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1. Introduction

Though already strong before the recent financial crisis, the case for including regime shifts
within term-structure models for defaultable bonds is obviously stronger now (see, amongst
many others, Christensen, Lopez and Rudebusch, 2009 [34]). This paper proposes a general
affine term-structure framework aimed at jointly modeling several yield curves associated
with different obligors or different types of securities, in the presence of regime switching.

In this reduced-form framework, the default probabilities are modeled directly instead
of defining a stochastic process for the obligor’s asset value that triggers default when the
process reaches some threshold (as in Merton, 1974 [111]). The focus is on default modeling,
but the specifications can also account for the pricing of some liquidity premia using the
same machinery.

Our framework provides us with a great flexibility in how we specify the behaviour of
the state variables which simultaneously determines the risk-free term structure and the de-
fault intensities –or hazard rates. The state variables, also termed with “risk factors”, follow
discrete-time Gaussian processes.1 Extending the work of Gourieroux, Monfort and Poli-
menis (2006) [78], the Gaussian processes present drifts and variance-covariance matrices
that are subject to regime shifts. The latter are described by a Markov chain with (histor-
ical) non-homogenous transition probabilities.

The modeling of defaults is based on the so-called “doubly-stochastic” assumption: correl-
ations between default events arise solely through dependence on some common underlying
stochastic factors which influence the default probabilities of every single loans.2 Some of
the factors may be unobserved. In this sense, our model accomodates frailty. This feature is
advocated by recent papers suggesting that including only observable covariates in default-
intensity specifications results in poorly-estimated conditional probabilities of default (see
e.g. Lando and Nielsen, 2008 [99] or Duffie et al., 2009 [58]). In our framework, frailty may
stem from two types of shocks: some are Gaussian and others correspond to regime shifts.
Since hazard rates can be affected by the latter, our model is appropriate to capture default
clustering: indeed, if one regime implies very high default intensities for a large number of
obligors, then clusters of defaults will be observed in this regime.3

Particular attention is paid to the tractability of the model and its estimation. Tract-
ability is notably obtained through an extensive use of Car’s –Compound autoregressive
processes– properties (see, e.g. Darolles, Gourieroux and Jasiak, 2006 [45]), which leads to
quasi-explicit fomulas for bond prices. Both historical and risk-neutral dynamics are expli-
citely modeled, which is helpful for chosing appropriate specifications under the historical
measure, for dealing simultaneously with pricing and forecasting or also for Value-at-Risk
calculations. We propose an estimation strategy based on several steps. This procedure is
intended to facilitate the estimation of unobservable factors (including latent risk factors
and regimes).

The framework is exploited to investigate the common dynamics of euro-area government
yield curves. We consider the yield curves of ten euro-area countries: Austria, Belgium,

1While most of the earliest affine defaultable-bond term-struture models are in continuous-time form (see
e.g. Duffie and Singleton (1999) [60]), Gourieroux, Monfort and Polimenis (2006) [78] have shown that
discrete-time affine models are well-suited to credit-risk modeling and that they present higher flexibility
than their continuous-time counterparts. In particular, the discrete-time framework makes it easier to
properly specifiy the dynamics of the observable risk factors under the historical probability measure.

2These shocks include both Gaussian shocks and regime-shift shocks.
3Beyond the modeling of correlated defaults, including unobserved variables in term-structure models of

defaultable-bond yields is also important to satisfyingly capture the credit-spread dynamics (see Collin-
Dufresne, Goldstein and Martin, 2001 [39]).

2



Finland, France, Germany, Greece, Italy, the Netherlands, Portugal and Spain. The model
includes three observed macroeconomic variables (a European market volatility index, a
business-cycle indicator and the short-term risk-free rate) and three latent factors. Three
Markovian regimes are considered in the model, two of them corresponding to market-stress
periods. The hazard rate of each country depends on the factors as well as on the regimes.
Only one source of country specificity is taken into account (through business-cycle indic-
ators). Therefore, the prices of bonds issued by the different countries are mostly exposed
to the same risk factors. However, substantial differences among yields arise because of dif-
ferent exposures of the countries’ debts to the risk factors. Among the three latent factor,
one is identified as a liquidity-related factor. To that end, we use information that is incor-
porated in yield differentials between the bonds issued by the Federal Republic of Germany
(the Bunds) and those issued by KfW (Kreditanstalt für Wiederaufbau), a German agency.
Indeed, to the extent that the latter are guaranteed by the German government, the KfW-
Bund spread should be mainly affected by liquidity pricing. Over the last decade, most of
the euro-area yield differentials are captured by the model. In addition, the results suggest
that important shares of yield differentials are liquidity driven.

The current section is followed by three brief reviews of the literature that is related
to our framework. They respectively deal with (1) the decomposition of the spreads into
default and liquidity components using affine-term structure models, (2) the introduction of
regime shifts in the dynamics of the term-structure of interest rates and (3) credit-migration
modeling. The remainder of the paper is organized as follows. Sections 2 and 3 respectively
present the historical and risk-neutral dynamics of the variables. Section 4 gives the bond-
pricing formulas. Section 5 deals with internal-consistency restrictions that arise when
asset prices are included amongst the risk factors. In Section 6, we propose an estimation
strategy. Section 7 shows how the model accomodates the pricing of liquidity. Section
8 investigates possible extensions of the framework: Subsection 8.1 deals with multi-lag
dynamics of the risk factors; Subsection 8.2 deals with the specific case where one of the
Markov chains coincides with the default state of a given entity and Subsection 8.3 shows
how to introduce rating-migration modeling in the framework. Finally, Section 9 presents
an application to the modeling of euro-area yield differentials.

1.1. Decomposing spreads in affine term-structure framework

Motivated by derivative-pricing or credit-risk-management objectives, a large strand of the
recent literature related to fixed-income securities has focused on the joint modeling of sev-
eral yield curves. In this context, Jarrow, Lando, Turnbull (1997) [90], Lando (1998) [98]
or Duffie and Singleton (1999) [60] have highlighted the potential of affine term-structure
frameworks to model jointly yield curves associated with various obligors subject to default
risk. Their intensity-based –or reduced-form– approaches used to model defaults differ from
the more structural approaches originating in Black and Scholes (1973) [22] and Merton
(1974) [111].4 As shown by Duffie and Singleton (1999) [60], in an intensity-based frame-
work, the modeling of defaultable claims is based on the standard affine term-structure
machinery readily available for default risk modeling and estimation. Since then, numerous
further developments have illustrated the flexibility and tractability of affine-term structure

4In the latter, the default of a firm is modeled in terms of the relationsip between its assets and liabilities.
The asset value process is modeled as a geometric Brownian motion and default occurs when the asset
value at maturity is lower than the liabilities. Important industry models like KMV’s Portfolio Manager
or the JP Morgan’s CreditMetrics model are based on this approach (see Crouhy, Glai and Mark, 2000
[42]for a comparative analysis of industry credit-risk models). Cathcart and El-Jahel, 2006 [30]) have
shown that the two approaches (reduced-form and structural) are somewhat reconcilable.

3



models to jointly model different yield curves (see e.g. Duffee, 1999 [57], Collin-Dufresne
and Solnik, 2001 [40], Dai and Singleton, 2003 [43], Collin-Dufresne, Goldstein and Hugon-
nier, 2004 [38] and Gourieroux, Monfort and Polimenis, 2006 [78]).

In recent studies, some authors rely on the affine-term structure framework to model
yield curves associated not only with different obligors but also with different fixed-income
instruments (e.g. bonds, repos, swaps). Further, the authors exploit this modeling to
breakdown credit spreads or swap spreads into different components. Specifically, Liu,
Longstaff and Mandell (2006) [101] use a five-factor affine framework to jointly model
Treasury, repo and swap term structures. One of their factors is related to the pricing of
the Treasury-securities liquidity and another factor reflects default risk.5 Feldhütter and
Lando (2009) [69] develop a six-factor model for Treasury bonds, corporate bonds and
swap rates that makes it possible to decompose swap spreads into three components: a
convenience yield from holding Treasuries, a credit-element associated with the underlying
LIBOR rate, and a factor specific to the swap market. They find that the convenience
yield is by far the largest component of spreads. Longstaff, Mithal and Neis (2005) [103]
use information in credit default swaps –in addition to bond prices– to obtain measures of
the nondefault components in corporate spreads. They find that the nondefault component
is time-varying and strongly related to measures of bond-specific illiquidity as well as to
macroeconomic measures of bond-market liquidity.

The approaches implemented in the previous papers consist in estimating the default
and liquidity risk factors in a first step and to find relationships between these estimates
and observable proxies for liquidity or default measures or determinants in a second step.
Alternatively, one could directly include observable liquidity-related variables among the
risk factors.6

1.2. Yield-curve dynamics and regime switching

1.2.1. Regime shifts in default-free yield-curve dynamics

Strong evidence points to the existence of regime switching in the dynamics of the term
structure of interest rates. Thus, Hamilton (1988) [83] finds that changes in the Federal
reserve operating procedures leads to regime-switching in the dynamics of the term structure
of interest rates. In addition to such a shift, Cai (1994) [28] finds that the 1974 oil shock
resulted in a regime shift in the asymptotic volatility of the three-month Treasury bill. Gray
(1996) [79] shows that the assumption of a single regime is a source of misspecification in
models of the short rate. Adding term spread in their estimation, Ang and Bekaert (2002)
[5] identify regimes that are closely linked to business cycles, suggesting that large periodic

5As noted by Feldhütter and Lando (2009) [69], the identification of the liquidity and credit risk factors
in Liu et al. relies critically on the use of the 3-month general-collateral repo rate (GC repo) as a
short-term risk-free rate and of the 3-month LIBOR as a credit-risky rate. Liu et al. define the liquity
factor as the spread between the 3-month GC repo and the 3-month Treasury-bill yield (and is therefore
observable). In each yield, their liquidity component is the share of the yield that is explained by this
factor.

6Including observable factors in affine-term structure models was pionnered by Ang and Piazzesi (2003) [9]
(see also Jardet, Monfort and Pegoraro, 2009 [89]). Such an approach was implemented to investigate
credit-spread dynamics by Amato and Luisi (2006) [4] and Mueller (2009) [115]. Amato and Luisi
(2006) estimate a six-factor term-structure model of US Treasury yields and spreads on BBB and B-
rated corporate bonds. Three out of their six factors are observable factors: indicators of real activity,
inflation and financial conditions. They show in particular that macro factors are largely responsible
for variation in the prices of systematic risk. Mueller (2009) estimates a five-factor model on US data,
two factors are observable: GDP growth and inflation. He finds that the macro factors contribute to
the predictive power of credit spreads.
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shifts in interest rates across distinct regimes present a systematic risk to investors (see also
Wu and Zeng, 2005 [131] or Bansal and Zhou, 2002 [12]). The same authors (2002) [6] show
that regime switching is efficient in capturing nonlinear dynamics exhibited by Aït-Sahalia
(1996) [2]. Christiansen (2004) [36] estimates a two-state markov-switching model for the
short-rate and the slope of the yield curve: his estimated regimes turn out to depict low and
high variances regimes for short-rate changes. The economy appears to have been in the
high-variance state during unusual economic periods such as oil or stock-market crises, or
more generally during the official recession periods. Monfort and Pegoraro (2007) [114] show
that the introduction of regime switching in term-structure models leads to term-structure
models that are well-specified under the historical probability and that are able to explain
the expectation-hypothesis puzzle (why the long and short term interest rate differential
does not predict the future interest rate changes), over short and long horizons. Following
Veronesi and Yared (1999) [128] and Evans (2003) [67], Ang Bekaert and Wei (2008) [8]
develop term structure models with regime shifts to investigate the joint dynamics of real
and nominal yields. They identify inflation and real factor sources behind regime shifts and
analyze how they contribute to nominal interest-rate variations. Dai, Singleton and Yang
(2007) [44] develop a model with regime-shift risks that are priced by investors. Allowing
for state-dependent transition probabilities, their model makes it possible to conveniently
capture asymmetry in the cyclical behavior of interest rates.

1.2.2. Regime shifts in spreads’ dynamics

While the previous subsection puts forward the importance of modeling regime switching in
yield-curve models, a few has been done to integrate such a feature in term-structure models
of defaultable bonds. However, empirical studies point to the existence of different regimes
in the default risk valuation. Davies (2004 [49] and 2008 [50]) uses Markov-Switching Vec-
tor Auto-Regression (MS-VAR) estimation techniques and finds that credit spreads exhibit
distinct high- and low-volatility regimes. Alexander and Kaeck (2008) [3] detect a pro-
nounced regime-specific behaviour of Credit default swap (CDS) spreads. Hackbarth, Miao
and Morellec (2006) [82] provide a theoretical model to explain the dependence of credit
spread on business-cycle regimes. In the same vein, Bhamra, Kuehn and Strebulaev (2007)
[19], Chen (2008) [31] and David (2008) [48] also adopt a Merton structural model including
regime switching to assess the influence of different states of the economic cycles on the
credit-risk premia. Without deriving a complete model of the credit-spread term structure,
Maalaoui, Dionne and François (2009) [108] estimate Markov-switching specifications to in-
vestigate the links between credit spreads and its determinants. Their results suggest that
the failure of single-regime models to find significant links between potential determinants
(see e.g. Collin-Dufresne, Goldstein and Martin, 2001 [39]) may stem from the fact that
these determinants have opposite average effects in the two regimes they identify.

The recent financial crisis has eventually highlighted the need for taking into account
crisis regimes in yield-curve models. For instance, without using a model based on hidden
Markov chains, Christensen, Lopez and Rudebusch (2009) [34] provide evidence of a shift
in their six-factor affine term-structure model in 2007.7 The next paragraph deals more
specifically with the potential role of regime-switching features for modeling yield-curve
dynamics during crises.

7Christensen, Lopez and Rudebusch (2009) [34] model weekly U.S. Treasury yields, financial corporate
bond yields, and term interbank rates. Their estimation period starts in 1995 and is based on weekly
data.

5



1.2.3. The potential of regime switching to capture systemic risk, or contagion effects

Including regime shifts in a discrete-time term-structure model may affect pricing through
several channels: (i) regimes affect the historical and risk-neutral dynamics of the risk
factors, (ii) regimes appear in the stochastic discount factor (s.d.f.) –which implies that
regime-transition risk is priced– and (iii) regimes appear in the default-intensity functions.
In the following, we connect these characteristics with the literature that jointly addresses
credit-risk models and crisis.8 This literature focuses on systemic risk and contagion ef-
fects. Systemic risk differs from systematic risk in terms of the severity and frequency of the
associated shocks. More precisely, systematic shocks are frequent and not extreme while
systemic shocks are infrequent and extreme (see e.g. Das and Uppal, 2004 [47] or Baur
and Schulze, 2009 [15]).9 In a model accomodating regime shifts, it is natural to associate
systematic and systemic risk with the Gaussian shocks and the regime shifts, respectively.
Obviously, distinguishing between the two kinds of risks may not be a trivial task. In par-
ticular, difficulties arise from the fact that systematic shocks can turn into systemic ones.
For instance, in some contexts –notably when the level of uncertainty is high–, temporary
systematic shocks can lead to defaults and generate significant negative aftershocks, includ-
ing liquidity spirals.10 To the extent that we allow the probability of switching to a crisis
regime to be influenced by some systematic risk factors, such sequences could be captured
in a framework like ours.

The contagion literature focuses on the interdependencies between the defaults of different
debtors, which is sometimes referred to as counterparty risk. In the so-called contagion
models, if one of the debtor defaults, it affects the hazard rates of the other debtors (their
default intensity jumps upwards). Contagion effects, whose consequences are cascades of
subsequent spread changes, is explained by the existence of close ties between firms.11
Jarrow and Yu (2001) [92] develop a primary-secondary approach: in case a primary entity
defaults, the spreads of other debtors jump upwards; meanwhile, default of secondary firms
do not have any impact on other debtors in the portfolio. In the infectious-default model
developed by Davies and Lo (2001) [51], the default of a debtor triggers a regime shift: in
the high-risk regime, the default intensitites of all debtors are increased.12 Given that our
baseline model relies on the doubly-stochastic or conditional-dependence assumption –which
states that, conditional to the underlying factors and regimes, the default events of the firms
in a portfolio are independent– it does not capture such contagion effects. Nevertheless,
as developed in Subsection 8.2, our framework can still accomodate the specific contagion
case where one entity (or, for the sake of tractability, only a small number of them) affects

8Note that regime-switching features are not useful solely to deal with crisis modeling: it is also required to
model regimes that correspond to the position within the business cycle (see Subsection 1.2.1). Bangia
et al. (2002) [11] illustrate the importance of distinguishing between expansion and contraction phases
for the assessment of loss distribution of credit portfolios.

9For de Bandt and Hartmann (2000) [52], a systemic event is an event where the release of bad news
about a financial institution, or even its failure, or the crash of a financial market leads in a sequential
fashion to considerable adverse effects on one or several other financial institutions or markets, e.g. their
failure or crash. They further define the systemic risk as the risk of experiencing systemic events. For
an introduction to the contagion literature, see e.g. Lütkebohmert (2009) [107].

10See Brunnermeier and Pedersen, 2009 [26] for a structural analysis of this and (e.g.) Hesse and Gonzalo-
Hermosillo, 2009 [87] for empirical evidence.

11These ties may be of legal (e.g. parent-subsidiary), financial (e.g. trade credit), or business nature (e.g.
buyer-supplier). Through these channels, economic distress of one firm can have an immediate adverse
effect on the financial health of that firm’s business partners (Giesecke, 2004 [75], Egloff, Leippold and
Vanini, 2005 [61]).

12Other contagion mechanisms based on the same kinds of approaches are proposed by Frey and Backhaus
(2003) [73] or Yu (2007) [134].
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the default probability of the others: it suffices to make one of the regimes corresponds to
the default state of this entity.

Das et al. (2007) [46] test whether default events can reasonably be modeled as dependent
solely on exogenous observable factors.13 As Duffie et al. (2009) [58] and Giesecke and Kim
(2010) [76], they find that doubly-stochastic settings perform badly if no latent covariates
–also called frailty components– enter the intensity specifications. Duffie et al. (2009)
further argue that including frailty covariates in the hazard-rate specifications is necessary
to accomodate default clustering.1415 Koopman, Lucas and Schwaab (2009) [97] show
that modeling frailty contributes to obtain a proper modeling of default rates during crisis.
Consistentlty with these findings, our framework accomodates latent regimes and/or factors
(cf. Section 6). In particular, the fact that some regimes could correspond to simultaneous
and dramatic increases in the default probabilities of all or part of the debtors (cf. point
(iii) above) implies that our framework is appropriate to generate default clustering.

1.3. Credit-migration modeling

In Subsection 8.3, we show how our framework can be adapted to accomodate credit-rating
migration. Our baseline model considers only one credit event: the default of the debtor.
However, credit events include more generally the changes in credit ratings like these at-
tributed by agencies like Moody’s, Standard & Poor’s or Fitch. There are several reasons
why it may be desirable to model not only default events but also rating transitions (see
Cantor, 2004 [29] or Gagliardini and Gourieroux, 2001 [74]).16 First, because of their im-
portance in terms of risk management, modeling credit migration is key for practitioners.17
Second, such models are obviously required to price credit-event options. Third, when
complete default historical data sets are not available (or do not go back far in time), ex-
ploiting credit-migration matrices may allow to extrapolate long-term default predictions
from short-term credit risk dynamics. Similarly, to the extent that rating classes are seen as
approximately homogenous, having a rating-based term structure model at one’s disposal
makes it quick to get a rough estimate of the fair value of a bond (given the rating of the
issuer).

In their seminal study of credit spread, Jarrow, Lando and Turnbull (1997) [90] model
rating transitions as a time-homogenous Markov chain. That is, in their model, whether
a firm’s rating will change in the next period depends on its current rating only and the

13Nevertheless, using a different specification of the default intensity, Lando and Nielsen (2008) [99] cannot
reject the assumption of conditional independence for default histories recorder by Moody’s between
1982 and 2006. Lando and Nielsen conclude that the test proposed by Das et al. (2007) is mainly a
misspecification test.

14Frailty models come from the biostatistics literature. In these models, the intensity of a point process
is proportional to an unobservable variable, the frailty parameter. For a survey of frailty models, see
Hougaard (2000) [88].

15Collin-Dufresne, Goldstein and Helwege (2008) [37] and Jorion and Zhang (2007) [93] also find that
default events are associated with significant increases in the credit spreads of other firms, consistent
with default clustering in excess of that suggested by the standard doubly stochastic models. Azizpour
and Giesecke (2008) [10] find that contagion effects represent a significant additional source of default
clustering (over and beyond the effect due to firms’ exposure to observable and frailty risk factors).

16Several of the main credit models currently being used in the industry, such as J.P. Morgan’s CreditMetrics
(1997) [94], draw on the credit-migration approach. For presentation, comparison and evaluation of these
models, see e.g. Crouhy, Glai and Mark (2000) [42], Gordy (2000) [77] or Lopez and Saidenberg (2000)
[105].

17For instance, the VaR or capital adequacy numbers may be based on a portfolio rating’s distribution
(see Saienberg and Schuermann (2003) [122]). In addition, some portfolio managers are constrained by
limits based on the ratings of the bond they held.
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probability of changing from one rating to the other remains the same over time. In addition,
in their setting, the market risk and the credit risk are assumed to be independent. Different
studies suggest however that –per-period– transition probabilities are time-varying (see e.g.
Lucas and Lonski, 1992 [106], Belkin, Suchower and Wagner, 1998 [17], Farnsworth and
Li, 2007 [68] or Feng, Gourieroux and Jasiak, 2008 [70]). In addition to time-variability,
Nickell, Perraudin and Varotto 2000 [119] show that conditioning a transition matrix on
the industry (to which the company belongs) is desirable.

Lando (1998) [98] extends the framework developed by Jarrow, Lando and Turnbull
(1997) [90] by allowing for dependence between the market risk and the credit risk,18 and
by making the rating-transition probabilities depend on the state variables.19 As in Lando
(1998), we look for specific forms of the rating-transition matrix that lead to quasi-explicit
bond-pricing formulas.

2. Information and historical dynamics

2.1. Information

The new information of the investors at date t is w′t = (z′t, y
′
t, x

′
t, d

′
t) where zt is a regime

variable that can take a finite number J of values, yt is a multivariate macroeconomic factor,
x
′
t = (x′

1,t, . . . , x
′
N,t) is a set of specific multivariate factors xn,t associated with debtor n,

and d
′
t = (d1,t, . . . , dN,t) is a set of binary variables indicating the default (dn,t = 1) or

the non-default (dn,t = 0) state of entity n. The whole information set of the investors
at date t is w′t = (w′

1, . . . , w
′
t). At this stage, we do not make any assumption about the

observability of these variables by the econometrician (this is done below in Section 6). As
outlined at the beginning of Subsection 1.2.3, these regimes influence bond pricing through
different channels (they can appear in the stochastic discount factor, in the default-intensity
functions and in the dynamics of the risk factors yt and xn,t’s). In the baseline framework,
the regimes are viewed as transitory: none of these regimes is absorbing (this restriction is
relaxed in a specific case presented in Subsection 8.2).

2.2. Historical dynamics

The regime variable zt is valued in {e1, . . . , eJ}, the set of column vectors of the identity
matrix IJ . The conditional distribution of zt given wt−1 is characterized by the probabilities:

p
(
zt | wt−1

)
= π (zt | zt−1, yt−1) . (1)

The probability π(ej | ei, yt−1) that zt shifts from regime i to regime j between period
t − 1 and t, conditional on yt−1, is also denoted by πij,t−1. These specifications allow for
state-dependent transition probabilities, as in Gray (1996) [79], Ang and Bekaert (2002) [6]
or Dai, Singleton and Yang (2007) [44].

The conditional distribution of yt given zt and wt−1 is Gaussian and given by:

yt = µ (zt, zt−1) + Φyt−1 + Ω (zt, zt−1) εt (2)

where the εt are independently and identically N(0, I) distributed. Specifications (1) and
(2) imply that, in the universe (zt, yt), zt Granger-causes yt, yt causes zt and there is
18Amongst the earliest studies suggesting that such a feature is required, see Longstaff and Schwartz (1995)

[104] or Duffee (1998) [56].
19Other examples of term-structure models allowing for time-varying transition probabilities include

Bielecki and Rutkowski (2000) [20] and Wei (2003) [130].
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instantaneous causality between zt and yt. Moreover, in the universe wt = (zt, yt, xt, dt),
(xt, dt) does not cause (zt, yt). As noted by Ang, Bekaert and Wei (2008) [7], instantaneous
causality between zt and yt implies that the variances of the factors yt, conditional on wt−1,
embed a jump term reflecting the difference in drifts µ accross regimes. Such a feature,
that allows for conditional heteroskedasticity, is absent from the Dai, Singleton and Yang
(2007) [44] setting. However, it should be noted that our framework nests the case where
there is no instantaneous causality between zt and yt in the historical dynamics.20 Contrary
to Bansal and Zhou (2002) [12], matrix Φ is not regime-dependent: this is for the sake of
tractability when it comes to bond pricing.21

The xn,t’s, n = 1, . . . , N are assumed to be independent conditionally to (zt, yt, wt−1).
The conditional distribution of xn,t is Gaussian and defined by:

xn,t = q1n (zt, zt−1) + Q2nyt + Q3nyt−1 + Q4nxn,t−1 + Q5n (zt, zt−1) ηn,t (3)

where the shocks ηn,t are IIN(0, I). Specifications(1), (2) and (3) imply that, in the uni-
verse (zt, yt, xn,t), (zt, yt) causes xn,t, xn,t does not cause (zt, yt) and there is instantaneous
causality between (zt, yt) and xn,t. Moreover, denoting with xn,t the vector xt excluding
xn,t, (xn,t, dt) does not cause (zt, yt, xn,t) in the whole universe wt.

Finally, the dn,t’s, n = 1, . . . , N , are independent conditionally to(zt, yt, xt, wt−1) and the
conditional distribution of dn,t is such that:

p
(
dn,t = 1 | zt, yt, xt, wt−1

)
=

{
1 if dn,t−1 = 1,
1− exp (−λn,t) otherwise,

(4)

with λn,t = α
′
nzt + β

′
nyt + γ

′
nxn,t.

In other words, state 1 of dn,t is an absorbing state and exp (−λn,t) is the survival
probability. Since the default probability 1 − exp (−λn,t) is close to λn,t if λn,t is small,
λn,t is called the default intensity. The default intensity is expected to be postive, which is
not necessarily the case since the εt’s are Gaussian. However, the parameterization of the
model may make this extremely unfrequent.

So, in the universe (zt, yt, xn,t, dn,t), (zt, yt, xn,t) causes dn,t whereas dn,t does not causes
(zt, yt, xn,t) and there is instantaneous causality. In the whole universe wt, (xn,t, dn,t) does
not cause (zt, yt, xn,t, dn,t).

The causality scheme is summarized in Figure 1.
Finally, let us consider the conditional Laplace transform of the distribution of (zt, yt)

given wt−1:
ϕt−1(u, v) = Et−1

[
exp

(
u′zt + v′yt

)]
.

Proposition 1. The conditional Laplace transform of (zt, yt) given wt−1 is:

ϕt−1 (u, v) = exp
(
v′Φyt−1 + [l1, . . . , lJ ] zt−1

)
, (5)

where li = log
∑J

j=1 πij,t−1 exp
{
ui + v′µ(ej , ei) + 1

2v′Ω (ej , ei) Ω′ (ej , ei) v
}
.

20Formally, this corresponds to µ (zt, zt−1) = µ (zt−1) and Ω (zt, zt−1) = Ω (zt−1).
21Indeed, the model of Bansal and Zhou (2002) [12] does not admit a closed-form exponential affine solution

(they proceed by linearizing the discrete-time Euler equations and by solving the resulting linear relations
for prices.
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Figure 1: Causality scheme
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Proof. We have

ϕt−1 (u, v) = Et−1
(
exp

[
u′zt + v′yt

])

= Et−1
(
exp

[
u′zt + v′µ (zt, zt−1) + v′Φyt−1 + v′Ω (zt, zt−1) εt

])

= E
(
E{exp

[
u′zt + v′µ (zt, zt−1) + v′Φyt−1+

v′Ω (zt, zt−1) εt
]
| wt−1, zt} | wt−1

)

= exp(v′Φyt−1)E
(
exp

{
u′zt + v′µ (zt, zt−1)

}
×

E
(
exp

{
v′Ω (zt, zt−1) εt | wt−1, zt

})
| wt−1

)

= exp(v′Φyt−1)E
(
exp

{
u′zt + v′µ (zt, zt−1)

}
×

1
2
v′Ω (zt, zt−1) Ω′ (zt, zt−1) v | wt−1

)

= exp
(
v′Φyt−1 + [l1, . . . , lJ ] zt−1

)
.

Using the expression given for the li’s lead to the result.

This Laplace transform is not, in general, exponential affine in (zt−1, yt−1), since yt−1

appears in the πij,t’s. However, this is the case if the πij,t’s do not depend on yt−1 and
then, the dynamics of (zt, yt) is Car(1) (see Darolles, Gourieroux and Jasiak, 2006[45] or
Bertholon, Monfort and Pegoraro (2008) [18] for in-depth presentations of Car processes).

3. Stochastic discount factor and risk-neutral dynamics

3.1. Stochastic discount factor

We complete the model by specifying the stochastic discount factor Mt−1,t between t − 1
and t:

Mt−1,t = exp
[
−a

′
1zt−1 − b

′
1yt−1 −

1
2
ν
′
(zt, zt−1, yt−1) ν (zt, zt−1, yt−1) +

+ν
′
(zt, zt−1, yt−1) εt + δ

′
(zt−1, yt−1) zt

]
, (6)
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with the constraints:
J∑

j=1

πij,t−1 exp [δj (ei, yt−1)] = 1, ∀i, yt−1, (7)

where δj is the jth component of δ. Using Equation (7), it is easily seen that Et−1(Mt−1,t) =
exp(−a

′
1zt−1 − b

′
1yt−1). Therefore, the riskless short rate between t− 1 and t is:

rt = a
′
1zt−1 + b

′
1yt−1. (8)

In our framework, the variables (xn,t, dn,t), specific to entity n, do not appear in the
stochastic discount factor. This means that these entities have no impact at the macroe-
conomic level.22 This can be formalised in the following way. Let us assume that the N
entities appearing in the modeling belong to a large homogenous population of size Ñ . This
large population could be included in Mt−1,t, for instance by adding a term of the form

Gt(Ñ) =
1
Ñ

Ñ∑

n=1

(
ν
′
nxn,t + ν

′
0ndn,t

)
.

Since the (xn,t, dn,t), i = 1, . . . , Ñ are independent conditonally to zt, yt
, we have, denoting

respectively by Et and Vt the conditional expectation and variance (or variance-covariance
matrix) given zt, yt

:

Vt

(
Gt

(
Ñ

))
=

1
Ñ2

Ñ∑

n=1

[
ν
′
n, ν0,n

]
Vt

(
x
′
n,t, dn,t

) [
ν
′
n, ν0,n

]
′
.

Assuming that the terms in the sum are bounded when Ñ goes to infinity, which means
that all the entities have a bounded weight in the infinite population, Vt(Gt(Ñ)) goes to
zero, when Ñ goes to infinity and Gt(Ñ) converges in mean square to limÑ→∞Et(Gt(Ñ))
(which is assumed to exist). Therefore, Gt(Ñ) asymptotically depends only on (zt, yt

).
which already appears in Mt−1,t. In some sense, the impact of these entities has been
diversified away.

So the framework of this paper can be used in the context described above, the entities
appearing in the modeling are those of specific interest, and the sequential inference method
proposed in section 6 shows that these entities can be incorporated progressively in the
model.

3.2. Risk-neutral dynamics

3.2.1. The conditional risk-neutral distribution of (zt, yt) given wt−1

Let us now consider the conditional risk-neutral Laplace transform of (zt, yt) given wt−1,
ϕQ

t−1 (u, v) := EQ
t−1 (exp [u′zt + v′yt]), and let us introduce the notations:

µt = µ (zt, zt−1)
Ωt = Ω (zt, zt−1) , Σ(zt, zt−1) = ΩtΩ′t = Σt

νt = ν (zt, zt−1, yt−1)
δt−1 = δ (zt−1, yt−1) .

22Diversifiability assumptions and the implied restrictions on default risk premia are studied in details by
Jarrow, Lando and Yu (2005) [91] (in a continuous-time setting).
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Proposition 2. The conditional risk-neutral Laplace transform of (zt, yt) given wt−1 is:

ϕQ
t−1 (u, v) = exp

[
v′Φyt−1 +

(
A1,t−1(u, v) . . . AJ,t−1(u, v)

)
zt−1

]
, (9)

where

Ai,t−1(u, v) = log(
J∑

j=1

πij,t−1 exp
{

v′Ω (ej , ei) ν (ej , ei, yt−1) +
1
2
v′Σ (ej , ei) v+

v′µ (ej , ei) + uj + δj (ei, yt−1)
})

.

Proof.

ϕQ
t−1 (u, v) = EQ

t−1

(
exp

[
u′zt + v′yt

])

= Et−1

(
exp

[
−1

2
ν
′
tνt + ν

′
tεt + δ

′
t−1zt + u′zt + v′yt

])

= exp
(
v′Φyt−1

)
×

Et−1

(
exp

[
−1

2
ν
′
tνt + ν

′
tεt + δ

′
t−1zt + u′zt + v′µt + v

′
Ωtεt

])

= exp
(
v′Φyt−1

)
×

Et−1

(
exp

[
−1

2
ν
′
tνt +

1
2

(
ν
′
t + v

′
Ωt

) (
ν
′
t + v

′
Ωt

)′

+ v′µt + u′zt + δ
′
t−1zt

])

= exp
(
v′Φyt−1

)
Et−1

(
exp

[
v′Ωtνt +

1
2
v′Σtv + v′µt + u′zt + δ

′
t−1zt

])
.

Using the expression given for Ai,t−1(u, v) leads to the result.

We immediately deduce the following Corollary.

Corollary 1. The risk-neutral dynamics of (zt, yt) is Car(1) if the s.d.f. satisfies the
constraints (for any i, j and t):

{
π (ej | ei, yt−1) exp [δj (ei, yt−1)] = π∗ij
Ω (ej , ei) ν (ej , ei, yt−1) = Φ∗yt−1 + µ∗ (ej , ei) ,

(10)

where π∗ij = π∗(ej | ei) does not depend on yt−1, Φ∗ is any matrix and µ∗ is any function.

If such constraints are satisfied, the risk-neutral conditional Laplace transform becomes:

ϕQ
t−1 (u, v) = exp

[
v′ (Φ + Φ∗) yt−1 +

(
A∗1(u, v) . . . A∗J(u, v)

)
zt−1

]
, (11)

with A∗i (u, v) = log
(∑J

j=1 π∗ij exp
{
uj + v′ [µ (ej , ei) + µ∗ (ej , ei)] + 1

2v′Σ (ej , ei) v
})

.
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Comparing with equation (5), we deduce that the risk-neutral dynamics of (zt, yt) is then
defined by:

yt = µ (zt, zt−1) + µ∗ (zt, zt−1) + (Φ + Φ∗) yt−1 + Ω (zt, zt−1) ε∗t , (12)

where, under Q, zt is an homogenous Markov chain defined by the transition matrix {π∗ij},
and ε∗t –defined by ε∗t = εt − Ω−1 (zt, zt−1) [µ∗ (zt, zt−1) + Φ∗yt−1]– is IIN (0, I).

The previous results show that an appropriate choice of the s.d.f., that is an appropriate
choice of the risk sensitivity vectors ν and δ pricing respectively the (standardized) innov-
ations εt of yt and zt, allows to obtain a joint risk-neutral dynamics of (zt, yt) defined by
any transition matrix {π∗ij} and any equation:

yt = µ̃ (zt, zt−1) + Φ̃yt−1 + Ω (zt, zt−1) ε∗t ,

where ε∗t is IIN (0, I). Note that the Ω function is the same in the historical and risk-neutral
worlds.

3.2.2. The risk-neutral distribution of (xt, dt) given (zt, yt, wt−1)

Lemma 1. Let us consider a partition of wt =
(
w

′
1,t, w

′
2,t

)′

. If Mt−1,t is a function of
(
w1,t, wt−1

)
, the risk-neutral probability density function, or p.d.f. , of w1,t given wt−1 is:

fQ
(
w1,t | wt−1

)
= f

(
w1,t | wt−1

)
Mt−1,t exp (−rt)

(where f is the historical conditional p.d.f. of w1,t given wt−1) and the conditional risk-
neutral distribution of w2,t given

(
w1,t, wt−1

)
is the same as the corresponding historical

distribution.

Proof. See Appendix A.

Since Mt−1,t is a function of (zt, yt) but not of (xt, dt), the previous lemma shows that
the risk-neutral distribution of (xt, dt) given

(
zt, yt, wt−1

)
is the same as the historical one

and it is given by equations (3) and (4). In particular, the functional forms of the default
intensities λn,t are the same as in the historical world. Of course, since the dynamics of
(zt, yt) are different in the two worlds, the same is true for the xn,t’s and the λn,t’s.

In addition, it can be shown that (zt, yt, xn,t) is Car(1) under the risk-neutral measure
(see Appendix C). However, it is not the case for (zt, yt, xn,t, dn,t).

It is also clear that the causality structure of the risk-neutral dynamics is similar to
the historical one, the only difference being the non-causality from yt to zt implied by the
homogeneity of the matrix {π∗ij}.

3.3. Discussion of the constraints on the SDF

Constraints (10) can be written:
{

δj (zt−1, yt−1) = log
(

π∗(ej |zt−1)
π(ej |zt−1,yt−1)

)

ν (zt, zt−1, yt−1) = Ω−1 (zt, zt−1) [Φ∗yt−1 + µ∗ (zt, zt−1)] ,
(13)
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where the transition matrix {π∗ij}, the matrix Φ∗ and the vectors µ∗ (ej , ei) are arbitrary.
Note that constraints (7) imposed on δ are automatically satisfied by the parameterization
(13). Recall that constraints (10) are imposed so as to obtain a Car dynamics of the state
variable under the risk-neutral measure. These constraints could be relaxed, but at the
cost of losing the analytical tractability in the bond pricing (as will be shown below).23
Even if we impose a Car risk-neutral dynamics, we still have a large number of degrees of
freedom in the specification of the s.d.f. since Φ∗, µ∗(zt, zt−1) and the π∗ij ’s are then chosen
arbitrarily. However, we may wish to parameterize more parsimoniously the s.d.f. and,
therefore, impose stronger constraints on the risk-neutral dynamics. Let us illustrate this
point by a simple bivariate example.

The historical dynamics is defined by:
[

y1,t

y2,t

]
=

[
µ1

µ′2zt

]
+

[
ϕ11 ϕ12

ϕ21 ϕ22

] [
y1,t−1

y2,t−1

]
+

[
σ1ε1,t

(σ′2zt) ε2,t

]

and by some πij,t’s. Moreover, let us assume that we impose an additive risk-sensitivity
vector ν:

ν(zt, zt−1, yt−1) =
(

b′1yt−1 + ν ′1zt

b′2yt−1 + ν ′2zt

)
.

We get:

Ω(zt, zt−1)ν(zt, zt−1, yt−1) =
[

σ1b′1yt−1 + σ1ν ′1zt

σ′2zt (b′2yt−1 + ν ′2zt)

]
,

which must be additive of the form Φ∗yt−1 + µ∗(zt, zt−1). It is only possible if b2 = 0 and
in this case we get:

Φ∗ =
[

σ1b′1
0

]
and µ∗(zt, zt−1) =

[
σ1ν ′1zt

(σ2 % ν2)′zt

]
,

where % denotes the Hadamard (element by element) product. In other words Φ∗ =[
ϕ∗

′
1

0

]
, µ∗(zt, zt−1) =

[
µ∗

′
1 zt

µ∗
′

2 zt

]
where ϕ∗1, µ∗1 and µ∗2 are arbitrary. Finally, the risk-

neutral dynamics is given by:
[

y1,t

y2,t

]
=

[
µ̃′1zt

µ̃′2zt

]
+

[
ϕ̃11 ϕ̃12

ϕ21 ϕ22

] [
y1,t−1

y2,t−1

]
+

[
σ1ε∗1,t

(σ′2zt) ε∗2,t

]

and by {π*
ij} where ϕ̃11, ϕ̃12, µ̃1, µ̃2 and the π*

ij ’s are arbitrary, but the autoregressive
coefficients of the second equations are the same as in the historical dynamics.

3.4. The specific case of no instantaneous causality between zt and yt

The general framework nests the case where there is no instantaneous causality between zt

and yt in the historical dynamics (as in Dai, Singleton and Yang, 2007 [44]), that is:

µ (zt, zt−1) = µ (zt−1) = cµzt−1 (say)
Ω (zt, zt−1) = Ω (zt−1) (say).

23Boudoukh et al. (1999) [25] develop a model with regime-transition probabilities that are state-dependent
under both physical and risk-neutral measures. However, to make bond pricing tractable, Bakoukh et
al. have to resort to approximations. Specifically, they consider that there are a finite number of states
per regimes (11 states per regime).
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Let us assume moreover that:

ν (zt, zt−1, yt−1) = ν (zt−1, yt−1) (say)

and, therefore, µ∗ (zt, zt−1) = µ∗ (zt−1) = c∗µzt−1 (say).
In this case, the historical and risk-neutral Laplace transforms become:

ϕt−1 (u, v) = exp
(

v′ (Φyt−1 + cµzt−1) +
1
2

[
v′Ω (e1) v, . . . , v′Ω (eJ) v

]
zt−1+

+



log
J∑

j=1

π1j,t−1 exp (u1) , . . . , log
J∑

j=1

πJj,t−1 exp (uJ)



 zt−1



 and

ϕQ
t−1 (u, v) = exp

(
v′

[
(Φ + Φ∗) yt−1 +

(
cµ + c∗µ

)
zt−1

]
+

1
2

[
v′Ω (e1) v, . . . , v′Ω (eJ) v

]
zt−1+

+



log
J∑

j=1

π∗1j exp (u1) , . . . , log
J∑

j=1

π∗Jj exp (uJ)



 zt−1



 .

So the risk-neutral dynamics is defined by yt =
(
cµ + c∗µ

)′
zt−1 +(Φ + Φ∗) yt−1 +Ω (zt−1) ε∗t

where zt is an homogenous Markov chain defined by the transition matrix{π∗ij} and ε∗t
is IIN (0, I). In particular, there is no instantaneous causality in the risk-neutral world
either.

4. Pricing

4.1. Pricing of riskless zero-coupon bonds

It is well-known that the existence of a positive stochastic discount factor is equivalent to
the absence of arbitrage opportunities (see Hansen and Richard, 1987 [86] and Berholon,
Monfort and Pegoraro, 2007 [18]) and that the price at t of a zero-coupon bond with residual
maturity h is given by:

B (t, h) = EQ
t [exp (−rt+1 − . . .− rt+h)] , (14)

where rt+i = a
′
1zt+i−1 + b

′
1yt+i−1, i = 1, . . . , h. Since (zt, yt) is Car(1) under Q, B(t, h) is

easily computed using the following lemma:

Lemma 2. Let us consider a multivariate Car(1) process Zt and its conditional Laplace
transform given by exp [a′(s)Zt + b(s)]. Let us further denote by Lt,h(ω) its multi-horizon
Laplace transform given by:

Lt,h(ω) = Et
[
exp

(
ω′H−h+1Zt+1 + . . . + ω′HZt+h

)]
, t = 1, . . . , T, h = 1, . . . ,H,

where ω = (ω′1, . . . ,ω′H) is a given sequence of vectors. We have, for any t,

Lt,h(ω) = exp
(
A′hZt + Bh

)
, h = 1, . . . ,H,

where the sequences Ah, Bh, h = 1, . . . ,H are obtained recursively by:
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Ah = a(ωH−h+1 + Ah−1)
Bh = b(ωH−h+1 + Ah−1) + Bh−1,

with the initial conditions A0 = 0 and B0 = 0.

Proof. See Appendix B.

From Equation (11) we know that (zt, yt) is risk-neutral Car(1) and that its conditional
Laplace transform is based on the functions:

a′(u, v) =
[
(A∗1(u, v), . . . , A∗J(u, v)), v′(Φ + Φ∗)

]
and

b(u, v) = 0.

so we have the following proposition:

Proposition 3. We have:

B (t, h) = exp
(
−a

′
hzt − b

′
hyt

)
, (15)

and the yield of residual maturity h, R(t, h) is given by:

R(t, h) =
1
h

(
ahzt + b

′
hyt

)
, (16)

where ah and bh are computed recursively, for h = 1, . . . ,H, by (with a0 = a1 and b0 = b1):

(a′h, b′h) = (a′1, b
′
1)− a′

(
ωH−h+1 −

(
a′h−1 − a′1, b

′
h−1 − b′1

)′)
,

where the sequence ωh, h = 1, . . . ,H is defined by ωH = 0, ω1 = ω2 = . . . = ωH−1 =
(−a′1,−b′1)′ and where a′(u, v) = [(A∗1(u, v), . . . , A∗J(u, v)), v′(Φ + Φ∗)].

Proof. We have:

B(t, h) = exp
(
−a′1zt − b′1yt

)
EQ

t

(
−a′1zt+1 − b′1yt+1 − . . .− a′1zt+h−1 − b′1yt+h−1

)
.

Using Lemma 2 with ωH = 0, ω′h = (−a′1,−b′1) for h = 1, . . . ,H − 1, we get:

B(t, h) = exp
(
−a′1zt − b′1yt + ã′hzt + b̃′hyt

)
,

where (ã′h, b̃′h) = a′(ωH−h+1 + (ã′h−1, b̃
′
h−1)), ã0 = 0 and b̃0 = 0.

Taking ah = a1−ãh, bh = b1−b̃h, with (a′h, b′h) = (a′1, b′1)−a′
(
ωH−h+1 −

(
a′h−1 − a′1, b

′
h−1 − b′1

)′),

we get B (t, h) = exp
(
−a

′
hzt−1 − b

′
hyt−1

)
.
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4.2. Pricing of (zero-recovery-rate) defaultable bonds

A defaultable zero-coupon bond providing one money unit at t + h if entity n is still alive
at t + h and zero otherwise has a price at t given by:

BD
n (t, h) = EQ

t

[
exp (−rt+1 − . . .− rt+h) I{dn,t+h=0}

]
(17)

if dn,t = 0 and 0 otherwise.

Proposition 4. The price of a zero-recovery-rate zero-coupon defaultable bond issued by
debtor n is such that:

BD
n (t, h) = EQ

t

[
exp

(
−rt+1 − . . .− rt+h − α

′
nzt+1 − β

′
nyt+1 − γ

′
nxn,t+1 − . . .

− . . .− α
′
nzt+h − β

′
nyt+h − γ

′
nxn,t+h

)]
. (18)

Proof. Equation (17) can be rewritten:

BD
n (t, h) = EQ

t

[
EQ

(
exp (−rt+1 − . . .− rt+h) I{dn,t+h=0} | zt+h, y

t+h
, xn,t+h, dn,t = 0

)]

= EQ
t

[
exp (−rt+1 − . . .− rt+h) Q

(
dn,t+h = 0 | zt+h, y

t+h
, xn,t+h, dn,t = 0

)]
.

Moreover,

Q
(
dn,t+h = 0 | zt+h, y

t+h
, xn,t+h, dn,t = 0

)

=
∏h

i=1 Q
(
dn,t+i = 0 | zt+h, y

t+h
, xn,t+h, dn,t+i−1 = 0

)

and, since dn,t does not cause (zt, yt, xn,t) in the Granger’s or Sims’ sense (see Appendix
E), we have:

Q
(
dn,t+i = 0 | zt+h, y

t+h
, xn,t+h, dn,t+i−1 = 0

)

= Q
(
dn,t+i = 0 | zt+i, yt+i

, xn,t+i, dn,t+i−1 = 0
)

= exp (−λn,t+i) .

where the last equality comes from the fact that the conditional historical and risk-neutral
distributions of dn,t are the same (see Subsection 3.2.2).

It can be shown (see Appendix C) that (zt, yt, xn,t) is Car(1) under Q, with a conditional
Laplace transform of the type exp[a′(u, v, w)(z′t, y′t, x′n,t)] where a(u, v, w) = [(Ã1, . . . , ÃJ), (v′+
w′Q2n)(Φ + Φ∗) + w′Q3n, w′Q4n], where

Ãi(u, v, w) = log(
J∑

j=1

π∗ij exp{uj + (v′ + w′Q2n) [µ (ej , ei) + µ∗ (ej , ei)] + w′q1n (ej , ei) +

1
2
(v′ + w′Q2n)Σ (ej , ei) (v + Q′2nw) +

1
2
w′Q5n (ej , ei)Q′5n (ej , ei)w}).
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Therefore we have the following result:

Proposition 5. The price of a zero-recovery-rate zero-coupon defaultable bond issued by
debtor n is given by:

BD
n (t, h) = exp

(
−c

′
n,hzt − f

′
n,hyt − g

′
n,hxn,t

)
(19)

and the defaultable yields are:

RD
n (t, h) =

1
h

(
c
′
n,hzt + f

′
n,hyt + g

′
n,hxn,t

)
, (20)

where (c′n,h, f ′n,h, g′n,h) is computed recursively by:

(
c′n,h, f ′n,h, g′n,h

)
=

(
a′1, b

′
1, 0

)
− a

(
ωH−h+1 −

(
c′n,h−1 − a′1, f

′
n,h−1 − b′1,−g′n,h−1

)′)

where the sequence ωh, h = 1, . . . ,H is defined by ωH = (−α′n,−β′n,−γ′n) and ωh = (−α′n−
a′1,−β′n − b′1,−γ′n) for h = 1, . . . ,H − 1, with cn,0 = a1, fn,0 = b1, gn,0 = 0.

Proof. From Proposition 4, we have:

BD
n (t, h) = exp

(
−a′1zt − b′1yt

)
EQ

t

(
−a′1zt+1 − b′1yt+1 − α′nzt+1 − β′nyt+1 − γ′nxn,t+1 − . . .

−a′1zt+h−1 − b′1yt+h−1 − α′nzt+h−1 − β′nyt+h−1 − γ′nxn,t+h−1

)

−α′nzt+h − β′nyt+h − γ′nxn,t+h

)
.

Using Lemma 2 with ωH = (−α′n,−β′n,−γ′n) and ωh = (−α′n − a′1,−β′n − b′1,−γ′n) for
h = 1, . . . ,H − 1, we get:

BD
n (t, h) = exp

(
−a

′
1zt − b

′
1yt + c̃

′
n,hzt + f̃

′
n,hyt + g̃

′
n,hxn,t

)
,

where (c̃′n,h, f̃ ′n,h, g̃′n,h) = a′
(
wH−h+1 + (c̃′n,h−1, f̃

′
n,h−1, g̃

′
n,h−1)

)
and c̃n,0 = 0, f̃n,0 = 0 and

g̃n,0 = 0.
Taking cn,h = a1 − c̃n,h, fn,h = b1 − f̃n,h and gn,h = −g̃n,h, with

(
c′n,h, f ′n,h, g′n,h

)
=

(a′1, b′1, 0) − a

(
ωH−h+1 −

(
c′n,h−1 − a′1, f

′
n,h−1 − b′1, g

′
n,h−1

)′)
and cn,0 = a1, fn,0 = b1,

gn,0 = 0, we get BD
n (t, h) = exp(−c

′
n,hzt − f

′
n,hyt − g

′
n,hxn,t).

In this setting, credit spreads are given by:

sn(t, h) = RD
n (t, h)−Rn(t, h)

=
1
h

[
(ah − cn,h)

′
zt + (bh − fn,h)

′
yt + g

′
hxn,t

]
. (21)

In particular, the spread of maturity one is:

sn (t, 1) = rD
n,t+1 − rt+1,
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with:

rD
n,t+1 = − log

(
EQ

t [exp (−rt+1 − λn,t+1)]
)

= rt+1 − log
(
EQ

t [exp (−λn,t+1)]
)

.

So

sn(t, 1) = − log
(
EQ

t [exp (−λn,t+1)]
)

= − log
(
EQ

t

[
exp

(
−α

′
nzt+1 − β

′
nyt+1 − γ

′
nxn,t+1

)])
,

which can be easily computed and we get (using Appendix C):

sn(t, 1) =
{
β′n (Φ + Φ∗) + γ′nQ3n

}
yt + γ′nQ4nxn,t −

(
Ã1 . . . ÃJ

)
zt,

with

Ãi = log(
J∑

j=1

π∗ij exp{−α′n,j − (β′n + γ′nQ2,n) [µ (ej , ei) + µ∗ (ej , ei)]− γ′nq1n (ej , ei) +

1
2
(β′n + γ′nQ2,n)Σ (ej , ei) (β′n + γ′nQ2,n)′ +

1
2
γ′nQ5n (ej , ei) Q′5n (ej , ei) γn}).

4.3. Pricing of non-zero-recovery-rate defaultable bonds

Formula (18), which can read

BD
n (t, h) = EQ

t [exp (−rt+1 − . . .− rt+h − λn,t+1 − . . .− λn,t+h)] , (22)

has been obtained under the assumption of zero recovery rate. This formula can be extended
to the case with non-zero recovery rates, providing that the λn,t’s are interpreted as risk-
neutral “recovery-adjusted” default intensities. More precisely, we have the following result
(dropping the subscript n for the sake of clarity):

Proposition 6. If, for any bond issued by debtor n before t, the recovery payoff –that is
assumed to be paid at time t in case of default between t−1 and t of debtor n– is equal to the
product of a function ζn,t of the information available at time t by the survival-contingent
market value of the bond at t, the price at t of a bond with residual maturity h is:

BDR
n (t, h) = EQ

t

[
exp(−rt+h − . . .− rt+h − λ̃n,t+1 − . . .− λ̃n,t+h)

]
, (23)

where λ̃n,s is defined by (for any s):

exp(−λ̃n,s) = exp(−λn,s) + (1− exp(−λn,s)) ζn,s.

Proof. See Appendix D.

The assumption of Proposition 6 is similar to the “Recovery of Market Value” assumption
made by Duffie and Singleton (1999) [60] except that, in their discrete-time approach, they
assume that ζt is known at time t − 1, and that conditionally to the information at t − 1,
dn,t is independent of the recovery payoff at t.
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5. Internal consistency (IC) conditions

5.1. IC conditions based on riskless yields

If the short rate rt+1 is a component of yt, for instance the first one, we have to impose
an internal consistency condition implying that rt+1 = a

′
1zt + b

′
1yt is equal to the first

component of yt, that is:
a1 = 0, b1 = ẽ1,

where ẽi is the vector selecting the ith component of yt.
Moreover, if another component of yt, for instance the second one, is equal to a riskless

yield of maturity h0 –ie R(t, h0)– we have to impose that (1/h0)
(
a
′
h0

zt + b
′
h0

yt

)
is equal to

the second component of yt, that is
{

ah0 = 0
bh0 = h0ẽ2.

5.2. IC conditions based on defaultable yields

Similarly, if the first component of xn,t is a defaultable yield with residual maturity h0,
equation (19) implies that we have to impose:






cn,h0 = 0
fn,h0 = 0
gn,h0 = h0ê1.

where êi denotes the vector selecting the ith component of xn,t.

5.3. IC conditions based on asset returns

If the first component of yt is the geometric return of a market index, we have to impose

exp (−rt+1) EQ
t (exp (y1,t+1)) = 1.

Using equation (11), this gives
(

A∗1,0 . . . A∗J,0

)
zt + (Φ1 + Φ∗1) yt = a

′
1zt + b

′
1yt,

with A∗i,0 = log
{∑J

j=1 π∗ij exp
[
µ1 (ej , ei) + µ∗1 (ej , ei) + 1

2σ2
1 (ej , ei)

]}
, µ1 and µ∗1 being the

first components of µ and µ∗ respectively, σ2
1 being the (1, 1) entry of Σ and Φ1 and Φ∗1 the

first rows of Φ and Φ∗ respectively. Then we get




a1 =

(
A∗1,0 . . . A∗J,0

)′

b1 = (Φ1 + Φ∗1)
′
.

Similarly, if the first component of xn,t is the return of a stock attached to entity n, we
must have:

exp (−rt+1) EQ
t (exp (x1,n,t+1)) = 1

or
rt+1 = log

[
EQ

t (exp (x1,n,t+1))
]
.

Using the fact that (zt, yt, xn,t) is Car(1) under Q (see Appendix C), it is readily seen that
log

[
EQ

t (exp (x1,n,t+1))
]

is linear in zt, yt, xn,t and the IC constraint follows.
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6. Inference

6.1. Observability

We assume that zt, yt and the xn,t’s are partitioned into zt = (z′1t, z
′
2t)′, yt = (y′1t, y

′
2t)′ and

xt = (x′
1,n,t, x

′
2,n,t)′, that z1t, y1t, x1,n,t are observed by the econometrician and z2t, y2t and

x2,n,t are not. Typically, z1,t and z2,t will be two regime processes valued respectively in
E1 = {e1, . . . , eJ1} and E2 = {e1, . . . , eJ2} so zt will be equal to z1,t⊗ z2,t, where ⊗ denotes
the Kronecker product operator. The implementation of the following estimation strategy
requires that the transition probabilities do not depend on the unobserved vectors y2,t−1.24
Moreover, we assume that we observe at each date t a vector of risk-free yields denoted by
Rt and, for each obligor n, a vector of defaultable yields denoted by RD

n,t. Note that if some
yields are included in the vectors yt or xn,t, they do not enter the vectors Rt and RD

n,t (see
Section 5). The period of observation is {1, . . . , T}.

6.2. Decomposition of the joint p.d.f. and estimation strategy

Let us denote by θzy the vector of parameters defining the historical dynamics of (zt, yt), by
θx
n the vector of parameters defining the conditional p.d.f. of xn,t given zt, yt

, xn,t−1 and by
θd
n the vector of parameters defining the conditional p.d.f. of dn,t given zt, yt

, xn,t, dn,t−1.
The joint p.d.f. of wt is:

f (wt, θ) =
T∏

t=1

f
(
zt, yt | zt−1, yt−1

; θzy
)

×
N∏

n=1

T∏

t=1

f
(
xn,t | zt, yt

, xn,t−1; θ
x
n

)

×
N∏

n=1

T∏

t=1

f
(
dn,t | zt, yt

, xn,t, dn,t−1; θ
d
n

)
.

The parameters appearing in Mt−1,t are denoted by θ∗. The theoretical values of Rt and
RD

tn given by the model are denoted by Rt (θzy, θ∗) and RD
nt

(
θzy, θx

n, θd
n, θ∗

)
respectively. A

sequential strategy of estimation is the following:

1. Estimate θzy and θ∗ from the osbervations of y1t, z1t, Rt, t = 1, . . . , T .

2. Estimate the θx
n’s and the θd

n’s from the observations of x1n,t and RD
n,t, t = 1, . . . , T ,

taking as given the values of θzy and θ∗, and the values of y2,t and z2,t being fixed at
the approximated values obtained from step 1.

The remaining of the current section details these two steps. The methodology that is
proposed builds on the so-called inversion technique developed by Chen and Scott (1993)
[33]. This technique is adapted in order to accomodate regime switching. Naturally, many
different estimation strategies could be implemented. For instance, in our application (Sec-
tion 9), the estimation of the model parameters does not rely on inversion techniques but
resorts to state-space modeling and Kalman filtering.

24Formally, with the notation of Equation (1), p
“
zt | zt−1, yt−1

”
has to be equal to p

“
zt | zt−1, y1,t−1

”
.
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6.3. Estimation of the parameters (θzy, θ∗)

Using equation (16), we have, with obvious notations:

Rt (θzy, θ∗) = Azt + B1y1,t + B2y2,t.

If m is the dimension of y2t, let us partition Rt in
(
R

′
1,t, R

′
2,t

)′

where R2,t is of dimension
m. With obvious notations, we get:

R2,t (θzy, θ∗) = A2zt + B21y1,t + B22y2,t,

and denoting
(
y
′
1,t, R

′
2,t

)′

by ỹt we get:

ỹt =
(

I 0
B21 B22

)
yt +

(
0

A2

)
zt

or
ỹt = B̃yt + Ãzt

and
yt = B̃−1

(
ỹt − Ãzt

)

and from equation (2) we get:

B̃−1
(
ỹt − Ãzt

)
= µ (zt, zt−1) + Φ

[
B̃−1

(
ỹt−1 − Ãzt−1

)]
+ Ω (zt, zt−1) εt

or
ỹt = Ãzt + B̃µ (zt, zt−1) + B̃Φ

[
B̃−1

(
ỹt−1 − Ãzt−1

)]
+ B̃Ω (zt, zt−1) εt

or
ỹt = µ̃ (zt, zt−1) + Φ̃ỹt−1 + Ω̃ (zt, zt−1) εt, (24)

with 




µ̃ (zt, zt−1) = Ãzt + B̃µ (zt, zt−1)− B̃ΦB̃−1Ãzt−1

Φ̃ = B̃ΦB̃−1

Ω̃ (zt, zt−1) = B̃Ω (zt, zt−1) .

The conditional distribution of ỹt given zt, ỹt−1
, is similar to that of yt given zt, ỹt−1,

and in particular is Gaussian, the difference being that ỹt is fully observable. Assuming
moreover that the R1,t are observed with Gaussian errors we get, with obvious notations:

R1,t = A1zt + B11y1,t + B12y2,t + ξt

= A1zt + B11y1,t

+B12B
−1
22 (R2t −A2zt −B21y1,t) + ξt, (25)

with ξt ∼ IIN
(
0, σ2I

)
.

Putting equations (24),(25) and (1) together, we have a dynamic model in which the only
latent variables are z2,t and which can be estimated by the maximum likelihood methods
using Hamilton’s approach (see Appendix F).25 At this stage, IC constraints on (θzy, θ∗)
must be taken into account.
25Note that this algorithm can handle time-varying transition probabilities (which is required in the case

where the πij ’s depend on y1,t−1).
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6.4. Estimation of
(
θx

n, θ
d
n

)

From the inversion method of 6.3, we can get approximations of the y2,t’s.26 Then using
equation (20), we get:

RD
t,n = Cn

1 z1,t + Cn
2 z2,t + Dn

1 y1,t + Dn
2 y2,t + Fn

1 x1,n,t + Fn
2 x2,n,t. (26)

and using equations (2), (3) and (26) and replacing y2,t and z2,t by their approximations,
we get a system in which the only latent variables are the x2,n,t. Taking θzy and θ∗ as given,
the parameters θx

n and θd
n can be estimated either by an inversion technique or by Kalman

filtering, taking into account IC conditions.
Note that in this strategy, the observable variables dn,t’s have not been used. If the

recovery rate was effectively zero, λn,t would be the default intensity and the conditonal
p.d.f. of dn,t given zt, yt

, xn,t, dn,t−1 would be:

dn,tdn,t−1 + (1− dn,t−1) exp [− (1− dn,t−1)λn,t]× [1− exp (−λn,t)]dn,t .

This p.d.f. could be incorporated in the likelihood function. However, in the more realistic
case of non-zero recovery rate, we have seen that (see Subsection 4.3) the λn,t’s must be
interpreted as risk-neutral “recovery adjusted” default intensities and, therefore, they cannot
be used for describing the historical dynamics of the dn,t’s.

6.5. Possible adaptations of the estimation strategy

Mainly for the sake of presentation clarity, the first step of the sequential strategy presented
above involves only observations of macroeconomic factors and riskless yields. In particular,
no credit-spread data are used in the estimation of θ∗, the parameters appearing in the s.d.f.
Mt−1,t as well as in the estimation of the unobserved factors y2,t and of the unobserved
regimes z2,t. However, spread data may contain useful information for the estimation of
θzy and of θ∗. In that case, the strategy should be adapted in order to include credit-
spread data in the first step of the estimation. It can be seen that the main lines of the
estimation strategy are not affected when the vector Rt and y1,t considered in the first
step are respectively augmented with observed defaultable-bond yields and with observable
specific factor x1,n,t (that are associated with the additional yields).27

Another adaptation of the strategy would be the following. The first step presented
above implies a nesting of recursive computations of the theoretical formulas giving riskless
(or risky) rates and recursive computation of the Kitagawa-Hamilton algorithms, which
could be time-consuming. In order to alleviate the computational cost it is possible, for
instance, to estimate first system (24) –or an analogue system including risky rates– with
unconstrained parameters, using standard Kitagawa-Hamilton filter, and then to compute
smoothed estimates values of the zt’s. The latter values of zt would further be considered
as observations and the remaining steps would estimate all the parameters (except the ones
appearing in the πij,t’s) using either inversion techniques or the Kalman filter.

26Note that in the inversion method, the z2t are replaced by those states presenting the highest smoothed
probabilities.

27Naturally, the dimension of R2t should still be equal to the number of unobserved macro-factors y2t.
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7. Liquidity risk

There is compelling evidence that yields and spreads contain components that are closely
linked to liquidity.28 In addition, empirical evidence points to the existence of commonality
amongst the liquidity components of prices of different bonds (see e.g. Fontaine and Garcia,
2009 [72]).

The estimation of the liquidity premium is of concern for several reasons. For instance,
gauging the liquidity-risk premium provides policy makers –central bankers in particular–
with insights on the valuation of liquidity by the markets (see Taylor and Williams, 2008
[126], Wu, 2008 [132] or Michaud and Upper, 2008 [112]). Furthermore, if one wants to
extract default probabilities from market data, one has to distinguish between what is
related to default and what is caused by the liquidity of the considered instruments (see,
e.g., Longstaff, Mithal and Neis, 2005 [103] or Bühler and Trapp 2008 [27]).

However, the identification of the liquidity premium, that is, distinguishing between the
default-related and the liquidity-related components of yield spreads, remains a challenging
task. Basically, the identification of the liquidity component relies on the ability to exhibit
risk factors that reflects liquidity valuation. In Liu, Longstaff and Mandell (2006) [101]
or Feldhütter and Lando (2008) [69], the liquidity factor is latent and the identification is
based on assumptions regarding the relative liquidity of different interest-rate instruments.29
Alternatively, as mentioned in Subection 1.1, the liquidity factor could be proxied by some
observable factors.30 However, according to Wang (2009) [129], usual liquidity proxies are
able to explain only a minor part of the liquidity component. One may resort to intermediate
–or mixed– approach, where part of the liquidity-factor dynamics is observable (through
observed proxies) and part of it is latent.

Let us come back to our modeling framework. We have seen in section 4 that incorpo-
rating default risk in the pricing methodology implies to replace the short rate rt+1 by a
“default-adjusted” short-rate rt+1 + λn,t+1. Besides, in order to take into account recovery-
rate effects, λn,t+1 can be seen as a “recovery adjusted” default intensity between t and t+1
(see Appendix D). So the price at t of a defaultable asset providing the payoff g

(
wt+h

)
at

t + h, in case of absence of default, is:

EQ
t

[
exp (−rt+1 − λn,t+1 − . . .− rt+h − λn,t+h) g

(
wt+h

)]
.

As suggested by Duffie and Singleton (1999) [60], intensity-based model can also account
for liquidity effects by introducing a stochastic process that is interpreted as the carrying
cost of non-liquid defaultable securities. This process then appears alongside the default
intensity in the spread between the “pure” –i.e. default and liquidity-adjusted– short rate
and the short rate associated with a defaultable bond. Accordingly, let us introduce an
28The influence of liquidity effects on bond pricing has been investigated, amongst others, by Longstaff

(2004) [102], Jong and Driessen (2007) [53], Van Landschoot (2004) [100], Chen, Lesmond and Wei
(2007) [32], Covitz and Downing (2007) [41], Acharya and Pedersen (2005) [1] or Eisenschmidt and
Tapking (2009) [62].

29In both studies, the liquidity factor that is estimated corresponds to the so-called “convenience yield”,
that can be seen as a premium that one is willing to pay when holding Treasuries. This premium stems
from various features of Treasury securities, such as repo specialness (see Feldhütter and Lando, 2008).

30Amongst the many liquidity proxies idnetified in the literature stand: bid-ask spreads, market-depth
measures, bond supply, spread between bonds of the same maturity but with different ages or spread
between off-the-run and on-the -run Treasuries (see Longstaff, 2004[102], Beber, Brandt and Kavajecz,
2009 [16], Fontaine and Garcia, 2009 [72] or Wang, 2009 [129]). More generally, for credit spread
determinants, see e.g. Duffie and Singleton (1997) [59], Elton (2001) [64], Collin-Dufresne, Goldstein
and Martin (2001) [39], Elton et al. (2004) [65], Covitz and Downing (2007) [41] and Davies (2008) [50].
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“illiquidty intensity” between t and t + 1, denoted with λL
n,t+1. If λn,t+1 and λL

n,t+1 are
specified in an affine way,

{
λn,t+1 = α

′
nzt+1 + β

′
nyt+1 + γ

′
nxn,t+1

λL
n,t+1 = αL′

n zt+1 + βL′
n yt+1 + γL′

n xn,t+1,

we could price not only riskless bonds Bn (t, h) and defaultable bonds BD
n (t, h) as above,

but also bonds facing liquidity risk BL
n (t, h) and bonds facing both default and liquidity

risk BDL
n (t, h). We would have:






B (t, h) = EQ
t [exp (−rt+1 − . . .− rt+h)]

BD
n (t, h) = EQ

t [exp (−rt+1 − λn,t+1 − . . .− rt+h − λn,t+h)]
BL

n (t, h) = EQ
t

[
exp

(
−rt+1 − λL

n,t+1 − . . .− rt+h − λL
n,t+h

)]

BDL
n (t, h) = EQ

t

[
exp

(
−rt+1 − λn,t+1 − λL

n,t+1 − . . .− rt+h − λn,t+h − λL
n,t+h

)]
.

In the context of a Car(1) risk-neutral dynamics of (zt, yt, xn,t), these prices are expo-
nential linear in (zt, yt, xn,t) and the corresponding yields are linear in (zt, yt, xn,t).

If the obligors issue only bonds facing both default and liquidity risks, and if the same
factors affect both kinds of intensities, it is not possible to distinguish between the two
of them. In order to operate –or to gain some insights on– a decomposition between the
default intensity on the one hand and the liquidity intensity on the other, one has to rely
on additional assumptions. For instance, these assumptions may reflect some priors about
the relative effects of the risk factors on the different obligors. This is illustrated in the
application (Section 9).

8. Model extensions

8.1. Multi-lag dynamics for yt and xn,t processes

The model can easily be extended to allow for yt and xn,t dynamics that include several
lags. In particular, when observed data are used in the estimation process –the y1,t and
x1,n,t defined in Section 6–, preliminary analysis of the data could point to the need of
taking different lags into account to model the historical dynamics of these variables. The
flexibility in the choice of the lag structure constitutes an advantage of working in discrete-
time over most continuous-time models (see, e.g., Monfort and Pegoraro, 2007 [113] or
Gourieroux, Monfort and Polimenis, 2006 [78]).

Equations (2) and (3) imply that the multivariate factors yt and xt follow auto-regressive
process of order one. However, to the extent that a VAR(p) amounts to a VAR(1) once the
last p lags of the endogenous variable are stacked in the same vector, the pricing techniques
of the bonds –namely equations (16) and (20)– are not affected if yt and xt follow VAR(p).
However, in order to make the estimation strategy presented in Section 6 still effective –in
particular regarding inversion techniques–, the unobserved vector variables y2,t and x2,n,t

should not enter equations (2) and (3) with lags larger than one. To the extent that this
restriction only applies to the unobserved factors –for which insights on the appropriate
distributions are a priori not readily available– such a constraint is not really restrictive.
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8.2. Interpretation of a regime as the default state of an entity

In this subsection, we consider the specific case where one the Markov chain included in
zt corresponds to the default state of a given entity.31 The specificity of that situation lies
in the fact that the default of this entity then enters the s.d.f.. Therefore, we leave the
framework described in Subsection 3.1 where all defaultable entities were small enough not
to have any impact at the macroeconomic level. As a consequence, the “zero” entity may
represent a whole industry or a very big institution. This could be extended to a few major
entities but one has to bear in mind that increasing their number results in an exponential
growth in the dimension of zt.

The fact that this default enter the s.d.f. results in a new component in bond prices:
a compensation for investors risk-aversion towards the default event of entity zero. As
pointed out by Yu (2002) [133] and Jarrow, Lando and Yu (2005) [91], such components
arise only when the default-event risk is not diversifiable. 32

In addition, as mentioned in introduction (Subsection 1.2.3), this interpretation is also
linked with previous studies attempting to introduce contagion effects in affine term-structure
models. Indeed, the default of entity zero may lead to a simultaneous increase in the default
intensities of any other debtor.

For sake of simplicity, let us assume that such a crisis variable is the only regime captured
by zt, which can be observable or not. In this case, assuming that the state e2 = (0, 1)′ is
the crisis state, we have:

π (e2 | e2, yt−1) = 1
π (e1 | e2, yt−1) = 0.

Moreover, we could specify:

π (e1 | e1, yt−1) = exp (−λ0,t−1) ,

with λ0,t−1 = α0 +β′0y1,t−1. In this case, λ0,t−1 can be interpreted as a systemic-risk intens-
ity. Conditions (7) and (10) {π (ej | ei, yt−1) exp [δj (ei, yt−1)] = π∗ij} imply the followings:

• π∗21 = 0, π∗22=1, δ1 (e2, yt−1) is undefined, δ2 (e2, yt−1) = 0 and, therefore, δ′ (e2, yt−1) zt =
0.

• exp [δ1 (e1, yt−1)] = π∗11 exp (λ0,t−1) or δ1 (e1, yt−1) = log π∗11 + α0 + β′0yt−1.

• exp [δ2 (e1, yt−1)] = (1− π∗11) [1− exp (−λ0,t−1)]−1, or δ2 (e1, yt−1) = log (1− π∗11) −
log [1− exp (−α0 − β′0yt−1)].

Denoting π∗11 = exp (−λ∗0), λ∗0 being the systemic-risk intensity in the risk-neutral world,
we get:

δ1 (e1, yt−1) = λ0,t−1 − λ∗0
δ2 (e1, yt−1) = log [1− exp (−λ∗0)]− log [1− exp (−λ0,t−1)]

( log (λ∗0)− log (λ0,t−1) if λ∗0, λ0,t−1 are small.

In particular, the risk-neutral intensity λ∗0 and the historical intensityλ0,t−1 are different
functions, contrary to what happended in the previous sections. Both the riskless yields:

R (t, h) =
1
h

(
a′hzt + b′hyt

)

31We assume here that the vector zt is a Kronecker product of several Markov chains.
32Using bond price data for 104 U.S. firms and historical default rates, Driessen (2005) [55] was not able

to estimate this kind of default-event risk premia with significant statistical precision.

26



and the defaultable yields:

RD
n (t, h) =

1
h

(
c′n,hzt + f ′n,hyt + g′n,hxn,t

)

will be different functions of yt (and of xnt for RD
n (t, h)) before and after the systemic crisis.

The term structure of the impact of the systemic crisis will be:
{

a2,h − a1,h for the riskless yield of residual maturity h,

c2,n,h − c1,n,h for the defaultable yield of residual maturity h.

8.3. modeling credit-rating transitions

Subsection 1.3 discusses why it may be desirable to model credit-rating migration and
provides a brief review of the literature dealing with rating-migration modeling in term-
structure frameworks. In the present subsection, we show how our framework can be
adapted in order to account explicitly for rating migration. The structure, building on
Lando’s (1998) [98] approach (see also Feldhütter and Lando, 2008 [69]), accomodates
a time-varying rating-migration matrix while allowing different ratings to respond in a
correlated yet different fashion to the same change in the general economic conditions.

While most of the previous framework is still valid, some changes regard the modeling of
the default intensity. Specifically, the historical dynamics of (zt, yt, xn,t), as well as the s.d.f.
specifications are still given by equations (1), (2), (3) and (6). However, in this adapted
framework, each firm n is also characterized by a credit-rating process, denoted by τn,t. For
any firm n and period t, τn,t can take one of K values: the first K − 1 values correspond
to credit ratings and the Kth correspond to the default state.33 Like the dn,t’s, the τn,t’s,
n = 1, . . . , N , are independent conditionally to(zt, yt, xt, wt−1). In addition, we assume
that the rating transition probabilities, for firm n and from period t − 1 to period t, is a
function of (zt, yt, xn,t). Accordingly, this transition matrix is denoted with Π(zt, yt, xn,t)
and we have:

P (τn,t = j | τn,t−1 = i) = Πi,j(zt, yt, xn,t),

where Πi,j(zt, yt, xn,t), the (i, j) entry of Π(zt, yt, xn,t), represents the actual probability of
going from state i to state j in one time step. Each of these entries must be in [0, 1] and
for each line, the sum of the entries must sum to one. In other words,

[
1 · · · 1

]′ is an
eigenvector of Π(zt, yt, xn,t) associated with the eigenvalue 1. In addition, the default state
being absorbing, the bottom row of Π(zt, yt, xn,t) is equal to

[
0 · · · 0 1

]
.

In this context, a defaultable zero-coupon bond providing one money unit at t + h if
entity n is still alive in t + h and zero otherwise has a price, in period t, that is given by
(assuming that entity n has not defaulted before t):

BD
n (t, h) = EQ

t

[
exp (−rt+1 − . . .− rt+h) I{τn,t+h<K}

]
. (27)

In order to keep a quasi-explicit formula for defaultable zero-coupon bonds, we assume
that Π(zt, yt, xn,t) admits the diagonal representation:

Π(zt, yt, xn,t) = V.Ψ(zt, yt, xn,t).V −1,

where the columns of V are the eigenvectors of Π(zt, yt, xn,t) and constitute a basis in RK

and Ψ(zt, yt, xn,t) is a diagonal matrix of eigenvalues that are positive and smaller than
33For instance, rating 1 can be the highest (Aaa in Moody’s rankings) and K−1 can be the lowest (C in

Moody’s rankings). In addition, we have, dn,t = I (τn,t+h = K) .
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one.34 Given that 1 is an eigenvalue of Π(zt, yt, xn,t) , Ψ(zt, yt, xn,t) can be written in the
following manner:

Ψ(zt, yt, xn,t) =





exp [−ψ1 (wt)] 0 · · · 0

0 . . . . . . ...
... . . . exp [−ψK−1 (wt)] 0
0 · · · 0 1




,

with, for any i < K, ψi (wt) ≥ 0. Then, it is easily seen that, conditionally on
(
zt+h, y

t+h
,

xn,t+h, τn,t = i
)

the probability of defaulting before t+h corresponds to the entry (i, K) of
the matrix that is given by:

V.Ψ(zt+1, yt+1, xn,t+1) . . .Ψ(zt+h, yt+h, xn,t+h).V −1.

This probability is therefore given by:

P (τn,t+h = K | zt+h, y
t+h

, xn,t+h, τn,t = i) =
K∑

j=1

Vi,jV
−1
j,K exp



−
h∑

p=1

ψj (wt+p)



 ,

where Vi,j and V −1
i,j are the entries (i, j) of , respectively,V and V −1. Since Vi,KV −1

K,K = 1
(see Appendix G) using ψK ≡ 0, we get:

P (τn,t+h < K | zt+h, y
t+h

, xn,t+h, τn,t = i) = −
K−1∑

j=1

Vi,jV
−1
j,K exp



−
h∑

p=1

ψj (wt+p)



 . (28)

If the eigenvalues ψj are some linear combinations of (zt, yt, xn,t), Equations (27) and (28)
implies that the price of a bond is a sum of K − 1 multi-horizon Laplace tranforms. As a
consequence, the bond prices can be obtained using the algorithm presented in Appendix B.
However, it should be noted that in this context, the prices are no longer exponential affine
in the factors, which implies in particular that the Kalman filter has to be adapted so as to
accomodate the nonlinearity of the state-space measurement equations. In such a context,
Feldhütter and Lando (2008) [69] use the extended Kalman filter. As an alternative, the
unscented Kalman filter could be implemented (see e.g. Christoffersen et al., 2009 [35] for
an application of the unscented Kalman filter on yields data).

9. Application

In this section, building on the framework described above, we investigate the joint dynamics
of euro-area sovereign yield curves. We consider 10 euro-area countries: Austria, Belgium,
Finland, France, Germany, Greece, Italy, the Netherlands, Portugal and Spain.35 All these
countries are considered as “risky” debtors, in the sense that each country presents a hazard
rate λn,t. This hazard rate is not a pure default rate since it is adjusted to (a) the presence
of a non-zero recovery rate (see Subsection 4.3) and to (b) liquidity effects (see Section
34The fact that the eigenvalues have a modulus smaller than one is necessary in the case of time-homogenous

Markov chain processes.
35Ireland is not part of the sample given the non-availability of data to construct a business-cycle indicator:

the European-Commission qualitative survey data used to construct these indicators (see Subsection
9.1) stop in 2008 for Ireland.
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Figure 2: Estimation data
Notes: The upper-right plot shows the zero-coupon risk-free rates: the yields include, from the lowest to the highest
(with occasional cross-overs when the yield curve is inverted): 1-week, 3-month, 2-year, 5-year and 10-year zero-coupon
yields (the zero-coupon yield curve is bootstrapped from the swap yield curve). The euro-area business-cycle indicator (in
the lower left chart) is the first principal component of a set of six series (the year-on-year growth rate of the industrial
production and 5 European Commission short-term qualitative surveys). The lower-right plot shows the xBC,n,t, for
selected countries i.e. the parts of the country-specific business-cycle indicators that are orthogonal to the eurozone one
(obtained by OLS regressions of the countries’ business-cycle indicators on the euro-area one).

7). The model includes three regimes and three latent factors. Whereas one latent factor
intervenes in the dynamics of the risk-free yields, two affect the hazard rates only. Among
the latter, one is expected to reflect liquidity pricing, whereas the other is assumed to be
default-related. The identifiation of the liquidity-related factor is based on the use of bond
prices issued by KfW, a German agency. The bonds issued by KfW are less liquid than
the sovereign counterparts, but present the same credit quality for they are guaranteed by
the Federal Republic of Germany: accordingly, the bonds issued by KfW and those issed
by the German government are equally exposed to the default factor but not not to the
liquidity-related factor.

9.1. Data

Subection 9.1.1 briefly presents the data used in the estimation. The next subsection (9.1.2)
discusses our choices regarding the risk-free yield curve. The following (Subsection 9.1.3)
introduces the KfW-Bund spread that we will exploit to identify the liquidity-related latent
factor. Then, in 9.1.4, we provide a preliminary analysis of euro-area yield differentials.

9.1.1. Overview

The data are weekly and cover the period from February 1999 through February 2010.
The vector yt contains three observable factors: a business-cycle indicator, a volatility

index and the short-term (one-week) risk-free yield. The business-cycle indicator is repres-
ented by the first principal component of a set of 6 series: 5 business-confidence indicators
corresponding to quanta of European Commission short-term qualitative surveys (indus-
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trial confidence, construction confidence, retail trade confidence, service confidence and
consumer confidence) and the year-on-year growth rate of industrial production.36 These
monthly data are seasonally adjusted and converted into weekly data using a simple lin-
ear interpolation.37 Our measure of perceived european-market volatility is the VSTOXX,
which can be seen as an European analogue to the American VIX. Specifically, the VSTOXX
index is constructed using implied option prices written on the DJ Euro STOXX 50 index.

At the country level, we also compute business-cycle indicators, using the same method-
ology as for the euro-area as a whole. The first principal components explain between 59%
(Italy) and 86% (Spain) of the variances of the six variables considered for each country.

Sovereign zero-coupon yield curves are based on government-bond prices that are ex-
tracted from Datastream. Since governments issue essentially coupon bonds, we first con-
vert observed bond quotes into zero-coupon yields. For each period and each country, we
use a parametric form –Svensson or Nelson-Siegel– that minimizes the squared deviations
between observed prices and modeled prices. More details about the methodology are given
in Appendix H.

Zero-coupon risk-free yields are bootstrapped from swap rates (see next subsection for a
discussion about the original swap yields that are used). All yields used in the estimation
are continuously compounded.

Figure 2 shows some of the data used in the estimation and Table 1 reports descriptive
statistics for some of the data.

9.1.2. The risk-free yield curve

What is a relevant proxy for euro-area risk-free yields over the last decade? A first solution
consists in chosing a reference country, say Germany, and then in considering that its
associated default intensity is null. However, this arbitrary choice would be debatable and
would notably prevents us from modeling credit and liquidity premium for the reference
country. Following, amongst others, Grinblatt (2001) [80], Blanco, Brennan and Marsh
(2005) [23] or McCauley (2002) [110], we resort to an alternative approach that consists in
proxying risk-free rates with swap rates. One might object that a swap rate is a derivative
product whose payments are based on yields faced by banks, and therefore include a credit-
risk component.38 However, it has to be noted that the maturity of the underlying floating
yield is short. Therefore, the swap rate reflects only the future refreshed default probabilities
of prime banks over short horizon (see, e.g., Sun, Sundaresan, and Wang, 1993 [124] or
Collin-Dufresne and Solnik, 2001 [40]). Heuristically, the shorter the maturity, the smaller
the credit-risk component is expected to be. This is illustrated by Feldhütter and Lando
(2008) [69] who find an average spread between the 3-month LIBOR rate and an estimated
riskless yield of 3 basis points.39

Nevertheless, the financial crisis initiated in 2007 has shown that, in extreme cases, even
short-term interbank lending is not risk-free: as soon as 2007, significant credit-risk premia
emerged in interbank rates, even for short-term horizons of 6 months or even 3 months (see

36The first principal component explains 82% of the variances of the variables.
37Seasonal adjustements are carried out using the Census-X12 procedure.
38Note that we do not consider the swap counterparty risk. Indeed, this risk is very limited in the case

of a swap contract (see, e.g., Bomfim, 2003 [24] who shows that even during turmoils in the financial
markets, the swap-contract counterparty risk remains very small due to netting and credit enhancement
mechanisms, including call margins).

39Feldhütter and Lando use U.S. data, for the period from 1996 to 2005. The riskless short rate is unob-
servable: the spread between this rate and the Treasury short-term yield corresponds to a convenience
yield (from holding Treasuries). The Kalman filter is used to estimate the six factors of their model.
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Figure 3: Money market rates
Notes: The upper plots shows tthree different money-market interest rates: the 3-month EURIBOR, the 3-month EONIA
swap rate and the general-collateral (GC) repo rate. The lower plot displays the differentials between the first two rates
and the GC repo rate. The data are collected from Bloomberg.

e.g. Taylor and Williams, 2008 [126]). Therefore, using EURIBOR swap rates as risk-free
rates over the last three years would be misleading. Also, for the more recent period, we
use EONIA (euro overnight index average) swaps instead of EURIBOR swaps to derive the
risk-free yield curve.40 Since the floating-rate payment of an EONIA swap rate is based
on overnight rates, the credit-risk component is far lower than for several-month IBOR
rates in periods of financial-market stress. As an alternative, we could use repo rates as
a measure of the riskless rates (as in Longstaff, 2000 [102] or Liu, Longstaff and Mandell,
2006 [101] or Eisenschmidt and Tapking, 2009 [62]). Indeed, insofar as repo loans are
overcollaterlalized by default-free Treasury bonds, they can be considered as riskless loans.
However, a drawback of this approach is that only short-term maturities are available for
the risk-free yield curve.

Figure 3 reports some of the yields that have just been mentionned. First, one can
observe that, contrary to EURIBOR rates, EONIA swap rates have remained very close to
the repo rate over the last couple of years. This suggests that using repo rates or EONIA
swap rates is not really different (but we choose EONIA-swaps because longer maturities
are available for this latter instrument). When long-term EONIA swaps are not available
(before 2005), we use EURIBOR swap rates. As is shown in Figure 3, over this period,
EURIBOR was very close to the repo rate, which validates this replacement over this first
period.

40It is not possible to use Eonia swap rates over the whole period since these rates are only available from
2005 onwards for longer maturities. For an in-depth presentation of EONIA swaps, see Barclays (2008)
[13]. For a comparison between Euribor and Eonia swaps, see e.g. Pilegaard, Durre and Evjen (2003)
[121].
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9.1.3. The KfW-Bund spread

Our identification of a liquidity-related latent factor is partly based on the yield spread
between German federal bonds and KfW agency bonds (see the lower plot of Figure 4). The
latter are less liquid than the sovereign counterparts, but are explicitly and fully guaranteed
against default by the German federal government.41 Consequently, the spread between
these two kinds of bonds can be seen as a measure of the German government bond-
market liquidity premium demanded by investors. In the same spirit, Longstaff (2004)
[102] computes liquidity premia based on the spread between U.S. Treasuries and bonds
issued by Refcorp, that are guaranteed by the Treasury.

In order to check that this liquidity-pricing measure is not purely specific to Germany,
we can look at comparable spreads in alternative countries. To that respect, let us consider
two debtors whose issuances are guaranteed by the French government, namely the CADES
(Caisse d’amortissement de la dette sociale) and the SFEF (Société de financement de
l’économie française).42 The upper plot of Figure 4 shows that, over the recent period –when
the French spreads are available–, the KfW-Bund spread shares most of its fluctuations with
to the spread between SFEF bonds and French Treasury bonds (OATs), as well as with the
CADES-OAT spread.

Figure 4: Differentials between government and government-guaranted bonds
Notes: The upper plot shows the yield differentials between European bonds that are government guaranteed (SFEF and
CADES by the French government; KfW by the German government) and government bonds of approximately the same
maturity (French government bonds for SFEF and CADES, German bonds for KfW). The coupons and maturities of the
bonds are reported in the legends. The lower plot displays yield differentials between KfW and German-government bonds
at different maturities. The yields are provided by Barclays capital.

41An understanding between the European Commission and the German Federal Ministry of Finance (1
March 2002) stated that the guarantee of the Federal Republic of Germany will continue to be available
to KfW. The three main rating agencies –Fitch, Standard and Poor’s and Moody’s– have assigned a
triple-A rating to KfW (see KfW website www.kfw.de/EN_Home/Investor_Relations/Rating.jsp). In
addition, as the German federal bonds, KfW’s bonds are zero-weighted under the Basle capital rules.
The relevance of the KfW-Bund spread as a liquidity proxy is also pointed out by McCauley (1999)
[109] and exploited by Schwarz (2009) [123].

42Note that contrary to the ones issued by the later, those issued by the former (CADES) do not benefit
from the explicit –but only implicit– guarantee from the French government. However, both issuer are
triple-A rated, as the French government.
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Table 2: Correlations and principal components analysis of euro-area yield differentials
Notes: Panel A reports the covariances and correlations (in italics) of 10-year swap spreads (the swap spreads are defined
as the differentials between zero-coupon government yields and zero-coupon swap yields of the same maturity) across nine
different euro-area countries (Greek yields are not used since they are not available before mid-2001). Panel B presents
results of principal-component analyses carried out on swap spreads. There are three analyses that correspond respectively
to three maturities: 2 years, 5 years and 10 years. For each analysis, Panel B reports the eigenvalues of the covariance
matrices and the propotions of variance explained by the corresponding component (denoted by “Prop. of var.” in Panel
B).

Panel A: Covariance and correlations of 10-year swap spreads
Germ. France Italy Spain Austr. Belg. Finl. Port. Neth.

Germany 0.032 0.032 0.038 0.037 0.033 0.033 0.031 0.045 0.035
France 0.882 0.042 0.06 0.055 0.05 0.049 0.042 0.064 0.045
Italy 0.645 0.878 0.111 0.094 0.088 0.088 0.064 0.108 0.068
Spain 0.701 0.899 0.953 0.088 0.079 0.078 0.061 0.098 0.062
Austria 0.671 0.888 0.958 0.967 0.076 0.073 0.055 0.089 0.056
Belgium 0.678 0.884 0.969 0.967 0.969 0.074 0.054 0.089 0.057
Finland 0.774 0.908 0.851 0.913 0.893 0.877 0.05 0.069 0.048
Portugal 0.732 0.9 0.935 0.958 0.937 0.943 0.883 0.12 0.072
Netherlands 0.865 0.96 0.893 0.921 0.901 0.912 0.933 0.91 0.052

Panel B: Principal components
Component 1 2 3 4 5 6 7 8 9
2-year spread
Eigenvalue 6.68 1.04 0.50 0.30 0.19 0.10 0.09 0.06 0.04
Prop. of var. 0.74 0.12 0.06 0.03 0.02 0.01 0.01 0.01 0.00
Cumul. prop. 0.74 0.86 0.92 0.95 0.97 0.98 0.99 1.00 1.00
5-year spread
Eigenvalue 7.20 0.95 0.46 0.15 0.10 0.05 0.04 0.03 0.02
Prop. of var. 0.80 0.11 0.05 0.02 0.01 0.01 0.00 0.00 0.00
Cumul. prop. 0.80 0.91 0.96 0.98 0.99 1.00 1.00 1.00 1.00
10-year spread
Eigenvalue 8.07 0.56 0.14 0.07 0.05 0.04 0.03 0.02 0.02
Prop. of var. 0.90 0.06 0.02 0.01 0.01 0.00 0.00 0.00 0.00
Cumul. prop. 0.90 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00

9.1.4. Euro-area government yields

Table 1 suggests that euro-area government yields are highly correlated across countries and
across maturities. In addition, government yields appear to be strongly correlated with risk-
free yields. Table 2 reports the correlations between the swap spreads for different countries
over the sample periods (the swap spreads are defined as the differentials between zero-
coupon government yields and zero-coupon swap yields of the same maturity) and present
a principal-component analysis of these spreads across countries. The correlations suggest
that swap spreads largely comove across countries. The principal-component analysis (see
lower part of Table 2) indicates that, for different maturities (2, 5 and 10 years), the first two
principal components roughly explain 90% of the swap-spread variances across countries.
This suggests that a model with a limited number of common factors may be able to explain
the bulk of euro-area yield-differential fluctuations.
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9.2. Model specifications

We consider six macroeconomic factors yt. Three of them are observable (the euro-area
business-cycle index yBC,t, the volatility index yV X,t, and the short rate rt+1) and three of
them are latent (yf,t, yc,t and y#,t). Moreover, there is a latent Markov chain zt with three
states. The interpretations of the latent variables and of the regimes are given below.

9.2.1. The historical dynamics

For the sake of parsimony and estimation tractability, the macroeconomic latent factors
(yf,t, yc,t and y#,t) follow auto-regressive processes of order one in the historical world.
Moreover, their dynamics are independent from the Markov chain and from the dynamics
of the observable factors (under the historical measure). This allows us to estimate the
historical dynamics of the observable factors (and the regime variables zt) independently
from the latent factors. The historical dynamics of the three observable factors is given by:




yV X,t

yBC,t

rt+1



 =




µ′V Xzt

µBC

µr



 + Φ(L)




yV X,t−1

yBC,t−1

rt



 +




σ′V Xzt 0 0

0 σBC 0
0 0 σr



 εt. (29)

As is shown in the previous equation, the regimes affect parameters that are primarily
linked to the VSTOXX index. This is done to facilitate the interpretation of the regimes
in terms of market stress. More precisely, two out of the three regimes –regimes 2 and 3,
say– are expected to correspond to such periods. In these two regimes, the innovations
that affect the VSTOXX may be more volatile than in the first regime (which is reflected
by the entries of σV X). In addition, the VSTOXX drifts µV X may differ across the three
regimes. The third regime is expected to correspond to extreme conditions reflected by a
large one-off jump in the level of the VSTOXX (captured by a strong third entry in the
drift µV X). Such a regime is supposed to be only one-period long and necessarily takes
place amidst financial-distress conditions, that is, the regime prevailing before and after an
occurence of the third regime is necessarily the second one. Furthermore, the probability
of staying in the financial-distress regime (regime 2) may depend on the VSTOXX level.
Formally, the transition matrix driving the Markov chain reads:

{πij,t−1}i,j =




π11 (1− π11) 0

[1− π22(yV X,t−1)− π23] π22(yV X,t−1) π23

0 1 0



 (30)

where π22(yV X,t−1) is a logit function of yV X,t−1.
Each country n is further described by an observable business-cycle index bcn,t, which is

the sum of two orthogonal components: the first one is linked to the euro-area business-
cycle yBC,t and the second one, denoted by xn,BC,t, is assumed to follow an AR(1) process.
Formally, using the notations introduced in Equation (3):

bcn,t = χn × yBC,t + xn,BC,t where
xn,BC,t = Q4,n,BC × xn,BC,t−1 + Q5,n,BCηn,t.

An additional country-specific factor is related to the regime variable zt. This factor is aimed
at reproducing potential long-lasting effects of some regimes on the default intensities λn,t’s
(the effect being still felt after the lifetime of a regime, but decaying at a constant rate). It
is denoted by xn,z,t and follows:

xn,z,t = (1−Q4,n,z)×
(
q′1,n,zzt

)
+ Q4,n,zxn,z,t−1.

35



Finally, the default intensities are given by:

λn,t = α′nzt + β′nyt + γ′n.

[
xn,BC,t

xn,z,t

]
. (31)

9.2.2. The risk-neutral dynamics

Under the historical measure, the three latent factors follow independent auto-regressive
processes. Obviously, to have an impact on bond pricing, the latent factors have to affect
the risk-free short rate rt and/or the the hazard rates λn,t. We assume that the factors
yc,t and y#,t intervene in the hazard rates but are independent from the risk-free short rate
(under both the historical and the risk-neutral measures). As a result, the latter two factors
do not contribute to the dynamics of risk-free yields.43 (As will be shown below, this will
be exploited in the estimation procedure.)

In order to facilitate the estimation (by reducing the number of parameters to estimate)
and for identification purpose, additional assumptions are made regarding the risk-neutral
dynamics of the latent factors. First, we assume that all three latent factors follow zero-
mean auto-regressive processes of order one under the risk-neutral measure. Second, in the
risk-neutral world, (a) only the last lag of the latent factor yf,t can affect the observable
macroeconomic variables and (b) this latent factor is not affected by the lags of the observed
macroeconomic factors.

Accordingly, the risk-neutral dynamics of the vector yt (that is equal to [yV X,t, yBC,t, rt+1,
yf,t, yc,t, y#,t]′) is given by:

yt = µ̃ (zt) + Φ̃(L)yt−1 + Ω (zt) ε∗t ,

where (the ×n×n’s locating some n× n matrices to estimate):

µ̃ (zt) =
[
×3×3zt

03×3

]
,

Φ̃(L) =





×3×3 ×3×1 0 0
0 ×1×1 0 0
0 0 ×1×1 0
0 0 0 ×1×1



 +





×3×3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



L + . . .

. . . +





×3×3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Lp and

Ω (zt) =





σ′V Xzt 0 · · · · · · 0

0 σBC
. . . ...

... . . . σr

1 . . .
... . . . 1

...
0 · · · · · · 0 1





.

43This is easily seen from Equation (14).
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9.3. Estimation

The estimation of the model involves several steps. In the first one, we estimate the his-
torical dynamics of the three macroeconomic variables. At the end of this first step, some
estimates of the regime variables zt are computed and are taken as fixed in the next steps.
The second step regards the dynamics of the risk-free yields. As mentionned in the previ-
ous subsection, only one latent factor (yf,t) is concerned with this step. Once estimated,
the latent factor yf,t is fixed for the third step, in which we estimate hazard rates of the
different countries. The latent factors yc,t and y#,t are estimated in this third step.

9.3.1. Step 1: Historical dynamics of the observable macroeconomic factors

The parameters estimated in this step are those entering Equations (29) and (30). Whereas
all parameters –those defining µ, Φ, Σ and the transition probabilities πij ’s– could be
estimated in a single step by maximising the log-likelihood, we resort to a faster sequential
approach. First, an estimate of Φ(L) is obtained by estimating a simple VAR using OLS
regressions. As suggested by the Akaïke criteria and by an iterative likelihood-ratio test,
seven lags are included in the VAR.44 The estimation of the three regimes is based on the
residuals of the VAR.45

Figure 5: Estimated regimes
Notes: The VSTOXX is plotted in the upper panel, together with the estimated regimes: the grey-shaded areas correspond
to the second regime (market-stress periods). The vertical dark-grey bar locates the third regime (strong upward shift of
the VSTOXX). The lower panel presents the probability of remaining in the second regime. The latter probability depends
on the VSTOXX (the probability is a logit function of yV X,t).

44The iterative LR-test is carried out as follows: when considering lag l, we test the hypothesis that the
coefficients on lag l + 1 are jointly zero. We increment l until we can not reject the null hypothesis at
the 5% critical value.

45The means and variances of the VAR residuals can shift across regimes following the specifications
presented in 9.3.1. The estimates are obtained by MLE. All numerical optimizations carried out in this
paper are based on the consecutive uses of three algorithms provided in the Scilab software (namely the
bundle method, the quasi-Newton and Nelder-Mead methods).
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Figure 5 presents the resulting regime estimates.46 As expected, in the second regime, the
VSTOXX tends to be higher and is affected by more volatile shocks. The third regime –that
is, the crisis regime– is detected for only one period in the sample, in the weeks following
the Lehman Brothers bankruptcy. The lower plot of Figure 5 shows the probability of
staying in state 2 (that is a logit function of yV X,t−1). It appears that this probability
positively depends on the VSTOXX. This implies notably that the life expectancy of the
second regime is higher when the VSTOXX is higher, which can be checked in Figure 5.

9.3.2. Step 2: Estimation of the dynamics of the risk-free yields (including the
estimation of the latent factor yf,t)

The estimation is based on the risk-free yields described in Subsection 9.1.2. Four maturities
are used in the estimation: 3 months, 2 years, 5 years and 10 years. The regime variables
zt that have been estimated previously (see 9.3.1) are taken as given. Given the sizeable
number of parameters that remain to be estimated –there are 87 of them–, the choice of
relevant starting values is key to deal with the numerical optimization of the log-likelihood.47

Figure 6: Modeled and estimated risk-free yields
Notes: Each plot shows the observed as well as the model-implied zero-coupon risk-free yield (for different maturities).
The model includes four variables. Three are observable (the VSTOXX index yV X,t, the eurozone business-cycle indicator
yBC,t and the one-week risk-free yield rt+1) and one is latent (yf,t).

46For each period, the prevailing regime is assumed to be the one that corresponds to the largest smoothed
probability (obtained by using Kim’s (1994) [96] algorithm). As a rule, the regimes are clearly identified,
in the sense that two of the smoothed probabilities (out of the three) are close to zero at each period.

47The starting value is obtained by applying a two-step approach. First, we estimate a model without
latent factor, looking for parameters (in Φ̃, µ̃ and {π∗}) that minimize the squared pricing errors
between modeled and observed yields. Second, these pre-estimated parameters are then taken as fixed
and the additional parameters –that is, those that are related the latent factor ys,t– are estimated by
maximizing the log-likelihood computed by the Kalman filter.
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Figure 6 displays modeled yields together with observed yields. The standard deviation of
the pricing errors is of 12 basis points.48 Figure 6 also shows the part of the modeled yields
that is accounted for by the latent factor yf,t. This is obtained as the difference between
model-based yields and counterfactual yields that are obtained when the innovations εf,t

of the latent factor yf,t are set to 0. It turns out that the latent factor explains most of the
fluctuations of long-term yields.

9.3.3. Step 3: Estimation of the hazard rates (including the estimation of the latent
factors yc,t and y#,t)

In this final step, we estimate the countries’ hazard rates specified in Equation (31). These
hazard rates depend on the country-specific business-cycle indicators (the xn,t’s), on the
regimes and on the macroeconomic variables yt. The latter include the latent factors yc,t

and y#,t, that are estimated in the current step. Our objective is to make these two euro-
area-wide factors interpretable. Specifically, whereas the factor yc,t is aimed at capturing
default components of the spread, the factor y#,t is expected to integrate liquidity –or
non-default– components. The identification of the liquidity components is based on the
KfW-Bund spread (see 9.1.3 for details about this spread). More precisely, we assume that
the sensitivity of KfW’s hazard rate to...

1. ... the default factor yc,t is the same as the one of the Federal Republic of Germany
(Germany hereinafter);

2. ... the liquidity factor y#,t differs from the one of Germany.

Note however that, to the extent that observed variables may also account for the KfW-
Bund spread, the liquidity intensity is not solely explained by the factor y#,t. Put differently,
the liquidity factor y#,t is expected to capture only euro-area-wide unobserved components
of the liquidity premia (beyond what can be explained by the observed factors that we
consider).

Figure 7: Government debts and deficits of euro-area countries

Notes: The figure displays general government deficits and debts (in percentage of GDP). One point corresponds to (a) one
country of the 12-member euro area and (b) one year (2000 to 2009). The positions of Italy and Germany are highlighted.

48This standard deviation of the measurement error is assumed to be the same for the four maturities
considered in the estimation.
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Figure 8: Estimated latent factors yc,t and y#,t

Notes: The figure shows the estimates of the latent factors yc,t and y!,t. The latent factors are estimated by the Kalman
filter.

The latent factors yc,t and y#,t are estimated by the Kalman filter. Potentially, a large
state-space model, including observed yields of all countries, could be written and estimated.
Nonetheless, the estimation would be highly time consuming for a standard computer.49
Alternatively, we resort to a sequential approach. First, we estimate a smaller-scale state-
space model by MLE, using yields of a subset of debtors: Germany, KfW and Italy, which
provides us with some estimates of the latent factors yc,t and y#,t (see Figure 8).50 The
rationale for including Italy in the subset is to diversify the profile of the debtors considered
in this step. In particular, as shown in Figure 7, Italy’s debt-to-GDP ratio is one the highest
among the EU countries, contrary to Germany. This is key since we want yc,t and y#,t to be
euro-area-wide factors. Second, the hazard rates of the remaining countries are estimated
one by one by performing non-linear least-squares on the swap spreads of the considered
country.

9.3.4. Estimation results and interpretation

The estimation results are shown in Table 3. It appears that the effects of the considered
observed variables on the hazard rates are statistically significant in many cases. For all
countries but Italy, the business-cycle indicators enter the hazard rates with a negative
sign. When statistically significant, the VSTOXX loading coefficients are positive, which
suggests that swap spreads tend to increase when market volatility is high.51 Moreover,
most hazard rates react positively to a rise in risk-free short-term yields.

For some countries only (including Austria, Finland, France, Portugal and Spain), the
regime variables xn,z,t’s have a statistically significant impact on the hazard rates. Further-
more, when statistically significant, this effect is positive for market-stress regimes and is
persistent.

49Each evaluation of the log-likelihood requires to apply the recursive formulas given in Propositions 3 and
5 for each obligor. For a weekly frequency and a maximum maturity of 10 year, this implies to run
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Figure 9: Model-implied vs. observed swap spreads (part 1)
Notes: The figure plots together observed and model-implied swap spreads (the swap spreads are defined as the differentials
between zero-coupon government yields and swap yields). Three maturities are considered: 2 years, 5 years and 10 years
(these are the maturities used in the estimation).

520-iteration loops for each country.
50Note that the latent factor yf,t is still taken as fixed (keeping its estimated values obtained in 9.3.2).
51Such effects are also observed by Colin-Dufresne et al. (2001) [39] and Amato and Luisi (2006) [4] (on U.S.

corporate bonds). The former use regression analysis, the latter use an affine term-struture framework.
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Figure 10: Model-implied vs. observed swap spreads (part 2)

Notes: The figure plots together observed and model-implied swap spreads (the swap spreads are defined as the differentials
between zero-coupon government yields and swap yields). Three maturities are considered: 2 years, 5 years and 10 years
(these are the maturities used in the estimation).

Overall, as shown in the lowest panel of Table 3, important shares of the swap spreads
are explained by the model (across countries and maturities, roughly 75% of the variance
is accounted for by the model). This is also illustrated by Figures 9 and 10, comparing
observed swap spreads with their model-implied counterparts. However, it can be noted
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that the model does not capture the end-of-sample rise in the swap spreads for Greece,
Portugal and Spain (from January 2010 onwards).52

Let us turn to the latent factors yc,t and y#,t. These factors are plotted in Figure 8. The
liquidity-related factor y#,t presents two humps: one in the late 90s (early 2000s) and one
between Autumn 2008 and Summer 2009, following the Lehman Brothers’ bankruptcy. The
rise in liquidity premia in the early 2000s –concomitant with the collapse of the Internet
bubble– is also found in U.S. data by Fontaine and Garcia (2009) [72], Longstaff (2004)
[102] or Feldhütter and Lando (2008) [69]. Furthermore, Kempf, Korn and Uhrig-Homburg
(2010) [95] look for liquidity factors on euro bond markets and exhibit a long-term illiquidity
premium that also presents a hump in the early 2000s. The fact that the liquidity factor
is particularly high during crises periods (burst of the dotcom bubble and post-Lehman
periods) is consistent with the findings of Beber, Brandt and Kavajecz (2009) [16] who
pinpoint that investors primarily chase liquidity during market-stress periods.53 Figure 8
also shows that the correlation between the two latent factors dramatically changed in late
2007: whereas the two latent factors present opposite fluctuations between the late 90s and
2007, they tend to comove since then.

Figure 12 shows a scatter plot of the countries, whose coordinates correspond to the
sensitivity of their hazard rates to the latent factors (i.e. the coordinates of country n are
(βn,c, β#,c)). The chart suggests that German government debt is the least exposed to the
default-related factor as well as to the liquidity factor. This is consistent with the fact that,
among sovereign euro-area bonds, the German Bunds are perceived to be the "safest haven"
both in terms of credit quality and liquidity.54 Greece occupies the opposite position. In
addition, the chart shows that Austrian or Belgian government debts are only slightly more
exposed to the risk factor yc,t than German bonds but are more exposed to the liquidity
factor, which was expected. Surprisingly, in spite of the large size of the tradable debt
issued by the Italian government, Italy’s hazard rate appears to be particularly affected
by the liquidity factor (among the countries considered in our subset, only Greece is more
exposed than Italy to the liquidity factor).

Recall that the two latent factors do not account for all the model-based spreads but
that observed factors also contribute to the estimated spreads dynamics. To that respect,
Figure 11 presents the decompositions of the yield differentials between selected countries
and Germany into three components: (a) the contribution of the liquidity-related latent
factor, (b) the contribution of the default-related latent factor and (c) the contribution of
observed (and regime) variables. The plots indicate that large shares of the spreads are
liquidity-driven. In particular, the most parts of the French-German or Austrian-German
spreads are explained by the liquidity-related factor y#,t.

52This could be addressed by including an additional Markov chain that would affect the hazard rates of
the different countries. However, in order to keep the possibility to estimate the model in several steps
–as is done here–, the s.d.f. has to be independent from this additional Markov chain (otherwise, the
estimation of the risk-free yield-curve dynamics has to take these additional regimes into account).

53Such a result is generated in a theoretical framework by Vayanos (2004) [127].
54The German bond market is the only one in Europe that has a liquid futures market, which boosts

demand for German Bunds compared to other euro area debt (see e.g. Pagano and von Thadden, 2004
[120], Ejsing and Sihoven, 2009 [63] or Barrios et al., 2009 [14]).
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Figure 11: Decomposition of model-based yield differentials vs. Germany

Notes: The left column of charts compares model-based and observed yield differentials between selected governments
and Germany. The right column presents decompositions of the model-based spreads in three components: the first
corresponds to the effect the latent factor yc,t, the second corresponds to the effect of the latent factor y!,t and the third
gives the influence of others variables (including observed macroeconomic variables and regime variables).
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Figure 12: Sensitivities of the countries’ hazard rates to the latent factors
Notes: The figure displays the sensitivityof the countries’ hazard rates to the default-related factor yc,t and the liquidity-
related factor y!,t. The coordinates of the points are given in Table 3 (lines βc and β!).
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A. P.d.f. under the risk-neutral world

Let us consider a couple (X, Y ) of multivariate random vectors. Let denote with fH(X, Y )
and fQ(X, Y ) their respective joint p.d.f. under the probability measure H and Q and
assume that the Radon-Nikodym derivative thate relates H and Q depends on X only and
is proportional to M(X). We have:

fQ(X, Y ) =
fH(X, Y )M(X)

´

fH(X, Y )M(X)dXdY

=
fH(X)fH(Y | X)M(X)

˜

fH(X)fH(Y | X)M(X)dXdY

=
fH(X)fH(Y | X)M(X)

´

fH(X)M(X)
[´

fH(Y | X)dY
]
dX

=
fH(X)M(X)

´

fH(X)M(X)dX
fH(Y | X)

= fQ(X)fH(Y | X).

B. Proof of Lemma 2

The formula is true for h = 1 since:

Lt,1(ω) = Et
(
ω′HZt+1

)
= exp

[
a′(ωH)Zt + b(ωH)

]

and therefore A1(ω) = a(ωh) and B1(ω) = b(ωh).
if it is true for h− 1, we get:

Lt,h(ω) = Et
[
exp

(
ω′H−h+1Zt+1

)
Et+1

(
ω′H−h+2Zt+2 + . . . + ω′HZt+H

)]

= Et
[
exp

(
ω′H−h+1Zt+1

)
Lt+1,h−1(ω)

]

= Et
[
exp

(
ω′H−h+1Zt+1 + Ah−1(ω)Zt+1 + Bh−1(ω)

)]

= exp
[
a(ω′H−h+1 + Ah−1(ω))Zt + b(ω′H−h+1 + Ah−1(ω)) + Bh−1(ω)

]

and the result follows.

C. The risk-neutral Laplace transform of (zt, yt, xn,t)

In this appendix, we compute EQ
t−1 (exp [u′zt + v′yt + w′xn,t]) and show that it is exponen-

tial affine in (zt−1, yt−1, xn,t−1), that is, we show that (zt, yt, xn,t) is Car(1) (see Darolles,
Gourieroux and Jasiak, 2006 [45]).
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EQ
t−1

(
exp

[
u′zt + v′yt + w′xn,t

])
= EQ

t−1

(
exp

[
u′zt + v′yt + w′ (q1n (zt, zt−1) +

Q2nyt + Q3nyt−1 + Q4nxn,t−1 + Q5n (zt, zt−1) ηn,t)])
= exp

(
w′Q3nyt−1 + w′Q4nxn,t−1

)
×

EQ
t−1

(
exp

[
u′zt + (v′ + w′Q2n)yt+

w′q1n (zt, zt−1) + w′Q5n (zt, zt−1) ηn,t
])

= exp
(
w′Q3nyt−1 + w′Q4nxn,t−1

)
×

EQ
t−1

(
exp

[
u′zt + w′q1n (zt, zt−1) + w′Q5n (zt, zt−1) ηn,t+

(v′ + w′Q2n) ((µt + µ∗t ) + (Φ + Φ∗) yt−1 + Ωtε
∗
t )

])

= exp
[{

(v′ + w′Q2n) (Φ + Φ∗) + w′Q3n
}

yt−1+

w′Q4nxn,t−1 +
(

Ã1(u, v, w) . . . ÃJ(u, v, w)
)
zt−1

]

with

Ãi(u, v, w) = log(
J∑

j=1

π∗ij exp{uj + (v′ + w′Q2n) [µ (ej , ei) + µ∗ (ej , ei)] + w′q1n (ej , ei) +

1
2
(v′ + w′Q2n)Σ (ej , ei) (v + Q′2nw) +

1
2
w′Q5n (ej , ei)Q′5n (ej , ei)w}).

The fact that(zt, yt, xn,t, dn,t) is not Car(1) is obtained by noting that (for dn,t−1 = 0):

EQ
t−1

(
exp

[
u′zt + v′yt + w′xn,t + sdn,t

])
=

EQ
t−1

(
E

(
exp

[
u′zt + v′yt + w′xn,t + sdn,t

]
| zt, yt, xn,t, dn,t−1 = 0

))
=

EQ
t−1

(
exp

[
u′zt + v′yt + w′xn,t

]
E (exp [sdn,t] | zt, yt, xn,t, dn,t−1 = 0)

)
=

EQ
t−1

(
exp

[
u′zt + v′yt + w′xn,t

]
(exp (−λn,t) + [1− exp (−λn,t)] exp(s))

)

This shows that EQ
t−1 (exp [u′zt + v′yt + w′xn,t + sdn,t]) will be only a sum of two terms

that are exponential affine in (zt−1, yt−1, xn,t−1, dn,t−1). Consequently, (zt, yt, xn,t, dn,t) is
not Car(1).

D. Pricing of defaultable bonds with nonzero recovery rates

Section 4 gives quasi-explicit formulas for the pricing of bonds with zero recovery rates.
In the current appendix, we present conditions under which one can derive formulas for
nonzero-recovery-rate bond pricing. Figure 13 presents the payoff schedule considered here.
As shown in this figure, if a debtor n defaults between t − 1 and t (with t < T , where
T denotes the contractual maturity of a bond issued by this debtor), recovery is assumed
to take place at time t. In addition, we assume that the recovery payoff –i.e. one minus
the loss-given-default– depends on (zt, yt, xt). This recovery payoff is denoted by RT−t

n,t :=
R(zt, yt, xt, T − t).
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Figure 13: Payoffs stemming from a defaultable bond (issued before t− 1)
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Let us consider the price BDR
n (T−1, 1), in period T−1, of a one-period nonzero-recovery-

rate bond issued by a given debtor (before T − 1). We distinguish three cases:

1. The debtor had defaulted before T − 2, then: BDR
n (T − 1, 1) = 0.

2. The debtor defaulted between T − 2 and T − 1, then: BDR
n (T − 1, 1) = R1

n,T−1.

3. The debtor has not defaulted before T − 1, then:

BDR
n (T − 1, 1) = exp(−rT )EQ

[
I{dn,T =0} + I{dn,T =1}R0

n,T | zT−1, yT−1
, xn,T−1, dn,T−1 = 0

]

= exp(−rT )EQ
[
EQ

(
I{dn,T =0} + I{dn,T =1}R0

n,T | zT , y
T
, xn,T , dn,T−1 = 0

)

| zT−1, yT−1
, xn,T−1, dn,T−1 = 0

]

= exp(−rT )EQ
[
exp(−λn,T ) + (1− exp(−λn,T ))R0

n,T | zT−1, yT−1
, xn,T−1, dn,T−1 = 0

]

= exp(−rT )EQ
[
exp(−λn,T ) + (1− exp(−λn,T ))R0

n,T | zT−1, yT−1
, xn,T−1

]

and, defining the random variable λ̃0
n,T by exp(−λ̃0

n,T ) = exp(−λn,T )+(1− exp(−λn,T ))R0
n,T ,

we have (still in case 3):

BDR
n (T − 1, 1) = EQ

[
exp(−rT − λ̃0

n,T ) | zT−1, yT−1
, xn,T−1

]
.

Further, let us consider the price of the same bond in period T − 2. Assuming that there
was no default before T − 2:

BDR
n (T − 2, 2) = exp(−rT−1)EQ

[
I{dn,T−1=0}

(
EQ

[
exp(−rT − λ̃0

n,T ) | zT−1, yT−1
, xn,T−1

])
(32)

+I{dn,T−1=1}R1
n,T−1 | zT−2, yT−2

, xn,T−2, dn,T−2 = 0
]
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Let us introduce a random variable ζ1
n,T−1 that is defined through:

R1
n,T−1 = ζ1

n,T−1E
Q

[
exp(−rT − λ̃0

n,T ) | zT−1, yT−1
, xn,T−1

]
.

With this notation, Equation (32) reads:

BDR
n (T − 2, 2) = EQ

[
exp(−rT−1 − rT − λ̃0

n,T )
(
I{dn,T−1=0} + ζ1

n,T−1I{dn,T−1=1}
)

| zT−2, yT−2
, xn,T−2, dT−2 = 0

]

= EQ
[
EQ

{
exp(−rT−1 − rT − λ̃0

n,T )
(
I{dn,T−1=0} + ζ1

n,T−1I{dn,T−1=1}
)

| zT−1, yT−1
, xn,T−1, dn,T−2 = 0

}
| zT−2, yT−2

, xn,T−2, dn,T−2 = 0
]

= EQ
[
exp(−rT−1 − rT − λ̃0

n,T )
(
exp(−λn,T−1) + ζ1

n,T−1 (1− exp(−λn,T−1))
)

| zT−2, yT−2
, xn,T−2

]
.

Then, defining the random variable λ̃1
n,T−1 with:

exp(−λ̃1
n,T−1) = exp(−λn,T−1) + (1− exp(−λn,T−1)) ζ1

n,T−1,

we get (conditionally on dn,T−2 = 0):

BDR
n (T − 2, 2) = EQ

[
exp(−rT − rT−1 − λ̃0

n,T − λ̃1
n,T−1) | zT−2, yT−2

, xn,T−2

]
.

Applying this methodology recursively, it is easily seen that the price of a nonzero-recovery-
rate defaultable bond of maturity h is given by (assuming no default before t, i.e. condi-
tionally on dn,t = 0):

BDR
n (t, h) = EQ

[
exp(−rt+h − . . .− rt+1 − λ̃0

n,t+h − . . .− λ̃h−1
n,t+1) | zt, yt

, xn,t

]
(33)

where the λ̃h−i
n,t+i’s are defined recursively in i by the backward equation:

exp(−λ̃h−i
n,t+i) = exp(−λn,t+i) + (1− exp(−λn,t+i)) ζh−i

n,t+i

where

ζh−i
n,t+i =






Rh−i
n,t+i

EQ
h
exp(−rt+h−...−rt+i+1−λ̃0

n,t+h−...−λ̃h−i−1
n,t+i+1)|zt+i,yt+i

,xn,t+i

i if i < h

Rt+h,0 if i = h.

Looking at Equation (33), it is tempting to interpret the λ̃h−i
n,t+i’s as “recovery-adjusted”

hazard rates for debtor n. However, the dependency of these intensities on the maturity
h of the considered bond is problematic. Indeed, by analogy with the standard default
intensities λn,t, one would like to have, at each period, only one adjusted intensity by
debtor (and not a collection of adjusted intensities associated with the different bonds that
have been issued by the considered debtor). To that end, Duffie and Singleton (1999) [60]
propose a “recovery of market value” assumption. Under this assumption, the variable Rm

n,s

–that is, the recovery at time s of a bond with residual maturity m, in the event of default
between s− 1 and s– is equal to the product of a factor common to all maturities with the
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survival-contingent market value at time s. In the same spirit, let us assume that the ζm
n,s’s

do no longer depend on m. Then, the λ̃m
n,s do not depend on the maturity any longer and

are simply given by:

exp(−λ̃n,s) = exp(−λn,s) + (1− exp(−λn,s)) ζn,s.

Actually, this formulation is more general than the one considered by Duffie and Singleton
(1999) when they expose a discrete-time motivation. Indeed, in the latter case, they assume
that ζn,s is known at time s−1, which is not necessarily the case in the framework described
above.

E. Equivalence of Granger and Sims non-causality

The stochastic process Xt does not cause the stochastic process Yt in Granger’s sense iff,
for any t, Yt is independent of (Xt−1, . . . , X1) conditionally on (Yt−1, . . . , Y1).

The non-causality in Sims’ sense is defined as follows: Xt does not cause the stochastic
process Yt in Sims’ sense iff Xt is independent from(Yt+1, Yt+2, . . . , YT ) conditionally on
(Yt, Xt−1,Yt−1, . . . , X1, Y1).

Let us decompose the p.d.f. of (Xt, Yt), denoted by f (X, Y ):

f(X, Y ) =
T∏

t=1

f(Xt | Xt−1, . . . X1, YT , . . . , Y1)
T∏

t=1

f(Yt | Yt−1, . . . , Y1)

Another decomposition is given by:

f(X, Y ) =
T∏

t=1

f(Xt | Yt, Xt−1,Yt−1, . . . , X1, Y1)
T∏

t=1

f(Yt | Xt−1,Yt−1, . . . , X1, Y1).

If Xt does not cause the stochastic process Yt in Granger’s sense, then the second terms of
the two equations above are equal. Consequently, the first two terms are equal. It can then
be shown recursively that these two products are equal term by term. This implies that for
any t, Xt is independent from(Yt+1, Yt+2, . . . , YT ) conditionally on(Yt, Xt−1,Yt−1, . . . , X1, Y1),
that is, Xt does not cause the stochastic process Yt in Sims’ sense. The reciprocal is shown
in the same way.

F. Kitagawa-Hamilton algorithm for partially-hidden Markov
chains

In this appendix, we describe how to use the Hamilton’s (1990) [84] algorithm within the
estimation strategy presented in Section 6, when the Markov chain is partially observed.
As noted by Hamilton (1994) [85], while the algorithm was originally presented in a model
with fixed transition probabilities, it readily generalizes to processes in which transition
probabilities depend on a vector of observed variables.55

Let us denote with ŷt the vector of observed variables (ỹ′t, R1t, z′1t)′. The Hamilton’s
algorithm consists in computing recursively the probabilities p(z2t | ŷ

t
). As a by product,

55See e.g. Filardo (1994) [71] ord Diebold, Lee and Weinbach (1993) [54] for implementation examples of
Hamilton’s algorithm in models with time-varying transition probabilities. For introductions to regime-
switching models, see Hamilton (1994) [85] or Kim and Nelson (1999) [116].
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the algorithm provides the conditional densities f(ŷt | ŷ
t−1

), which makes it possible to
estimate the model parameters by maximization of the log-likelihood. The algorithm is
based on the iterative implementation of the following steps (the input being p(z2t−1 |
ŷ

t−1
)):

1. The joint probability p (z2t, z2t−1 | ŷt−1) is computed using:

p
(
z2t, z2t−1 | ŷ

t−1

)
= p

(
z2t | z2t−1, ŷt−1

)
× p

(
z2t−1 | ŷ

t−1

)

where the first term of the right-hand side is a sum of entries of the transition matrix
{πij,t−1} and the second term is the input.

2. The joint conditional density f(ŷt, z2t, z2t−1 | ŷ
t−1

) is then given by:

f(ŷt, z2t, z2t−1 | ŷ
t−1

) = f(ŷt | z2t, z2t−1, ŷt−1
)× p

(
z2t, z2t−1 | ŷ

t−1

)

where

f(ŷt | z2t, z2t−1, ŷt−1
) = f(ỹt, R1t, z1t | z2t, z2t−1, ŷt−1

)

= f(ỹt, R1t | z1t, z2t, z2t−1, ŷt−1
)× p(z1t | z2t, z2t−1, ŷt−1

)

with

p(z1t | z2t, z2t−1, ŷt−1
) =

p(z1t, z2t | z2t−1, ŷt−1
)

p(z2t | z2t−1, ŷt−1
)

and all the terms can be computed.

3. The conditional densityf(ŷt | ŷ
t−1

) is given by:

f(ŷt | ŷ
t−1

) =
∑

z2,t

∑

z2,t−1

f(ŷt, z2t, z2t−1 | ŷ
t−1

).

4. The joint density p
(
z2t, z2t−1 | ŷ

t

)
comes from:

p
(
z2t, z2t−1 | ŷ

t

)
=

f(ŷt, z2t, z2t−1 | ŷ
t−1

)
f(ŷt | ŷ

t−1
)

.

5. And eventually:
p

(
z2t | ŷ

t

)
=

∑

z2,t−1

p
(
z2t, z2t−1 | ŷ

t

)
.

G. About the eigenvectors of the rating-migration matrix Π

In this appendix, using the notations presented in Subsection 8.3, we outline some properties
of matrices Π and V . For notational simplicity, we drop arguments and time subscripts
associated with these matrices.

• As the sum of the entries of each line of Π is equal to 1, the vector
[

1 · · · 1
]′ is an

eigenvector of Π associated with the eigenvalue 1. Consequently, since this eigenvalue
is supposed to be the last one appearing in Ψ, the last column of V –that collects the
eigevectors of Π– is proportional to

[
1 · · · 1

]′.

58



• The fact that default is an absorbing state implies that the last row of Π is
[

0 · · · 0 1
]
.

Since we have ΠV = V Ψ, it comes (considering the last line of this equation):

∀j VK,j = VK,j exp (−ψj) ,

which implies: ∀j < k VK,j = 0.

• The two previous points imply that the matrix V admits the following form:

V =





V1,1 · · · V1,K−1 γ
... . . . ...

...
VK−1,1 · · · VK−1,K−1 γ

0 · · · 0 γ





Since V V −1 = I, we have (considering the last line)
[

V −1
K,1 · · · V −1

K,,K−1 V −1
K,K

]
=

[
0 · · · 0 1

γ

]

and, therefore, for i = 1, . . . ,K, we have Vi,KV −1
K,K = 1.

• We have V −1Π =Ψ V −1. By multiplying both sides of the last equality by
[

1 · · · 1
]′,

one gets:

∀i < k
K∑

j=1

V −1
i,j = exp (−ψi)

K∑

j=1

V −1
i,j .

For this to be satisfied for any exp (−ψi) (if ψi is time-varying), we need to have
∀j < K

∑K
j=1 V −1

i,j = 0.

H. Yield data

The estimation of our model requires zero-coupon yields. However, governments usually
issue coupon-bearing bonds. This appendix details the methodology implemented to com-
pute zero-coupon yield curves (out of coupon-bearing yields to maturity). Note that this
appendix does not use systematically the same notations as in the rest of the paper. For an
overview of the different methodologies used to perform such yield-curve conversions, see
BIS, 2005[21].

H.1. Parametric forms

As Gurkaynak, Sack and Wright (2005) [81], we resort to a parametric approach which
relies on the functional forms proposed by Nelson and Siegel (1987) [117] and extended by
Svensson (1994) [125]. In the latter case, the yield of a zero-coupon bond with a time to
maturity m for a point in time t is given by:56

ym
t (θ) = β0 + β1

(
−τ1

m

) (
1− exp(−m

τ1
)
)

+ β2

[(τ1

m

) (
1− exp(−m

τ1
)
)
− exp(−m

τ1
)
]

+β3

[(τ2

m

) (
1− exp(−m

τ2
)
)
− exp(−m

τ2
)
]

where θ is the vector of parameters [β0, β1, β2, β3, τ1, τ2]′.
56The Svensson’s model boils down to the Nelson and Siegel’s one when β3 = 0.
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H.2. Estimation of the parameters

Formally, assume that for a given country and a given date t, we dispose of observed prices
of N coupon-bearing bonds (with fixed coupon), denoted by P1,t, P2,t, . . . , PN,t. Let us
denote by CFk,i,t the ith (on nk) cash flows that will be paid by the kth bond at the date
τk,i. We can use the zero-coupon yields {ym

t (θ)}m≥0 to compute a modeled (dirty) price
P̂k,t for this kth bond:

P̂k,t(θ) =
nk∑

i=1

CFk,i,t exp
(
−τk,iy

τk,i−t
t (θ)

)
.

The approach then consists in looking for the vector θ that minimizes the distance
between the N observed prices and modeled bond prices. Specifically, the vector θt is
given by:

θt = arg min
θ

N∑

k=1

ωk(Pk,t − P̂k,t(θ))2

where the ωk’s are some weights that are chosen with respect to the preferences that one may
have regarding the fit of different parts of the yield curve. Intuitively, taking the same value
for all the ωk’s would lead to large yield errors for financial instruments with relatively short
remaining time to maturity. This is linked to the concept of duration (i.e. the elasticity of
the price with respect to one plus the yield): a given change in the yield corresponds to a
small/large change in the price of a bond with a short/long term to maturity or duration.
Since we do not want to favour a particular segment of the yield-curve fit, we weight the
price error of each bond by the inverse of the remaining time to maturity.57

H.3. Data and preliminary filters

Table 4 gives some details about the data and methods that are used to compute the zero-
coupon yield curves for each country. It appears that the number of bonds used widely
differ among the countries (from 19 bonds for the Netherlands to 175 bonds for Germany).

As in Gurkaynak et al. (2005) [81], different filters are applied in order to remove those
prices that would obviously bias the obtained yields. The prices of bonds that were issued
before 1990 or that have atypical coupons (below 1% or above 10%) are excluded, as well as
prices that are far from par (above 140 or below 80). In addition, the prices of bonds that
have a time to maturity lower than 1 month are excluded.58 When the time to maturity is
comprised between 1 month and 12 months, the price is also excluded if the observed yield
is 100 bp above or below the 3-month general-collateral repo rate.

Afterwards, additional exclusions of potential outliers are based on an ad-hoc filtering
approach: at each date, a least-square cubic-spline fitting algorithm is applied on the avail-
able yields-to-maturity (with breakpoints set at maturities 0, 10, 20 and 30 years). The
standard error of the deviations between the spline and the observed yields is then com-
puted and the yields to maturity that are further than 1.5 standard deviations away from
the spline are excluded.

Finally, in order to deal with the lack of data at the short end of the yield curve for some
countries (reported in the last column of Table 4), we include the 3-month general-collateral
57Using remaining time to maturity instead of duration has not a large effect on estimated yields as long

as we are not concerned with the very long end of the yield curve.
58The condition on the remaining time to maturity stems from the fact that the trading volume of a bond

usually decreases considerably when it approaches its maturity date.
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Table 4: Zero-coupon yield curves: data and method used by country

Notes: The paametric form that is fitted for each date is given in the second column for each country. The total number of

bonds available by country is given in the third column; the number of bonds used at each date is obviously smaller; note

that number of observations available for each date vary considerably over time. The fourth column indicates whether the

use of repo rates is allowed in the estimation process.

fitted parametric form Number of bonds Use of GC repo rates
Austria Nelson-Siegel 38
Germany Svensson 175
France Svensson 120
Italy Svensson 168
Netherlands Nelson-Siegel 19 X
Spain Nelson-Siegel 22 X
Portugal Nelson-Siegel 36 X
Greece Svensson 105 X
Belgium Svensson 162
Ireland Nelson-Siegel 30 X
Finland Svensson 53

repo rate among the observed yields when less than 3 shorter-term bond prices (with time
to maturity lower than 2 years) are observed at a given date.
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