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Distributed Energy Efficient Spectrum Access in
Cognitive Radio Wireless Ad Hoc Networks

Song Gao, Lijun Qian, and Dhadesugoor R. Vaman

Abstract—In this paper, energy efficient spectrum access is
considered for a wireless cognitive radio ad hoc network, where
each node is equipped with cognitive radio, has limited energy,
and the network is an OFDMA system operating on time slots.
In each slot, the users with new traffic demand will sense the
spectrum and locate the available subcarrier set. Given the
data rate requirement and maximal power limit, a constrained
optimization problem is formulated for each individual user
to minimize the energy consumption per bit over all selected
subcarriers, while avoid introducing harmful interference to the
existing users. Because of the multi-dimensional and non-convex
nature of the problem, a fully distributed subcarrier selection
and power allocation algorithm is proposed by combining an
unconstrained optimization method with a constrained partition-
ing procedure. Due to the non-cooperative behavior among new
users, they will execute distributed power control to manage
the co-channel interference when needed. Simulation results
demonstrate that the proposed scheme performs tightly to the
global optimal solution. In addition, the comparison between
the proposed energy efficient allocation scheme and the well
established rate or power efficient allocation algorithms is carried
out to demonstrate the advantage of the proposed scheme in
terms of network lifetime.

Index Terms—Resource allocation, cognitive radio, ad hoc
network, OFDMA.

I. INTRODUCTION

ALTHOUGH the U.S. government frequency allocation
data [1] shows that there is fierce competition for the

use of spectra, especially in the bands from 0 to 3 GHz,
it is pointed out in several recent measurement reports that
the assigned spectrum are highly under-utilized [2], [3]. The
discrepancy between spectrum allocation and spectrum use
suggests that “spectrum access is a more significant problem
than physical scarcity of spectrum, in large part due to legacy
command-and-control regulation that limits the ability of
potential spectrum users to obtain such access" [2]. In order to
achieve much better spectrum utilization and viable frequency
planning, Cognitive Radios (CRs) are under development to
dynamically capture the unoccupied spectrum [4], [5]. Further-
more, in many challenging situations, the spectrum condition
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and usage information may not be available a priori, such as
in battlefield applications [38]. It is up to the CR users to
sense the spectrum and obtain the spectrum occupancy. Many
challenges arise with such dynamic and hierarchical means of
accessing the spectrum, especially for the dynamic resource
allocation of CR users by adapting their transmission and
reception parameters to the varying spectrum condition while
adhering to power constraints and diverse quality of service
(QoS) requirements (see, for example, [12]–[15], [18]).

In this paper, an energy constrained wireless CR ad hoc
network is considered, where each node is equipped with
CR and has limited battery energy. One of the critical per-
formance measures of such networks is the network life-
time. Moreover, due to the infrastructureless nature of ad
hoc networks, distributed resource management scheme is
desired to coordinate and maintain communications between
each transmitting receiving pair. In this context, the present
paper provides a framework of distributed energy efficient
spectrum access and resource allocation in wireless CR ad hoc
networks that employ orthogonal frequency division multiple
access (OFDMA) [8], [9], [34] at the physical layer. OFDMA
is well suited for CR because it is agile in selecting and
allocating subcarriers dynamically and it facilitates decoding
at the receiving end of each subcarrier [26]. In addition, multi-
carrier sensing can be exploited to reduce sensing time [6].

The CR OFDMA network operates on time slots. An
existing user transmits a pilot signal periodically on occupied
subcarriers [27]. By detecting the presence of such a pilot
signal, emerging CR users can determine the available subcar-
rier set in a target spectral range, and then select subcarriers
and transmission parameters (based on the proposed algo-
rithm) without introducing harmful interference to the existing
users [5], [7]. In this work, the primary users (existing users)
are users with on-going communications, while the secondary
users refer to CR users with new traffic demand. After the
emerging CR users start their data transmissions, they become
existing users [38].

Each emerging CR user will select its subcarriers and
determine its transmission parameters individually by solving
an optimization problem. The optimization objective is to
minimize its energy consumption per bit1 while satisfying its
QoS requirements and power limits. Compared with the power
minimization with respect to target data rate constraints [12] or
throughput maximization under power upper bound [13], this
objective function, which measures the total energy consumed
for reliable information bits transmitted, is particularly suitable

1which is defined as the ratio of the total transmission and reception power
consumption over available subcarrier set to its achieved throughput
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Fig. 1. Block diagram of the proposed distributed resource allocation
algorithm.

for energy constrained networks where the network lifetime is
a critical metric. The multi-dimensional and non-convex nature
of the optimization problem in multi-carrier systems makes
it more challenging than the throughput maximization/power
minimization problems or the energy efficiency problem in
a single carrier system [21]. Hence, we propose a two-
step algorithm by first decoupling it into an unconstrained
optimization problem, and a constrained partitioning method
is applied thereafter to obtain the constrained optimal solution
by partitioning the solution space according to power and QoS
constraints.

Although the emerging CR users will not cause harmful
interference to the existing users, they may choose the same
subcarriers in the same time slot independently, and thus
co-channel interference may be introduced. In this work,
we allow multiple new users to share the same subcar-
riers as long as their respective Signal-to-Interference-and-
Noise-Ratio (SINR) is acceptable. This may be achieved by
distributed power control [17], which converges very fast.
The flow chart of the proposed distributed energy efficient
spectrum access and resource allocation scheme is highlighted
in Fig. 1, where step 2 corresponds to the constrained opti-
mization performed by each emerging user individually. More
detailed illustrations of the flow chart are given in section IV.

The remainder of this paper is organized as follows. In
section II, the system model and the problem formulation
are given. A fully distributed channel selection and power
allocation scheme for single user case is proposed in sec-
tion III. In section IV, a distributed power control algorithm is
suggested to manage potential co-channel interference caused
by concurrent new users. Section V contains simulation results
and discussions. Related works are discussed in section VI.
Section VII gives concluding remarks.

II. SYSTEM MODEL

We consider an energy constrained CR OFDMA network of
𝑁 communicating pairs. Both transmitter 𝑖 and receiver 𝑗 is
indexed by 𝒩 := {1, 2, ..., 𝑁}. If 𝑗 = 𝑖, receiver 𝑗 is said to be
the intended receiver of transmitter 𝑖. The transmission system
is assumed to be a time-slotted OFDMA system with fixed
time slot duration 𝑇𝑆 . Slot synchronization is assumed to be
achieved through a beaconing mechanism. Before each time

slot, a guard interval is inserted to achieve synchronization,
perform spectrum detection as well as resource allocation
(based on the proposed scheme). Inter-carrier interference
(ICI) caused by frequency offset of the side lobes pertaining
to transmitter 𝑖 is not considered in this work (which can be
mitigated by windowing the OFDM signal in the time domain
or adaptively deactivating adjacent subcarriers [19]).

A frequency selective Rayleigh fading channel is assumed
at the physical layer, and the entire spectrum is appropri-
ately divided into 𝑀 subcarriers to guarantee each subcar-
rier experiencing flat Rayleigh fading [10]. We label the
subcarrier set available to the transmitter receiver pair 𝑖
after spectrum detection by ℒ𝑖 ⊂ {1, 2, ...,𝑀}. Let G :={
𝐺𝑘

𝑖,𝑗 , 𝑖, 𝑗 ∈ 𝒩 , 𝑘 ∈ ℒ𝑖

}
denote the subcarrier fading coeffi-

cient matrix, where 𝐺𝑘
𝑖,𝑗 stands for the sub-channel coefficient

gain from transmitter 𝑖 to receiver 𝑗 over subcarrier 𝑘. 𝐺𝑘
𝑖,𝑗 =

∣𝐻𝑘
𝑖,𝑗(𝑓)∣2, where ∣𝐻𝑘

𝑖,𝑗(𝑓)∣ is the transfer function [33]. It
is assumed that G adheres to a block fading channel model
which remains invariant over blocks (coherence time slots)
of size 𝑇𝑆 and uncorrelated across successive blocks. The
noise is assumed to be additive white Gaussian noise (AWGN),
with variance 𝜎2𝑖,𝑘 over subcarrier 𝑘 of receiver 𝑖. We define
P :=

{
𝑝𝑘𝑖 , 𝑝

𝑘
𝑖 ≥ 0, 𝑖 ∈ 𝒩 , 𝑘 ∈ ℒ𝑖

}
as the transmission power

allocation matrix for all users in 𝒩 over the entire available
subcarrier set

∪
𝑖∈𝒩 ℒ𝑖, where 𝑝𝑘𝑖 is the power allocated over

subcarrier 𝑘 for transmitter 𝑖. For each transmitter 𝑖, the power
vector can be formed as

𝒑𝑖 := [𝑝1𝑖 , 𝑝
2
𝑖 , ..., 𝑝

𝑀
𝑖 ]𝑇 (1)

If the 𝑘𝑡ℎ subcarrier is not available for transmitter 𝑖, 𝑝𝑘𝑖 = 0.
Each node is not only energy limited but also has peak power
constraint, i.e.,

∑
𝑘∈ℒ𝑖

𝑝𝑘𝑖 ≤ 𝑝𝑚𝑎𝑥
𝑖 . The set of all feasible

power vector of transmitter 𝑖 is denoted by 𝒫𝑖

𝒫𝑖 :=

{
𝒑𝑖 ⊂

∏
𝑘∈ℒ𝑖

[0, 𝑝𝑚𝑎𝑥
𝑖 ],

∑
𝑘∈ℒ𝑖

𝑝𝑘𝑖 ≤ 𝑝𝑚𝑎𝑥
𝑖

}
(2)

The signal to interference plus noise ratio (SINR) of receiver
𝑖 over subcarrier 𝑘 (𝛾𝑘𝑖 ) can be expressed as

𝛾𝑘𝑖 (𝑝
𝑘
𝑖 ) = 𝛼𝑘𝑖 (𝑝

𝑘
𝑗 ) ⋅ 𝑝𝑘𝑖

𝛼𝑘𝑖 (𝑝
𝑘
𝑗 ) =

𝐺𝑘
𝑖,𝑖∑

𝑗 ∕=𝑖,𝑗∈𝒩 𝐺
𝑘
𝑗,𝑖 ⋅ 𝑝𝑘𝑗 + 𝜎2𝑖,𝑘

(3)

where 𝛼𝑘𝑖 is defined as the channel state information (CSI)
which treats all interference as background noise. 𝛼𝑘𝑖 can be
measured at the receiver side and is assumed to be known by
the corresponding transmitter through a reciprocal common
control channel.

When all users divide the spectrum in the same fashion
without coordination, it is referred to as a Parallel Gaussian
Interference Channel [20] which leads to a tractable inner
bound to the capacity region of the interference model. The
achievable maximum data rate for each user (Shannon’s ca-
pacity formula) is

𝑐𝑖 (𝒑𝑖)

𝐵𝑘
𝑖

=
∑
𝑘∈ℒ𝑖

𝑐𝑘𝑖
(
pk
i

)
𝐵𝑘

𝑖

=
∑

𝑘∈ℒ𝑖,

𝑝𝑘𝑖 ∈𝒫𝑖

log2

(
1 + 𝛼𝑘

𝑖 (𝑝
𝑘
𝑗 ) ⋅ 𝑝𝑘𝑖

)
(4)
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where 𝐵𝑘
𝑖 is the equally divided subcarrier bandwidth for

transmitter 𝑖. Without loss of generality, 𝐵𝑘
𝑖 is assumed to

be unity in this work. The noise is assumed to be independent
of the symbols and has variance 𝜎2 for all receivers over
entire available subcarrier set. Furthermore, all communicating
transmitter and receiver pairs are assumed to have diverse QoS
requirements specified by

∑
𝑘∈ℒ𝑖

𝑐𝑘𝑖 ≥ 𝑟𝑡𝑎𝑟𝑖 , where 𝑟𝑡𝑎𝑟𝑖 is the
target data rate of transmitter 𝑖.

In an energy constrained network (such as a wireless sensor
network), reception power is not negligible since it is generally
comparable to the transmission power [21]–[23]. In this work,
we denote the receiving power as 𝑝𝑟𝑖 which is treated as a
constant value for all receivers2.

Aiming at achieving high energy efficiency, the energy
consumption per information bit for transmitter receiver pair
𝑖 in each time slot is

𝑒𝑖(𝒑𝑖, 𝑐𝑖) :=

∑
𝑘∈ℒ𝑖

𝑝𝑘𝑖 + 𝑝
𝑟
𝑖∑

𝑘∈ℒ𝑖
𝑐𝑘𝑖

(5)

Let 𝒮𝑖(𝒑𝑖, 𝑐𝑖) denote the set of all power and rate allocations
satisfying QoS requirements and power limit constraints for
transmitter 𝑖, and it is given by

𝒮𝑖(𝒑𝑖, 𝑐𝑖) =
{
𝒑𝑖, 𝑐𝑖 : 𝒑𝑖 ∈ 𝒫𝑖, 𝑐𝑖 ≥ 𝑟𝑡𝑎𝑟𝑖 , 𝑖 ∈ 𝒩} (6)

Given the above system assumptions and the objective defined
in (5), we end up with the following constrained optimization
problem.

min
𝑝𝑘
𝑖 ,𝑐

𝑘
𝑖 ∈𝒮𝑖

𝑒𝑖(𝒑𝑖, 𝑐𝑖)

𝑠.𝑡. 𝑐𝑖 (𝒑𝑖) ≥ 𝑟𝑡𝑎𝑟𝑖 , ∀𝑖 ∈ 𝒩∑
𝑘∈ℒ𝑖

𝑝𝑘𝑖 ≤ 𝑝𝑚𝑎𝑥
𝑖 , ∀𝑖 ∈ 𝒩 (7)

III. OPTIMAL SUBCARRIER SELECTION AND POWER

ALLOCATION

The problem (7) is a combinatorial optimization problem
and the objective function is not convex/concave. Constrained
optimization techniques, such as multi-dimensional interior-
point method [32], can be applied here but with considerable
computational complexity. Hence, we propose a two-stage
algorithm to decouple the original problem into an uncon-
strained problem in order to reduce the search space. After the
optimal solution for the unconstrained problem is obtained in
stage 1, the power and data rate constraints will be examined
in search of the final optimal solution. It should be noted that
the solution of the unconstrained problem provides the optimal
operating point which can be taken as the benchmark for the
system design.

2In this work, we consider an energy constrained CR ad-hoc wireless
network where the throughput requirement is usually not as high as the
throughput demanding networks such that the baseband symbol rate is not
very high. Thus this baseband power consumption is quite small compared
with the power consumption in the RF circuitry. Hence, we neglect the energy
consumption of baseband signal processing blocks to simplify the model, and
the receiving power equals to the power consumption in the RF circuitry and
can be treated as a constant [21]

A. Unconstrained Energy Efficient Allocation

We define the unconstrained energy per bit function as

𝑓(�̂�𝑖,𝜶𝑖) :=

∑
𝑘∈ℒ𝑖

𝑝𝑘𝑖 + 𝑝
𝑟
𝑖

∑
𝑘∈ℒ𝑖

log2
(
1 + 𝛼𝑘𝑖 ⋅ 𝑝𝑘𝑖

) (8)

whereˆis used to represent the variables in the unconstrained
optimization domain and 𝜶𝑖 = [𝛼1𝑖 , 𝛼

2
𝑖 , . . . , 𝛼

𝑘
𝑖 ]. It is assumed

𝑓 (𝒑𝑖,𝜶𝑖) is a continuous function in ℝ
+
𝑀 . We define the

unconstrained optimal energy per bit for transmitter 𝑖 of (8)
as 𝜁∗𝑖 = min 𝑓(𝒑𝑖,𝜶𝑖).

1) Energy Efficient Waterfilling:
Theorem 1: Given the channel state information 𝜶𝑖 and

noise power, power allocation �̂�∗
𝑖 = [𝑝1∗𝑖 , 𝑝

2∗
𝑖 , . . . , 𝑝

𝑘∗
𝑖 , 𝑘 ∈ ℒ𝑖]

is defined as the unconstrained optimal power allocation by
satisfying

𝑓 (�̂�∗
𝑖 ,𝜶𝑖) ≤ 𝑓 (�̂�𝑖,𝜶𝑖) , ∀�̂�𝑖 ⊂ ℝ

𝑀+ (9)

Then the unconstrained optimal power allocation can be
obtained by solving the following equations:

𝑝𝑘∗𝑖 = max

{
log2 𝑒 ⋅ 𝜁∗𝑖 − 1

𝛼𝑘𝑖
, 0

}

𝜁∗𝑖 =

∑
𝑘∈ℒ𝑖

𝑝𝑘∗𝑖 + 𝑝𝑟𝑖

∑
𝑘∈ℒ𝑖

log2
(
1 + 𝛼𝑘𝑖 ⋅ 𝑝𝑘∗𝑖

) (10)

Proof: Differentiating 𝑓(𝒑𝑖,𝜶𝑖) with respect to 𝑝𝑘𝑖 (which
stands for the power allocated for transmitter 𝑖 on subcarrier
𝑘), we obtain the equations (10). The details of the derivation
are given in Appendix A.
The value of 𝜁∗𝑖 can be obtained by using a numerical method
which will in turn determine �̂�∗

𝑖 . It is observed that �̂�∗
𝑖 has

similar type of rate-adaptive / margin-adaptive waterfilling
results, and we name it energy-efficient waterfilling. Whereas,
the fundamental difference among them lies in the positions
of their respective optimal points. The rate-adaptive water-
filling maximizes the achievable data rate under power upper
bound, and margin-adaptive waterfilling minimizes the total
transmission power subject to a fixed rate constraint [16],
both of which achieve their optimality at the boundary of
the constraints. On the contrary, the proposed energy-efficient
waterfilling selects the most energy-efficient operating point
(in other words, it selects the optimal data rate that minimizes
the energy consumption per information bit) while adhering
to the QoS requirements and power limits. In this case,
optimality is usually obtained in the constraint interval rather
than on the boundary. In fact, the rate-adaptive and margin-
adaptive waterfilling can be considered as special cases of
the energy-efficient waterfilling solved in this paper. If we
set
∑

𝑘∈ℒ𝑖
𝑝𝑘𝑖 = 𝑝𝑐𝑜𝑛 ≤ 𝑝𝑚𝑎𝑥

𝑖 or
∑

𝑘∈ℒ𝑖
𝑐𝑘𝑖 (𝑝

𝑘
𝑖 ) = 𝑟𝑡𝑎𝑟𝑖 , the

energy-efficient allocation problem is reduced to the well ex-
plored rate-adaptive or margin-adaptive waterfilling problem.

2) Feasibility Region: The existence of the solution for
the unconstrained optimization (min 𝑓(�̂�𝑖,𝜶𝑖)) depends on the
subcarrier condition 𝛼𝑘𝑖 if we assume other system parameters
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Fig. 2. Feasible solution vs. subcarrier condition.

(e.g. bandwidth, maximal power, etc.) are fixed. From (10), if
we take 𝒑𝑖 into the expression of 𝜁∗𝑖 , we can get

𝜁𝑖 =

Γ(�̂�∗
𝑖 ) ⋅ log𝑒2 ⋅𝜁𝑖 −

∑
𝑘∈ℒ𝑖

1

𝛼𝑘𝑖
⋅ 𝐼(𝑝𝑘∗𝑖 ) + 𝑝𝑟𝑖

Γ(�̂�∗
𝑖 ) ⋅ log2(log𝑒2 ⋅𝜁𝑖) +

∑
𝑘∈ℒ𝑖

log2(𝛼
𝑘
𝑖 ) ⋅ 𝐼(𝑝𝑘∗𝑖 )

𝐼(𝑝𝑘∗𝑖 ) =

{
1, 𝑝𝑘∗𝑖 > 0
0, 𝑝𝑘∗𝑖 ≤ 0

(11)

where Γ(𝑋) is defined as the cardinality of nonzero elements
in vector 𝑋 . The optimal solution 𝜁𝑖 can be determined by
solving equation (11), and the existence of the optimal solution
is influenced by the subcarrier condition 𝛼𝑘𝑖 . This is illustrated
in Fig.2. A unique optimal solution (𝜁∗𝑖,2 ) is obtained when the
subcarrier condition is good; while no feasible solution exists
when the subcarrier condition is bad. Multiple solutions may
be obtained when the subcarrier condition is in the middle
range. In this case, only the larger solution (𝜁∗𝑖,3 ) is the
feasible solution, and this can be verified by checking the
corresponding power allocation, i.e., all the allocated power
should be non-negative.

The feasibility condition of the unconstrained optimization
problem is given in the following theorem.

Theorem 2: Denote the maximal optimal solution of 𝜁∗𝑖 as
𝜁𝑚𝑎𝑥
𝑖 and the channel gain of the best subcarrier as 𝛼𝜏𝑖 , 𝛼𝜏𝑖 =
max{𝛼𝑘𝑖 , ∀𝑘 ∈ ℒ𝑖}. The feasibility condition for the existence
of the optimal solution of the energy efficient waterfilling (10)
is given by 𝛼𝜏𝑖 ≥ ln 2

𝜁𝑚𝑎𝑥
𝑖

.
Proof: 1) Necessity: From the optimal solution of en-

ergy efficient waterfilling (10), it is observed the amount of
allocated power is determined by the subcarrier condition
𝛼𝑘𝑖 , specifically, more power should be allocated on better
subcarrier. Thus, if the optimal solution exists, at least the
power allocated on the best subcarrier should be non-negative,
i.e., 𝑝𝜏𝑖 = log𝑒2 ⋅𝜁𝑚𝑎𝑥

𝑖 − 1
𝛼𝜏

𝑖
≥ 0 =⇒ 𝛼𝜏𝑖 ≥ ln 2

𝜁𝑚𝑎𝑥
𝑖

.
2) Sufficiency: We prove this part by contradiction. If 𝛼𝜏𝑖 ≥

ln 2
𝜁𝑚𝑎𝑥
𝑖

and still no optimal solution exists, which implies that

the power allocated on the entire subcarrier set is negative, i.e.,
𝑝𝑘∗𝑖 < 0, ∀𝑘 ∈ ℒ𝑖, then 𝜁𝑚𝑎𝑥

𝑖 − ln 2
𝛼𝜏

𝑖
< 0 =⇒ 𝛼𝜏𝑖 <

ln 2

𝜁𝑚𝑎𝑥
𝑖

,

Fig. 3. Partition of the solution space of the constrained optimization
problem.

which contradicts the condition 𝛼𝜏𝑖 ≥ ln 2

𝜁𝑚𝑎𝑥
𝑖

. This completes
the proof.
Theorem 2 suggests that it is sufficient to check the best
available subcarrier in order to determine the feasibility of
the unconstrained optimization problem.

B. Constrained Energy-Efficient Allocation Algorithm

Given the unconstrained optimal solution �̂�∗
𝑖 , 𝑖 ∈ 𝒩 , the

previous section offers the optimal operating point with best
energy efficiency of each individual user. However, some
users may not satisfy their respective data rate and/or power
constraints when operating at this point. In this section, we
partition the solution space of the constrained optimization
problem (7) into four sub-spaces based on the power and data
rate constraints, as highlighted in Fig.3.

1)
∑
𝑘∈ℒ𝑖

𝑝𝑘∗𝑖 ≤ 𝑝𝑚𝑎𝑥
𝑖 and

∑
𝑘∈ℒ𝑖

𝑐𝑘𝑖 (𝑝
𝑘∗
𝑖 ) ≥ 𝑟𝑡𝑎𝑟𝑖 .

In this case, the unconstrained optimal solution �̂�∗
𝑖

of (10) satisfies the sum-power and rate requirement
constraints. Apparently �̂�∗

𝑖 is the optimal solution of the
original problem (7).

2)
∑
𝑘∈ℒ𝑖

𝑝𝑘∗𝑖 ≥ 𝑝𝑚𝑎𝑥
𝑖 and

∑
𝑘∈ℒ𝑖

𝑐𝑘𝑖 (𝑝
𝑘∗
𝑖 ) < 𝑟𝑡𝑎𝑟𝑖 or

∑
𝑘∈ℒ𝑖

𝑝𝑘∗𝑖 >

𝑝𝑚𝑎𝑥
𝑖 and

∑
𝑘∈ℒ𝑖

𝑐𝑘𝑖 (𝑝
𝑘∗
𝑖 ) ≤ 𝑟𝑡𝑎𝑟𝑖 .

In this case, the allocated power has already exceeded
the sum-power constraint, but the rate requirement is still
not met, even under the optimal subcarrier selection and
power allocation. Therefore, there is no feasible solution
for the original problem (7).

3)
∑
𝑘∈ℒ𝑖

𝑝𝑘∗𝑖 < 𝑝
𝑚𝑎𝑥
𝑖 and

∑
𝑘∈ℒ𝑖

𝑐𝑘𝑖 (𝑝
𝑘∗
𝑖 ) < 𝑟𝑡𝑎𝑟𝑖 .

If both the power allocated on all subcarriers does
not reach the maximal power bound and the data rate
requirement is not met, the power should be increased
to achieve data rate requirement under the maximal
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power bound. Based on (7) and (10), we can modify
the original problem as

min
𝑝𝑘
𝑖 +△𝑝𝑘

𝑖 ∈𝒮𝑖

∑
𝑘∈𝒦𝑖

(
𝑝𝑘∗𝑖 +△𝑝𝑘𝑖

)
+ 𝑝𝑟𝑖

∑
𝑘∈𝒦𝑖

log2
(
1 + 𝛼𝑘𝑖 ⋅

(
𝑝𝑘∗𝑖 +△𝑝𝑘𝑖

))
𝑠.𝑡.

∑
𝑘∈𝒦𝑖

𝑐𝑘𝑖 (𝑝
𝑘∗
𝑖 +△𝑝𝑘𝑖 ) ≥ 𝑟𝑡𝑎𝑟𝑖 , ∀𝑖 ∈ 𝒩

∑
𝑘∈𝒦𝑖

(
𝑝𝑘∗𝑖 +△𝑝𝑘𝑖

) ≤ 𝑝𝑚𝑎𝑥
𝑖 , ∀𝑖 ∈ 𝑁 (12)

where 𝒦𝑖 is defined as the selected subcarrier set
through the optimal energy efficient waterfilling solution,
𝒦𝑖 ⊂ ℒ𝑖. If we increase the power on any one of the
subcarriers, such as the 𝑘𝑡ℎ subcarrier, the corresponding
constrained energy consumption per bit can be expressed
as

𝜁𝑘𝑖 =

△𝑝𝑘𝑖 +
∑
𝑘∈𝒦𝑖

𝑝𝑘∗𝑖 + 𝑝𝑟𝑖

∑
𝑘∈𝒦𝑖

log2
(
1 + 𝛼𝑘𝑖 ⋅ 𝑝𝑘∗𝑖

)
+△𝑐𝑘𝑖

△𝑐𝑘𝑖 = log2

(
1 + 𝛼𝑘𝑖 ⋅ (𝑝𝑘∗𝑖 +△𝑝𝑘𝑖

)
1 + 𝛼𝑘𝑖 ⋅ 𝑝𝑘∗𝑖

)
(13)

From (10), △𝑐𝑘𝑖 can be simplified to △𝑐𝑘𝑖 =

log2

(
1 +

△𝑝𝑘
𝑖

log𝑒
2 ⋅𝜁∗

𝑖

)
. It is observed that given the in-

creased power △𝑝𝑘𝑖 on subcarrier 𝑘, the increased data
rate does not rely on its subcarrier condition 𝛼𝑘𝑖 , since
log𝑒2 ⋅𝜁∗𝑖 is a constant value for the entire selected
subcarrier set. In other words, for any two subcarrier
𝑘, 𝑙 ∈ 𝒦𝑖 of transmitter 𝑖 ∈ 𝒩 , if △𝑝𝑘𝑖 = △𝑝𝑙𝑖, then
△𝑐𝑘𝑖 = △𝑐𝑙𝑖. And the constrained energy consumption
per bit 𝜁𝑘𝑖 and 𝜁𝑙𝑖 will not vary due to different chosen
subcarriers. If we presume, in order to reach the data
rate requirement 𝑟𝑡𝑎𝑟𝑖 , the additional required power △𝑝𝑖
over the selected subcarrier set is known and denoted as
△𝑝𝑖 =

∑
𝑘∈𝒦𝑖

△𝑝𝑘𝑖 . Then, problem (12) is equivalent
to

min
𝑝𝑘
𝑖 +△𝑝𝑘

𝑖 ∈𝒮𝑖

△𝑝𝑖 +
∑
𝑘∈𝒦𝑖

𝑝𝑘∗𝑖 + 𝑝𝑟𝑖

∑
𝑘∈𝒦𝑖

log2
(
1 + 𝛼𝑘𝑖 ⋅ 𝑝𝑘∗𝑖

)
+
∑
𝑘∈𝒦𝑖

△𝑐𝑘𝑖

𝑠.𝑡.
∑
𝑘∈𝒦𝑖

𝑐𝑘𝑖 (𝑝
𝑘∗
𝑖 +△𝑝𝑘𝑖 ) ≥ 𝑟𝑡𝑎𝑟𝑖 , ∀𝑖 ∈ 𝒩

∑
𝑘∈𝒦𝑖

(
𝑝𝑘∗𝑖 +△𝑝𝑘𝑖

) ≤ 𝑝𝑚𝑎𝑥
𝑖 , ∀𝑖 ∈ 𝒩 (14)

If we assume △𝑝𝑖 has been pre-determined, in order to
minimize energy consumption per bit 𝜁𝑖,

∑
𝑘∈𝒦𝑖

𝑐(𝒑𝑖)+∑
𝑘∈𝒦𝑖

△𝑐𝑘𝑖 need to be maximized. In other words,
maximizing

∑
𝑘∈𝒦𝑖

△𝑐𝑘𝑖 will result in a classical rate-

adaptive waterfilling problem.

max
∑
𝑘∈𝒦𝑖

log2

(
1 +

△𝑝𝑘𝑖
log𝑒2 ⋅𝜁∗𝑖

)

𝑠.𝑡.
∑
𝑘∈𝒦𝑖

(
𝑝𝑘∗𝑖 +△𝑝𝑘𝑖

) ≤ 𝑝𝑚𝑎𝑥
𝑖 , ∀𝑖 ∈ 𝒩 (15)

Because log𝑒2 ⋅𝜁∗𝑖 is a constant value for the entire se-
lected subcarrier set 𝒦𝑖, the solution of the above water
filling problem implies that the optimal solution △𝑝𝑘𝑖 for
(15) should be the same for all chosen subcarriers. In
other words, given the total required additional power
△𝑝𝑖, the power should be equally allocated on all
subcarriers, △𝑝𝑘𝑖 = △𝑝𝑖

Γ(ℒ𝑖)
. Thus, problem (12) can be

rewritten as

min

△𝑝𝑖 +
∑
𝑘∈𝒦𝑖

𝑝𝑘∗𝑖 + 𝑝𝑟𝑖

∑
𝑘∈𝒦𝑖

log2
(
1 + 𝛼𝑘𝑖 ⋅ 𝑝𝑘∗𝑖

)
+
∑
𝑘∈𝒦𝑖

△𝑐𝑘𝑖

𝑠.𝑡.
∑
𝑘∈𝒦𝑖

𝑝𝑘∗𝑖 +△𝑝𝑖 ≤ 𝑝𝑚𝑎𝑥
𝑖 , ∀𝑖 ∈ 𝒩 (16)

where
∑△𝑐𝑘𝑖 = Γ(𝒦𝑖)⋅log2

(
1 + △𝑝𝑖

Γ(𝒦𝑖) log𝑒
2 ⋅𝜁∗

𝑖

)
. Given

the unconstrained optimal solution �̂�∗
𝑖 from stage 1, (16)

can be considered as an objective function in terms of
variable △𝑝𝑖 bounded by 𝑝𝑚𝑎𝑥

𝑖 −∑𝑘∈𝒦𝑖
𝑝𝑘∗𝑖 .

Lemma 1: The constrained energy consumption per bit
of problem (16) which is denoted as 𝜁𝑖 is always worse
than the unconstrained optimal energy efficiency 𝜁∗ with
respect to the power increase △𝑝𝑘𝑖 , i.e. 𝜁𝑖 ≥ 𝜁∗, ∀△𝑝𝑖 ∈
ℝ

+.
The proof of Lemma 1 is given in [39]. Due to the
optimality of the unconstrained solution 𝒑𝑖, the minimal
deviation from 𝜁𝑖 will result in the optimal energy
efficiency. Thus, the optimal power increase to satisfy
the target data rate will be the minimal required ad-
ditional power as illustrated in Fig.4. Therefore, the
optimal required additional power (min△𝑝𝑖) to satisfy
the data rate requirement 𝑟𝑡𝑎𝑟𝑖 can be calculated as
min△𝑝𝑖 =

∑
𝑘∈𝒦𝑖

△𝑝𝑘∗𝑖 .
The minimal required additional power △𝑝𝑚𝑖𝑛

𝑖 =
min△𝑝𝑖 can be derived by

log2

(
1 +

△𝑝𝑚𝑖𝑛
𝑖

Γ(𝒦𝑖) ⋅ log𝑒2 ⋅𝜁∗𝑖

)
=

𝑟𝑡𝑎𝑟𝑖 −
∑
𝑘∈𝒦𝑖

𝑐𝑘𝑖 (𝑝
𝑘∗
𝑖 )

Γ(𝒦𝑖)
(17)

From (17), the optimal power increase on 𝑘th subcarrier
△𝑝𝑘∗𝑖 is given by

△𝑝𝑘∗𝑖
log𝑒2 ⋅𝜁∗𝑖

= exp

(
𝑟𝑡𝑎𝑟𝑖 −∑𝑘∈𝒦𝑖

𝑐𝑘𝑖 (𝑝
𝑘∗
𝑖 )

log𝑒2 ⋅Γ(𝒦𝑖)

)
− 1 (18)

If △𝑝𝑚𝑖𝑛
𝑖 exceeds the remaining power, i.e.,∑

𝑘∈𝒦𝑖
𝑝𝑘∗𝑖 + △𝑝𝑚𝑖𝑛

𝑖 ≥ 𝑝𝑚𝑎𝑥
𝑖 , there is no feasible

solution for (7). If
∑

𝑘∈𝒦𝑖
𝑝𝑘∗𝑖 + △𝑝𝑚𝑖𝑛

𝑖 ≤ 𝑝𝑚𝑎𝑥
𝑖 , the

optimal solution for the original problem (7) is

𝑝𝑘∗𝑖 = 𝑝𝑘∗𝑖 +△𝑝𝑘∗𝑖 (19)
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Fig. 4. Illustration of constrained 𝜁𝑘𝑖 with respect to △𝑝𝑖.

4)
∑
𝑘∈ℒ𝑖

𝑝𝑘∗𝑖 > 𝑝
𝑚𝑎𝑥
𝑖 and

∑
𝑘∈ℒ𝑖

𝑐𝑘𝑖 (𝑝
𝑘∗
𝑖 ) > 𝑟𝑡𝑎𝑟𝑖 .

In this case, the data rate requirement is satisfied but
the allocated power exceeds the limit. In order to obtain
a feasible solution, the allocated power should be de-
creased. The derivation of the optimal solution follows
similar procedures as given in case 3) and is available
in [39].

The inter-relationship and evolvement of the four cases parti-
tioned by the power and data rate constraints are highlighted in
Fig.3. Excellent and terrible subcarrier conditions will lead to
case 1) (feasible) and case 2) (infeasible), respectively. When
the subcarrier conditions are “good”, the solid lines from case
3) and case 4) lead the problem into the feasible region case
1) of the constrained optimization problem when it reaches
the maximal power and target data rate bounds, respectively.
Whereas, the dashed lines suggest that the problem enters the
infeasible region case 2) when the current subcarrier condition
cannot accommodate the target data rate under the maximal
power limits.

IV. DISTRIBUTED POWER CONTROL

In the previous section, each emerging new user obtains its
optimal subcarrier selection and power allocation individually
without considering other new users. Although no interference
will be introduced to the existing users, due to the non-
cooperative behavior of each user, multiple new users may
choose the same subcarriers and co-channel interference will
be introduced among themself. In order to maintain user’s
QoS, we propose an iterative and distributed algorithm for
reaching an equilibrium point among multiple transmitter
and receiver pairs based on the distributed power control
scheme [17]. The distributed power control algorithm is given
by

𝑝𝑘𝑖 (𝑡+ 1) = min

{
𝛾𝑘∗𝑖
𝛾𝑘𝑖 (𝑡)

𝑝𝑘𝑖 (𝑡), 𝑝
𝑚𝑎𝑥
𝑖

}
(20)

where 𝛾𝑘∗𝑖 is the individual target SINR of the 𝑖𝑡ℎ transmitter
receiver pair over each subcarrier 𝑘, which is determined by
the constrained optimal solution 𝒑∗, 𝛾𝑘∗𝑖 = exp(ln 2⋅𝑐(𝑝𝑘∗𝑖 ))−
1.

In the power control stage, each node only needs to know its
own received SINR (𝛾𝑘𝑖 ) at its designated receiver to update
its transmission power. This is available by feedback from
the receiving node through a control channel. As a result, the
proposed scheme is fully distributed. Convergence properties
of this type of algorithms were studied by Yates [17]. An
interference function 𝐼(𝑃 ) is standard if it satisfies three
conditions: positivity, monotonicity and scalability. It is proved
by Yates [17] that the standard iterative algorithm 𝑃 (𝑡 +
1) = 𝐼(𝑃 (𝑡)) will converge to a unique equilibrium that
corresponds to the minimum use of power. The distributed
power control scheme (20) is a special case of the standard
iterative algorithm.

In summary, the proposed energy efficient spectrum access
and resource allocation scheme includes the following steps,
as highlighted before in Fig. 1.

Distributed Energy Efficient Spectrum Access and Resource
Allocation

1) Initialization
∙ Each transmitter receiver pair obtains their respec-

tive available subcarrier set ℒ𝑖 through spectrum
detection.

2) Individual Energy Efficient Resource Allocation
∙ Each transmitter receiver pair derives its respective

unconstrained optimal solution from equation (10).
∙ Based on the power limit and data rate constraint,

each transmitter receiver pair adjusts its power allo-
cation according to the constrained optimal solution
given in Section III. B.

∙ Each transmitter receiver pair also calculates its
corresponding optimal target SINR 𝛾𝑘∗𝑖 based on the
constrained optimal solution.

3) Multiuser Distributed Power Control
∙ Through a control channel, each transmitter ac-

quires the measured SINR 𝛾𝑘𝑖 (𝑡) from the designated
receiver.

∙ If 𝛾𝑘𝑖 (𝑡) ∕= 𝛾𝑘∗𝑖 , the transmission power will be
updated according to (20).

∙ If ∣𝛾𝑘𝑖 (𝑡) − 𝛾𝑘∗𝑖 ∣ ≤ 𝜖, ∀𝑖, where 𝜖 is an arbitrary
small positive number, the power control algorithm
converges to a unique equilibrium point. Otherwise,
it is infeasible to accommodate all the new users in
the current time slot.

The detailed flow chart of the entire procedures of the
proposed distributed spectrum access and resource allocation
is given in Fig.5. During the power control stage, if the target
SINR 𝛾𝑘∗𝑖 cannot be maintained when transmitter 𝑖 hits its
power bound 𝑝𝑚𝑎𝑥

𝑖 , the network is unable to accommodate
all the new users. In this case, a multi-access control (MAC)
scheme is required to guarantee the fairness among the users.
This will be one of our future efforts.

V. SIMULATION RESULT

In this section, we evaluate the performance and conver-
gence of the proposed distributed energy efficient channel
selection and power allocation algorithm. The proposed al-
gorithm is firstly investigated for each individual user to val-
idate the theoretical results. The impact of system parameter
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Fig. 5. The block diagram of the proposed distributed energy efficient spectrum access scheme.

settings on energy efficiency is also analyzed. Furthermore,
the convergence of the distributed power control scheme for
multiple new users sharing the same subcarriers is studied.
In addition, we demonstrate that the proposed energy-efficient
waterfilling algorithm always outperforms the well-established
rate-adaptive and margin-adaptive waterfilling algorithms in
terms of network lifetime. Finally, we compare the proposed
distributed allocation algorithm with the global optimal solu-
tion for benchmarking.

A. Simulation Setup

In the simulation, we consider a wireless ad hoc network
with cognitive radio capability. Specifically, the parameters
of mica2/micaz Berkeley sensor motes [23] are used here.
The sensor motes operate on 2 AA batteries and the output
of each battery is about 1.5 volts, 25000 mAh. The channel
gains are assumed to be sampled from a Rayleigh distribution
with mean equals to 0.4𝑑−3, where 𝑑 is the distance from
the transmitter to the receiver. The power bound for the
transmission power is 150 mW. The entire spectrum is equally
divided into subcarriers with bandwidth 100 kHz. The duration



GAO et al.: DISTRIBUTED ENERGY EFFICIENT SPECTRUM ACCESS IN COGNITIVE RADIO WIRELESS AD HOC NETWORKS 5209

TABLE I
UNITS OF SYSTEM PARAMETERS

Symbols Description Value
𝑝𝑟𝑖 receiving power 48× 10−3𝑊

𝑝𝑚𝑎𝑥
𝑖 maximal power limit 150× 10−3𝑊
𝐵 Bandwidth of each subcarrier 100KHz
𝑇𝑆 Duration of time slot 10ms
𝜎2 Power of thermal noise 10−8

Fig. 6. Impact of 𝐿 to optimal data rate.

of each time slot 𝑇𝑆 is assumed to be 10𝑚𝑠 in which 𝐿 bits
need to be transmitted. Thus, the target data rate is assumed
to be 𝑟𝑡𝑎𝑟𝑖 = 𝐿/𝑇𝑆 . The thermal noise power is assumed to
be the same over all subcarriers and equals to 10−8W. The
system parameters are summarized in Table I and they are set
such that the target data rate is feasible.

B. Performance of Individual Resource Allocation Algorithm

For each individual user, we first investigate the impact of
the target data rate on energy efficiency. We consider a trans-
mitter receiver pair with available subcarrier set Γ(ℒ𝑖) = 18,
the required data rate 𝑟𝑡𝑎𝑟𝑖 = 𝐿/𝑇𝑆 ranges from 9 × 105

bps to 1.7 × 106 bps. In Fig.6, the squared line represents
the optimal data rate allocation with the increase of 𝑟𝑡𝑎𝑟𝑖 ,
while the diamond line represents the required data rate 𝑟𝑡𝑎𝑟𝑖 .
It can be observed from Fig. 6 that the optimal rate and
power allocation remains approximately3 unchanged given the
channel conditions of the available subcarriers as long as
𝑟𝑡𝑎𝑟𝑖 < 𝑟𝑜𝑝𝑡𝑖 = 1.55 × 106. After the two lines converge at
𝐿𝑜𝑝𝑡 = 15500 bits, the optimal data rate coincides with 𝑟𝑡𝑎𝑟𝑖 ,
i.e., the required rate can only be obtained at the cost of lower
energy efficiency. It is noticeable that 𝐿𝑜𝑝𝑡 is an important
system design parameter, and its optimal value can be pre-
calculated given the channel conditions.

Fig. 7 illustrates the effect of 𝐿 (thus the target data rate
𝑟𝑡𝑎𝑟𝑖 for fixed 𝑇𝑆) on energy efficiency. We define 𝐸𝑖 = 𝜁

∗
𝑖 ×

𝐿 as the energy consumption per time slot which is jointly
determined by 𝜁∗𝑖 and 𝐿. It is observed that in case 1) with the
increase of 𝐿, 𝐸𝑖 increases linearly with respect to 𝐿 and the
energy consumption per bit remains approximately unchanged.

3due to numerical round-off errors
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When the system enters case 3) due to the increase of 𝑟𝑡𝑎𝑟𝑖 ,
𝜁∗𝑖 degrades which suggests that the required data rate 𝑟𝑡𝑎𝑟𝑖 is
satisfied with the expense of energy efficiency.

The impact of the number of available subcarriers on energy
efficiency is plotted in Fig. 8. It is shown that the increase of
the number of available subcarriers (Γ(𝐿𝑖)) improves energy
efficiency by providing more available bandwidth. In fact, the
total optimal allocated power to satisfy a fixed target data rate
is reduced with the increase of Γ(𝐿𝑖). It can be seen in Fig. 8
that the dashed circle line (which represents the unconstrained
optimal energy consumption) converges with the constrained
energy consumption (solid circle line) when the number of
available subcarriers reaches 28. It implies that when the
available subacarriers are less than 28, the unconstrained
optimal solution corresponds to case 3) in Section III-B. The
system will enter case 1) when Γ(𝐿𝑖) ≥ 28.

The performance of the proposed energy-efficient waterfill-
ing with respect to network lifetime (which is a critical metric
for energy constrained CR ad hoc networks) is investigated.
Assuming uniform traffic patterns and persistent traffic flow
across the network, we define the network lifetime as 𝑇𝑙 =
𝐸𝑚𝑎𝑥/(𝐿 × 𝜁∗𝑖 ), where 𝐸𝑚𝑎𝑥 is the maximal energy source
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Fig. 9. Performance comparison among different allocation schemes.

Fig. 10. Convergence of distributed power control.

of each transmitter. Compared with rate-adaptive and margin-
adaptive waterfilling (for transmitting the same amount of
information bits in the network), it is observed in Fig.9 that
the proposed scheme outperforms the other two allocation
schemes in terms of network lifetime. As the optimal allocated
rate approaches the target data rate, energy-efficient waterfill-
ing will converges with margin-adaptive waterfilling as ex-
pected. However, since the target data rate in a typical energy
constrained ad hoc network is usually low, it is expected that
the proposed scheme will improve network lifetime in most
applications.

C. Performance Evaluation for Multiuser Allocation Scheme

After each new user obtains its optimal subcarrier selection
and power allocation independently, distributed power control
(20) may be triggered to manage the co-channel interference
if multiple new users happen to choose the same subcarriers.
The convergence of allocated power is shown in Fig. 10
(including the total required power and the power allocated
on two randomly chosen subcarriers of two randomly chosen
Tx-Rx pairs). It is observed that the convergence occurs in 3-4
steps.

In this part of the simulation (Fig. 11), the performance
of the proposed distributed scheme is compared with the
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Fig. 11. Performance comparison between distributed scheme and global
optimality.

centralized optimal solution, where it is assumed that a central
controller collects all the 𝑀 × 𝑁2 channel gain information
from all the 𝑁 new users, and calculates the global optimal
solution by considering all the co-channel interference. The
case for 8 users and each user with 16 available subcarriers
is investigated here [25]. It is observed that the proposed dis-
tributed scheme (the upper two lines) performs closely to the
centralized optimal solution (the middle line). In addition, the
competitive optimal solution is also shown in Fig. 11, where
each user calculates its own solution without considering co-
channel interference (thus optimistic).

VI. RELATED WORK

The multi-user resource allocation problem based on multi-
carrier modulation such as Orthogonal Frequency Division
Multiplexing (OFDM), where subcarrier band, data rate and
power are adaptively allocated to each user, has been widely
addressed for cellular systems [35], [36]. In multi-carrier
direct-sequence CDMA (DS-CDMA) cellular system, a non-
cooperative power control game for resource allocation with
respect to maximizing the energy efficiency is proposed in [24]
which leads to the best subcarrier selection scheme by as-
suming the realized SINR on each subcarrier is the same.
It is assumed in these works that the spectral utilization
information is known as a priori with the aid of base stations,
which is not realistic in scenarios where an infrastructure is
not available. Furthermore, it worth noting that the optimal
solution of energy efficient resource allocation is not best
subcarrier selection for multiple transmitting receiving pairs
in ad hoc networks [25].

In [11], the resource allocation problem is explored for
OFDMA-based wireless ad hoc network by directly adopting
distributed power control scheme for the power and bits
allocation on all subcarriers to improve power efficiency. A
greedy algorithm is proposed for best subcarrier selection
in CR networks employing multicarrier CDMA [38], and
distributed power control is performed thereafter to resolve
co-channel interference. An Asynchronous Distributed Pricing
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(ADP) scheme is proposed in [37], where the users need to
exchange information indicating the interference caused by
each user to others. In the context of CR enabled wireless
sensor network (WSN) [12], a two-step algorithm is pro-
posed to tackle the allocation problem: channel assignment
with objective of minimizing transmission power and channel
contention to reserve the subcarrier set for transmission by
intended transmitters, while the interference spectrum mask is
assumed to be known a priori. The authors of [13] address
the opportunistic spectrum access (OSA) problem in WSN,
in which a distributed channel allocation problem is modeled
by a partially observable Markov decision process framework
(POMDP) while assuming the transition probability of each
channel is known. In [29], the CR spectrum sharing prob-
lem is formulated in multi-hop networks with objective to
minimize the space-bandwidth product (SBP). However, the
transmission power allocated on each subcarrier is assumed
to be the same which may lead to significant performance
loss. The effect of power control is analyzed in a subsequent
paper [30]. Dynamic Frequency Hopping Community (DFHC)
is proposed in [31] for the spectrum sharing in CR based IEEE
802.22 wireless regional area networks (WRANs) to ensure
QoS satisfaction and reliable protection to licensed users.

A. Contributions of this paper

In summary, the contributions of this work include:

1) A new constrained optimization problem is formulated
and solved that minimizing energy per bit across users
subject to QoS and power constraints in a multi-user
OFDMA network. This problem is significantly more
difficult comparing to that in a single carrier system [21].
Furthermore, the problem considered in this paper is also
significantly more difficult than the power minimization
with respect to target data rate constraints or throughput
maximization under power upper bound, because of
the multi-dimensional and non-convex nature of the
problem. The proposed performance criterion (minimiz-
ing energy per bit) is critical for energy constrained
networks. It is a better choice than minimizing total
power or maximizing throughput when energy efficiency
is the major concern.

2) A novel concept, “energy-efficient waterfilling”, is given
in this paper that is fundamentally different from the
rate-adaptive waterfilling or margin-adaptive waterfill-
ing4. In this case the optimal point is located in the
constraint interval rather than on the boundary. In fact,
the rate-adaptive and margin-adaptive waterfilling can
be considered as special cases of the energy-efficient
waterfilling solved in this paper.

3) The results obtained in this paper provide a valuable
insight that the optimal solution of energy efficient
resource allocation is not best subcarrier selection for
multiple transmitting receiving pairs in an OFDMA
network [25].

4The optimal allocation strategy with objective to minimize power or
maximize throughput is named margin-adaptive and rate-adaptive waterfilling
over frequency channels [28], respectively.

4) The proposed distributed subcarrier selection and power
allocation scheme provides an efficient and practical
solution for dynamic spectrum access in CR wireless
ad hoc networks employing OFDMA. By combining
the optimal resource allocation of individual users and
distributed power control, the proposed method guar-
antees fast convergence speed, computational efficiency
and implementation simplicity. Motivated by iterative
waterfilling (IWF) algorithm in [16], another distributed
solution may be obtained by solving the multi-user
distributed channel and power allocation problem it-
eratively. However, it may take many steps for the
iterative algorithm to converge if it converges at all and
the delay may be too large to be tolerable. The cost
of the additional computation complexity is high. On
the contrary, the proposed optimal resource allocation
of individual users is easy to obtain and distributed
power control algorithm has well-known fast conver-
gence speed. Furthermore, it is shown in this paper that
the proposed distributed algorithm performs closely to
the global optimal point in the simulations.

VII. CONCLUSION

In this paper, a framework of distributed energy efficient re-
source allocation is proposed for energy constrained OFDMA-
based cognitive radio wireless ad hoc networks. A multi-
dimensional constrained optimization problem is formulated
by minimizing the energy consumption per bit over the entire
available subcarrier set for each individual user while satisfy-
ing its QoS constraints and power limit. A two-step solution is
proposed by first decoupling it into an unconstrained problem,
and a constrained partitioning procedure is applied thereafter
to obtain the constrained optimal solution by branching the
solution space according to power and rate constraints. Co-
channel interference may be introduced by concurrent new
users and the distributed power control scheme may be trig-
gered to manage the interference and reach the equilibrium
point in the multiuser environment.

The proposed spectrum sharing plus resource allocation
scheme provide a practical distributed solution for a CR
wireless ad hoc network with low computational complexity.
It is important to point out that the proposed algorithm for CR
networks can be easily modified and applied to multi-channel
multi-radio (MC-MR) networks which can be considered as a
special case of the CR based wireless networks [29].

In this work, it is assumed that the subcarrier detection is
perfect. The effects of detection errors will be investigated in
our future work.

VIII. APPENDIX A

The unstrained optimization problem (8) is

𝑓(�̂�𝑖,𝜶𝑖) :=

∑
𝑘∈ℒ𝑖

𝑝𝑘𝑖 + 𝑝
𝑟
𝑖

∑
𝑘∈ℒ𝑖

log2
(
1 + 𝛼𝑘𝑖 ⋅ 𝑝𝑘𝑖

) (21)

The first order derivative of (21) with respect to 𝑝𝑘𝑖 can be
derived as
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∂𝑓(�̂�𝑖,𝜶𝑖)

∂𝑝𝑘𝑖
=

1

log2 𝑒
⋅
(
∂Φ(�̂�𝑖,𝜶𝑖))

∂𝑝𝑘𝑖

)

Φ(�̂�𝑖,𝜶𝑖) =

𝑝𝑘𝑖 +
∑

𝑙∈ℒ𝑖,𝑙 ∕=𝑘

𝑝𝑙𝑖

ln
(
1 + 𝛼𝑘

𝑖 𝑝
𝑘
𝑖 + 𝑝𝑟𝑖

)
+
∑
𝑙∈ℒ𝑖
𝑙 ∕=𝑘

ln
(
1 + 𝛼𝑖𝑝

𝑘
𝑖

)(22)

If 𝑘 ∕= 𝑙, 𝑐𝑖(𝑝𝑙𝑖) is taken as constant with respect to 𝑝𝑘𝑖 since
the mutual interference between subcarriers is not considered
in this work. Therefore, (22) can be expressed as

∂Φ(�̂�𝑖,𝜶𝑖)

∂𝑝𝑘𝑖
=

∑
𝑘∈ℒ𝑖

𝑐𝑘𝑖 (𝑝
𝑘
𝑖 )

ln 2
− (

∑
𝑘∈ℒ𝑖

𝑝𝑘𝑖 + 𝑝𝑟𝑖 )

(
𝛼𝑘
𝑖

1 + 𝛼𝑘
𝑖 𝑝

𝑘
𝑖

)
[∑
𝑘∈ℒ𝑖

ln
(
1 + 𝛼𝑘

𝑖 ⋅ 𝑝𝑘𝑖
)]2 (23)

We assume the data rate
∑

𝑘∈ℒ𝑖
𝑐𝑘𝑖 (𝑝

𝑘
𝑖 ) ≥ 0 in this work, thus

for ∂𝑓(�̂�𝑖,𝜶𝑖)

∂𝑝𝑘
𝑖

= 0, (23) can be reduce to

𝛼𝑘𝑖
1 + 𝛼𝑘𝑖 ⋅ 𝑝𝑘𝑖

=

∑
𝑘∈ℒ𝑖

ln
(
1 + 𝛼𝑘𝑖 ⋅ 𝑝𝑘𝑖 + 𝑝𝑟𝑖

)
∑
𝑘∈ℒ𝑖

𝑝𝑘𝑖
(24)

From (24), we can derive the unconstrained optimal power
allocated for transmitter 𝑖 over subcarrier 𝑘 as

𝑝𝑘𝑖 =

∑
𝑘∈ℒ𝑖

𝑝𝑘𝑖 + 𝑝
𝑟
𝑖

∑
𝑘∈ℒ𝑖

ln
(
1 + 𝛼𝑘𝑖 ⋅ 𝑝𝑘𝑖

) − 1

𝛼𝑘𝑖
(25)

From the definition of unconstrained energy consumption per
bit 𝜁𝑖, the first term of (25) is in the similar type of 𝜁𝑖.
If we assume the optimal solution of (A1) does exist (the
subcarrier condition resides in the feasible region), there must
be a corresponding optimal value of energy per time slot 𝜁∗𝑖
with respect to �̂�𝑖. Then (25) can be expressed in terms of 𝜁∗𝑖
as

𝑝𝑘∗𝑖 = log2 𝑒 ⋅ 𝜁∗𝑖 − 1

𝛼𝑘𝑖
(26)
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