
FURTHER ATTACKS ON SERVER-AIDED RSACRYPTOSYSTEMSJAMES MCKEE AND RICHARD PINCHAbstract. Lim and Lee [5] describe protocols for server-aided RSA digitalsignatures involving moduli N with special structure: N = pq where p and qare both of order N1=2, and p � 1 and q � 1 have a large common factor �.We describe a method to factor such numbers in time O�N1=4=�� and showthat this renders the proposed system insecure.1. IntroductionLim and Lee [5] describe protocols for server-aided RSA digital signatures in-volving moduli N with special structure: N = pq where p�1 and q�1 have a largecommon factor �. As usual, p and q are both of order N1=2.The authors claim that \there exists no known algorithm for factoring N (forjN j � 512) with knowledge of � of size 64 � 80." We shall show that this claim isincorrect: we describe a method to factor such numbers in time O�N1=4=�� whichrenders the proposed system insecure.2. The proposed cryptosystemLim and Lee [5] discuss server-aided RSA signature computation in the situationwhere the client does not have the computational power to form an RSA signaturey = xd mod N , where N = pq and d are known to the client and x is an arbi-trary challenge from the server. An example might be a smart-card with restrictedcomputing power as client interacting with an EFTPOS terminal as server.In such protocols it is assumed that the client will have to use the server toperform certain computations: in this case, modular exponentiations. A number ofproposals have been made and attacked.The proposal in [5] involves use of a blinding factor r�g mod N , where r and gare random, in order to avoid certain attacks on the protocol by malicious servers.They propose that, in order to speed up precomputation of this blinding factor,the factors p and q of N should be chosen so that p� 1 and q � 1 have a commonprime factor �, and that the values of r should be randomly chosen from amongpowers of �, where � is an element of order � in the multiplicative group moduloN . The values of � and � are to be kept secret. It is proposed that for p and q ofsize around 256 bits, the size of � should be in the range 64 to 80 bits.3. The first stage of the attackAssume that N = pq where p and q have size � 256 bits and that a prime � ofsize 64 � 80 bits divides both p� 1 and q � 1.We �rst note that N � 1 mod �. We partially factorN�1 by one of the methodswhose running time depend on the size of the prime factor to be extracted, such as1



2 JAMES MCKEE AND RICHARD PINCHPollard's p� 1 or � methods [7], [8] or Lenstra's elliptic curve method [3]. Currentexperience suggests that a prime factor of up to 45 decimal digits can routinely beextracted within a few days computation. Since the proposed size of � is at most25 decimal digits, we may assume that � is known. Indeed we would need to choose� of size well in excess of 150 bits to guard against this stage, but then applyingPollard's � method with the \random" map x 7! xN�1 + 3 mod N would split Nin O�pp=�� steps, since there are at most (p � 1)=� + 1 values of xN�1 mod p.With � in excess of 150 bits, pp=� � 253, and N is vulnerable.4. The second stage of the attackWe know that p � q � 1 mod �. We can now employ a variant of a methodof Lehmer described in [6]. Write p = x� + 1 and q = y� + 1, so that N =xy�2 + (x + y)� + 1. Then (N � 1)=� = xy� + (x + y) = u� + v where u and0 � v < � are known and x; y are unknown. We have x + y = v + c�, xy = u� c,where c is the (unknown) carry in expressing (N � 1)=� in base �.Finding x and y is equivalent to �nding c, since given c we know x + y andxy, and x; y are obtained as the roots of the quadratic equation (Z � x)(Z � y) =Z2 � (x+ y)Z + xy.The discriminant of this quadratic must be a square,(x� y)2 = (x+ y)2 � 4xy = (v + c�)2 � 4(u� c) = �2c2 + (2�v + 4)c+ v2 � 4uso that a possible candidate for c can be tested quickly: indeed, congruences modulosmall primes should su�ce to eliminate the majority of the incorrect values.The range of possible values for c is given by c� � x+ y: since we are assumingthat p and q are of comparable sizes, we have x and y about pN=�, so that thereare of the order of C = pN=�2 values of c to test.For the sizes proposed, N < 2512 and � > 264, this means that of the order of2128 values of c need to be tested: for � � 280, this is reduced to 296. By themselves,these values are too large. We next show how to reduce them signi�cantly.5. The third stage of the attackWe observe that �(N), the exponent of the multiplicative group modulo N , is�(N) = lcmfp� 1; q � 1g = lcmfx�; y�g and so �(N) divides xy�. Let a be primeto N . We have au� = axy�+c� � ac� mod Nso putting b = a� we have bu � bc. This equation determines c, which is ofmagnitude C = pN=�2, modulo the order of b in the multiplicative group. Withhigh probability the order of b will be nearly as large as xy, which is of magnitudeN=�2. Hence a solution c to bc � bu mod N with c � C is very likely to be thecorrect value.We now solve this equation by the \baby-step giant-step" method of Shanks [10].Let D be an integer larger than pC and form the listsb0; bD; b2D; : : : ; bD2 mod Nand bu; bu�1; : : : ; bu�D mod N:
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