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Programmer-Friendly Refactoring Errors
Emerson Murphy-Hill, and Andrew P. Black

Abstract—Refactoring tools, common to many integrated development environments, can help programmers to restructure
their code. These tools sometimes refuse to restructure the programmer’s code, instead giving the programmer a textual error
message that she must decode if she wishes to understand the reason for the tool’s refusal, and what corrective action to
take. This article describes a graphical alternative to textual error messages called Refactoring Annotations. It reports on two
experiments, one using an integrated development environment and the other using paper mockups, that show that programmers
can use Refactoring Annotations to quickly and accurately understand the cause of refactoring errors.

Index Terms—refactoring, refactoring errors, usability, programmers, tools
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1 INTRODUCTION
Refactoring is the process of changing the structure of code
without changing the way that it behaves [6]. Refactoring
is considered a best-practice when creating and maintaining
software, and indeed, research suggests that programmers
practice it regularly [16], [22]. Examples of refactoring
include renaming a variable, moving a method from a
superclass to its subclasses, and taking a few statements and
extracting them into a new method. Each kind of refactoring
has a name: these examples are called RENAME, PUSH
DOWN METHOD, and EXTRACT METHOD [6].

Refactoring tools, such as those provided in the
Smalltalk [20] and Eclipse [22] programming environ-
ments, automate much of what the programmer would
normally do manually. Take the example of EXTRACT
METHOD. Suppose that I am a programmer working on the
method shown in Figure 1, and I am concerned about the
similarity of the three for loops between lines 18 and 46.
If I wanted to factor out the duplicated code, the first step
I might take is to put one of the loops into a new method;
I could then abstract that method so that it contains the
code that is common to the three loops. If I were using the
Eclipse environment (eclipse.org), I might do this using the
built-in EXTRACT METHOD tool by, for example, selecting
the last loop (lines 38–46) with my cursor and invoking the
refactoring tool using a hotkey.

When the tool performs the refactoring, it first an-
alyzes the code and learns that three values must be
passed in to the new method (iLastNumber, pos, and
pieceNumbers). It also learns that the value of pos

must be returned, because the variable pos is assigned to
in the extracted code, and is read on line 52. To maintain
the original semantics, the refactored code would instead
assign the return value of the extracted method to pos. The
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result of the refactoring is shown in Figure 2. This example
illustrates the advantage of using a refactoring tool over
refactoring by hand: the tool can automatically perform a
static analysis that will enable it to “do the right thing,”
whereas if I refactor by hand, I have to analyze the flow
of data through the program myself. In short, refactoring
tools save the programmer from doing error-prone work.
Thus, because programmers already refactor regularly, we
can see that if they used tools for that refactoring, their
productivity could be improved.

Suppose that I instead select the first for loop (lines 18–
26) and try to use Eclipse’s refactoring tool. In that case, the
tool would refuse to refactor my code, instead displaying
the error message of Figure 3. This error message is
an indication that a precondition of the refactoring was
violated in the original code. In this case, the tool’s data
flow analyzer determined that several variables were being
assigned in the loop, and that at least two of them are used
later-on in the code. This is a problem because, in Java,
a method can return only a single value, so the calling
method could not update multiple variables based on values
returned from the new method. Thus, the tool is unable to
perform the EXTRACT METHOD refactoring. (In a language
that supported multiple results or out parameters, this would
not be a problem.)

The topic of this article is making refactoring error
messages easier to understand. While significant research
has been done to ensure the correctness of refactorings (for
example [2], [7], [11], [18]), to our knowledge, no other
researchers have investigated how to present errors when
behavior preservation cannot be assured. Using a small for-
mative study, we show that programmers encounter errors
fairly frequently when using Eclipse’s EXTRACT METHOD
refactoring tool. Moreover, when errors occur, program-
mers typically misunderstand the error messages or simply
ignore them (Section 2). We then describe a graphical
alternative to EXTRACT METHOD error messages, called
Refactoring Annotations, which we implemented as an
Eclipse plugin (Section 3). We show how programmers
can then use Refactoring Annotations to understand the
causes of refactoring errors significantly faster and more

eclipse.org
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1 if( destroyed ) return new int[0];
2

3 /** Cheap hack to reduce (but not remove all)
4 the # of duplicate entries */
5 int iLastNumber = -1;
6 int pos = 0;
7 int[] pieceNumbers;
8

9 try {
10 lock_mon.enter();
11

12 // allocate max size needed
13 // (we’ll shrink it later)
14 pieceNumbers = new int[queued_messages.size()
15 +loading_messages.size()
16 +requests.size()];
17

18 for(Iterator iter = queued_messages.keySet().
19 iterator(); iter.hasNext();) {
20 BTPiece msg =
21 (BTPiece) iter.next();
22 if (iLastNumber != msg.getPieceNumber()) {
23 iLastNumber = msg.getPieceNumber();
24 pieceNumbers[pos++] = iLastNumber;
25 }
26 }
27

28 for(Iterator iter=loading_messages.iterator();
29 iter.hasNext();) {
30 DiskManagerReadRequest dmr =
31 (DiskManagerReadRequest) iter.next();
32 if (iLastNumber != dmr.getPieceNumber()) {
33 iLastNumber = dmr.getPieceNumber();
34 pieceNumbers[pos++] = iLastNumber;
35 }
36 }
37

38 for(Iterator iter = requests.iterator();
39 iter.hasNext();) {
40 DiskManagerReadRequest dmr =
41 (DiskManagerReadRequest) iter.next();
42 if (iLastNumber != dmr.getPieceNumber()) {
43 iLastNumber = dmr.getPieceNumber();
44 pieceNumbers[pos++] = iLastNumber;
45 }
46 }
47

48 } finally {
49 lock_mon.exit();
50 }
51

52 int[] trimmed = new int[pos];
53 System.arraycopy(pieceNumbers,0,trimmed,0,pos);
54

55 return trimmed;

Fig. 1. The body of a method from the
OutgoingBTPieceMessageHandler class in the
open-source Vuze project (azureus.sourceforge.net).

accurately than standard Eclipse error messages (Section 4).
Based on what we learned while building and evaluating
Refactoring Annotations for EXTRACT METHOD, we distill
a set of usability guidelines that, we believe, capture what
makes Refactoring Annotations effective. We then map
the guidelines onto a taxonomy of refactoring tool error
messages, sketching how our guidelines can be applied to
all refactoring errors (Section 6). Finally, in a paper-based
evaluation, we show that programmers can understand
the causes of a variety of refactoring errors faster and

38 pos = extractedLoop(iLastNumber,pieceNumbers,pos);

58 int extractedLoop(int iLastNumber,
59 int[] pieceNumbers,
60 int pos){
61 for(Iterator iter = requests.iterator();
62 iter.hasNext();) {
63 DiskManagerReadRequest dmr =
64 (DiskManagerReadRequest) iter.next();
65 if (iLastNumber != dmr.getPieceNumber()) {
66 iLastNumber = dmr.getPieceNumber();
67 pieceNumbers[pos++] = iLastNumber;
68 }
69 }
70 return pos;
71 }

Fig. 2. The result of an EXTRACT METHOD performed
on the code in Figure 1.

Fig. 3. Eclipse refusing to perform EXTRACT METHOD.

with significantly more accuracy when using our graphical
Refactoring Annotations, compared to using traditional
textual error messages (Section 7).

This article partially overlaps a previous study, presented
at ICSE 2008 [15], in which we described Refactoring
Annotations for EXTRACT METHOD, discussed here in
Sections 2 through 5, as well as two tools for selecting code,
which are not discussed in this article. The contributions of
the previous study were

• the introduction of Refactoring Annotations, a novel
visualization for expressing precondition violations
during EXTRACT METHOD;

• an evaluation that suggests that Refactoring Annota-
tions for EXTRACT METHOD are faster, more accurate,
and more satisfying to use than their textual counter-
parts; and

• a set of guidelines for building error visualizations for
future refactoring tools.

This article elaborates on these contributions, and in addi-
tion presents

• a taxonomy of refactoring preconditions, which we
derive from refactoring tools for 4 different languages;

• an application of our guidelines to the taxonomy,
showing that the guidelines can be applied to a variety
of refactoring tools; and

• an evaluation that suggests that Refactoring Annota-
tions are more usable than error messages in a variety
of refactoring tools.

azureus.sourceforge.net
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2 A FORMATIVE STUDY OF REFACTORING

We hypothesized that the error messages emitted by exist-
ing refactoring tools are non-specific and unhelpful. This
hypothesis about error messages has been explored in
similar domains, such as compilation errors. Such studies
have shown that programmers have difficulty understanding
compilation error messages [12], [19], so it is natural to
expect that programmers may also have difficulty with
refactoring error messages.

To explore this hypothesis, and to better understand
the usability problems that exist in modern refactoring
tools, we observed several programmers use the Eclipse
EXTRACT METHOD refactoring tool. We focused on EX-
TRACT METHOD in Eclipse because it is a mature, non-
trivial refactoring tool and because many refactoring tools,
like Eclipse, use error messages to communicate precondi-
tion violations.

In this formative study, we observed eleven programmers
perform a number of EXTRACT METHOD refactorings.
Six of the programmers were Ph.D. students and two
were professors from Portland State University; three were
commercial software developers. We asked the participants
to use the Eclipse EXTRACT METHOD tool to refactor parts
of several large, open-source projects:

• Vuze, a peer-to-peer file-sharing client (http://azureus.
sourceforge.net);

• GanttProject, a project scheduling application (http://
ganttproject.biz);

• JasperReports, a report generation library (http://
jasperforge.org);

• Jython, a Java implementation of the Python program-
ming language (http://www.jython.org); and

• the Java 1.4.2 libraries (http://java.sun.com/j2se/1.4.2/
download.html).

We chose these projects because of their size and maturity.
Programmers were free to refactor whatever code they
thought necessary; they were allowed to use a tool to
help find long methods, which can be good candidates
for refactoring. Each refactoring session was limited to 30
minutes; programmers successfully extracted between 2 and
16 methods during that time.

We made the following conjectures based on our obser-
vations of programmers struggling with refactoring error
messages during this study:

• Many programmers encounter refactoring errors. In
all, 9 out of 11 programmers experienced at least
one error message while trying to extract code. The 2
exceptions performed some of the fewest extractions in
the group, so were among the least likely to encounter
errors. Surprisingly, these 2 exceptions were among
the most experienced programmers in the group; we
hypothesize that they performed so few extractions
because they avoided refactoring code that might pos-
sibly generate error messages.

• Some programmers encounter errors frequently. For
example, one programmer attempted to extract 34

methods and encountered errors during 23 of these
attempts.

• Programmers encounter refactoring errors from a vari-
ety of sources. In the study, programmers encountered
errors regarding invalid or inappropriate selections,
multiple assignments, and control flow problems.

• Error messages are insufficiently descriptive. Program-
mers, especially refactoring tool novices, may not
understand an error message that they have not seen
before. When we asked what an error message was
saying, several programmers were unable to explain
the problem correctly.

• Programmers have difficulty assessing the amount of
work required to resolve an error. This was partially
because even if multiple precondition violations ex-
isted during a particular application of the tool, Eclipse
reported only a single violation.

• Programmers confuse error messages. All the errors
were presented as graphically-identical text boxes with
identically formatted text. At times, programmers in-
terpreted one error message as an unrelated error
message because the errors appeared identical at a
quick glance. Improving the message text would not
solve this problem: the clarity of the message text is
irrelevant when the programmer does not take the time
to read it.

• Error messages discourage programmers from refac-
toring at all. For instance, if the tool said that a
method could not be extracted because there were
multiple assignments to local variables (Figure 3), the
next time a particular programmer came across any
assignments to local variables, the programmer did not
try to refactor, even if no precondition was violated.

This study shows that there is room for two kinds of
improvement to EXTRACT METHOD tools. First, to prevent
a large number of mis-selection errors, programmers need
support in making a valid selection; an implementation of
this is described and evaluated in our ICSE paper [15].
Second, to help programmers recover successfully from
violated preconditions, programmers need expressive, dis-
tinguishable, and understandable feedback that conveys the
meaning of precondition violations; this is the focus of the
remainder of this article.

3 AN ALTERNATIVE TO TEXTUAL ERROR
MESSAGES

We have built a plugin for the Eclipse environment that ad-
dresses the problems with error messages that were revealed
by the formative study. The plugin is called Refactoring
Annotations, and can be downloaded from http://multiview.
cs.pdx.edu/refactoring/refactoring annotations. In general,
Refactoring Annotations can be thought of as graphical
error messages; specifically, the current plugin displays vio-
lated preconditions for the EXTRACT METHOD refactoring.

In our prototype, the programmer uses Refactoring An-
notations by invoking a specific hotkey or toolbar button.

http://azureus.sourceforge.net
http://azureus.sourceforge.net
http://ganttproject.biz
http://ganttproject.biz
http://jasperforge.org
http://jasperforge.org
http://www.jython.org
http://java.sun.com/j2se/1.4.2/download.html
http://java.sun.com/j2se/1.4.2/download.html
http://multiview.cs.pdx.edu/refactoring/refactoring_annotations
http://multiview.cs.pdx.edu/refactoring/refactoring_annotations
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Fig. 4. Refactoring Annotations overlaid on program
text. The programmer has selected two lines (between
the dotted lines) to extract. Refactoring Annotations
show how the variables will be used: front and rear

will be parameters, as indicated by the arrows into the
code to be extracted, and trued will be returned, as
indicated by the arrow out of the code to be extracted.

After doing so, the development environment visually anno-
tates the currently selected text in the program editor. Thus,
the programmer can use either Refactoring Annotations
or refactoring error messages, via the standard EXTRACT
METHOD tool. In a practical implementation, however,
Refactoring Annotations would augment or replace the
standard error messages, and thus would be shown just
before the appearance of the EXTRACT METHOD configu-
ration dialog. The prototype is currently not integrated in
this way for two reasons. First, it allowed us to more easily
perform a comparative evaluation, discussed in Section 4.
Second, the prototype uses a data- and control-flow anlaysis
engine that we have built ourselves, rather than the existing
Eclipse precondition checking engine.

Refactoring Annotations overlay the program text to
express control- and data-flow information, also known
as program dependence graphs [4], in the programmer’s
selection. Each variable is assigned a distinct color, and
each occurrence of the variable is highlighted, as shown in
Figure 4. Across the top of the selection, an arrow points
to the first use of a variable whose value will have to be
passed as an argument into the extracted method. Across
the bottom, an arrow points from the last assignment of a
variable whose value will have to be returned. Variables that
are declared or assigned to have black boxes around them.
An arrow to the left of the code indicates that program
control flows from the beginning of the selected code to
end of it.

These annotations are intended to be most useful when
preconditions are violated, as shown in Figure 5. When the
selection contains assignments to more than one variable,
multiple arrows are drawn leaving the bottom, showing
multiple return values (Figure 5, top). When a selection
contains a conditional return, an arrow is drawn from the
return statement to the left, crossing the beginning-to-end
arrow (Figure 5, middle). When the selection contains a
branch (break or continue) statement, a line is drawn
from the branch statement to its corresponding target (Fig-
ure 5, bottom). In each case, Xs are displayed over the

Fig. 5. Refactoring Annotations display three kinds of
violated preconditions.

arrows, indicating the location of the violated precondition.
When code violates a precondition, Refactoring Annota-

tions are intended to give the programmer an idea of how
to correct the violation. Often the programmer can enlarge
or reduce the selection to allow the extraction of a method.
Other solutions include changing program logic to eliminate
break and continue statements; this is another kind of
refactoring.

Refactoring Annotations are intended to scale well as
the amount of code to be extracted increases. For code
blocks of tens or hundreds of lines, only a few values
are typically passed in or returned, and only the variables
holding those values are colored. In the case when a piece
of code uses or assigns to many variables, the annota-
tions become visually complex. However, we reason that
this is desirable: the more values that are passed in or
returned, the more coupled the extracted method is to its
calling context [9]. Thus, we feel that code with visually
complex Refactoring Annotations should probably not have
EXTRACT METHOD performed on it. As one programmer
has commented, Refactoring Annotations visualize a useful
complexity metric.

Refactoring Annotations are intended to assist the pro-
grammer in resolving precondition violations in two ways.
First, because Refactoring Annotations can indicate multi-
ple precondition violations simultaneously, the annotations
give the programmer an idea of the severity of the problem.
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Correcting a conditional return alone will be easier than
correcting a conditional return, and a branch, and multi-
ple assignments. Likewise, correcting two assignments is
likely to be easier than correcting six assignments. Second,
Refactoring Annotations give specific, spatial cues that can
help programmers to diagnose the violated preconditions.

Refactoring Annotations are similar to a variety of prior
visualizations. Our control flow annotations are visually
similar to Control Structure Diagrams [8]. However, unlike
Control Structure Diagrams, Refactoring Annotations de-
pend on the programmer’s selection, and visualize only the
information that is relevant to the refactoring task. Variable
highlighting is like the highlighting tool in Eclipse, where
the programmer can select an occurrence of a variable,
and every other occurrence is highlighted. Unlike Eclipse’s
variable highlighter, Refactoring Annotations distinguish
between variables by color; moreover, the variables relevant
to the refactoring are highlighted automatically. In Refac-
toring Annotations, the arrows drawn on parameters and
return values are similar to the arrows in the DrScheme
environment [5], which draws arrows between a variable
declaration and each variable reference. Unlike the arrows
in DrScheme, Refactoring Annotations automatically draw
a single arrow for each parameter and for each return
value. Refactoring Annotations’ data-flow arrows are like
the code annotations drawn in a program slicing tool built
by Ernst [3], where arrows and colors display the input
data dependencies for a code fragment. While Ernst’s
tool uses more sophisticated program analysis than the
current version of Refactoring Annotations, it does not
include a representation of either output values or control
flow. Finally, the EXTRACT METHOD tool in DevExpress’
Refactor! Pro product (http://www.devexpress.com) visual-
izes parameters and return values as colored lines in the
code editor, much like Refactoring Annotations. However,
unlike Refactoring Annotations, this visualization is used
for informational purposes during successful refactorings;
it is not used to communicate violated preconditions.

Another alternative to displaying error messages is to au-
tomatically resolve the problem. Two examples of tools that
take this approach are Code Guide (http://www.omnicore.
com/en/codeguide.htm) and Xrefactory (http://www.xref.
sk). For example, when multiple return values are detected,
Xrefactory creates a new tuple class, creates and initializes
a new tuple object with the return values, and extracts the
values from the tuple in the caller. Resolving the problem
automatically in this way has the disadvantage that the tool,
rather than the programmer, chooses which resolution to
apply. Such tools could conceivably give the programmer
a choice of resolutions, but if there were a large number
of possible resolutions, the programmer would be burdened
with reading all of them. Instead, Refactoring Annotations
take a different approach; give the programmer a detailed
account of the problem, and then let her make an intelligent
decision about how to resolve the problem.

4 EVALUATION

To evaluate whether Refactoring Annotations are more us-
able than their textual counterparts, we asked programmers
to use both the standard error message dialogs and Refactor-
ing Annotations (both in Eclipse) to identify problems in a
code selection that violated preconditions of the EXTRACT
METHOD refactoring. We evaluated subjects’ responses for
speed and correctness.

4.1 Subjects
We recruited subjects from the second author’s object-
oriented programming class. Students were given the option
of either participating in the experiment or completing
an alternative assignment on refactoring. 16 out of 18
students elected to participate; most had around 5 years
of programming experience, although three had about 20
years. About half the students typically used integrated
development environments such as Eclipse, while the other
half typically used editors such as vi [10]. All students were
at least somewhat familiar with the practice of refactoring.

4.2 Methodology
All participants used both precondition violation error
messages and Refactoring Annotations. When each subject
began this experiment, we showed the subject how the
EXTRACT METHOD refactoring works using the standard
Eclipse refactoring tool. We then demonstrated and ex-
plained each error message shown in a dialog box by
this tool; this took about 5 minutes. We then told the
subject that her task was to identify each and every violated
precondition in a given code selection, assisted by the
tool’s diagnostic message. We then allowed the subject
to practice using the tool until she was satisfied that she
could complete the task; this usually took less than 5
minutes. The subject was then told to perform the task on
4 different EXTRACT METHOD candidates from different
classes. Half of subjects used error messages with candidate
set A, while half of subjects used error messages with set
B. This proceedure was then repeated using Refactoring
Annotations, where subjects who had used candidate set
A with error messages then used set B with Refactoring
Annotations, and subjects who used B with error messages
then used A with Refactoring Annotations. This counter-
balancing helped ensure that any performance differences
that we observed were not due to differences in code.

4.3 Results
Table 1 counts two kinds of mistakes made by subjects.
“Missed Violation” counts subjects who failed to recognize
one or more preconditions that were being violated. “Irrel-
evant Code” counts subjects who identified some piece of
code that was irrelevant to the violated precondition, such
as identifying a break statement when the problem was a
conditional return.

Table 1 indicates that programmers made fewer mistakes
with Refactoring Annotations than with the error messages.

http://www.devexpress.com
http://www.omnicore.com/en/codeguide.htm
http://www.omnicore.com/en/codeguide.htm
http://www.xref.sk
http://www.xref.sk


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. T, MONTH YEAR 6

Mean
Missed Irrelevant Identification

Tool Violation Code Time

Error Message 11 28 165 seconds
Refactoring
Annotations

1 6 46 seconds

TABLE 1
Mistakes made by all subjects when finding problems

during the EXTRACT METHOD refactoring, and the
mean time taken to correctly identify all precondition

violations. Smaller numbers imply better performance.

Using Refactoring Annotations, subjects were much less
likely to miss a violation and much less likely to misiden-
tify the precondition violations. The overall difference in
the number of programmer mistakes per refactoring was
statistically significant (p = .003, df = 15, z = 2.95, using a
Wilcoxon matched-pairs signed-ranks test).

Table 1 also shows the mean time to find all precon-
dition violations correctly, across all subjects. On average,
subjects recognized precondition violations more than three
times faster using Refactoring Annotations than using the
error messages. The recognition time difference was statis-
tically significant (p < .001 using a t-test with a logarithmic
transform to correct long recognition time outliers).

Figure 6 shows the mean time to identify all precondition
violations correctly for each tool and each user. Note that
we omitted two subjects from the plot, because they did
not correctly identify precondition violations for any code
using the error messages. The dashed line represents equal
mean speed using either tool. Since all subjects are below
the dashed line, all subjects are faster with Refactoring
Annotations. Most users were also more accurate using
Refactoring Annotations.

Overall, Refactoring Annotations helped the subjects
to identify every precondition violation in 45 out of 64
cases. In only 26 out of 64 cases did the error messages
allow the subjects to identify every precondition violation.
Subjects were faster and more accurate using Refactoring
Annotations than using error messages.

We administered a post-test questionnaire that allowed
the subjects to express their preferences for the two
tools they tried. Significance levels are reported using a
Wilcoxon matched-pairs signed-ranks test. Eleven out of
16 subjects ranked Refactoring Annotations higher than
error messages with respect to helpfulness, while 12 of
16 ranked Refactoring Annotations higher with respect
to likeliness to use again. Differences between the tools
in helpfulness (p = .003, df = 15, z = 3.02) and likeliness
to use (p = .002, df = 15, z = 3.11) were both statistically
significant. Concerning error messages, subjects reported
that they “still have to find out what the problem is” and
are “confused about the error message[s].” In reference to
the error messages produced by the Eclipse tool, one subject
quipped, “who reads alert boxes?”

Overall, the subjects’ responses showed that they found

the Refactoring Annotations superior to error messages for
the tasks given to them. More importantly, the responses
also showed that the subjects felt that Refactoring Annota-
tions would be helpful during their normal programming ac-
tivities. The experimenter’s notebook from this experiment
can be found in Appendix 1, while raw data can be found
at http://multiview.cs.pdx.edu/refactoring/experiments.

4.4 Threats to Validity
Although the quantitative results discussed in this section
are encouraging, several limitations must be considered
when interpreting them. One major limitation is that every
subject first used the Eclipse error messages and then
used Refactoring Annotations; the fixed order may have
biased the results to favor Refactoring Annotations due to a
learning effect. A second limitation is that the students were
volunteers, and may not be representative of programmers
in general. A third limitation is that the code samples se-
lected for the experiment may not be representative of code
that is the subject of a refactoring tool. Finally, because this
experiment only evaluates EXTRACT METHOD, the results
may not generalize to other refactorings. We address this
last threat in Section 7.

4.5 Discussion
The results of the experiment suggest that Refactoring An-
notations are preferable to an error-message-based approach
for showing precondition violations during the EXTRACT
METHOD refactoring. Furthermore, the results indicate
that Refactoring Annotations communicate the precondition
violations effectively. When a programmer has a better
understanding of refactoring problems, we believe that the
programmer is likely to be able to correct the problems and
successfully perform the refactoring.

5 GUIDELINES FOR PRESENTING ERRORS

Although programmers using Refactoring Annotations per-
formed significantly better than those using error messages
in our study, our tool is limited to one refactoring in one
IDE for one language. How can we generalize this work
to help solve the refactoring error problem for EXTRACT
METHOD in other contexts, to cover other refactorings, and
perhaps to apply to other kinds of error reporting in an
interactive development environment?

By comparing how programmers use both error mes-
sages and Refactoring Annotations to understand the causes
of violated refactoring preconditions, we have induced a
number of usability guidelines for refactoring tools. We
feel that these guidelines capture the essential attributes
of Refactoring Annotations, and will help future toolsmiths
build more usable representations for refactoring errors, and
perhaps for other kinds of errors.

In this section, we make observations about the experi-
ment or about the design of Refactoring Annotations, and
then present the guideline that is intended to capture those
observations.

http://multiview.cs.pdx.edu/refactoring/experiments
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Refactoring Annotations. Each subject is represented as an X, where the distance between the bottom legs
represents the number of imperfect identifications using the error messages and the distance between the top
arms represents the number of imperfect identifications using Refactoring Annotations.

Expressiveness. During the experiment with error mes-
sages, programmers invested significant time deciphering
the message. Refactoring Annotations reduced that time.
Thus:
� A representation of a refactoring error should help the

programmer to comprehend the problem quickly by
clearly expressing the details: the programmer should
not have to spend significant time understanding the
cause of an error.

Locatability. Because Refactoring Annotations colored the
location of precondition violations in the editor, program-
mers in our experiment could locate problems quickly and
accurately. In contrast, with error messages, programmers
were forced to find the locations of violated preconditions
manually. A tool should tell the programmer what it just
discovered, rather than requiring the programmer “to basi-
cally compile the whole snippet in my head,” as one Eclipse
bug reporter complained regarding an EXTRACT METHOD
error message [1]. Thus:
� A representation of a refactoring error should indicate

the location(s) of the problem.
Completeness. Refactoring Annotations show all errors
at once: during the experiment, this allowed programmers
to find all violated preconditions quickly. In contrast, pro-
grammers who used error messages had to fix one violation
before they could find the next. Thus, to help programmers
assess the severity of the problem:
� A representations of a refactoring error should show

all problems at once.
Estimability. The number of Xs in a Refactoring Annota-
tion gives the programmer a visual estimate of the sever-
ity of the problem; error messages do not. For instance,
Eclipse’s error message did not indicate how many values
would need to be returned from an extracted method, just
that the number was greater than one. The programmer
should be able to tell quickly whether a violation means
that the code can be refactored after a few minor changes,
or whether the refactoring is nearly hopeless. Thus:

� A representation of a refactoring error should help the
programmer to estimate the amount of work required
to fix violated preconditions.

Relationality. Violations often arise from the relationship
between several pieces of code, not from a feature at a
single place. Refactoring Annotations relate the declaration
of and references to a variable using a specific color; this
allows the programmer to analyze the problem one variable
at a time. More generally, relations can be represented
using, for example, arrows and colors. Thus:

� A representation of a refactoring error should display
information relationally, when this is appropriate.

Perceptibility. Xs in the Refactoring Annotations allowed
programmers to quickly distinguish errors from other types
of information. Programmers were not left to wonder
whether there was a problem with the refactoring. Thus:

� Representations of refactoring errors should allow pro-
grammers to easily distinguish precondition violations
(showstoppers) from warnings and advisories.

Distinguishability. In the experiment, programmers using
error messages conflated one kind of violation with another.
This wasted their time because they tried to track down vi-
olations that did not exist. Programmers using Refactoring
Annotations, which use distinct representations for distinct
errors, rarely conflated different kinds of violation. Thus:

� Representations of refactoring errors should allow the
programmer to distinguish easily between different
kinds of violation.

Each of our guidelines has precedent in prior work in
the domain of usability for user-interfaces. Expressiveness,
Locatability, and Relationality are similar to Shneiderman’s
recommendation that error messages be specific rather
than general, so that the user understands the cause of
the error [21, p. 59]. Likewise, Locatability, Completeness,
and Estimability are all designed to achieve Shneiderman’s
recommendation for constructive guidance, so that the user
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can successfully recover from an error [21, p. 58]. Per-
ceptibility and Distinguishability are similar to Nielsen’s
“Help users recognize . . . errors” and “consistency and
standards;” the latter states that “users should not have to
wonder whether different words, situations, or actions mean
the same thing” [17].

This set of guidelines is complementary to Mealy and
colleagues’ existing guidelines for presenting refactoring
errors [13, Appendix C.2]. Because Mealy and colleagues’
guidelines were developed by distilling and augmenting
existing sets of general usability guidelines, the focus of
Mealy and colleagues’ guidelines are different. Specifically,
while our guidelines focus on making the content of error
representations better, Mealy and colleagues tend to focus
on avoiding, tolerating, and recovering from errors. The
guideline E3 is an exception, “Provide understandable,
polite, meaningful, informative error messages,” which is
comparable to our Expressiveness guideline.

6 A TAXONOMY OF REFACTORING PRE-
CONDITION VIOLATIONS
One of the motivations for introducing the above guidelines
was to generalize our work to precondition violations for
other refactorings. To assess how well we have succeeded,
we now characterize precondition violations for a wide
variety of refactorings and explain how our guidelines can
be applied to them.

6.1 Methodology for Deriving a Precondition Tax-
onomy
In order to draw general conclusions about how to represent
precondition violations, we classified all the precondition
violations that are detected by four different refactoring
tools, each for a different language.

• Eclipse JDT. This is the standard Eclipse Java refac-
toring tool (http://www.eclipse.org/jdt). We gathered
precondition violations from a key-value text file used
to store each precondition error message. This is the
most mature refactoring tool of the four we studied,
containing 537 error messages in total. We inspected
a version from the Eclipse CVS repository checked in
on 4 August 2008.

• Eclipse CDT. This tool is built for C++ as a plugin
to the C/C++ environment for Eclipse (http://r2.ifs.
hsr.ch/cdtrefactoring). We gathered precondition error
messages in the same way as with Eclipse JDT. This
refactoring tool contained a total of 77 error messages.
We inspected version “0.1.0.qualifier”.

• Eclipse RDT. This tool is built for the Ruby environ-
ment for Eclipse (http://rubyeclipse.sourceforge.net).
We gathered precondition error messages in the same
way as with Eclipse JDT, although the error messages
were spread across several files. This refactoring tool
contained a total of 73 error messages. We inspected
Subversion revision 1297.

• HaRe. This tool is built for refactoring Haskell pro-
grams (http://www.cs.kent.ac.uk/projects/refactor-fp/

hare.html). We gathered precondition error messages
by searching for invocations of the error function,
which was typically followed by an error message
that indicated a violated refactoring precondition. This
refactoring tool contained a total of 204 error mes-
sages. We inspected the 27 March 2008 update of
HaRe 0.4.

To create the taxonomy, the first author of this paper
served as the coder, manually classifying messages from
these four projects. We did not attempt to automate this
process because we noticed that many error messages
could practically refer to the same problem, yet included
significantly different text. The four error messages in
Section 6.2.1 exhibit this problem.

The coder categorized the messages in the following
manner. First, the coder classified messages based on what
he believed was the root cause of error, assigning each error
message to an emergent category. The coder then identified
super-categories that encapsulated several subcategories; a
few messages were ambiguous in their root cause, but could
be placed into a super-category. The coder finally re-read
each error message to make sure that it appeared in its
appropriate category in the taxonomy.

6.2 Taxonomy Description
Table 2 displays our taxonomy. Categories are indented
when they are a subcategory; for instance, inaccurate
analysis is a kind of analysis problem. Note that the
number of error messages in each taxonomy category is
not indicative of the importance of a particular category.
This is because some general error messages that apply
to several refactorings appear just once, and also because
some tool categories are unpopulated because of the relative
immaturity of the tool.

Due to space constraints, we cannot describe each cat-
egory and how we applied our guidelines to it. Instead,
in Sections 6.2.1 through 6.2.3, we explain three of the
categories, give example error messages, and describe how
the guidelines apply in each category. We also provide
mockups of how Refactoring Annotations can be extended
to precondition violations in the taxonomy. An explanation
of every category listed in Table 2 can be found else-
where [14, p. 155–184]. Additionally, the reader can find
the original error messages along with their categories at
http://multiview.cs.pdx.edu/refactoring/error taxonomy.

We found that the guidelines applied to all categories
except inaccurate analysis, internal errors, identity con-
figuration, property, vague, and unknown. These errors in
these categories were either too diverse to say generally
how the guidelines apply, or deeply tried to explain the
inner workings of the refactoring tool itself. Guidelines that
address the latter type of errors remain future work.

6.2.1 Precondition Category: Illegal Name
Illegal name occurs when a programmer is choosing a name
for a program element to be created, but that name violates
the rules of the programming language.

http://www.eclipse.org/jdt
http://r2.ifs.hsr.ch/cdtrefactoring
http://r2.ifs.hsr.ch/cdtrefactoring
http://rubyeclipse.sourceforge.net
http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html
http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html
http://multiview.cs.pdx.edu/refactoring/error_taxonomy
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Category JDT CDT RDT HaRe
analysis problem 0 0 0 0

inaccurate analysis 35 4 2 2
incompatibility 5 1 0 0
compilation errors 27 1 3 0
internal error 24 5 0 36
inconsistent state 15 2 0 0

unsaved 4 1 0 0
deleted 4 0 0 0

misselection 0 0 0 0
selection not understood 30 26 19 33
improper quantity 0 5 0 2

misconfiguration 3 0 0 0
illegal name 6 7 1 15
unconventional name 11 0 0 0
identity configuration 4 0 7 3
unbound configuration 7 2 0 2

unchangeable 3 0 0 0
unchangeable reference 2 0 0 0
unchangeable source 16 0 0 0
unchangeable target 12 0 0 0

unbinding 12 0 0 1
control unbinding 35 2 4 10
data unbinding 18 5 3 4
name unbinding 20 0 0 2
inheritance unbinding 11 0 1 0

clash 6 5 0 24
control clash 17 3 5 9
data clash 16 0 3 3
name clash 38 3 0 2
inheritance clash 9 0 0 0

inherent 0 0 0 0
context 38 0 7 4

own parent 4 0 0 0
structure 17 0 13 9
property 45 3 3 0

vague 37 1 0 22
unknown 6 1 2 21

TABLE 2
Our taxonomy of precondition violations (column 1), with counts and bars indicating the number of error

messages in each category for each refactoring tool (columns 2–5).

Example: Illegal Name Errors
Tool Refactoring Message
JDT Multiple Type name cannot contain a dot (.).
CDT Multiple contains an unidentified mistake.
RDT RENAME Please enter a valid name for the

variable.
HaRe RENAME The new name should be an operator!

The expressiveness of representations of an illegal name
violation can be improved by indicating what character
or character combinations are invalid and, if possible,
what characters are valid. Locatability can be improved
by pointing at which entered character or characters are
invalid; estimability can be improved by pointing at each
and every invalid character. Figure 7 shows an example of
what such a user interface might look like.

6.2.2 Precondition Category: Inheritance Unbinding

Inheritance unbinding occurs when the refactoring tool tries
to modify some code that contains inheritance relationships,
but doing so would break those relationships.

Example: Inheritance Unbinding Errors
Tool Refactoring Message
JDT RENAME FIELD Cannot be renamed because it is de-

clared in a supertype
RDT INLINE CLASS The inlne [sic] target is subclassed

and thus cannot be inlined.

Estimability can be improved by showing the number of
problematic inheritance relationships. Relationality can be
improved by extending the top/bottom metaphor used in
the data flow indicators in Refactoring Annotations for EX-
TRACTMETHOD (as in Figure 4). In the case of inheritance,
“up” would mean superclass or supertype, while “down”
would mean subclass or subtype. Thus, precondition vio-
lations relating to supertypes or superclasses could use an
“up” relationship, and vice-versa. Xs could then be placed
where such relationships are broken, and the programmer
could click on the unattached end of the relationship arrow
to go the source. This could improve locatability as well,
since the programmer would be able to use the relation to
navigate to the relevant program elements. Figure 8 shows
an example mockup for an unsuccessful MOVE METHOD
refactoring.
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x  cannot contain the . character

.

.

x  cannot contain the @ character

@

Fig. 7. How illegal name violations could be imple-
mented following our guidelines. The green violation
indicators indicate that two invalid characters were
typed into the new name text field. The original Eclipse
error message states only “Type name cannot contain
a dot (.).”

transferQueue

transferQueue
lookupTransferQueue

x   this method overriden by        lookupTransferQueue(...) 

x        lookupTransferQueue(...) overrides this method

x        transferQueue is not visible in destination

Fig. 8. A mockup of how the guidelines inform the
display of name unbinding (in purple) and inheritance
unbinding (in green) for an attempted MOVE METHOD
refactoring, where the destination class is the class
of this_mon. The purple annotations indicate that this
method relies on a field transferQueue, which will not
be accessible in the destination. The green annota-
tions indicate that the current lookupTransferQueue
method overrides a superclass method (top) and a
subclass method (bottom), so the method cannot be
moved.

6.2.3 Precondition Category: Structure

Structure violations occur when a refactoring cannot pro-
ceed because of the structure of the program element being
refactored.

theEnvironment

theEnvironment

theEnvironment

x  cannot inline blank �nals

Fig. 9. A mockup of how the guidelines inform the
display of structure for an attempted INLINE CONSTANT
refactoring, pointing out that the selected constant
theEnvironment is blank, meaning that it is not as-
signed to at its declaration. The original Eclipse modal
error message states “Inline Constant cannot inline
blank finals.”

Example: Structure Errors
Tool Refactoring Message
JDT INLINE

METHOD
Method declaration contains recursive
call.

RDT MERGE WITH
EXTERNAL
CLASS PARTS

There is no class in the current file
that has external parts to merge

HaRe MERGE DEFINI-
TIONS

The guards between the two functions
do not match!

Locatability can be improved by making the structure
of the program element to be refactored more explicit.
Relationality can be improved by relating relevant pieces
of the structure to one another; Figure 9 shows an example.
The expressiveness of Figure 9 might also be improved by
an explanation of the term “blank final.”

6.2.4 Limitations to the Taxonomy
We should be aware of several caveats before drawing con-
clusions about how our guidelines apply to the taxonomy
of refactoring preconditions.

First, the taxonomy is imperfect. Although it is a best-
effort attempt to classify real-world error messages, similar
error messages may appear in different categories. The
size of the error message corpus (891 messages in total)
combined with the textual inconsistencies between mes-
sages meant that doing a completely accurate classification
was nearly impossible. For example, several completely
different EXTRACT METHOD error messages appear to
refer to the same violation: “No statement selected,” “There
is nothing to extract,” and “Cannot extract a single method
name.” While we assumed that these messages have iden-
tical causes, they may refer to subtly different errors. In
general, messages are difficult to classify because they can
be stated in ways that are positive or negative, constructive
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or declarative, programmer-oriented or tool-oriented.
Second, some messages could conceptually be placed in

more than one category. For example, the error message
“Removed parameter is used in method declared
in type ” could appear in either inheritance unbinding
or in data unbinding, because it refers to both types and
data flow issues. However, we placed each message into
exactly one category. Moreover, because we created the
taxonomy as we inspected the error messages, the category
into which each message was placed depended on what
categories were known when we inspected each message;
a slightly different categorization might have resulted had
we inspected the messages in a different order.

7 EVALUATION

Thus far, we have discussed how our guidelines for im-
proving the representation of precondition violations can
be applied to a variety of violations. Now we address
the question of whether they should be applied: is there
reason to believe that applying the guidelines will lead to
an improvement over the standard error message? In this
section, we describe a paper-based experimental evaluation
that suggests that following the guidelines does indeed
improve usability.

This experiment is similar to the previous experiment
(Section 4) in that we asked programmers to use both a
new method of communicating error information, which
we call Refactoring Annotations, and conventional error
messages, to diagnose violations of refactoring precondi-
tions. We compared their ability to identify the source of
those violations correctly, and asked for their opinions of
both tools. Unlike the previous experiment, it explores the
use of Refactoring Annotations for several refactorings,
instead of for just EXTRACT METHOD. Another difference
from the previous experiment is that in this evaluation we
did not train subjects with either kind of error indication.
The experimenter’s notebook from this experiment can
be found in Appendix 2, while raw data can be found
at http://multiview.cs.pdx.edu/refactoring/experiments. We
now describe the experiment in more detail.

7.1 Subjects
We drew subjects from three upper-level graduate and
undergraduate courses: Scholarship Skills, Advanced Pro-
gramming, and Languages and Compiler Design. We en-
couraged students to participate in the experiment by offer-
ing 10 dollar gift cards from the Portland State bookstore
to participants, requiring only that the participants had pre-
viously programmed in Java. Thirteen students volunteered
to participate, but two had scheduling conflicts and one
was somewhat familiar with our research: these three were
excused. As a result, a total of 10 students participated.

Subjects reported a mean of about 6 years of program-
ming experience and 19 hours per week of programming
over the last year. Eight of the subjects used Integrated
Development Environments at least part of the time when
programming: these environments included Visual Studio,

Eclipse, Netbeans, and Xcode. Six subjects were at least
somewhat familiar with the concept of refactoring, and two
of them had used refactoring tools. All subjects were at least
somewhat familiar with Java.

7.2 Methodology
We randomly placed subjects into one of four groups
to ensure that average task difficulty was balanced, as
shown in Table 3. Half of the subjects used Refactoring
Annotations to help them diagnose violated preconditions
on 8 individual refactorings during the first phase of the
experiment; they then used error messages to help diagnose
violated preconditions on 8 other individual refactorings in
the second phase. The other half used error messages in
the first phase, then Refactoring Annotations in the second
phase. Additionally, half of the subjects analyzed violations
in one order (call it “A”) in the first phase, then in another
order (call it “B”) in the second phase, and vice-versa
for the other half of subjects. Of the 10 subjects who
participated, we assigned two to Group 1, three to Group
2, two to Group 3, and three to Group 4.

We chose 3 kinds of refactoring for subjects to analyze;
the number 3 was an attempt to balance having a sufficient
variety of refactorings with having few enough that subjects
would not find it difficult to remember how the refactorings
worked. We chose the refactoring kinds RENAME, EX-
TRACT LOCAL VARIABLE, and INLINE METHOD because
they are currently among the most popular refactorings
performed with tools [16]. Within these kinds of refactor-
ing, we selected precondition violations using the following
criteria:

• The chosen violations should span several precon-
dition categories (Table 2), so that we evaluate a
substantial cross-section of the precondition taxonomy.

• Preference should be given to violation categories to
which the guidelines apply, because when the guide-
lines do not apply, error messages and Refactoring
Annotations do not differ. Thus by including only
categories for which the guidelines apply, the results
of the experiment will evaluate the difference between
the two violation representations.

• Some violation categories should appear more than
once, for different refactorings. By doing this, we
hoped to simulate the situation where a subject un-
derstood a precondition violation for one refactoring,
and could transfer that understanding to a violation
during another refactoring.

• Some refactorings should violate two different precon-
ditions at the same time, to provoke the situation where
the refactoring tool informs the programmer of only
the first violation that it finds (Section 2).

Table 4 displays the precondition violations that we
chose. The Refactoring Kind column refers to one of the
three chosen kinds of refactorings, Category refers to the
category in which the violation is found, and Message lists
the specific error message that the Eclipse refactoring tool
displays when that violation occurs. Refactoring number 3

http://multiview.cs.pdx.edu/refactoring/experiments
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Group 1 Group 2 Group 3 Group 4
Tool Order Tool Order Tool Order Tool Order

Phase 1 Refactoring A Refactoring B Error A Error B
Annotations Annotations Messages Messages

Phase 2 Error B Error A Refactoring B Refactoring A
Messages Messages Annotations Annotations

TABLE 3
The order in which the four groups of subjects used the two refactoring tools over the two code orders.

Refactoring Refactoring
Kind Number Category Message
RENAME 1 Data Clash A field with this name is already defined.

2 Illegal Name Type name cannot contain a dot (.).
INLINE 3 Structure Method declaration contains recursive call.
METHOD Inheritance Unbinding Method to be inlined implements method from interface .

4 Property Cannot inline abstract methods.
5 Stucture Cannot inline a method that uses qualified this expressions.

EXTRACT 6 Illegal Name is not a valid identifier.
LOCAL 7 Data Clash A variable with name is already defined in the visible scope.

8 Context Cannot extract assignment that is part of another expression.

TABLE 4
Refactorings and precondition violations used in the experiment.

(in the third row of Table 4) violates two different pre-
conditions; Eclipse version 3.2 reports only the upper one
to the programmer.

We first randomized the order of appearance of the three
kinds of refactorings (RENAME, INLINE METHOD, and
EXTRACT LOCAL) and then randomized the order of each
kind. In other words, we did not mix the different kinds
of refactorings to reduce the likelihood that subjects would
be confused about which refactoring was being performed.
The two orders in which subjects were asked to diagnose
violations were A=(1,2,7,6,8,5,3,4) and B=(1,2,4,3,5,8,6,7).
We selected example code for subjects to refactor (and thus
to encounter the violations) from PyUnicode, a unicode
Java class from the Jython project (described in Section 2),
revision number 5791. This class contains 5 private inner
classes that can be used to iterate over collections. This
code was selected because 5 of the 9 precondition violations
shown in Table 4 could naturally arise when refactoring that
code. We manually changed the code in two ways:

• we inserted code that would cause the programmer to
violate the remaining four preconditions when refac-
toring, and

• we changed code to avoid making the cause of a
violation trivially apparent. For example, if the error
message says “A field with this name is already
defined,” then the field with the same name should
not appear directly adjacent to the renamed field.

This code spanned 202 lines, small enough to fit on three
8.5×11 inch sheets of paper, but large enough to generate
two violations of each refactoring precondition in Table 4
(one for error messages, one for Refactoring Annotations).

7.3 Example Experiment Run
When a subject arrived to participate in the experiment, the
first author, acting as experiment administrator, offered the

subject a refreshment and gave her a letter of informed
consent. The administrator then asked her to complete
a pre-experiment questionnaire in which she noted her
programming and refactoring experience.

The administrator gave the subject a brief overview of
the experiment, and a short review of the 3 refactorings.
The administrator then told her that she was going to see
16 attempted refactorings on the same code base, but that
none of these refactorings would be successful. Instead,
the tool would indicate why the refactoring could not be
performed, using either an error message in a dialog box or
a graphical annotation on top of the code. The administrator
told the subject that her task was to diagnose the violated
precondition, indicate the pieces of relevant source code,
and give an explanation of the problem.

Assume, for example, that a subject is assigned to
Group 3 (see Table 3), and thus uses error messages first
with violation ordering A, then uses Refactoring Anno-
tations with violation ordering B. For the first task, the
administrator gives the subject the code in the form of
3 pieces of 8.5×11 inch paper, glued vertically on a flip
chart. Figure 10 depicts a simulated experiment situation.
The administrator points out what piece of code the pro-
grammer selected, which refactoring was attempted, and the
error message that the programmer encountered. This error
message is also paper-based, printed on top of code without
obscuring relevant parts of the program. The administrator
then asks the subject to place small sticky notes next to the
places in the code, or in the refactoring tool configuration
window, that they feel are responsible for the violation, and
to explain their actions aloud.

In this case, the first error message encountered is
number 1 (Table 4), and a correct answer is to place a sticky
note next to the declaration of the field with which the new
name clashes. If the sticky note placement is ambiguous, the
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Fig. 10. A simulation of an experimental run. The
experiment subject (at left), considers where to place
a sticky note on the code responsible for the viola-
tion. The administrator (at right), records observations
about the participant’s reasoning regarding where the
subject places the note.

subject is asked to both clarify her intent verbally and more
precisely place the sticky note. For refactoring numbers 2
and 6, the correct answer is to place the sticky note next
to each illegal character; for 3, next to the recursive call
and method declaration in the interface; for 4, next to the
abstract method declaration; for 5, next to the qualified this
expression; for 7, next to the existing variable declaration;
and for 8, next to the equal sign in the assignment.

The subject then indicates that she is satisfied with her
response, and moves on to the next individual refactoring.
This process is repeated with 7 additional individual refac-
torings. To switch to the next refactoring, the administrator
switches to another paper copy of the code, where each
copy is printed with a different refactoring dialog box. The
administrator records the total time taken for the subject to
complete the 8 tasks.

The process is repeated 8 more times, but with Refac-
toring Annotations printed on top of the code instead
of error messages. The same code base is used, again
printed on three sheets of paper. The same refactorings are
applied to different pieces of the code to mitigate learning
effects. Precondition violations are presented to the subject
according to ordering B.

After the tasks were complete, the administrator used
a post-experiment questionnaire to solicit the subject’s
opinions of the tools; this was followed by a brief interview.
The subject was then thanked and released.

7.4 Results

Eight out of 10 subjects reported that Refactoring Anno-
tations helped them understand violations better than error
messages. The difference between subject ratings is statisti-

Mean
Missed Irrelevant Identification

Tool Location Code Time

Error Message 54 19 *109 seconds
Refactoring
Annotations

23 4 83 seconds

TABLE 5
The number and type of mistakes made when

diagnosing violations of refactoring preconditions, for
each tool. The right-most column lists the mean time

spent diagnosing preconditions for each of the 8
refactorings. Subjects diagnosed errors in a total of 80
refactorings with each tool. Smaller numbers indicate

better performance.

Error Refactoring
Refactoring Messages Annotations

Number ML IC ML IC
1 4 2 0 0
2 0 0 0 0
3 10 3 5 0
4 4 3 1 0
5 3 2 3 2
6 3 2 0 1
7 4 1 1 0
8 10 3 8 1

TABLE 6
The number of subjects making at least one missing

location (ML) and irrelevant code (IC) mistake for each
refactoring. Smaller numbers indicate better

performance.

cally significant (p = .046, df = 9, z = 2.00)1. The measured
results confirm this opinion; Table 5 shows the total number
of locations that subjects did not mark with a sticky note
(Missed Location), as well as the number of irrelevant
code fragments that subjects did mark with a sticky note
(Irrelevant Location). The difference in missed locations
was statistically significant (p = .007, df = 9, z = 2.70) as
was the difference in choosing irrelevant locations (p = .017,
df = 9, z = 2.39).

Six out of 10 subjects reported that they would be more
likely to use Refactoring Annotations than error messages
and 4 out of 10 said that they would be equally likely to use
either. The difference between subject ratings for the two
tools is statistically significant (p = .026, df = 9, z = 2.23).

Nine out of 10 subjects reported that they felt that Refac-
toring Annotations helped them figure out what went wrong
faster than with error messages. The difference between
subject ratings is statistically significant (p = .026, df = 9,
z = 2.26). The measured results confirm this opinion; on
average subjects took (109 − 83)/109 = 24% less time
with Refactoring Annotations than with error messages
(Table 5). The asterisk * indicates that a timing was not
obtained for one subject, so we could not include it in

1. This and the the remaining significance tests in this article were
performed using a Wilcoxon matched-pairs signed-ranks test.
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the mean. However, this difference was not statistically
significant (p = .051, df = 8, z = 1.96), probably because the
size of the effect depended on which tool the subject used
first. When a subject used Refactoring Annotations first and
then used error messages, on average she took about 3%
less time using Refactoring Annotations. When a subject
used error messages first, on average she took about 41%
less time using Refactoring Annotations.

Five out of 10 subjects reported that they felt that
Refactoring Annotations made them more confident of their
judgements than error messages, and 4 out of 10 said that
they were equally confident with either tool. The differ-
ence between subject ratings is not statistically significant
(p = .084, df = 9, z = 1.73). The one subject that said that
she was less confident using Refactoring Annotations said
that the reason was that “they give such great information,
I feel like, ‘Am I missing something?”’

The subjects’ ability to identify the causes of violations
varied from refactoring to refactoring, as shown in Table 6.
Refactorings 1 and 7 in Table 4, in which the programmer
attempts to make a new program element that conflicts with
an existing element, were usually understood with both
error messages and Refactoring Annotations. However, sub-
jects were sometimes unable to find the existing program
element. It appeared that this task was difficult because
subjects generally performed linear searches through the
given code, which not only took a significant amount of
time, but often required repeated passes over the same code
until they found the conflicting element. Several subjects
mentioned that they would usually enlist the help of a find
tool, such as Unix grep, to find candidates and then sort
through those candidates manually to find the conflicting
element. While useful, this technique would likely include
false positives. Two subjects mentioned that they would use
Eclipse’s “Open Declaration” tool to help in the task, but
this would be possible only after they had found a reference
to the conflicting element in the code.

Refactoring 2, in which an illegal identifier was typed
that contained two dots, and refactoring 6, where an illegal
identifier was typed that contained a # or @ sign and began
with a number, were sometimes problematic for subjects,
especially those using error messages. With Refactoring
Annotations, only once did a programmer select some
irrelevant code when she thought there was a problem with
the original code selection (she apparently saw a == sign,
interpreted that as assignment, and thought that there was a
violation similar to that shown in refactoring 8). With error
messages, 3 subjects noticed that the # or @ was a problem,
but failed to also notice that the identifier started with a
digit. Moreover, 2 subjects erroneously thought that Java
identifiers could not contain any digits, and thus incorrectly
said that digits inside an identifier were a problem. One
programmer said that she would use Google to find out
whether # and @ were legal characters in Java identifiers.

In refactoring 3, INLINE METHOD is attempted on a
method that contained two recursive calls. The refactoring
also attempted to remove the inlined method, which was
a problem because it implemented a method from the

Iterator interface; if it were deleted, the containing
class would no longer satisfy the Iterator interface, and
a compilation error would be produced. Subjects rarely
identified the problems in this refactoring perfectly. With
both Refactoring Annotations and error messages, most
subjects appeared to understand why recursion was a
problem. However, finding both recursive calls was much
more difficult with error messages. With error messages,
7 subjects missed at least one recursive call; with Refac-
toring Annotations, only one subject missed the recursion,
although that person missed both calls. As for the method
implementing a method from an interface, no programmer
using error messages noticed this problem. This appeared
to be because the refactoring tool didn’t tell them about
it; it told them only about a recursive call. When using
Refactoring Annotations, five subjects noticed the problem
with the interface, although only one of them could provide
a coherent explanation of why it was a problem.

Refactoring 4, inlining an abstract method, appeared
to be generally understood by all subjects, regardless of
whether they used Refactoring Annotations or error mes-
sages. However, subjects occasionally could not locate the
abstract method, four times with error messages and once
with Refactoring Annotations.

Refactoring 5 was about inlining a method that
contains a qualified this expression (such as
ClassName.this.member). On this task, subjects
performed roughly equivalently with Refactoring
Annotations and with error messages. With both tools,
7 out of 10 subjects were able to locate the problem,
but apparently neither representation of the error was
expressive enough to help subjects understand why
refactoring that code was a problem. This may be because
the qualified this notation is relatively obscure. Only one
programmer was able to explain the problem correctly; the
others who successfully located the problem appeared to
have guessed.

On refactoring 8, extracting a local variable from an
expression containing an assignment, subjects performed
about equivalently with both Refactoring Annotations and
error messages. It appeared that neither representation
helped programmers to understand the problem.

When we interviewed subjects after the experiment, all of
them seemed to prefer Refactoring Annotations, although to
differing degrees. Subjects described them as “unobtrusive,”
“a little more helpful,” “more informative,” as giving “more
specific information,” as being “across the board helpful,”
as “sav[ing me] some seconds,” as showing “more errors,
more like a compiler,” as indicating “where the problem
is,” and “as mak[ing] refactoring part of my usual error
fixing strategy: read all, fix all at once.” Subjects disliked
error messages because they “cover too much area,” “tend
to get in the way,” required the programmer to scan the
code manually, and because “they are modal [and they say]:
‘Tackle Me before You Do Anything Else!”’
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7.5 Discussion
The results of the evaluation suggest that these generalized
Refactoring Annotations are preferred by programmers,
and help them find the causes of precondition violations
more accurately and more quickly, when compared to error
messages. Because our paper prototypes of Refactoring
Annotations were designed according to the guidelines
discussed in Section 5, these results also suggest that the
guidelines can help improve the usability of refactoring tool
precondition violations.

For refactorings 5 and 8, Refactoring Annotations were
not sufficiently detailed to help subjects understand why
the tool could not perform the refactoring. It appears that a
more detailed explanation of the problem might be helpful,
including descriptions of language semantics. For instance,
a help document might be useful for explaining what a
qualified this statement is, and what the consequences
would be if the method containing it were to be inlined.
However, the fact that programmers sometimes do not
spend much time trying to understand a single sentence
about a refactoring error (Section 2) suggests that they may
not spend any time reading a detailed help document.

Reflecting upon the experiment, it appears that refactor-
ing 5, which we classified as a structure violation, might
better be classified as a name unbinding violation. Why? A
qualified this statement cannot be inlined largely because
it literally references a member of a containing class, and
that member might not be accessible at all of the places
where the method would need to be inlined.

Thus, future replications of this experiment might show
that subjects understand this violation better if it is repre-
sented as a name unbinding. This is because our guidelines
suggest that name unbinding (unlike structure) should dis-
play what program element the refactored code is being
unbound from; this information may help programmers
better understand the violation.

7.6 Threats to Validity
While the results of this experiment encouraging, there are
several threats to the validity. First, we chose code by hand
and modified it so that it would cause a violation of at
least one refactoring precondition. So while the original
code was selected from open-source code bases, the code
may not be representative of code found in the wild.
Second, subjects were volunteers from several classes at
Portland State University, and may not be representative
of the average programmer. Third, we sampled categories
of errors from the taxonomy for the experiment by hand;
programmers’ performance may be different when pre-
sented with other categories of errors in the taxonomy.
Fourth, the task was given to the subjects on paper; their
behavior in a real development environment might well
be different. Fifth, when placing sticky notes on code to
indicate the location of violations, subjects may have simply
been parroting what Refactoring Annotations (and to a
lesser extent, error messages) were telling them, without
any real understanding of the violation. To mitigate this

threat, we had subjects briefly explain why they put a sticky
note where they did, and tried to discern to what extent
they understood the problem. However, we observe that
even if a programmer does not understand a violation fully,
locating the pieces of code that are part of the problem is
valuable because it focuses the programmer’s attention on
the relevant code. Finally, we observed a strong learning
effect, as evidenced by the differences in performance
depending on which error representation the subject used
first. This effect was a confounding factor in the results; a
future study that conducted this experiment with a between-
subjects design would eliminate this confounding factor.

8 FUTURE WORK

A study of refactoring errors in the wild could determine
which categories are encountered with the highest fre-
quency by programmers. The results would help to deter-
mine which categories are deserving of further research. A
deeper empirical evaluation of which precondition viola-
tions are most commonly conflated by programmers would
also help to drive future research.

In addition to helping define how our guidelines apply to
other kinds of error messages, the precondition taxonomy
may also help designers of refactoring tools. For example,
while the clash category spans many refactorings, the
guidelines tell us that a representation of any clash violation
should show the relationship between the clashing program
elements. Rather than a string describing the violation, a
violation display method in the development environment
could take as arguments both of the program elements, and
display their relationship, regardless of which refactoring
generated the violation. This might help amortize the de-
velopment cost of implementing a graphical error system
such as Refactoring Annotations.

Refactoring Annotations may also prove to be an op-
portunity to help the programmer not just to understand
precondition violations, but also to resolve them. This
is because the graphics provide convenient “hooks” for
implementing further functionality for highly-focused, de-
tailed programmer interaction. For example, consider again
Figure 8. It may be useful to allow the programmer to
interact with the two bottom arrows and messages to
open those elements in the existing editor, a new editor,
or an embedded editor, or to provide a “quick fix” that
changes the visibility of transferQueue, so that it can
be accessed in the destination class. In this way, graphical
representations of precondition violations could provide not
only a way to enhance understanding of the precondition
violations, but also a method of resolving them.

9 CONCLUSIONS

In this article, we have discussed how toolsmiths can
improve the user interface of refactoring tools to make it
easier for programmers to understand why a tool refuses
to perform a refactoring. We have presented a tool called
Refactoring Annotations and distilled usability guidelines
from it. The results of our two evaluations suggest that
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Refactoring Annotations do indeed improve usability, in
terms of speed, correct understanding, and programmer
preference. Some violations of refactoring preconditions
may continue to be difficult for programmers to understand,
but we believe that this work is a beginning that will help
to aid that understanding.
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