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ABsTrACT. Lim and Lee [5] describe protocols for server-aided RSA digital
signatures involving moduli N with special structure: N = pq where p and ¢
are both of order N'/2, and p — 1 and ¢ — 1 have a large common factor f.
We describe a method to factor such numbers in time O(N'/*4/3) and show
that this renders the proposed system insecure.

1. INTRODUCTION

Lim and Lee [5] describe protocols for server-aided RSA digital signatures in-
volving moduli N with special structure: NV = pg where p—1 and ¢— 1 have a large
common factor 3. As usual, p and g are both of order N1/2.

The authors claim that “there exists no known algorithm for factoring N (for
|N| > 512) with knowledge of 3 of size 64 ~ 80.” We shall show that this claim is
incorrect: we describe a method to factor such numbers in time O(N'/*/3) which
renders the proposed system insecure.

2. THE PROPOSED CRYPTOSYSTEM

Lim and Lee [5] discuss server-aided RSA signature computation in the situation
where the client does not have the computational power to form an RSA signature
y = ¥ mod N, where N = pg and d are known to the client and z is an arbi-
trary challenge from the server. An example might be a smart-card with restricted
computing power as client interacting with an EFTPOS terminal as server.

In such protocols it is assumed that the client will have to use the server to
perform certain computations: in this case, modular exponentiations. A number of
proposals have been made and attacked.

The proposal in [5] involves use of a blinding factor r—¢ mod N, where r and g
are random, in order to avoid certain attacks on the protocol by malicious servers.
They propose that, in order to speed up precomputation of this blinding factor,
the factors p and ¢ of N should be chosen so that p — 1 and ¢ — 1 have a common
prime factor 3, and that the values of r should be randomly chosen from among
powers of a, where a is an element of order 8 in the multiplicative group modulo
N. The values of a and 3 are to be kept secret. It is proposed that for p and ¢ of
size around 256 bits, the size of 3 should be in the range 64 to 80 bits.

3. THE FIRST STAGE OF THE ATTACK

Assume that N = pq where p and ¢ have size ~ 256 bits and that a prime 3 of
size 64 ~ 80 bits divides both p — 1 and ¢ — 1.
We first note that NV = 1 mod . We partially factor NV —1 by one of the methods
whose running time depend on the size of the prime factor to be extracted, such as
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Pollard’s p — 1 or p methods [7], [8] or Lenstra’s elliptic curve method [3]. Current
experience suggests that a prime factor of up to 45 decimal digits can routinely be
extracted within a few days computation. Since the proposed size of § is at most
25 decimal digits, we may assume that 3 is known. Indeed we would need to choose
[ of size well in excess of 150 bits to guard against this stage, but then applying
Pollard’s p method with the “random” map z — 2" ~! 4+ 3 mod N would split N

in O(\/p/,@) steps, since there are at most (p — 1)/8 + 1 values of ¥ ~! mod p.
With 3 in excess of 150 bits, \/p/B ~ 253, and N is vulnerable.

4. THE SECOND STAGE OF THE ATTACK

We know that p = ¢ = 1 mod 8. We can now employ a variant of a method
of Lehmer described in [6]. Write p = 20 + 1 and ¢ = yB + 1, so that N =
zyB? + (x +y)B+ 1. Then (N —1)/8 = zyB + (¢ +y) = uB + v where u and
0 <wv < B are known and x,y are unknown. We have z +y = v + ¢f, zy = u — ¢,
where ¢ is the (unknown) carry in expressing (N — 1)/ in base 3.

Finding = and y is equivalent to finding ¢, since given ¢ we know x + y and
zy, and z,y are obtained as the roots of the quadratic equation (Z — z)(Z — y) =
72— (z+y)Z + xy.

The discriminant of this quadratic must be a square,

(x—y)? =(x+9y)? —day = (v+cB)* —4(u—c) = B*°c* + (2Bv + 4)c +v? — 4u

so that a possible candidate for ¢ can be tested quickly: indeed, congruences modulo
small primes should suffice to eliminate the majority of the incorrect values.

The range of possible values for ¢ is given by ¢8 < x + y: since we are assuming
that p and ¢ are of comparable sizes, we have x and y about \/ﬁ/ﬁ, so that there
are of the order of C' = /N /3% values of ¢ to test.

For the sizes proposed, N < 2512 and 8 > 2%, this means that of the order of
2128 values of ¢ need to be tested: for 8 ~ 28°, this is reduced to 2°%. By themselves,
these values are too large. We next show how to reduce them significantly.

5. THE THIRD STAGE OF THE ATTACK

We observe that A(N), the exponent of the multiplicative group modulo N, is
AN) =lem{p—1,qg—1} =lem{zp,yB} and so A(N) divides zy3. Let a be prime
to N. We have

a"P = q*¥P+B = ¢¥ mod N

so putting b = a” we have b* = b°. This equation determines ¢, which is of
magnitude C = v/N/B%, modulo the order of b in the multiplicative group. With
high probability the order of b will be nearly as large as xy, which is of magnitude
N/3%. Hence a solution ¢ to b° = b* mod N with ¢ < C' is very likely to be the
correct value.

We now solve this equation by the “baby-step giant-step” method of Shanks [10].
Let D be an integer larger than v/C and form the lists

B0 60 520 . b mod N

and

be b . b P mod N.
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We can sort these lists and find a common value b"” = b“~* in time O(D'*¢).
Then we recover ¢ as 7D +s. A low-storage alternative is to use Pollard’s A method
9],

This method will factor N in time O(C'/?%€), that is, in time dominated by
N'/4/8. In the cases under consideration, this will be at most 264 for 3 of size 64
bits and reduces to 248 for 3 of size 80 bits. These timings are too low for security
and the cryptosystem is insecure.

6. CONCLUSION

We have described a method for factoring numbers N = pg where p and ¢ are
both of order N*/2, and p — 1 and ¢ — 1 have a common factor 8: the method runs
in time O(N1/4/ﬂ) given 3. For the parameters suggested in [5], the modulus can
be factored with work at most 0(264) and the system is insecure.

REFERENCES

[1] Henri Cohen (ed.), Algorithmic number theory, Lecture notes in Computer Science, vol. 1122,
Springer—Verlag, 1996, Proceedings, second international symposium, Talence, France, May
1996.

[2] Don Coppersmith (ed.), Advances in cryptology — CRYPTO 95, Lecture notes in Computer
Science, vol. 963, Berlin, Springer Verlag, 1995.

[3] Hendrik W. Lenstra jr, Factoring integers with elliptic curves, Annals of Math. 126 (1987),
649 673.

[4] Don J. Lewis (ed.), Number theory institute 1969, Proceedings of symposia in pure mathe-
matics, vol. 20, Providence RI, Amer. Math. Soc., 1971.

[5] Chae Hoon Lim and Pil Joong Lee, Security and performance of server-aided RSA computation
protocols, In Coppersmith [2], pp. 70 83.

[6] James F. McKee and Richard G.E. Pinch, Old and new deterministic factoring algorithms, In
Cohen [1], pp. 217 224.

[7] John M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos.
Soc. 76 (1974), 521 528.

, A Monte Carlo method for factorization, BIT 15 (1975), 331-334.

, Monte Carlo methods for index computation (mod p), Math. Comp. 32 (1978), 918

924.
[10] Daniel Shanks, Class number, a theory of factorization and genera, In Lewis [4], pp. 415 440.

PEMBROKE COLLEGE, OXFORD
E-mail address: mckee@maths.ox.ac.uk

QUEENS’ COLLEGE, CAMBRIDGE
E-mail address: rgep@cam.ac.uk



