a competitive
non-linear model that predicts by averaging over multiple
regression trees. Since the overlap induces a consistent ranking
between all segments in the dataset, it is not necessary to use
more specialized models that rank using pairwise preferences,
such as the ranking SVM [66].

The importanceof our features as learned by the random
forests regressor [65], is shown in fig. 4. Some region proper-
ties appear to be quite informative, particularly featuressuch
as segment width and height and the location in the image.
The ‘Minor Axis Length’ feature, which gets the highest

Fig. 4: Feature importance for the random forests regressor
learned on the VOC2009 segmentation training set. The minor
axis of the ellipse having the same normalized second central
moments as the segment (here ‘Minor Axis Length’) is surpris-
ingly the most important. This feature used in isolation results
in relatively poor rankings however (see fig. 6). The Graph
properties have small importance. The “Boundary fraction
of low cut“ features, being binary, do not contribute at all.
Gestalt features have above average importance, particularly
the contour energies.

importance works quite poorly in isolation, however, as shown
in fig. 6, suggesting some cues are not informative in isolation,
but correlate well to multiple other features. Convexity and the
edge energy along the boundary, however, are assigned large
importance, as expected.

4.2 Maximum Marginal Relevance Diversification

The ranking results tend to place very similar segments in
adjacent positions. An effective way to increase the quality of
the first N segments is todiversify the ranking, which we
do based on Maximal Marginal Relevance (MMR) measures
[67]. To our knowledge this is the first application of such a
technique to image segmentation. Starting with the originally
top-scored segment, the MMR induces an ordering where the
next selected segment (with maximum marginal relevance) is
the one maximizing the original score minus a redundancy
measure with respect to segments already selected. This pro-
cedure is iterated until all segments have been re-ranked. The
redundancy measure we employ is the overlap with the set of
previous segments selected based on the MMR measure.

Formally, letH be the full set of figure-ground segmenta-
tions andHp ⊂ H the hypotheses already selected. Lets(Hi)
be our predicted score for a given figure-ground segmentation
ando(Hi, Hj) the overlap between two figure-ground segmen-
tations. The recursive definition for the next maximal marginal
relevance selection is given as [67]:

MMR = argmax
Hi∈H\Hp

[

θ · s(Hi)− (1− θ) · max
Hj∈Hp

o(Hi, Hj))
]
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The first term is the score and the second is the redundancy.
Parameterθ regulates the trade-off between the predicted
score and the diversity measures in the firstN selections. For
exampleθ = 0 will make the ranking ignore individual scores,
and select the next set element with minimal overlap with any
of the previously chosen elements. In contrast,θ = 1 will
always select the element with the highest score next. The
best trade-off depends on the application. If high precision is
desired then a higher weight should be given to the predicted
score, whereas if recall is more important, then a higher weight
should be given to diversity. Ifθ is very small, then ranking
will be close to random. In our VOC experiments we have
cross-validated atθ = 0.75.

Ideas about selection of segments have been explored in
the past, most notably by Ren and Malik [41]. They use a
random search algorithm to iteratively hypothesize segmenta-
tions by combining different superpixels, and use a classifier
to distinguish good segmentations from bad ones. For each
segment, a feature vector is extracted, a classification score is
computed, and the segmentation having the highest average
score is selected. Images from the Berkeley Segmentation
Dataset were used, with positive examples being matched with
the corresponding human segmentation, and negative examples
matched to a random human segmentation selected from a
different image.

We differ from [41] in several important aspects: we use
a superset of previously proposed features, including graph
and region properties or convexity, we aim at obtaining
independent object-level segments, and learn directly from
object class recognition datasets. To learn how each segment
obeys the statistical regularities of real-world objects,we
train a regression model, not a classifier, hence we do not
need to synthesize negative examples. Finally, we precompute
an accurate set of figure-ground segmentations, making the
process more efficient.

5 EXPERIMENTS

We study both the quality of the pool of object hypotheses gen-
erated by CPMC, and the loss in quality incurred by selecting
the topmostN object hypotheses, as opposed to working with
a much larger pool. We use three publicly available datasets:
Weizmann’s Segmentation Evaluation Database [5], MSRC [4]
and the VOC2009 train and validation sets for the object-class
segmentation problem [6].

Weizmann consists of 100 gray-valued images having a
single prominent foreground object. The goal is to generate
coverage of the entire spatial support of the object in the
image using a single segment, and as accurately as possible.
We compare the performance of CPMC with published results
from two state of the art segmentation algorithms. The results
are reported using the bestF-measurecriterion, F = 2RP

P+R
,

whereP and R are the precision and recall of pixels in a
segment relative to the ground truth [5]. Only the best F-
measure in each image is relevant for the final score, because
there is only one object in each image.

The MSRC dataset is quite different, featuring 23 different
classes, including somestuff classes, such as water and grass.

It has up to11 objects present in each of its nearly 600
images. We use this dataset to evaluate the quality of the
pool of segments generated, not individual rankings. The VOC
2009 dataset is challenging for segmentation, as it contains
real-world images from Flickr, with 20 different classes of
objects. The background regions are not annotated. MSRC and
VOC2009 contain multiple ground-truth objects per image,
therefore we use thesegmentation covering[1] as an accuracy
measure. The extent of covering a set of ground truth segments
S by a set of machine segmentsS′ is defined as:

C(S, S′) =
1

N

∑

R∈S

|R| ∗ max
R′∈S′

O(R,R′) (4)

whereN is the number of pixels in the image,|R| is the
number of pixels in the ground truth segmentR, andO is the
overlap.

5.1 Segment Pool Quality

The automatic results obtained using CPMC on the Weizmann
dataset are shown in table 3 together with the previous best
result, by Bagon et al [35], which requires the user to click
a point inside the object. We also compare to the method of
Alpert et al. [5], which is automatic. Results for CMPC were
obtained using an average of 53 segments per image. Visibly,it
generates an accurate pool of segments. Results on MSRC and
VOC2009 are compared in table4 to Arbeláezet al. [1], which
is arguably one of the state of the art methods for low-level
segmentation. The methodology of the authors was followed,
and we report the average best coverings. We use all the unique
segments in the hierarchy returned by their algorithm [1] to
compute the score. The pool of segments produced by CPMC
is significantly more accurate and has an order of magnitude
fewer segment hypotheses. A filtering procedure could be
used for gPb-owt-ucm to reduce the number segments, but
at a potential penalty in quality. The dependency between the
quality of segments and the size of the ground truth objects is
shown in fig. 5.

Weizmann F-measure

CPMC 0.93± 0.009
Bagonet al. 0.87± 0.010
Alpert et al. 0.86± 0.012

TABLE 3: Average of best segment F-measure scores over
the entire dataset. Bagon’s algorithm is interactive. Alpert’s
results were obtained automatically. The table shows that for
each image, among the pool of segment hypotheses produced
by CPMC, there is usually one segment which is extremely
accurate. The average number of segments that passed the
fast rejection step was 53 in this dataset.

5.2 Ranking Object Hypotheses

We evaluate the quality of our ranking method on both the
validation set of the VOC2009 segmentation dataset, and on
hold-out sets from the Weizmann Segmentation Database. The
training set of VOC2009 consists of750 images, resulting in
114, 000 training examples, one for each segment passing the
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MSRC Covering N Segments

CPMC 0.85± 0.1 57
gPb-owt-ucm 0.78± 0.15 670

VOC2009 Covering N Segments

CPMC 0.78± 0.18 154
gPb-owt-ucm 0.61± 0.20 1286

TABLE 4: Average best image covering scores on MSRC
and VOC2009 train+validation datasets, compared to
Arbeláezet al. [1], here gPb-owt-ucm. Scores show the best
covering of ground truth by segments produced using each
algorithm. CPMC results before ranking are shown, to
evaluate the quality of the pool of segments from various
methods.
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Fig. 5: Quality of the segments in VOC2009 joint train and
validation sets for the segmentation problem, as a functionof
the area of the ground truth segments. Medium and large size
objects, that are more frequent, are segmented significantly
more accurately by CPMC than by gPb-owt-ucm [1], in this
case.

fast rejection step. On the Weizmann Segmentation Database
we randomly select50 images, resulting in2, 500 training
examples, and we test on the remaining 50 images. On
Weizmann we compare a random forests regressor trained
on the images in that dataset with a predictor trained on
VOC2009. The results in fig. 6 are similar, showing that
the model is not overfitting to the statistics of the individual
datasets. This also shows that it is possible to learn to rank
segments of arbitrary objects, using training regions fromonly
20 classes. The learned models are significantly better than
ranking using the value of any single feature such as the cut
or the ratio cut. On VOC2009 we have also run experiments
where we have complemented the initial feature set with
additional appearance and shape features — a bag of dense
SIFT [68] features computed on the foreground mask, a bag
of Local Shape Contexts [69] computed on its boundary, and
a HOG pyramid [70] with3 levels computed on the bounding
box fitted on the boundary of the segment, for a total of 1,054
features. In this case, we trained a linear regressor for ranking
(this is significantly faster than random forests, which takes
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Fig. 6: Average best segment F-measure as we vary the number
of retained segments given by our ranking procedure. Results
were averaged over three different splits of 50 training and50
testing images. Note that when working with our top-scored 5
segments per image, the results already equal the ones obtained
by the interactive method of Bagonet al. [35]. Note also that
using this learned ranking procedure, it is possible to compress
the original pool of segments to a fifth (10 segments), at
negligible loss of quality.

about 8 hours to train on the basic 34 features). The results
are shown in fig. 7. Clearly the new features help somewhat,
producing results that are slightly better than the ones obtained
by the linear regressor on the basic feature set. However, these
are not better than a random forests model trained on the basic
feature set. This shows that the set of basic features is already
quite expressive in conjunction with nonlinear models.

Notice that by using this ranking procedure, followed by
diversification, we can obtain object hypotheses of superior
quality of those provided by the segmentation algorithm of [1].
In fact, by using the top7 segments produced by our ranking
procedure, we obtain the same accuracy,0.61, as obtained
using the full hierarchy of1, 286 distinct segments in [1].

6 SUBFRAME -CPMC
We have experimented with a different variant of the algo-
rithm, the Subframe-CPMC, on the Pascal VOC2010 dataset.
The goal was to achieve high object recall while at the
same time preserving segmentation accuracy, with a mindset
towards detection applications. To score a detection hypothesis
as correct, benchmarks such as the Pascal VOC require a
minimum overlap between correctly classified regions and the
ground truth regions. In addition, benchmarks disregard the
area of the ground truth regions (e.g. an object with500 pixels
is just as important as one occupying the full image), hence
what matters is not so much achieving highcoveringscores
(which explicitly take into account the size of the segments),
but highoverlap.

Subframe-CPMC uses an additional type of seed, and is
configured to generate a larger number of segments. First
we make the overall process faster by solving the energy
problems at half of the image resolution. Quantitative results
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Fig. 8: Ranking results obtained using the random forests model learned on the VOC2009 training set. The green regions are
the segment foreground hypotheses. The first image on each row shows the ground truth, the second and third images show
the most plausible segments given by CPMC, the last two images showthe leastplausible segments, and the fourth and fifth
images show segmentsintermediatelyplaced by the ranking. The predicted segment scores are displayed in overlay. The first
three images are from the VOC2009 validation set and rows2, 4 and 6 show the diversified rankings, withθ = 0.75. Note
that in the diversified ranking, segments scored nearby tendto be more dissimilar. The last three rows show results from the
Weizmann Segmentation Database. The algorithm has no priorknowledge of the object classes, but on this dataset, it still
shows a remarkable preference for segments with large spatial overlap with the imaged objects. There are neither chariots nor
vases in the training set, for example. The lowest ranked object hypotheses are usually quite small reflecting perhaps the image
statistics in the VOC2009 training set.
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Fig. 7: Complementing the basic descriptor set with appear-
ance and shape features improves the ranking slightly, but the
basic set is still superior when used in conjunction with a more
expressive random forests regressor. Further diversifying the
ranking improves the average best covering given by the first
top N segments significantly.

were equivalent. We also changed the seeding strategy to use
a single soft background seed. We also increased the number
of foreground seeds, by using a grid of6x6 instead of the
previously 5x5, and reduced the value of theσ parameter
by 30% in eq. 3, resulting in more segments due to sharper
boundaries.

We have also complemented the existing seeds withsub-
frames, background seeds composed of the outside of rectan-
gles covering no more than25% of the area in the image,
with a single square foreground seed in the center. These
seeds constrain segments to smaller regions in the image, as
they force the possible contours to lie inside the rectangular
region. This is especially helpful for segmenting small objects
in cluttered regions. For this type of seed we also solve
problems with and without a color unary term. Two alternative
types of subframe seeds were tried: a5x5 regular grid of
square subframes of fixed dimension, with width set to40%
of the image, and bounding boxes from a deformable parts
detector [8], [71] with default parameters, set to the regime
of high recall but low precision. For the detector, we discard
class information and keep the40 top-scored bounding boxes
smaller than a thresholdC, in this case25% of the image
area. Subframe energy problems are optimized efficiently by
shrinking all nodes corresponding to pixels in background
seeds into a single node, thereby reducing the size of the graph
significantly.

The parameterσ, controlling the sharpness of the
boundary, has an important influence on the number of
generated segments. A value of2.5 with the color-based
seeds leads to225 segments, average overlap of0.61 and
covering of 0.74, while for σ = 1 the method produces
an average of876 segments, average overlap of0.69 and
covering0.76. We usedσ = 1 for the uniform seeds,σ =

√
2

for the color seeds, andσ =
√
0.8 for the subframe seeds.

This leads to a larger pool of segments, but also to higher

quality segments, as noticeable in table 5.

Additional Features: Working with a larger pool of segments
poses additional demands on the accuracy of ranking. An
improvement we pursued was to enlarge the set of mid-level
features with shape and texture features. The dimensionality
of these features, together with the large number of training
examples, makes linear regression the most practical learning
procedure, as discussed in section 5.2. Histogram features,
however, are known to be most effective when used with
certain nonlinear similarities, such as a Laplacian-RBF kernel
k(x, y) = exp(−

∑

|xi − yi|) [63]. Some of these similarity
functions can nevertheless be handled with linear regression,
by first applying a randomized feature map that approximates
the Laplacian-RBF kernel [72], [73].

As texture features we extracted two bags of words for each
segment: one defined over gray-level SIFT features and the
other over color SIFT features, both sampled every4 pixels
and at4 different scales (16, 24, 36 and 54 pixels wide) to
ensure a degree of scale invariance. Each one was quantized
using a 300-dimensional codebook. As shape features we
computed two pyramid HOGs, both with gradient orientation
quantized into20 bins, the first with the background segment
gradients masked out on a pyramid composed of four levels,
for a total of 1, 700 dimensions. The other PHOG was
computed directly on the contour of the segment, with both
foreground and background gradients masked out and a
pyramid of three levels for a total of420 dimensions. We map
the joint vector of the two bags of words for texture features
into a 2, 000-dimensional randomized feature map drawn
from the Fourier transform of the Laplacian-RBF kernel [72],
and process similarly the two PHOGs corresponding to shape
features. We also append our original34-dimensional feature
set resulting in a total of4, 034 features.

VOC2010 Results:The overlap measure is popular for dis-
tinguishing hits from misses in detection benchmarks. In the
VOC2010 dataset, besides the overlap, we evaluate the recall
under two different hit-metrics:50% segment overlap and
50% bounding box overlap. Using the50% segment overlap
criterion the algorithm obtains, average per class,87.73%
and 83.10% recall, using800 and 200 segments per image,
respectively. Under a50% bounding box overlap criterion, the
algorithm achieves91.90% using 800 segments and87.65%,
using200 segments.

The top200 ranked segments gave on average0.82 covering
and0.71 overlap, which improves upon the results of the basic
algorithm on the VOC2009 (0.78 and0.66 with all segments).
Details are shown in figs. 12 and 13; images are shown in fig.
10. The learned estimated weights of the linear regressor for
all features are displayed in fig.9.

7 CONCLUSIONS

We have presented an algorithm that casts the automatic image
segmentation problem as one of finding a set of plausible
figure-ground object hypotheses. It does so by learning to rank
figure-ground segmentations, using ground truth annotations
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Fig. 10: Segmentation results on images from the validationset of the VOC2010 database. Thefirst column contains the
original images, thesecondgives the human ground truth annotations of multiple objects, thethird shows the best segment
in the Subframe-CPMC pool for each ground truth object, thefourth shows the best segment among the ones ranked in the
top-200. The proposed algorithm obtains accurate segmentsfor objects at multiple scales and locations, even when theyare
spatially adjacent. See fig. 11 for challenging cases.



J. CARREIRA AND C. SMINCHISESCU: CONSTRAINED PARAMETRIC MIN-CUTS FOR AUTOMATIC OBJECT SEGMENTATION 13

Fig. 11: Examples, taken from the validation set of VOC2010,where the CPMC algorithm encounters difficulties. Thefirst
column shows the images, thesecondthe human ground truth annotations of multiple objects, thethird shows the best segment
in the entire Subframe-CPMC pool for each ground truth object, the fourth shows the best segment among the ones ranked
in the top-200. Partially occluded objects (first two rows),wiry objects (third row) and objects with low background contrast
(fourth and fifth row) can cause difficulties.
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Quality Measure Grid Subframes BB Detector No Subframes

Overlap 0.74 0.76 0.71
Covering 0.83 0.84 0.82

N segments 736 758 602

TABLE 5: Results on the training set of the VOC2010
segmentation dataset. Color and uniform seeds are
complemented with subframe seeds, either placed on a
regular grid or obtained from a bounding box detector. Using
a regular grid gives only slightly inferior results compared to
using detector responses. Both result in a large improvement
in the recall of small objects, compared to models that do
not use subframes. This is reflected in the overlap measure,
which does not take into account the area of the segments.

available in object class recognition datasets and based ona
set of low and mid-level properties. The algorithm uses a very
powerful new procedure to generate a pool of figure-ground
segmentations–the Constrained Parametric Min-Cuts (CPMC).
This uses parametric max-flow to efficiently compute figure-
ground hypotheses at multiple scales on an image grid, fol-
lowed by maximum relevance ranking and diversification. We
have shown that the proposed framework is able to generate
compact sets of segments that represent the objects in an image
more accurately than existing state of the art segmentation
methods. These sets of segments have been used successfully
in a segmentation-based recognition framework [2], as well
as, more recently, for multi-region image segmentation [3].

One difficulty of the current method is in handling of
objects composed of disconnected regions that may arise
from occlusion. While the energy minimization problems we
solve sometimes generate such multiple regions, we chose to
separate them into individual connected components, because
they only rarely belong to the same object. In many such cases
it may not be possible to segment the object correctly without
top-down information (e.g. segmenting people embraced might
require the knowledge of the number of arms a person has,
and the configurations they can be in). It might be possible to
handle the problem in a bottom-up fashion for simple cases,
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Fig. 12: Average overlap between ground truth objects and
the best Subframe-CPMC segments, on the validation set of
VOC2010. Certain classes are considerably harder to segment
by the algorithm, such as bicycles, perhaps due to their wiry
structure.

when cues like strong continuity may be exploited, but it
appears more promising to do such analysis at a later stage of
scene interpretation.

A somewhat suboptimal aspect of the proposed method is
that energy minimization problems are solved independently,
and the same number of problems is generated for all images,
notwithstanding some having a single object and others
having plenty. An interesting extension would make the
process dynamic by making decisions on where and how
to extract more segments conditioned on the solutions of
previous problems. This would be conceivably more efficient
and would make the transition to video smoother. It may also
speed up processing and it should also be possible to stop
early and degrade gracefully, when working on a temporal
budget. A conditional sequential process could also make for
a more biologically plausible control structure.
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Fig. 13: Recall at50% overlap between regions of ground
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and between ground truth bounding boxes and best Subframe-
CPMC segment bounding boxes (bottom). Note that bicycles
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