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ABSTRACT: Solution of the structures of ligand−receptor complexes via computational docking is an integral step in many
structural modeling efforts as well as in rational drug discovery. A major challenge in ligand−receptor docking is the modeling of
both receptor and ligand flexibilities in order to capture receptor conformational changes induced by ligand binding. In the
molecular docking suite MedusaDock, both ligand and receptor side chain flexibilities are modeled simultaneously with sets of
discrete rotamers, where the ligand rotamer library is generated “on the fly” in a stochastic manner. Here, we introduce backbone
flexibility into MedusaDock by implementing ensemble docking in a sequential manner for a set of distinct receptor backbone
conformations. We generate corresponding backbone ensembles to capture backbone changes upon binding to different ligands,
as observed experimentally. We develop a simple clustering and ranking approach to select the top poses as blind predictions. We
applied our method in the CSAR2011 benchmark exercise. In 28 out of 35 cases (80%) where the ligand−receptor complex
structures were released, we were able to predict near-native poses (<2.5 Å RMSD), the highest success rate reported for
CSAR2011. This result highlights the importance of modeling receptor backbone flexibility to the accurate docking of ligands to
flexible targets. We expect a broad application of our fully flexible docking approach in biological studies as well as in rational
drug design.

■ INTRODUCTION

One major challenge in computational prediction of receptor−
ligand interactions is the large number of degrees of freedom,
including receptor backbone and side chain flexibilities, ligand
conformational flexibility, and ligand rigid-body motion. Of par-
ticular interest is receptor flexibility, which is essential for cap-
turing the receptor conformational changes upon ligand bind-
ing, i.e., the induced-fit effect.1−5 Receptor induced-fit can be
limited to the rearrangement of side chains in the binding pocket,
or extended to major rearrangement of the backbone, as observed
in many kinases.6 Because of the high dimensionality in describing
receptor conformational changes, modeling receptor flexibility is
highly challenging and has been one of the foci of recent ligand−
receptor docking studies.3−5,7−11

Several approaches have been proposed to capture receptor con-
formational changes. For example, the generation of an ensemble of
multiple predetermined conformations has been proposed to model
the receptor flexibility. The receptor conformation ensemble can be

obtained experimentally by X-ray crystallography under differ-
ent conditions or by NMR spectroscopy,12−15 computationally
by molecular dynamics simulations,7,16−19 comparative model-
ing,20 or normal-mode analysis.11,21 In these approaches, the
derivation of structural ensembles representing binding-induced
receptor conformational change is decoupled from the modeling
of ligand binding. Each generated structure of the receptor is
kept rigid during ligand docking, and receptor conformational
flexibility is realized by selecting the optimal poses from ensemble
docking in either sequential (independent)22 or coupled23 man-
ners. Therefore, the major challenge to overcome in using these
approaches is that the predetermined receptor conforma-
tional ensemble must encompass significant sampling such
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that the ensemble contains favorable receptor conformations
for ligand binding.
Alternative approaches have been proposed to simultane-

ously sample the receptor and ligand flexibilities during
docking.8−10,24−27 For example, protein side chain rotamer
libraries, where continuous protein side chain conformational
space is modeled by a set of discrete states,28 have been used to
model protein flexibility during docking.8,10,24−26 Among these
rotamer-based approaches, approaches like RosettaLigand9,26

and MedusaDock27 extensively sample receptor side chain con-
formations near the binding pocket during docking, which has
been found to increase the prediction accuracy for near-native
poses. Specifically, MedusaDock treats ligand conformational
flexibility in the same manner as that of protein side chains,
with sets of discrete rotamers. The rotamer library of a ligand is
generated in a stochastic manner during docking. Benchmark
studies of MedusaDock suggested that sampling protein side
chain rotamers together with ligand during docking can effi-
ciently capture the receptor induced-fit, as well as improved
virtual screening enrichment for flexible targets.27

In this study, we incorporate backbone flexibility into
MedusaDock in order to blindly predict the ligand-binding poses

for the CSAR2011 docking benchmark (www.csardock.org), which
includes kinase targets known to be highly flexible.6,8,29,30 We adopt
a simple multiple backbone conformation docking approach, where
an ensemble of backbone conformations is selected to capture the
backbone changes as observed in receptor structures solved under
different conditions, including binding with different ligands. We
then sequentially dock the ligand to the predetermined backbone
conformations using the flexible side chain/flexible ligand docking
suite, MedusaDock. We cluster the top-ranked poses generated
from flexible docking to each backbone conformation in order
to group structurally similar predictions. We score and rank the
clusters in order to select the optimal ligand-binding poses for
CSAR2011 predictions. Using the flexible backbone docking proto-
col of MedusaDock, we were able to predict the near-native poses
for 28 out of 35 ligands in the CSAR2011 benchmark, the highest
success rate of near-native pose predictions (<2.5 Å RMSD), which
highlights the importance of modeling receptor backbone in accu-
rate docking of ligands to a flexible target.

■ METHODS
MedusaDock. We use MedusaDock27 to generate ligand−

receptor binding poses. MedusaDock is a flexible docking method,

Table 1. Summary Table of the Predicted Ligand−kinase Poses.a

aFor each ligand−receptor pair, three poses are submitted for the CSAR 2011 exercise. Two ranking methods, according to either binding free
energy or the average binding energy (Methods section), were used. The RMSD values smaller than 2.5 Å are highlighted in italic bold font. The
cases where none of the top three poses are within 2.5 Å RMSD are in gray shading. *The given smile of ligand #29 for chk1 was different from the
actual ligand. We performed posterior docking simulations using the same ligand as observed in the crystal structure.
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where the flexibilities of ligand and receptor side chains are
sampled simultaneously. Details of the docking method can be
found in ref.27 Briefly, a ligand rotamer library is generated in a
stochastic manner “on the fly”. As a result, the sampling of ligand
conformations is treated in a unified way, as in the sampling of
protein side chains, which are modeled by a discrete set of con-
formations, i.e. rotamers.31,32 The docking protocol is composed
of two steps. First, representative ligand conformations are gener-
ated by clustering the stochastic rotamer library of each ligand.
Each representative ligand conformation is rapidly fitted into a
“smoothed” receptor pocket by turning off the van der Waals
repulsion between the ligand and the receptor side chains and
subsequent rigid-body docking. In the second step, fine-docking
is performed from each of the coarsely docked poses, where the
binding pose is minimized by iterative repacking of the rota-
mers of ligand and receptor side chains as well as ligand rigid-
body minimization. In the second fine-docking step, the van der
Waals repulsions between ligand and receptor side chains are
included. We use the MedusaScore33 scoring function to guide
the docking.

MedusaScore. MedusaScore33 is a physical force field-
based scoring function that describes the major physical inter-
actions between proteins and ligands, including the van der
Waals interaction (Evdw), hydrogen bonding (Ehbond), solvation
(Esolv), and electrostatics (Ees). The van der Waals interaction
parameters are adopted from the CHARMM19 force field. We
dampen the rapid increase of van der Waals repulsion between
overlapping atoms by linear interpolation of the repulsive
term of the Lennard−Jones potential.31 We use the distance
and orientation-dependent hydrogen bond model proposed
by Kortemme and Baker.34 We compute the solvation energy
using the EEF1 implicit solvent model proposed by Lazaridis and
Karplus.35 The electrostatic interaction is calculated between the
formal charges, including the charged residues of arginine, lysine,
glutamate, and aspartate in proteins, and identified charged
groups in the ligand. We used the distance-dependent dielectric
constant, ∼r, to model the screening effect. We also introduce a
solvent-accessibility-dependent weighting coefficient to model
the environmental dependence of the electrostatic interactions.36

Figure 1. Flowchart of the flexible backbone docking protocol of MedusaDock. The boxes and arrows on the left column summarize the four
docking steps (Methods section). The illustrations with protein and/or ligand structures on the right column demonstrate the corresponding steps.
Multiple protein backbones in cartoon representation with different colors are selected for independent MedusaDock simulations. The ligands in
gray stick are placed in the pocket, where the conformational flexibility of both ligands and receptor side chains (in line representations) are sampled
simultaneously. The top poses ranked according MedusaScore are gathered (as shown in the box) for further clustering analysis to group similar
poses.
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The total MedusaScore describing the binding is the linear sum
of all of these energy terms.

= + + +E W E W E W E W Evdw vdw hbond hbond solv solv es es (1)

Here, the weights (W) were originally trained and deter-
mined for describing interamino acid interactions in high-resolution
protein structures.31 Notably, no protein−ligand data was used in
the development of MedusaScore,33 but the scoring function still
exhibits remarkable accuracy in both docking pose discrimination
and binding affinity prediction. Therefore, MedusaScore features
high transferability in both docking and virtual screening.27

Backbone Structural Ensemble Selection. We use the
“Sequence Similarity” search functionality included in the pro-
tein databank37 Web site (www.rcsb.org) to identify all solved
crystal structures of a protein. Given the reference PDB struc-
tures by the CSAR2011 organizers for chk1 (PDB ID: 2e9n),
erk2 (PDB ID: 3i5z), lpxc (PDB ID: 3p3e), and urokinase
(PDB ID: 1owe) kinases, we identified 62, 10, 4, and 4 solved
structures, respectively. Because these ensembles were relatively
small and many backbone conformations were very close to each
other, we simply aligned all known structures of each kinase and
visually identified the representative backbone structures that
represented all possible backbone variations in the ligand-binding
pocket of those structures using PyMol (www.pymol.org). For
large backbone ensembles and also for the purpose of automation,
the representative backbones can be selected using clustering
analysis.
Clustering. We cluster the ligand poses by root-mean-square

deviation (RMSD). Here, we compute the RMSD between two
ligands after aligning the two receptors. During the RMSD
calculation, we also consider the symmetry of atomswhere a
symmetric rotation does not change the physiochemical property
of the ligand, such as benzene ring flippingby taking the lowest
deviation among all such symmetric transformations. We use a
hierarchical clustering program, oc (www.compbio.dundee.ac.uk/
downloads/oc), to group similar poses using a cutoff distance
of 2.5 Å. A hierarchical clustering algorithm iteratively joins the
two closest clusters into one cluster according to the distances
between two clusters. The “cluster distance” is computed based
on all pairwise distances between elements of the two corre-
sponding clusters, which can be the minimum, maximum, or the
mean of all these values. In this study, we use the mean to com-
pute the distance between two clusters.
Ranking of Clusters. We use two different ranking

approaches to rank the clusters. In the first approach, we simply
calculate the average MeduaScore

∑⟨ ⟩ =E n E1/
i

ic c
(2)

Here, nc is the cluster size and Ei is the MedusaScore of pose
i within a cluster c. In the second approach, we compute the
effective free energy of each cluster

∑ ∑β β= − − −F E E E k T nexp( )/ exp( ) ln( )
i

i i
i

ic B c
(3)

Here, β is the reciprocal of kBT, ∼0.6 kcal/mol, which corre-
sponds to the thermal fluctuation energy at room temperature
(300 K).

■ RESULTS
There were four receptor targets in the CSAR2011 docking
benchmark exercise, including checkpoint kinase-1 (chk1),

extracellular-signal-regulated kinase 2 (erk2), N-acetylglucosamine
deacetylase from Pseudomonas aeruginosa (lpxc), and urokinase.
The sequences and reference structures were given by reference to
existing experimental structures: chk1 (PDB ID: 2e9n), erk2
(PDB ID: 3i5z), lpxc (PDB ID: 3p3e), and urokinase (PDB ID:
1owe). For each target, ligands were provided in the smile format
(47 for chk1, 39 for erk2, 16 for lpxc, and 20 for urokinase;
www.csardock.org). The participants were allowed to use any
information and methods to model the conformations of the bound
complexes. For a subset of these ligands (Table 1), the crystal
structures of the ligand−receptor complexes were solved and were
used to compare with the blindly predicted poses submitted by
the participants.

Flexible Backbone Docking Using MedusaDock. We
use MedusaDock27 to generate ligand-binding poses in a given
receptor. MedusaDock models the flexibility of receptor side
chains in the pocket but not the receptor backbones (Methods
section). To incorporate backbone flexibility for the receptor
structures, especially kinases known for large backbone conforma-
tional changes upon ligand binding,6,8,29,30 we develop a simple flexi-
ble backbone approach (Figure 1). First, we construct an ensemble
of receptor backbone conformations. Because MedusaDock
already considers the full receptor side chain flexibility in the
binding pocket, which is found to tolerate small backbone varia-
tions,27 we only include a small number of backbone conforma-
tions that capture the backbone changes upon ligand binding. We
use known receptor structures solved under different conditions
to reconstruct the backbone ensemble for each target (Methods
section). The backbone ensemble of chk1 includes PDB struc-
tures of 2e9u, 2ghg, 2ym4, and 3nle; the ensemble of erk2
includes PDB structures of 1tvo, 1wzy, 2ojg, 3i60, and 3sa0;
and the lpxc ensemble includes PDB structures of 2ves, 3p3e,
and 3u1y. We find significant backbone variation between the
various structures of these flexible receptors (Figure 2). We use

Figure 2. Multi-backbone ensembles for flexible backbone docking.
The backbone structures in cartoon representation with different
colors are selected from the protein databank for different CSAR2011
receptor targets: (A) chk1, (B) erk2, and (C) lpxc. The PDB IDs for
the selected backbone structure are colored accordingly.
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only one backbone structure for urokinase (1owe) because all
known structures have very similar backbone structures.
Second, for each receptor backbone structure, we perform

100 independent MedusaDock docking simulations. Depending
on the number of degrees of freedom of the input ligand, each
MedusaDock run generates several poses27 and takes on aver-
age approximately 3−5 min on an Intel 2.6 GHz Xeon proces-
sor. All calculations can be done in parallel. Next, we rank all
poses for a given receptor backbone conformation according to
MedusaScore (Methods section; eq 1). We collect the top Np

poses for a given receptor backbone structure and assemble all
selected poses (NbNp) from Nb backbone structures into a
single ensemble for further clustering (Figure 1). Clustering is
based on the RMSD between all pairs of poses, the calculation
time of which is proportional to (NbNp)

2. During the CSAR2011
exercise, we restricted NpNb to approximately 500 total poses. We
group similar poses using a hierarchical clustering approach with a
cutoff RMSD of 2.5 Å (Methods section), and each cluster is
ranked according to the MedusaScore of poses within the cluster
(Methods section). The centroid poses of the top three clusters
were submitted as CSAR2011 blind predictions.
Effective Selection of Native Poses Using Free Energy.

The CSAR2011 organizers allowed submission of more than

one set of predicted poses, so that specific hypotheses can be
tested. We tested two different approaches to score and rank
the pose clusters (Methods section). In the first approach, we
simply score the cluster by the average MedusaScore (eq 2). In
the second approach, we compute the effective free energy of
the cluster, where the average potential energy is computed as
the Boltzmann-weighted average of the MedusaScore, and the
entropy contribution is computed as the logarithm of the cluster
size (eq 3). We find that the scoring and ranking using the free
energy outperforms that by the average energy (Table 1). In the
case of free energy ranking, the lowest RMSD of the predicted
three poses is within 2.5 Å for 28 out of 35 (80%) targets. The
success rate of the predictions computed from the average energy
is 26 out of 35. Therefore, scoring and ranking the clusters by the
proposed free energy is a more accurate way to select near-native
poses.

Docking with Multiple Backbone Conformations
Enriches Native-Like Poses. Our simple flexible backbone
docking approach is composed of independent MedusaDock
docking simulations with a set of predetermined backbone confor-
mations, and thus, the number of calculations is proportional to
the number of structures used. With ensemble docking, we sacri-
fice additional required computational time in exchange for

Figure 3. Scatter plot of MedusaScore versus RMSD for chk1 ligand poses. The symbols with different colors denote docking poses generated with
different backbone conformations as shown in the legend. Panel (A) and (B) correspond to docking results of ligand #1 and #34, respectively. (C)
The results for the docking of ligand #29 that were initially given, which turned out to be different from the released structure. Panel (D)
corresponds to the docking result of the actual ligand #29, #29*. The two chemical structures of ligand #29 are given in the corresponding inserts.
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improved prediction accuracy. Next, we discuss the results of
docking for each receptor.
chk1. Bound structures have been solved experimentally for

chk1 with 14 different ligands (Table 1). Only in two cases
(ligand #29 and #34) do our free energy-ranked predictions not
succeed in identifying near-native poses. To illustrate the effect
of input backbone conformation on pose prediction, we present
in Figure 3 the scatter plot of MedusaScore versus RMSD for
the poses generated with different backbone conformations.
For example, in the case of ligand #1 (Figure 3A), the poses
generated from three backbone conformations (2e9u, 2ym4,
and 3nlb) feature a funnel-like binding/docking energy land-
scape, where the native−native poses have the lowest (most
favorable) MedusaScores. However, in the case of backbone
conformation of 2ghg, the generated near-native poses have
higher (less favorable) MedusaScores than other decoy poses.
Taken together, MedusaDock simulations with multiple back-
bones enable the accurate prediction of a near-native pose as
the top-ranked pose for ligand #1 (Table 1). For the failed case of
ligand #34, near-native poses were sampled for all input backbone
conformations but all had higher MedusaScores than the decoy
poses (Figure 3B). Interestingly, near-native poses of ligand #34
were top-ranked when utilizing the scoring method with average
energy (Table 1). Additionally, we noticed that the chemical

structure of ligand #29 in the f inal released structure is dif ferent
f rom that provided by the input smile (inserts of Figure 3C,D). We
therefore performed flexible docking simulations for the revised
structure of ligand #29 after its final release. Although dock-
ing to the backbone of 3nlb did not sample near-native states
(Figure 3D), the revised ligand structure enabled sufficient sampl-
ing of near-native poses when docked to other backbone struc-
tures (Figure 3D), achieving a near-native pose as the second-
ranked pose (Table 1).

erk2. Twelve erk2-ligand complex structures have been solved
experimentally (Table 1). Our method recapitulated near-native
poses for seven out of twelve cases. The relatively low success
rate compared to chk1 may be a result of high backbone flexi-
bility, which is manifested even in the success cases (Table 1;
Figure 4). For example, near-native poses were sampled by
docking only a small number of backbone conformations (e.g.,
Figure 4A,B) as compared to chk1 (Figure 3). In other cases, the
sampled near-native poses did not have clear separation from
decoy poses in terms of MedusaScore (Figure 4B,D). However,
using the clustering and ranking approach, we are able to select
near-native poses from many decoys in the latter cases. These
results (Figure 4), as well as those for chk1 (Figure 3), highlight
the importance of incorporating multiple backbone conformations
in the sampling of near-native poses with low MedusaScores.

Figure 4. Scatter plot of MedusaScore versus RMSD for erk2 ligand poses. The symbols with different colors denote docking poses generated
with different backbone conformations as shown in the legend. Four of the seven success cases are included: ligand #19 (A), #20 (B), #26(C),
and #39 (D).
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In five challenging cases (Figure 5, filled symbols correspond
to blind docking results for CSAR2011), the near-native states
were either rarely sampled (Figure 5B,E) or sampled but with
significantly less favorable MedusaScores than decoys (Figure
5A,C,D). We postulate that the failure to capture near-native
states with low MedusaScores is a result of insufficient sampl-
ing of backbone conformations in the receptor ensemble. The
question is whether docking with the released cocrystallized
backbone structure can enrich the near-native poses with low
MedusaScores? Therefore, we performed posterior MedusaDock
simulations with the released backbone conformation. Indeed, the
docking with experimentally determined cocrystallized backbone

conformations enables the sampling of near-native poses in all
challenging cases (Figure 5, plus symbols). If the cocrystallized
backbone structures were included in the predetermined back-
bone ensemble, the near-native poses of these challenging cases
could have been selected by our clustering and ranking method
as demonstrated by previous examples (Figures 3,4). Hence,
the results of these difficult cases suggest that the sampling
of backbone conformation in order to capture the backbone
changes upon binding of specific ligands remains a significant
challenge.

lpxc and urokinase. The lpxc receptor has a zinc ion as the
coligand in all existing structures. We include the zinc ion as a

Figure 5. Scatter plot of MedusaScore versus RMSD for erk2 ligand poses. The symbols with different colors denote docking poses generated with
different backbone conformations as shown in the legend. Five of the challenging cases are included: ligand #23 (A), #24 (B), #25(C), #27(D), and
#33 (E).
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fixed moiety during MedusaDock simulation. We recapitulate
near-native poses for both receptors (Table 1). In the case of
lpxc, all top-ranked poses correspond to near-native poses.

■ DISCUSSION AND CONCLUSION

In order to model receptor backbone changes upon ligand
binding, we develop a simple multibackbone docking approach
using MedusaDock. Because MedusaDock is able to model the
full receptor side chain flexibility, we construct a relatively small
ensemble of protein backbone conformations for the region
near the ligand-binding pocket. The flexible side chain docking
approach used by MedusaDock can tolerate small backbone
changes, as shown in the previous cross-docking benchmark.27

For this reason, including a small number of backbone confor-
mations in the ensemble is most computationally efficient
because simulation time is directly proportional to the input
number of backbone conformations.
The major challenge in ensemble docking is to capture rele-

vant backbone changes upon ligand binding within the pre-
determined set of backbone configurations. For example, our pre-
constructed backbone ensembles for chk1, lpxc, and urokinase
(Table 1) are able to capture the corresponding backbone changes
upon binding of the given ligands, as suggested by the high
success rate of prediction of near-native poses (∼100%). How-
ever, the prediction rate for erk2 kinase is significantly lower
because the backbone structures are not well sampled by the
constructed backbone ensemble (Figure 5). In the current study,
we have utilized crystallographically determined receptor struc-
tures solved in complex with different ligands and under different
conditions. Protein structural ensembles derived from solution
NMR also provides useful information about protein backbone
dynamics,38 which can be used for the flexible docking approach.
With the growing number of protein and protein−ligand com-
plex structures deposited into the Protein Data Bank, this approach
will have a broad application to drug screening. In cases where a
limited number of experimentally solved structures are available,
computational modeling of receptor backbone structures can be
performed via homology modeling, molecular dynamics, or normal
model analysis. The sampling of backbone changes as well as the
choice of the optimal number of backbone conformations to use in
MedusaDock ensemble docking simulations is a subject for further
studies.
We group similar poses using a clustering algorithm and

develop a free energy-like scoring method to rank clusters of poses.
The new score thus considers both the average MedusaScore of
each cluster as well as the cluster size in ranking poses (eq 3). We
use a Boltzmann-weighted average of MedusaScores within a cluster
to compute the final score, where a pose with a lower (more
favorable) MedusaScore has a higher weight. The second term with
logarithm of the cluster size also favor the large cluster with many
similar poses, corresponding to thermodynamic states with large
number of microstates and thus high entropy. Our clustering and
ranking approach allows us to select near-native poses even when
their scores are not obviously separated from those of decoy poses
(e.g., Figures 3D and 4B,D). As the result, we are able to predict the
near-native poses for 28 out of 35 ligands, which corresponds to the
highest success rate of near-native pose predictions (<2.5 Å RMSD)
in the CSAR2011 docking benchmark exercise. We expect a broach
application of our fully flexible docking approach in pose prediction
for both biological study as well as rational drug design.
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