
TreePi: A Novel Graph Indexing Method

Shijie Zhang, Meng Hu, Jiong Yang
EECS Dept., Case Western Reserve University
10900 Euclid Avenue, Cleveland, OH 44106

{shijie.zhang, meng.hu, jiong.yang}@case.edu

Abstract

Graphs are widely used to model complex structured
data such as XML documents, protein networks, and chem-
ical compounds. One of the fundamental problems in graph
databases is efficient search and retrieval of graphs using
indexing techniques. In this paper, we study the problem of
indexing graph databases using frequent subtrees as index-
ing structures. Trees can be manipulated efficiently while
preserving a lot of structural information of the original
graphs. In our proposed method, frequent subtrees of a
database are selected as the feature set. To save mem-
ory, the set of feature trees is shrunk based on a support
threshold function and their discriminative power. A tree-
partition based query processing scheme is proposed to per-
form graph queries. The concept of Center Distance Con-
straints is introduced to prune the search space. Further-
more, a new algorithm which utilizes the location informa-
tion of indexing structures is used to perform subgraph iso-
morphism tests. We apply our method on a wide range of
real and synthetic data to demonstrate the usefulness and
effectiveness of this approach.

1 Introduction

Database systems are increasingly being used to man-
age complex structured data like sequences, trees, and
graphs. Graphs are among the most complicated and gen-
eral form of structures, and they are heavily used to rep-
resent compounds, proteins and relationship networks in
chem-informatics and bio-informatics datasets.

Graph databases are used in developing search and reg-
istration systems for chemical and biological structures.
In chemistry, a large number of newly discovered chem-
ical molecules are studied, classified, and recorded every
year. ChemIDplus, a free data service offered by the Na-
tional Library of Medicine, provides users with structural
and nomenclatural information of chemical molecules. It
helps to identify subsets of molecules related to query struc-
tures and shortens the discovery cycle in drug design and
other scientific activities. Bio-informatics also requires ef-

ficient mechanisms to query a large number of biological
pathways and protein interaction networks, which are com-
plicated with embedded multilevel structures. Web XML
files are typically graph databases as well. Furthermore,
graph databases are widely used in the computer vision and
pattern recognition. All these applications indicate the im-
portance of graph databases, as well as the importance of
effective graph databases search.

In many cases, the success of a graph database appli-
cation is directly dependent on the efficiency of the graph
query processing. The classical graph query problem is
to find all supergraphs of the query graph from a graph
database. Obviously it is inefficient to perform a sequential
scan on every graph in the database, because the subgraph
isomorphism test is expensive.

Therefore, it is necessary to construct graph indices to
accelerate the graph query processing. Many indexing
methods [3, 7, 14] have been developed for the XML query,
which is a simple type of graph query. In order to process
arbitrary graph queries, GraphGrep [14] and several other
path-based graph indexing approaches are proposed. The
general idea of them is as follows: First, they enumerate all
existing paths in a database up to a maximum length and
index them. Then, they uses the indices to identify every
graph that contains all the paths in the query graph. How-
ever, the size of index path set could increase drastically
with the size of graph database.

gIndex [18] is developed to solve the exact graph query
problem by using general frequent patterns as basic index
structures. Grafil, another frequent pattern based index-
ing method, is proposed for inexact graph query in [17].
However, while Grafil works well for approximate graph
queries, frequent pattern based approaches are not efficient
enough to retrieve the exact matches for the query graph
from the database, because index patterns are irregular and
the subgraphs isomorphism tests are slow. All the above
suggest that further improvements are necessary for both
index structures and algorithms.

The tree, as a special form of graphs, has many bene-
ficial properties. In this paper, instead of using paths or
arbitrary frequent subgraphs, we use frequent subtrees as

1-4244-0803-2/07/$20.00 ©2007 IEEE. 966

the index structures. Trees are more complex patterns than
paths and trees can preserve almost equivalent amount of
structural information as arbitrary subgraph patterns. Be-
sides, the frequent subtree mining is relatively easier than
general frequent subgraph mining [4, 6, 9, 16, 19], which
enables us to construct indices more efficiently.

Our frequent tree based indexing approach works as fol-
lows: first, we perform the frequent tree mining on the
graph database, and then select a set of frequent trees as
index patterns. In the query processing, for a query graph
q, we enumerate the frequent subtrees in q and identify the
graphs in the database which contain those subtrees. As
the canonical form of any tree can be calculated in poly-
nomial time, the first screening operation can be performed
very fast. Moreover, by applying the Center Distance Con-
straints, which is described in a later section, we can shrink
the graph database even closer to the actual support set of
the query graph, thus to reduce the search space signifi-
cantly. In the final verification phase, we take advantage
of the location information partially stored with the feature
trees. A novel algorithm for the subgraph isomorphism test
is devised based on the location information.

The choice of frequent subtrees as index structure is
not a simple tradeoff between paths and frequent sub-
graphs. First, trees are more compact forms to preserve
the structural information in graph database, especially for
chem-informatics and bioinformatics data sets. Second, the
canonical form of any tree can be quickly computed, which
facilitates index searching. More importantly, the symmet-
ric nature of trees makes it possible to partially keep the
location information of the index structures. To the best
of our knowledge, our algorithm is the first graph indexing
method to utilize specific location information, and hence
to maximize the benefits from graph mining results, i.e., the
frequent substructures.

The remainder of the paper is organized as follows. Sec-
tion 2 is the related work. Section 3 defines the prelimi-
nary concepts. Section 4 discusses the selection of index
structures. Section 5 describes the query processing. Sec-
tion 6 reports the performance study of our proposed algo-
rithm. Discussion is presented in Section 7 and Section 8
concludes our work.

2 Related Work

The problem of graph query processing has been widely
studied in many fields. In content-based image retrieval,
Petrakis et al.[13] indexes graphs in high dimensional space
by R-trees. In 3D protein structure search, algorithms us-
ing hierarchical alignments and geometric hashing are pro-
posed by Madej et al.[10]. However, these methods are
restricted to their own disciplines and are not efficient for
graph queries in large graph databases.

In semistructured XML databases, query languages built
on path expressions became very popular. Kaushik et al. in-

troduces new techniques to efficiently extract exact answers
to regular path queries in [7, 8]. APEX [2] uses adaptivity
of index structures to fit the query load. In [1], Bruno et al.
compares two main path query processing methods. To per-
form full scale graph retrieval, Shasha et al. [14] develops
GraphGrep, a path-based algorithm, which is also used in
Daylight system [5]. However, although paths are easier to
manipulate, they also lose a large amount of structural in-
formation. Furthermore, the number of paths in a database
could grow drastically when the graphs are large and di-
verse. Therefore, some new structures are proposed lately
for XML query [11, 12].

Recently some graph indexing methods began to utilize
graph mining results. Yan et al. proposes gIndex [18] and
adopts frequent structures as index patterns. For any query
graph q, gIndex enumerates the frequent subgraphs of q and
identifies the graphs in the database which contain those
subgraphs. Then, gIndex performs naive subgraph isomor-
phism tests for final verification. However, the calculation
of the canonical form of an arbitrary graph can be very time-
consuming. Since gIndex checks a large number of sub-
graphs of the query graph, the matchings between index pat-
terns and those subgraphs are far from efficient. Although
gIndex can reduce the search space a lot by intersecting the
support sets of indexed subgraphs before the final verifica-
tion, the reduced search space could still be as large as three
times the actual support set of the query graph. Also, the
final verification of gIndex, which uses naive graph isomor-
phism tests, is inefficient.

During the index construction, gIndex obtains every oc-
currence of frequent subgraphs in the graph database. How-
ever, due to memory limitations and asymmetry of index
patterns, gIndex is not able to store and use this useful loca-
tion information.

3 Preliminaries
In this section, we introduce the terminology used in this

paper and give the formal problem definition. As an im-
portant data structure, the labeled graph is used to model
complicated structures and schemaless data, e.g., XML is
a kind of directed labeled graph, and chemical compounds
are undirected labeled graphs. In this paper, we investigate
the graph indexing methods for undirected labeled graphs,
however it is easy to extend our method to directed labeled
graphs. Some definitions are presented as follows:

Definition 1 A labeled graph G is a five element tuple G =
{V, E, ΣV , ΣE , l} where V is a set of vertices and E ⊆
V ×V is a set of undirected edges. ΣV and ΣE are the sets
of vertex labels and edge labels respectively. The labeling
function l defines the mappings V → ΣV and E → ΣE .

Definition 2 A labeled graph G = (V, E, ΣV , ΣE , l) is
isomorphic to another graph G′ = {V ′, E′, Σ′

V , Σ′
E , l′},

denoted by G ≈ G′, iff there exists a bijection f : V → V ′

such that

1-4244-0803-2/07/$20.00 ©2007 IEEE. 967

1. ∀u ∈ V , (l(u) = l′(f(u))),

2. ∀u, v ∈ V ,((u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′), and

3. (u, v) ∈ E, (l(u, v) = l′(f(u), f(v))).

The bijection f is called an isomorphism between G and
G′. We also say that G is isomorphic to G′and vice versa.
A graph automorphism is an isomorphism from G to itself.

Definition 3 A labeled graph G is subgraph isomorphic
to a labeled graph G′, denoted by G ⊆ G′, iff there exists a
subgraph G′′ of G′ such that G is isomorphic to G′′.

Definition 4 Graph G = {V, E, ΣV , ΣE , l} and
G′ = {V ′, E′, ΣV ′ , ΣE′ , l′} are non-edge-overlapping iff
E

⋂
E′ = ∅, two non-edge-overlapping graphs G and G′

are matched iff V ∩ V ′ �= ∅, i.e, G and G′ intersect only
on vertices.

Definition 5 Given a graph q, a partition of q is a set of
non-edge-overlapping subgraphs {s1, s2, ..., sm}, such that
q =

⋃m
i=1 si.

Definition 6 Given a graph database D = {g1, g2, ..., gn},
the support set of graph g, denoted by Dg, is defined as the
subset of D to which g is subgraph isomorphic.

Dg = {gi|g ⊆ gi, gi ∈ D}

We denote |Dg| as the size of Dg .

Problem Statement: In this paper, we investigate the fol-
lowing graph query problem. For a graph database D and
a query graph q, find Dq ∈ D that support q.

Figure 1 shows an example graph database and Figure
2 shows an example query. The support set of the query
graph is {b,c}. This example database and query graph will
be used as the running example throughout this paper.

The processing of graph queries in our paper can be di-
vided into two major steps:

1. Database Preprocessing This is the index construc-
tion step in which we enumerate and select frequent
subtrees in graph database D as feature trees. The fea-
ture tree set is denoted by TD. For any ti ∈ TD, we
also calculate the support set of ti, Dti , in the prepro-
cessing step.

2. Query Processing This step includes three sub-steps:
1.Partition, in which we partition the query graph into
a set of feature trees SFq = {tf1, tf2, ..., tfn}, tfi ⊆
q. 2.Filtering & Pruning, which is a two-step screen-
ing operation. First we project the graph database to
a small set, Pq =

⋂
t Dt(t ∈ SFq, t ∈ TD), which

consists of all graphs containing all the feature trees
in SFq. Then Center Distance Constraints are applied

1

3

1

3

3

1

1

3

1

1

3

1

3a

a

a

b a

a

a b

a

b

a

a

a

a

a

2

b

2

b

(a)

1

1

1

3

3

1

1

1

3

a

a

b

a

a a

a

a

a

a

2

b

2
b

(b)

1

a

1
a

1

1

1

3

3

1

1

1

3

a

a

b

a

a a

a

a

a

a

2

b

2
b

(c)

1
a

1
a

Figure 1. A Sample Graph Database

Figure 2. A Sample Query Graph

to reduce Pq to P ′
q . 3.Verification, in which we de-

vise a new subgraph isomorphism algorithm to verify
whether or not q is contained by the graphs in P ′

q by
reconstruction from TPq.

In the query processing step, the verification sub-step is
most time-consuming. Therefore, the goal of the indexing
method is to shrink the space as much as possible before the
final verification.

4 Database Preprocessing

4.1 Feature Tree Selection

In the paper, we use trees as index structures for three
reasons. First, operations on trees, such as isomorphism
and normalization are asymptotically simpler than graphs,
which are usually NP-complete. Second, a large number
of important structures in biology and chemistry applica-
tions are really trees, e.g, structures in RNA. Last but not
the least, trees can be adapted well in the reconstruction
based framework of our verification algorithm, as shown in
a later section.

In our paper, a feature tree is a selected frequent tree in
the graph databases. A tree t is σ frequent if |Dt| ≥ σ.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 968

Figure 3 shows some 3-frequent trees of the example graph
database. In the preprocessing procedure, we select a part of
frequent trees of different frequency and sizes as the feature
tree set. How to select the set of feature trees is discussed
in section 4.1.3.

Figure 3. Frequent Trees

Due to the limit of memory space, we can not store all
the frequent trees of a very low frequent threshold σ. So we
use two following methods to make TD more compact, but
preserve as much information as possible.

4.1.1 σ(s) Function

The number of different trees will grow exponentially when
the size of the trees increases, e.g., there are (n+1)n−1 dif-
ferent n edge trees if vertices have different labels. There-
fore, it is not suitable to use a uniform threshold for different
size feature trees. Here we introduce support function σ(s).

In order to guarantee the completeness of the indexing,
we set σ = 1 for single edge trees so that we can suc-
cessfully partition the query graph into feature trees in the
worst case. On the other hand, a large frequent tree is more
likely to have same support set as its subtrees. Then, it is
not meaningful to store large trees with low support. In
our method, we select the following non-decreasing func-
tion σ(s), in which s is the edge size of the feature trees.

σ(s) =

⎧⎪⎨
⎪⎩

1 if s ≤ α

1 + βs − αβ if η ≥ s > α

+∞ if s > η

(1)

where α, β, η are positive parameters which can be tuned
based on the graph database. The σ(s) function can not
only ensure the completeness but also reduce the size of the
feature tree set.

4.1.2 Shrinking

However, when the graph database is large and diverse, the
feature tree set could still be very large. Therefore we need
to develop other methods to shrink the feature tree set.

For any feature tree r with support set Dr, suppose the
set of subtrees of r, except r itself, is {r1, r2, ..., rn}. Ac-
cording to the definition of support set, we have |⋂i Dri | ≥
|Dr|. When |⋂i Dri | and |Dr| are equal, Dr is not repre-
sentative any more, as it can be calculated from the sup-
ports sets of its subtrees. Based on the above observation,

we adopt the following shrinking mechanism to remove less
important tree patterns.

If for any feature tree r, |⋂i Dri |/|Dr| ≤ γ, we would
remove r from the feature tree set, where γ is called shrink-
ing parameter .

4.1.3 Feature Tree Selection Algorithm

First, all the frequent trees according to the σ function are
discovered by any level wise edge-increasing graph min-
ing method [4, 6, 9, 16, 19]. Then, we shrink the frequent
tree set according to the shrinking parameter γ introduced
above. The remained frequent trees are selected as feature
trees. The size of the feature tree set can be adjusted by
variable α, β, η and γ.

While the setting of these parameters relies on the graph
database and query graphs, there are some heuristics for
choosing the values. Generally, the range of α is from s̄q/4
to s̄q/2, where s̄q is the estimated average size of query
graphs. When most frequent substructures below 10 edges
in the database, β should be set to a lower value, e.g, 1 or
2. Otherwise, we can set β relatively larger, e.g., 5 or 6. In
this paper, η is set to min{s̄q, s̄D}, where s̄D is the average
size of graphs in the database. The range of γ is from 1 to 3.
When the memory size is too small to store all feature trees,
we gradually decrease η and α, and increase the shrinking
parameter γ, until the feature tree set can fit in the memory.

4.2 Index Construction

4.2.1 The Center of a Tree

Unlike other graph patterns, every tree has a unique center.
From the center of the tree, we can find the canonical form
of a tree in polynomial time, while it takes exponential time
for regular graphs. Figure 4 demonstrates the center of an
example graph. We introduce the theorem below.

Theorem 1 The center of a tree consists of one vertex or
two adjacent vertices, i.e., the center of a tree can be repre-
sented by a vertex or an edge.

Figure 4. Center of a Tree

Due to the space limitations, we will omit the proof in
this paper. In the preprocessing phase, we divide the feature
trees into two groups by whether the center of the tree is a
vertex or an edge. For each selected feature tree t, if the cen-
ter of t is a vertex, in any graph g containing t, we use one
bit for every vertex in g. We set the bit 1 if the correspond-
ing vertex is the center of at least one subtree isomorphic to

1-4244-0803-2/07/$20.00 ©2007 IEEE. 969

t, 0 if not. The same procedure can also be applied to the
edges when the center is an edge.

4.2.2 Tree Canonical Form

In this subsection, a canonical form of trees is presented. A
unique string representation of a tree can be obtained from
its canonical form, and used to index feature trees and test
tree isomorphism. A method to transform a labeled tree into
its canonical form is given.

Given a tree, its center(s) can be found by repeatedly re-
moving leaves. Starting from a tree, we keep removing leaf
nodes until only one node or two adjacent nodes are left.
The remaining node(s) are considered as the center(s) of
the tree. This process can be done in O(n) time, where n is
the number of vertices in the tree. This process is demon-
strated in Figure 4, where leaf nodes removed in each round
are marked differently.

After obtaining the center(s) of a tree, all nodes are
sorted in polynomial time according to a defined order. First
each node in the tree is represented in a 2-tuple, (Le, Lv),
where Le is the label of the edge connecting the node to its
parent, and Lv is the label of the node. For the root node,
Le is given an empty value. The order of two nodes at the
same level is defined recursively as follows: First their Le

values are compared. If they are the same, the Lv values
are compared. If both of them are the same, their subtrees
from left to the right are compared, until the order is solved.
According to the order defined above, we can sort all nodes
in a rooted tree to obtain its canonical form. For example,
in Figure 5, the original form and the canonical form of a
rooted tree are given. The labels on each node and each
edge are the node labels and edge labels. The 2-tuple of
each node is shown beside each node.

Figure 5. Canonical Forms

After transforming a rooted tree to its canonical form, a
unique string representation of the tree can be constructed.
A breadth-first-search starting from the root node is per-
formed to obtain the string representation. Obviously, the
construction of string representation can be done in O(V)
time.

After the string representation for each feature tree is ob-
tained, a prefix tree based indexing is used to index all fea-
ture trees. Since all feature trees are transformed to strings,
other traditional indexing techniques, such as B+ tree, can
also be applied here.

5 Query Processing
In this section, we present the second part of the TreePi

algorithm. We illustrate the design and implementation of
the algorithm in three subsections: (1) Partition (2) Filtering
& Pruning and (3) Verification.

5.1 Partition Query Graph

A partition p of query graph q is a set of non-edge-
overlapping subgraphs as in Definition 6. If all subgraphs
in the partition p are feature trees, we define p as a Feature-
Tree-Partition. Suppose the feature tree set of the example
database is the same as the frequent trees in Figure 3, Fig-
ure 6 demonstrates an example Feature-Tree-Partition of the
example query graph. It is obvious that any query graph has
at least one Feature-Tree-Partition, since in the worst case it
can be partitioned into all one edge trees, which are always
selected to be feature trees. A Feature-Tree-Partition p of
query graph q is minimum if the size of p, denoted as |p|, is
the smallest among all the Feature-Tree-Partitions of q.

Figure 6. Feature Tree Partition

Since it is impossible to find the minimum Feature-Tree-
Partition in polynomial time, a randomized algorithm is
adopted to find a solution, which can also generate a group
of additional feature subtrees of the query graph at the same
time.

In the procedure RP (q), if q is not a feature tree in the
index list, q is randomly partitioned into two matched sub-
graphs q1 and q2, and if q1 or q2 is still not a feature tree,
we will continue to partition the subgraph into two matched
graphs. The procedure terminates when all partitioned sub-
graphs are feature trees.

Given a query graph q, the procedure RP (q) is exe-
cuted δ times, after which δ groups of different Feature-
Tree-Partitions {TPq1 , TPq2 , ..., TPqδ

} are obtained. Then
we set the minimum partition among these δ Feature-Tree-
Partitions, TPqi , (|TPqi | ≤ |TPqj |, 1 ≤ j ≤ δ, j �= i) as
TPq. TPq will be used in the verification step. All the δ
groups of Feature-Tree-Partitions are united into a feature
subtree set of q, i.e. SFq =

⋃δ
j=1 TPqj . SFq will be used

to reduce the search space in the following step.

5.2 Filtering & Pruning

5.2.1 Filtering by Intersection

Having obtained the feature subtree set SFq, we intersect
the support sets of all feature trees in SFq , and obtain the
filtered set Pq . The underlying intuition is that, if graph

1-4244-0803-2/07/$20.00 ©2007 IEEE. 970

g does not contain any of q’s subtree, g will not contain q
either. Therefore, query graph q will not be embedded in
any graph outside Pq .

Algorithm 1 Filtering
Input: Graph database D, Feature tree set F, Query graph q, and
maximum feature tree size L
Output: Filtered set Pq

1: let Pq ← D
2: for each t ∈ SFq do
3: if t ∈ TD then
4: Pq ← Pq

⋂
Dt

5: end if
6: end for

In order to avoid processing unnecessary feature sub-
trees, the algorithm is optimized by the following strategy:
if a subtree t is in the feature tree set, it is unnecessary to
process any feature subtrees contained in t. In most cases,
filtering can effectively reduce the search space. In the next
subsection, a further pruning method is introduced.

5.2.2 Pruning by Center Distance Constraints

After the filtering, we adopt a more powerful prun-
ing technique based on the constraints imposed by the
distances between feature subtrees centers in the query
graph. The concept of Center Distance Constraint
is as follows: If q is subgraph isomorphic to graph
g, then at least one set of feature subtrees TP ′

q =
{tp′1, tp′2, ..., tp′m} is embedded in g, which satisfies tpi ≈
tp′i, 1 ≤ i ≤ m, and dq(center(tpi), center(tpj)) ≥
dg(center(tp′i), center(tp′j)), 1 ≤ i �= j ≤ m. The ra-
tionale is that, if q ⊆ g, there exists at least one subgraph
q′ of g, and q ≈ q′, q′ should also be able to be partitioned
into a set of feature subtrees in the same way as q. In q′, the
center distance between any pair of partitioned feature sub-
trees should be the same as that of q. Therefore, according
to the definition of distance in graphs, the distance between
the centers of two partitioned feature subtrees in g, in which
q′ is embedded, should not be greater than its counterpart in
q.

Figure 7 shows a simple example of pruning by Center
Distance Constraints. Suppose the example query graph is
partitioned into feature subtree f1 and f2 as in Figure 6, and
the distance between the centers of f1 and f2 in q is 2. In
both Figure 7(a) and (b), a pair of f1 and f2 are shown.
In Figure 7(a), the distance between the centers of f1 and
f2 is 4 while the distance is 2 in Figure 7(b). Therefore,
Figure 7(a) will be pruned since it can not satisfy the Center
Distance Constraint, even though it is in the filtered set.

Applying the concept of Center Distance Constraints, we
develop Algorithm 2 to further reduce the size of the fil-
tered set. If there does not exist any set of feature sub-
trees in graph g, then g will be deleted from Pq . Other-
wise, all possible sets of feature subtrees satisfying Center

1

3

1

3

3

1

3

3

1

1

3

1

3a

a

a

b a

a

a b

a

b

a

a

a

a

a

2

b

2

b

(a)

1

1

1

3

3

1

1

1

3

a

a

b

a

a a

a

a

a

a

2

b

2
b

(b)

C(f1)

C(f1)

C(f2)

C(f2)

Figure 7. Center Distance Constraint

Distance Constraint will be used as the input of final verifi-
cation in next subsection. It should be addressed that after
Center Prune, for each graph g in P ′

q and the residual set
of Pq , we obtain groups of features subtrees, from which
query graph q may be reconstructed in g. However, at this
point only the center positions of those feature subtrees in
each group are known, and the exact position of each vertex
of the subtrees are unknown.

The novelty of this pruning mechanism is that it utilizes
the location information, which is entitled by the nature of
trees. Arbitrary substructure patterns adopted by gIndex do
not have a unique center to perform any pruning operation.
Since the center distances impose much stronger constraints
on the candidate graphs, the algorithm can filter most of the
remaining false positive graphs in the filtered set.

Algorithm 2 Center Prune

Input: Feature tree set F, Query graph q, TPq, Pq

Output: Reduced filtered set P ′
q

1: P ′
q ← ∅

2: for each graph g in Pq do
3: for each TP ′

q, tpi ≈ tp′
i, tp

′
i ⊆ g do

4: if TP ′
q satisfies center distance constraint then

5: label g
6: end if
7: end for
8: if g is labeled then
9: P ′

q ← P ′
q + g

10: end if
11: end for

5.3 Verification

In this subsection we provide a new subgraph isomor-
phism algorithm for verification. The advantage of this
method over verification based on brute force search is that
it utilizes the location information stored in the preprocess-
ing step, and at the same time, the new canonical recon-
struction form avoids any isomorphism test.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 971

In gIndex, for any graph g and query graph q, since we
do not have any location information of q in g, a naive sub-
graph isomorphism test has to be performed between g and
q, which is very time consuming. Based on the result of
Center Prune, first a depth first search is used to retrieve
all the possible feature subtrees centered in the stored posi-
tions, then we test if we can reconstruct the query graph q
from the retrieved feature subtrees.

5.3.1 Canonical Reconstruction Form

In this subsection, we present a new canonical reconstruc-
tion form, which determines whether or not two graphs are
isomorphic without isomorphism tests.

Given two pairs of matched graphs s1 and t1, s2 and t2,
s1 ≈ s2, t1 ≈ t2, in order to find if s1∪t1 ≈ s2∪t2, we first
construct two graphs s and t, s.t., s ≈ s1, s ≈ s2 and t ≈
t1, t ≈ t2. Then a unique random number is assigned to ev-
ery vertex in s and t, and denote s(vi) or t(vi) as the number
assigned to vi in s or t. We extend the operation to arrays,
e.g, s(array[v1, v2, ..., vl]) = array[s(v1), s(v2), ...s(vl)].

Suppose s has a automorphisms {fs1, fs2, ..., fsa} and t
has b automorphisms {ft1, ft2, ..., ftb}. Regarding p(si∩ti)
as a permutation of vertex set (si ∩ ti), fsj(p(si ∩ ti))
is also a permutation of vertices, each entry of which is
mapped by fsj from the origin entry in p(si ∩ ti). we de-
fine the canonical reconstruction form crf [si ∪ ti, si, ti] as
(mini,j,p[fsj(s(p(si ∩ ti))), ftk(t(p(si ∩ ti)))], s, t), 1 ≤
j ≤ a, 1 ≤ k ≤ b. The definition of minimum could be
based on any kind of partial orders on 2l arrays.

If crf [s1 ∪ t1, s1, t1] is equal to crf [s2 ∪ t2, s2, t2], then
we can find a bijection from s1 ∪ t1 to s2 ∪ t2. According
to definition 6, s1 ∪ t1 and s2 ∪ t2 are isomorphic. Figure
8 shows three different unions of feature trees f1 and f2.
The corresponding canonical reconstruction forms can be
(a): [4,3,f1, f2]; (b): [1,1,f1, f2]; (c):[1 2,1 4,f1, f2].

Figure 8. Canonical Reconstruction Form

5.3.2 New Reconstruction Based Subgraph Isomor-
phism Algorithm

Now we present our new subgraph isomorphism algorithm
to determine whether the query graph q is subgraph isomor-

phic to graph g. It starts from any possible set of feature
subtrees TP ′

q embedded in g, which is obtained from the
filtering and pruning step. However, before the algorithm is
performed, we only know every tp′i in TP ′

q is isomorphic to
tpi in q, and its center vertex center(tp′i) in g. A depth first
search is performed first to find the exact feature subtrees
rooted in the stored center vertices. Then we reconstruct q
by joining subtrees one by one. In each step, we use the
canonical reconstruction form to decide if the joining with
a new subtree is isomorphic to its counterparts in q. If they
are not isomorphic to each other, we will directly move on
to the next set of feature subtrees. Otherwise, if the union of
all the subtrees in T ′

qp
turns out to be isomorphic to q, then

q is subgraph isomorphic to g.

Algorithm 3 V erification

Input: Feature tree set F , Query graph q, TPq, graph g
Output: Whether q ⊆ g

1: for each TP ′
q satisfied center distance constraint do

2: if the union of the graphs in TP ′
q is isomorphic to q then

3: Return TRUE
4: Break
5: end if
6: end for
7: Return FALSE

While the naive subgraph isomorphism test is just an ex-
haustive search, our algorithm is more effective by making
use of the location information obtained from preprocessing
phase. For any frequent pattern, the fact is that we already
know exactly where it occurs in the graph database during
the index construction. However, all previous methods have
to discard this important location information due to the
limit of memory space and asymmetry nature of indexed
frequent patterns. Here, although we only store the centers
of frequent trees, the acyclic nature of trees imposes con-
straints strong enough to allow fast retrieval of the frequent
subtrees in the graph database. We only need to compare
the union of these retrieved subtrees with the corresponding
subgraphs of query graph q, where naive isomorphism tests
are avoided by the canonical reconstruct form.

6 Experiments Results
In this section, we will report our experimental results

that validate the effectiveness and efficiency of the TreePi
algorithm. The performance of TreePi is compared with
that of gIndex.

We use two types of datasets in our experiments: one real
dataset and a series of synthetic datasets. The real dataset is
an AIDS antiviral screen dataset containing 43,905 classi-
fied chemical molecules. This dataset is available publicly
on the web site of the Developmental therapeutics Program.
The synthetic data generator is the same as that in [9]. The
generator allows the users to specify the number of graphs,
their average size, the number of seed graphs, the average

1-4244-0803-2/07/$20.00 ©2007 IEEE. 972

size of seed graphs, and the number of distinct labels.
All our experiments were performed on a 2.8GHZ, 2GB

memory, Intel PC running on RedHat 9.0. Both gIndex and
TreePi are compiled with gcc/g++.

6.1 AIDS Antiviral Screen Dataset

In this subsection, we report the experimental results on
the antiviral screen dataset. The following parameters are
set for gIndex and TreePi. In gIndex, the maximum frag-
ment size maxL is 10, the minimum discriminative ratio
γmin is 2.0, and the maximum support Θ is 0.1N. The size-
increasing support function ψ(l) is 1 if l < 4, in all other

cases, ψ(l) is
√

1
maxLΘ. In TreePi, we set α = 5, β = 2,

η = 10 for the support threshold function, and γ = 1.5. As
we now use a randomized algorithm to partition the query
graph, we set δ = |q|, which is relatively large. The same
maximum size of features and equivalent number of fea-
tures are chosen in gIndex and TreePi so that a fair compar-
ison between them can be performed.

We first examine the index size of gIndex and TreePi.
The test dataset consisting of N graphs is denoted by
ΓN , which is randomly selected from the antiviral screen
database. Figure 9 depicts the number of features used in
these two algorithms with the test dataset size varying from
1,000 to 16,000. The curve shows that even though lower
thresholds are used in TreePi, the index size of TreePi is still
smaller than that of gIndex, which indicates that using fre-
quent tree set as the index structure will result in a smaller
index size. As the size of the test dataset increases, the in-
dex size of TreePi remains small and stable just as gIndex.

Figure 9. Index Size

Having verified the index size of gIndex and TreePi, we
now examine their effectiveness of pruning false positive
candidate graphs. The goal is to reduce the graph database
as much as possible to the actual support set of the query
graph, since the final verification is relatively more time-
consuming. TreePi reduces the graph database in two ways:
filtering the database to the intersection of the support sets
of feature subtrees, and by the Center Distance Constraints,
while gIndex only uses the projection.

In this experiment, Γ10,000 is selected as the test dataset.
For gIndex, six query sets are tested, each of which has

(a) Low Support Queries (b) High Support Queries

Figure 10. Pruning Performance

(a) Real Dataset (b) Synthetic Dataset

Figure 11. Prune Effectiveness

1,000 queries. We randomly select 1,000 graphs from the
antiviral screen dataset and then extract a connected m edge
subgraph from each graph randomly. These 1,000 sub-
graphs are taken as query set, denoted by Qm. m is selected
from 4 to 24. The query sets are divided into two groups,
low support group if its support is less than 50 and high sup-
port group otherwise. Since frequent patterns are used as in-
dex structures, it is crucial to show the index algorithm can
perform well on both high support and low support queries.

Figure 10(a) and Figure 10(b) present the pruning per-
formance of gIndex and TreePi on low support queries and
high support queries, respectively. We also plot the average
size of the actual support set of the query graphs, which is
the optimal performance of a pruning algorithm. As shown
in the figures, TreePi surpasses gIndex in all query sets of
different sizes, especially in large query sets.

Figure 11(a) shows the pruning effectiveness of both
methods on the real dataset. X-axis represents |Dq|, the
average size of support set of query graphs. Y-axis rep-
resents the average size of reduced databases, i.e., |Cq| in
gIndex and |P ′

q| in TreePi. TreePi outperforms gIndex with
|Dq| below 500. The gap between |Dq| and |P ′

q| is at least
50% smaller than that between |Dq| and |Cq|, which shows
TreePi is more powerful in pruning the search spachen |Dq|
grows, both gIndex and TreePi perform well.

Figure 12(a) presents the running time in constructing
index patterns in both gIndex and TreePi. The database size
varies from 2,000 to 10,000 and the index is constructed
from scratch for each database. The index construction time
of the two methods is both approximately proportional to

1-4244-0803-2/07/$20.00 ©2007 IEEE. 973

(a) Index Construction Time (b) Query Processing Time

Figure 12. Real Dataset

the database size, while TreePi is relatively faster due to
the following reasons: (1) The frequent subtree mining is
simpler than the frequent subgraph mining; (2) Computing
the canonical forms of trees is much more efficient than that
of arbitrary graphs; (3) it is faster to check if a tree Ta is a
subtree of tree Tb than to check if an arbitrary graph Ga is a
subgraph of Gb, so the index structure shrinking of TreePi
is also faster.

In Figure 12(b), the running time for query processing in
both gIndex and TreePi is presented. The X-axis represents
the edge size of the query graph, and the Y-axis represents
the running time to find the corresponding support sets of
query graphs. For each edge size, we randomly generate
1000 graphs as query graphs and a graph database of size
6000 is used. Obviously TreePi is much faster than gIndex,
since it reduces more than half of the running time for the
query graphs of almost all the edge sizes. There are three
reasons for this: (1) It takes only polynomial time to retrieve
the canonical form of any subtree, so TreePi can prune false
positive graphs more efficiently; (2) By applying the Center
Distance Constraints, TreePi can reduce the database more
effectively as shown in Figure 11(a); (3) TreePi uses a sub-
graph isomorphism test method, which adopts location in-
formation, and is also faster than the naive subgraph iso-
morphism test in gIndex. Therefore, TreePi is more efficient
than gIndex for the exact graph query processing.

6.2 Synthetic Dataset

In this subsection, we present the performance compar-
ison on synthetic datasets. The synthetic graph dataset is
generated as follows: First, a set of seed fragments are gen-
erated randomly, whose size is determined by a Poisson dis-
tribution with Mean I . The size of each graph is a Poisson
random variable with mean T . Seed fragments are then ran-
domly selected and inserted into a graph one by one until the
graph reaches its desired size. More details about the syn-
thetic data generator are available in [9]. A typical dataset
may have the following settings: it has 8,000 graphs and
uses 1,000 seed fragments with 40 distinct labels. On av-
erage, each graph has 20 edges and each seed fragment has
10 edges. This dataset is denoted by D8kI10T20S1kL40.

When the number of distinct labels is large, the synthetic

(a) Index Construction Time (b) Query Processing Time

Figure 13. Synthetic Dataset

dataset is very different from the AIDS antiviral screen
dataset. This characteristic results in a simpler index struc-
ture. Both gIndex and TreePi work well at this time. How-
ever, when the number of distinct labels decreases, more
and more vertices and edges share the same labels. The
dataset becomes much more difficult to index and search.

Figure 11(b) shows the pruning effectiveness of both
methods. The X-axis represents Dq and Y-axis represents
the average size of reduced datasets. The testing dataset is
D8kI10T20S1kL4. As observed in the figure, the pruning
effectiveness of TreePi is about two-fold as that of gIndex
on average.

Next the running time for constructing index patterns in
both gIndex and TreePi is examined. The database size is
varied from 2,000 to 10,000, and there are 5 distinct labels,
i.e., the denotation of the datasets is from D2kI10T20S1kL5
to D10kI10T20S1kL5. Figure 13(a) shows the perfor-
mances of both methods. When the size of the database
grows, TreePi can construct the index in a much shorter
time.

Last the query time of both gIndex and TreePi is exam-
ined. We select a D8kI10T20S1kL5 dataset and vary the
edge size of query graphs from 4 to 16. 500 query graphs
are randomly generated. As shown in Figure 13(b), in most
cases TreePi is more than two times faster than gIndex,
which is compatible with the results from AIDS antiviral
screen dataset.

7 Discussion

7.1 Insert/Delete Maintenance

In the previous sections, we mostly focus on static in-
dexing, i.e., we did not pay too much attention to updates.
Our method can be easily extended to the dynamic indexing.
When graph g is inserted to the database, we simply update
the support sets and center positions of the existing feature
trees. If g contains feature tree t, we will add g into the sup-
port set of t, and record t’s center position(s) in g. When a
graph g’ is deleted from the database, we first generate all
subtrees below η of g’. If the subtree turns out to be a fea-
ture tree, we simply delete all the information of g’ stored
with the feature tree. This operation is very efficient. From

1-4244-0803-2/07/$20.00 ©2007 IEEE. 974

the experiment results, we can conclude that as long as the
graphs in the database are homologous, i.e. representing
similar objects, the feature tree set will not change dramat-
ically when the graph database varies. So the maintenance
operation is also effective. However, in the case when there
are too many insert/delete operations having performed on
the database, e.g., one quarter of graphs in the databases are
changed, we can reconstruct the feature tree set entirely to
ensure the quality of the index.

7.2 Directed Graph Database

When the graphs in the database are directed graph, we
should adapt TreePi in following aspects. In the database
preprocessing phase, first, the existing graph mining meth-
ods should be extended to mine frequent directed trees.
Then, while the centers of the trees remain same, the canon-
ical forms of trees should also be adjusted to keep the direc-
tions of edges in the preprocessing phase. In query process-
ing phase, we need not make any modification of TreePi.
The algorithm adapts well in filtering, pruning, and verifi-
cation for directed graph queries.

8 Conclusion

Graph querying is a critical problem in the graph
database management. In this paper, a new indexing scheme
based on frequent subtrees is proposed for graph databases.
Trees can preserve more structural information of graphs
than simple paths, but are easier to manipulate than other
substructures. In our approach, frequent subtrees are first
mined from the graph database, then selected as the feature
set according to a support threshold and a measure of their
representative power. The size of indexed feature set can
be controlled by these two parameters, while still capture
most information of the original database. In addition, we
propose a tree-partition based method for query processing.
The search space can be significantly reduced by filtering
the database according to the Feature-Tree-Partitions of the
query graph. A Center Distance Constraints is introduced to
further prune the filtered set. Last, a new subgraph isomor-
phism test algorithm is devised to perform final verification
by utilizing the location information of the indexing struc-
tures. Both synthetic and real data sets are used to test our
method. The experimental results show that our approach
outperforms other graph indexing methods with a wide mar-
gin.

9 Acknowledgement

This work was partially supported by NSF CNS-
0551603.

References
[1] N. Bruno, L. Gravano, N. Koudas and D. Srivastava.

Navigation- vs. index-based XML multi-query processing,
Proc. of ICDE, 2003.

[2] C. Chung, J. Min, and K. Shim. APEX: an adaptive path index
for XML data, Proc. of SIGMOD, 2002.

[3] B. Cooper, N. Sample, M. Franklin. A fast index for
semistructured data, Proc. of VLDB, 2001.

[4] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based
algorithm for mining frequent substructures from graph data,
Proc of PDKK, 2000.

[5] C. A. James, D. Weininger, and J. Delany. Daylight theory
manual daylight version 4.82. Daylight Chemical Information
Systems, Inc, 2003.

[6] J. Huan, W. Wang, J. Prins, and J. Yang. SPIN: mining max-
imal frequent subgraphs from graph databases, Proc. of KDD,
2004.

[7] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting
local similarity for efficient indexing of paths in graph struc-
tured data, Proc. of ICDE, 2002.

[8] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth. Cover-
ing indexes for branching path queries, SIGMOD, 2002.

[9] M. Kuramochi, and G. Karypis. Frequent subgraph discovery,
ICDE, 2001.

[10] T. Madej, J. Gibrat, and S. Bryant. Threading a database of
protein cores, Proteins, 1995.

[11] S. Paparizos, and H. Jagadish. Pattern tree algebras: sets or
sequences? VLDB, 2005.

[12] Z. Chen, J. Gehrke, F. Korn, N. Koudas, and J. Shanmuga-
sundaram. Index structures for matching XML twigs using re-
lational query processors, ICDE, 2005.

[13] E. Petrakis, and C. Faloutsos. Similarity Searching in Medi-
cal Image Databases, IEEE TKDE 1997.

[14] D. Shasha, J. Wang, and R. Giugno. Algorithmics and appli-
cations of tree and graph searching, PODS, 2002.

[15] A. Shokoufandeh, S. J. Dickinson, and K. Siddiqi. Index-
ing using a spectral encoding of topological structure, Proc. of
CVPR, 1999.

[16] X. Yan and J. Han. gSpan: graph-based substructure pattern
mining, ICDM, 2002.

[17] X. Yan, P. Yu, and J. Han. Substructure similarity search in
graph databases, Proc of SIGMOD, 2005.

[18] X. Yan, P. Yu, and J. Han. Graph indexing: a frequent
structure-based approach, Proc of SIGMOD, 2004.

[19] M. Zaki. Efficiently mining frequent trees in a forest: algo-
rithms and applications, IEEE TKDE, 2005.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 975

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

