
AN ADAPTIVE FRAMEWORK FOR
COLLABORATION IN HETEROGENEOUS

NETWORKS

by

 PRAVIN BHANDARKAR

A thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

And approved by

New Brunswick, New Jersey

October, 1999



ii

ABSTRACT OF THE THESIS

An Adaptive Framework for Collaboration in Heterogeneous Networks.

By Pravin Bhandarkar

Thesis Director:  Professor Manish Parashar

The ubiquity of network connectivity and recent advances in computing and networking

technology have the potential of enabling computer-mediated information sharing and decision

making in all facets of life including Medical Telediagnosis, Crisis Management, Electronic

Trading.  The ability to have direct and immediate access to all information defined by one’s

needs, interests and capabilities, will form the basis of each of these applications. However,

enabling information sharing and collaboration in a networked environment where distributed

clients can join, change their interests or leave at any time, presents many interesting challenges.

Furthermore, client and network heterogeneity require information to be intelligently transformed

so that it matches the client’s local capabilities and resources, yet maintains semantic contents for

effective sharing. This thesis presents the design, implementation and evaluation of an adaptive

framework that enables seamless collaboration among distributed, wired and wireless clients,

where the number of collaborating clients, their locations, capabilities and interests are dynamic.

The framework is founded on an innovative semantic information coordination model that applies

the “pull” knowledge management model to distributed information management. This is

achieved by semantically enhancing messages and using state-based interaction techniques to

communicate and replicate these messages in real-time. This thesis also identifies object-oriented

design patterns that encapsulate information coordination and knowledge sharing, providing

solutions to recurring challenges in developing distributed collaborative applications. An

experimental evaluation of a Java based implementation of the framework is also presented.



iii

Acknowledgements

I would like to thank my parents and my family for their love and support during my studies in

graduate school.  I am grateful to my advisor Professor Manish Parashar for invaluable guidance,

encouragement and support throughout my stay at Rutgers. I am thankful to Professors James L.

Flanagan and Ivan Marsic for their valuable advice and suggestions regarding my thesis.  I wish

to acknowledge the suggestions of the committee in developing my thinking, technical

understanding, thesis writing and presentation skills.

I would also like to thank Bogdan Georgescu and Professor Peter Meer for developing the

progressive image encoding and the image information transformation module. Interacting with

other graduate students in the DISCIPLE project enabled me develop a better understanding of

the topic and I would like to thank all of them for their support. Thanks to the CAIP computer

facility staff, who helped with quick and detailed replies to various questions directed to

help@caip.  Lastly I would like to thank all the members of the TASSL lab for their excellent

support and co-operation during the course of the project.

   This work is sponsored in part by the NSF KDI grant (# IIS 98-72995) entitled “Multimodal

Collaboration over Wired and Wireless Network” and CAIP Center. The CAIP Center is

supported by the New Jersey Commission on Science and Technology and the Center’s Industrial

Members.



iv

Table of Contents

ABSTRACT OF THE THESIS .................................................................................................................. II

ACKNOWLEDGEMENTS .......................................................................................................................III

TABLE OF CONTENTS ........................................................................................................................... IV

TABLE OF FIGURES ............................................................................................................................. VII

CHAPTER 1.................................................................................................................................................. 1

INTRODUCTION ........................................................................................................................................ 1

1.1 COLLABORATION IN DISTRIBUTED HETEROGENEOUS ENVIRONMENTS................................................... 2
1.1.1 Overall Architecture ..................................................................................................................... 3
1.1.2 User Interface ............................................................................................................................... 4
1.1.3 Middleware.................................................................................................................................... 4

1.1.3.1 Common Object Request Broker Framework(CORBA).......................................................................... 5
1.1.3.2 DCOM (Distributed Component Object Model) ..................................................................................... 5

1.2 OVERVIEW OF THE THESIS..................................................................................................................... 7
1.2.1 Semantic Information Management (SIM) Model ...................................................................... 7
1.2.2 Object Oriented Architecture........................................................................................................ 7
1.2.3 Design Patterns for information coordination ............................................................................ 8
1.2.4 Heterogeneity Management ......................................................................................................... 8
1.2.5 Java based Implementation .......................................................................................................... 8
1.2.6 System State Abstraction .............................................................................................................. 8

1.3 OUTLINE OF THE THESIS ........................................................................................................................ 9

CHAPTER 2...................................................................................................................... .......................... 10

RELATED WORK................................................................................................................... .................. 10

2.1 HABANERO (NCSA,UIUC) ................................................................................................................. 10
2.2 TANGO(NPAC, SYRACUSE UNIVERSITY)............................................................................................ 11
2.4 UNC COLLABORATION BUS ( UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL) ......................... 12
2.5 JAVA ENABLED TELECOLLABORATION SYSTEM (JETS) (UNIVERSITY OF OTTAWA) .......................... 12
2.6 DISCIPLE (CAIP, RUTGERS UNIVERSITY)......................................................................................... 13
2.7 INFOSPHERES PROJECT (CALTECH) ..................................................................................................... 14
2.8 OTHER COLLABORATION SCHEMES..................................................................................................... 15

CHAPTER 3...................................................................................................................... .......................... 17

SEMANTIC INFORMATION MANAGEMENT (SIM) FOR INFORMATION COORDINATION17

3.1 SEMANTIC INFORMATION MANAGEMENT (SIM )APPROACH............................................................... 17
3.2 SEMANTIC INFORMATION MANAGEMENT............................................................................................ 18

3.2.1 SIM Model .................................................................................................................................. 18
3.3 HETEROGENEITY MANAGEMENT......................................................................................................... 20

CHAPTER 4................................................................................................................................................ 21

AN ADAPTIVE FRAMEWORK FOR INFORMATION COORDINATION..................................... 21

4.1 COLLABORATION FRAMEWORK........................................................................................................... 21
4.1.1 User Interface ............................................................................................................................. 22



v

4.1.2 Application Interface .................................................................................................................. 22
4.1.3 Globally Coordinated Object State Table(GCOST) ................................................................... 23

4.1.3.1 GCOST Design:..................................................................................................................................... 24
4.1.3.2 GCOST Coordination: ........................................................................................................................... 25

4.1.4 Semantic Information Interpreter (SII) ..................................................................................... 25
4.1.4.1 Information Receiver ............................................................................................................................. 25
4.1.4.2 Information Sender ................................................................................................................................ 26

4.1.5 Inference Engine and Client Profile .......................................................................................... 26
4.1.6 Information Transformer ........................................................................................................... 26
4.1.7 System State Abstraction ............................................................................................................ 27
4.1.8 Archival Server ........................................................................................................................... 28

4.2 FRAMEWORK OPERATION.................................................................................................................... 28
4.2.1 Overall Operation ....................................................................................................................... 28
4.2.2 Concurrency Control of Events.................................................................................................. 29

4.3 IMPLEMENTATION OF THE SIM FRAMEWORK...................................................................................... 30
4.3.1 Multicast Communication .......................................................................................................... 30
4.3.2 Chat Area .................................................................................................................................... 32
4.3.3 WhiteBoard ................................................................................................................................. 33
4.3.4 ImageViewer ............................................................................................................................... 33
4.3.5 Application Interface Implementation ....................................................................................... 34
4.3.6 System State Component ............................................................................................................ 35

4.4 WINDOWS SNMP................................................................................................................................ 35
4.4.1 Extensible Agent using NT SNMP ............................................................................................. 36
4.4.2 WinSNMP based manager ......................................................................................................... 37

CHAPTER 5................................................................................................................................................ 39

DESIGN PATTERNS FOR DISTRIBUTED INFORMATION COORDINATION IN
HETEROGENEOUS ENVIRONMENTS................................................................................................ 39

5.1 PROACTIVE EVENT ACCEPTOR PATTERN............................................................................................. 39
5.1.1 Design.......................................................................................................................................... 40
5.1.2 User Interface and Application Interface .................................................................................. 40
5.1.3 Proactive Event Acceptor Implementation................................................................................. 41

5.2 ACTIVE EVENT SERVICE PATTERN ...................................................................................................... 41
5.2.1 Design.......................................................................................................................................... 42
5.2.2 Implementation ........................................................................................................................... 42

5.3 SYSTEM STATE PATTERN .................................................................................................................... 43
5.3.1 Design.......................................................................................................................................... 43
5.3.2 Implementation ........................................................................................................................... 43

5.4 SALIENT POINTS ABOUT IMPLEMENTATION ........................................................................................ 45

CHAPTER 6................................................................................................................................................ 46

EXPERIMENTAL EVALUATION OF SIM........................................................................................... 46

6.1 ACTUAL COLLABORATION .................................................................................................................. 46
6.2 SIMULATED COLLABORATION............................................................................................................. 47
6.3 RELATIVE COMPARISON OF SIM AND CENTRALIZED SERVER ARCHITECTURE ................................... 47
6.4 BEHAVIOR IN DYNAMICALLY CHANGING CONDITIONS ....................................................................... 48

6.4.1 The Image Viewer Parameters versus the Page Faults ............................................................. 49
6.4.2 The Image Viewer Parameters versus the CPU Load ............................................................... 50

CHAPTER 7................................................................................................................................................ 53

CONCLUSIONS AND FUTURE WORK................................................................................................ 53



vi

7.1 SUMMARY AND CONCLUSIONS............................................................................................................ 53
7.2 CONTRIBUTIONS.................................................................................................................................. 54
7.3 FUTURE WORK.................................................................................................................................... 54

REFERENCES: .......................................................................................................................................... 55

APPENDIX A.............................................................................................................................................. 58

A.1 THE ENCODING PROCESS.................................................................................................................... 58
A.2 IMAGE VIEWER DECODING................................................................................................................. 59



vii

Table of Figures

FIGURE 1 LAYERS IN A TYPICAL COLLABORATION SESSION............................................................................. 3

FIGURE 2 SIM INTERACTION MODEL............................................................................................................ 19

FIGURE 3  SEMANTIC INTERPRETATION......................................................................................................... 20

FIGURE 4 SIM COLLABORATION FRAMEWORK: ARCHITECTURE.................................................................. 21

FIGURE 5 SIM COLLABORATION FRAMEWORK: SIM UNIT........................................................................... 23

FIGURE 6 GCOST ENTRY ............................................................................................................................. 24

FIGURE 7 SIM COLLABORATION FRAMEWORK: OPERATION ........................................................................ 29

FIGURE 8 THE SIM USER INTERFACE WITH THE VARIOUS COMPONENTS ..................................................... 30

FIGURE 9 INTERACTION BETWEEN THE VARIOUS COMPONENTS OF THE USER INTERFACE............................ 34

FIGURE 10 WINSNMP ARCHITECTURE......................................................................................................... 37

FIGURE 11 OO DESIGN PATTERN FOR DISTRIBUTED INFORMATION COORDINATION.................................... 39

FIGURE 12 RELATIVE BEHAVIOR OF SIM AND POINT-TO-POINT SCHEME IN AN ENVIRONMENT OF

DYNAMICALLY CHANGING INTERESTS ................................................................................................... 48

FIGURE 13 THREE GRAPHS INDICATING THE IMAGE VIEWER PARAMETERS VERSUS PAGE FAULTS ................ 50

FIGURE 14 THREE GRAPHS INDICATING THE IMAGE VIEWER PARAMETERS VERSUS CPU LOAD.................... 51



1

Chapter 1

Introduction

Knowledge sharing and collaboration has always been critical to human activity. Human

societies function through cooperation and teamwork.  People exchange ideas, information and

knowledge to achieve consensus-based decisions. The ubiquity of network connectivity and

recent advances in computing technology has raised this interaction to a new level by introducing

computer-mediated information sharing and consensus-based decision making in all facets of

everyday life. Continuous advancement in technologies push the limits of the amount of

information that can be processed and the rate at which it can be processed. Processing capacity

of the chip is doubling every one and a half years (Moore’s Law) and the DRAM capacity is

increasing four times every three years[13]. This is complemented by advancements in

networking which enable fast delivery of bits to the desktop. With the advent of technologies like

dense wavelength division multiplexing(DWDM) networks are projected to reach the Tera bit/sec

goal. Innovative techniques such as differentiated services [2] and integrated services [1] [40]

promise required levels of quality of service on the universally prevalent Internet. Clearly the

trend is moving towards providing quality time on networks at a reasonable price. These

developments in technology in various areas together with the advances in network related

technology provides an excellent basis for supporting collaboration in a variety of application

areas. Application scenarios that are now feasible include:

Medical Telediagnosis: Paramedics rushing a patient from a distant location in an ambulance

and collaborating with doctors at the hospital on the patient’s E.K.G. The two locations are

physically  separated and the paramedics will have low end processing while the doctors at the

hospital will have relatively high end processing ability.



2

Crisis Management: Natural disaster relief and civil emergency teams manage and deploy

assets and contribute critical information (from the site of the disaster) via symbols on terrain

maps.

Mobile Office: A person in transit connects with the office to participate in a videoconference

and accomplishes office related work.

Electronic Trading: A broker can now virtually trade on the trading floor from remote

locations during travel. A number of brokers can collaborate to discuss using real-time quote

inputs and market inputs from brokers at more than one location.

The ability to have immediate and direct access to all information defined by ones needs,

interests and capabilities, underlies each of the activities listed above. A design framework, which

supports rapid information access and sharing across heterogeneous clients environments (wired

and wireless networks, differing bandwidth, computing, and storage resources) will then serve

universal access and increased human interaction. The objective of the thesis is to present the

design of such a framework that enables seamless collaboration among dynamic groups of

heterogeneous clients.

1.1 Collaboration in distributed heterogeneous environments

Collaboration can be defined as interaction and information interchange between people

working at physically disparate locations working in dynamic heterogeneous environments with

the purpose of accomplishing mutually beneficial activity[31].

Consider an interaction between paramedics rushing a patient from a distant location in an

ambulance and collaborating with doctors at the hospital on the patient’s E.K.G. The two

locations are physically  separated and the paramedics are continuously in motion. They will

typically  have a low end processing capability and a low bandwidth, lossy wireless connection,

where as the doctors at the hospital have a high end processing capability; thus there exists a

heterogeneous collaboration environment. A specialist’s opinion may be needed who will than



3

have to join the original collaboration session hence the system is dynamic.

Figure 1 shows a block diagram of a typical collaboration framework. The different layer are

discussed below.

Figure 1 Layers in a typical collaboration session

1.1.1 Overall Architecture

The overall collaboration architecture defines the structure and operation of a collaboration

session. Two schemes widely used schemes are

• centralized server based collaboration where control and management scheme for

collaboration session provides a tight control on interaction within the framework.

• Distributed peer based collaboration system where the interaction between the peers is

loosely coupled.

In a centralized server based scheme it is easier to maintain causality of events, concurrency

control and regulate the events. However such a scheme is not scalable. It is therefore difficult to

keep track of interests and capabilities of the various entities in such a collaborative session.

 In a rapidly changing distributed system there is no notion of a centralized server to conduct the

User Interface User Interface

Transport protocol

Network Fabric

Concurrency
Control

Event ReplicationInformation
Transformer

Middleware



4

collaborative session. The distributed peer interactions scheme would have a number of clients

interacting at distributed locations. Such a scheme is scalable. It however would have to address

issues of synchronization, concurrency and causality of events by loose coupling.

1.1.2 User Interface

User interface is a metaphor for the global virtual space in which all the clients of a

collaborative session interact. It is imperative that the information exchange take place in a

consistent manner across a widely varying group of clients. It should also be possible to

incorporate new applications to this virtual space with minimum changes to the code.

1.1.3 Middleware

Middleware is an important layer of the collaboration framework. Key issues addressed by

this layer are efficient event replication, concurrency control and heterogeneity management.

Event Replication: Event replication is the process of efficiently and transparently

transmitting events generated by one clients action to all other clients in the collaboration

session, and reproducing original action on the remote clients.

Concurrency Control: Concurrency Control is the process of arbitration and implementation

of a control mechanism for maintaining consistent state when multiple clients manipulate the

same set of shared objects in the collaboration session.

Heterogeneity Management: Heterogeneity management is the process of enabling effective

interaction among a group of clients in environments with different capabilities and resources

and performing necessary transformations to bring about consistent meaning to the shared

space collaboration session. A requirement unique to heterogeneous networks is the

interaction among a group of clients with varying interests and rapidly changing capabilities.

This is especially true in interactions among clients on wired and wireless networks where the

capability of the wireless network may change due to error rate or load on a wireless link.



5

Existing middleware architectures that can be used for collaboration include CORBA, DCOM

and Java based architectures.

1.1.3.1 Common Object Request Broker Framework(CORBA)

 CORBA is an architecture to enable seamless distributed computing [5]. The ORB is the

middleware that establishes client-server relationships between objects. However CORBA was

not designed with collaborative systems in mind. There are a number of changes that will have to

be made in the current framework to adapt it to real time efficient replication. Some of the

features that need to be addressed are:

• Base CORBA needs to be modularized to effectively eliminate the features that

are not needed by real-time application. The dynamic invocation would incur too much

overhead to be used by a real-time system.

• CORBA transparency allows invocation of an object from a remote node without

any upper bound on the latency for remote-invocation when there is no control over factors

like the network load. This can affect the performance of a collaborative system greatly.

• CORBA Event service defines the Event Channels as the broadcasters that

forward all events from the suppliers to all consumers. The clients on the other hand may be

interested only in a subset of events from the suppliers, and therefore they must implement

their own filtering to discard unneeded events[36].

• CORBA does not provide any scheme to address heterogeneity management.

1.1.3.2 DCOM (Distributed Component Object Model)

DCOM[30] architecture from Microsoft  has some interesting features that can help real-time

collaboration. Some of the features are

• DCOM can  identify the objects to which the client sends a request repeatedly

and then can create such objects and inform the server. Upon request from the client for a



6

particular object, DCOM then activates the object on the server side. After initialization it

needs only to send the id of the set to which the request is made and these requests could be

sent along with other DCOM packets

• DCOM provides the ability to transmit "delta-requirements", a feature that can be

used very effectively in real-time collaboration with respect to transmission of changes in

events.

However DCOM has a number of problems that prove to be a major impediment for

collaboration. DCOM lacks multi-platform support; the overhead of dynamic invocation can be

substantial in DCOM. Also there is no mechanism to indicate the compliance to time guarantees.

1.1.3.3 Java Based Architectures

Initial evaluations of Java RMI[21] indicated that it would find it difficult to scale to multi-

user sessions. It was also found to be slow for real time applications.

 The info-bus specification from JavaSoft provides a model to enable collaboration. However

info-bus enables interaction between the processes on the same JVM and does not support

interaction between various JVM’s on different machines. There are some proposed extensions to

build bridges with other JVM’s[16]. Until this is possible the info-bus cannot be used  for

collaboration.

1.1.4 Transport Layer

Transport level mechanisms form the basis of the communication architecture in a

collaboration session. The underlying communication can leverage the Internet by the use of the

Internet Protocol (IP) to exchange information. It is seen that with increasing network support for

high bandwidths, there is a growing trend towards transferring images and voices on the network.

High volume data to be sent to a group of users poses a unique problem for collaboration.

Transport layer protocol such as TCP can be used for systems where the communication is point



7

to point between a small number of clients. TCP can ensure high reliability of data delivery but is

not very highly scalable in an environment of dynamic clients. UDP based multicast schemes

alleviate the limitations on scalability imposed by the TCP scheme. However reliability is not

guaranteed. It is important to balance trade-off s of system requirements and the relative benefits

of a collaboration system. Protocols like Real-Time Transport Protocol (RTP) [14] and Real Time

Control Protocol (RTCP) together can enable transfer of real-time multimedia data. RTP is used

to identify the synchronization source, transfer media data and sequencing support and

synchronizing. RTCP identifies the participant, gets the data content, quality of service

information, and requests retransmission.

1.2 Overview of the Thesis

This thesis presents the design of an adaptive framework to enable collaboration, and an

extensible and effective implementation that forms basis to resolve collaboration issues. The

framework includes an information management architecture, Semantic Information Management

(SIM), Object oriented multi-layered architecture in terms of design patterns and a Java based

implementation of the architecture. An experimental evaluation of the key aspects of the

architecture is also provided. The key contributions of the thesis highlighted below.

1.2.1 Semantic Information Management (SIM) Model

SIM is an innovative interaction and information coordination methodology to enable

distributed collaboration and knowledge sharing between heterogeneous (wired and wireless)

clients.  The fundamental innovation of the approach is the application of the “pull” knowledge

management model to distributed information management. Events can be semantically enhanced

using state-based [3] interaction techniques to communicate and replicate messages in real-time.

1.2.2 Object Oriented Architecture

This thesis provides an object oriented extensible architecture with a clear separation of



8

responsibilities. The architecture has been built with an emphasis on the separation of concerns

relating to user generated events, information handling and processing, information

transformation and processing by the communication media. Each layer addresses different

aspects of the system; for example the application interface converts the event into semantic

format while the communication layer deals exclusively with event transmission and reception.

1.2.3 Design Patterns for information coordination

The entire architecture has been abstracted in terms of design patterns that represents solutions

to recurring software problems. These abstractions can be used in future implementation of

collaboration architectures with approaches similar to the SIM architecture. This thesis proposes

two new patterns to deal with information co-ordination and abstracting system state.

1.2.4 Heterogeneity Management

This thesis provides a framework for heterogeneous client environments to intelligently

transform information so that it matches clients local capabilities and resources, yet maintains

semantic contents for effective sharing.

1.2.5 Java based Implementation

This thesis presents a Java based implementation of the SIM architecture. This enables the

framework to leverage inherent advantage of the Java delegation-event model hence events that

are generated by the users can be captured by allocating event listeners to capture the events. The

information coordination structure builds on Java based hash table structure to develop a multi-

level hierarchical hash table. The multicast layer uses Java multicast for both data and event

replication.

1.2.6 System State Abstraction

To make decision about application adaptation it is necessary to determine the state of the

network. This thesis presents a network management module that uses the Simple Network



9

Management Protocol (SNMP) Parameters to determine the state of the network by querying the

network elements [34]. This module uses two components: Java and WinSNMP API.

1.3 Outline of the thesis

In chapter 2 the various approaches and related work, to deal with event replication and

collaboration are presented.

In chapter 3 fundamental abstractions to support the methodology and to be used as building

blocks to realize such an information coordination and management infrastructure are identified.

In chapter 4  the interaction model is defined and a basic framework to enable collaboration in

a heterogeneous environment among a group of dynamically changing clients with varying

interests is proposed. These abstractions encapsulate system (network) behavior, quality of

service, user mobility and the capability of the device to interpret information. The result is a

software architecture (or archetype) for developing ubiquitous collaborative applications. A Java

based implementation of this archetype is also presented.

 Chapter 5 outlines the design patterns for distributed information co-ordination emerging

from the usage of the semantic information management (SIM) architecture.

In chapter 6 an experimental evaluation of the Java based information sharing framework is

presented. The  SIM approach is contrasted with a point-to-point communication approach. SIM

is also tested for adaptation to dynamically changing conditions.

    In chapter 7 a summary is presented and the directions for future work are discussed.



10

Chapter 2

Related Work

Some of the notable research and work in the area related to this thesis have been described here

with an overview of the architecture and messaging scheme.

2.1 Habanero (NCSA,UIUC)

The NCSA Habanero framework architecture uses the combination of a centralized server and

an efficient messaging scheme to enable collaboration. It provides state and synchronization for

multiple copies of the software tool. To determine the state of a remote computer, Habanero uses

wrapping or “marshalling” of the present state of the computer using Java. Information is sent to

collaborating computers using methods coded specifically to write and read the information.

Variables that were assigned values through a graphical interface, or a computation, on a

participant’s computer are shared with all of the computers in the session. The replication

architecture works by sending sufficient information to each client to replicate  the important state

being shared by existing copies of that application. Habanero ensures in order delivery of events

which results in applications appearing same to all the clients [4].

The Habanero architecture consists of a client and server to share Java objects. The server

provides mechanisms for arbitration, routing and networking. Habanero works by replicating data

and events in each client under the control of an arbitrator at a single server. The centralized

server scheme is used to communicate among clients where each client application communicates

to the server which in turn sends the events to the various clients in a session. The server controls

the order in which events take place using a scheme of tickets that the serializer assigns each

object. Arbitrators are central points of control to decide the order in which events are processed.

The arbitrator code at the client ensures that the events take place in the order prescribed by the



11

tickets assigned by the serializer. The arbitrator has been extended from being a centralized one

initially to a distributed arbitrator located at the various clients however the arbitrator at the

clients is also regulated by the server based arbitrator. To keep track of the object Habanero uses

a hierarchical naming scheme to ensure that events from a client are shared with the

corresponding parts of other clients.

2.2 Tango(NPAC, Syracuse University)

The Tango system primarily aims at building a web based collaboratory[12]. It leverages its

strength from the omnipresence of Java based technology that enables the applet to be obtained

very easily using web browsers. This system is primarily a centralized server based system and

the main functionality of the system consists of the following elements: session management,

communication between collaborating applications, user authentication and authorization and

event logging. Sessions have one distinguished user also known as the master of the session; he

has special privileges of controlling the behavior of the application or other users accessing the

application. The Tango system has two types of messages namely the control and application

messages. Control messages are generated between the server, daemons( the process that run in

the browsers and enable the applet to communicate with other clients) and control applications.

These messages serve functions such as logging users into the system, establishing sessions etc.

Application messages are means of communication between the user applications. The server

logs events to record the system activity, since all the messages must go through the centralized

server they can be recorded in the local database with the date, time and sender information.

To perform the communication between the applet and the central server there is a module

which is implemented as a plug-in (live connect plugin for Netscape). This component maintains

a two way communication between user applications, applets and the server, launching local

applications, passing messages between applications running on the same node and providing

functionality not normally available to Java applets. The centralized server routes all the



12

communication associated with the collaboratory. A unique feature of this project is the seamless

collaboration between the application and applets.

Event replication in Tango allows the application to decide which application events need to

be distributed. The manner in which events are distributed depends on the session management

layer. Tango architecture enables scalability  by not sending multimedia streams via central server

instead supports multicast schemes for real-time data transfer. The usage of Live Connect

Netscape Plug in to achieve message passing between the plugin and the applet, limits the

portability of the system. Tango does not provide for object serialization and the user has to take

care of marshalling and unmarshalling the object.

2.4 UNC Collaboration Bus ( University of North Carolina at Chapel Hill)

The distributed collaborative framework at University of North Carolina uses an approach

based on bus-agents. Bus agents are the bus contact points for clients of the bus. Through bus

agents, application modules (1) register themselves and publish their connection characteristics to

other modules, and (2) make connections to other modules, whether local or remote[17].In this

framework a central server (a Java remote object), located at a well-known resource within a

given Internet domain, maintains a central registry and allows users and other bus-agents to

obtain remote references to active bus-agents. Bus-agents wishing to allow initiation of

communication by another bus-agent or process, must register with the central registry.

2.5 Java Enabled Telecollaboration System (JETS) (University of Ottawa)

JETS is a collaboration system  that downloads Java applets from a central server.  Clients

initiate a session by downloading Java applets from the server. The system maintains a repository

of the application objects and replicates various client events on the application object. The server

uses Java object serialization to send the state of the current object to the client. Centralized

server is useful in keeping track of all the clients in a session and can relay the users to a

newcomer or notify others when users leave the session[33][32].The communication between the



13

entities is performed by the server. The server multicasts events to various clients in the session.

Management of a session is done by the centralized server as the server draws all the advantages

of being the central node for communication; it also takes care of event collision and resolution of

the events in case of event collision. This system leverages two important technologies namely

Java based applets for collaboration and  multicast for scalability. However it could be affected

by the problems that typically affect a centralized system as the server may constitute a

bottleneck.

2.6 DISCIPLE (CAIP, Rutgers University)

The disciple collaboration-enabling framework is based on a replicated architecture. In this

architecture a user runs a copy of the collaboration client and each client contains a copy of the

applet that is to be collaborated on. DISCIPLE uses Java Beans to build a component based

architecture, the usage of this technology can enable ease of linkages with the other components.

The idea of developing using JavaBeans is a preferred way to construct Java applications and

components, since it supports visual programming and greater software reusability[35].

The exchange of messages between collaborating applications are of two types: 1. application

state changes that need to be replicated are sent by multicast communication 2. Signaling

messages to handle special situations are  sent using unicast communication. Event adapters

convert the arbitrary types of events into unified events that can be processed by the collaboration

bus (C.BUS). The event object is converted into a byte stream using Java serialization.

Communicator is the layer in the C.BUS, whose main purpose is to provide demultiplexing of

requests as well as co-operative features such as concurrency, coupling etc. Communication is

done by simple multicast protocol[15]. C.BUS automatically creates stubs and skeletons. The

stubs are created based on receipt of remote object reference within the reply to a remote call. The

event adapters on the other hand are created based on the receipt of a remote object reference

within the reply to a remote call. Object references are obtained by using an object id.



14

2.7 Infospheres Project (CalTech)

The Infospheres project at CalTech aims at building a framework composed of two units,

dapplets (which are multithreaded, communicating objects) and sessions (which groups of

composed dapplets)[23]. A dapplet handles a message by possibly changing its state and sending

messages on its output port.

Dapplets are composed together, in parallel, to form distributed sessions. A session is a

temporary network of dapplets that carries out a task such as arranging a meeting time for a group

of people. Sessions need not be static collections of dapplets; after initiations, their membership

may grow and shrink. A session is specified in terms of a state transition: the state of component

processes at the point in the computation at which the session is initiated and the corresponding

states at the point at which the session terminates.

Each process has a set of inboxes and a set of outboxes. Inboxes and outboxes are message

queues. A process can append a message to the tail of one of its outboxes, and it can remove the

message at the head of one of its inboxes. Each inbox has a global address: the address of its

dapplet and a local reference within the dapplet process.

Associated with each outbox is a set of inboxes to which the outbox is bound; there is a

message channel from an outbox to each inbox to which it is bound.  Each message channel is

directed from exactly one outbox to exactly one inbox.

The distributed computing layer removes the message at the head of a nonempty outbox and

sends a copy of the message along all channels connected to that outbox and also to the

destination inbox of the channel. If the message is not delivered within a specified time, and

exception is raised.

Associated with each session is the initiator dapplet that is responsible for linking the dapplets

together. The initiator dapplet holds the addresses of all the participating dapplets and sends a

request to all the dapplets to link up in a session. The dapplet may accept or reject the request



15

(because the requesting dapplet was not on the access control list, or because it is already

participating in some other session.). A process, on receiving the initiated message binds its

output queues to appropriate input queues and starts its thread, and thus begins its participation in

the session.

After completing their tasks, the member processes close the session, having modified their

local states. Indivisible resources are shared using tokens, which is either held by a dapplet or by

the network of token managers. The dapplet initializes the token to a set value. To implement a

simple read/write protocol with many dapplets, we use tokens such that a dapplet writes into an

object only if it has all the tokens and reads from the object only if it has at least one token

associated with the object. This system is distributed, and it coordinates multiple resource

managers, each with its own policy. This could be very helpful in cases where more than one

application or different sections of the same application need to be collaborated. The initial

implementation of the system was using a UDP socket, with an intermediate layer to ensure

reassembly in the correct order at the receiver.

2.8 Other Collaboration Schemes

In addition to the work cited above research and development in the area  of collaboration is

being conducted at MITRE corporation. The project Collaborative Virtual Work space (CVW)

has built a tool to enable synchronous collaboration among a group of clients in the session.

CVW enables virtual co-location through persistent virtual rooms, each incorporating people,

information, and tools appropriate to a task, operation, or service [http://cvw.mitre.org]. From a

user’s perspective, CVW is a building that is divided into floors and rooms, where each room

provides a context for communication and document sharing. Defining rooms as the basis for

communication means that users are not required to set up sessions or know user locations; they

need only enter a room. CVW allows people to communicate via text chat and audio/video



16

conferencing; import, store and retrieve data from virtual file cabinets; and mark up and write on

shared whiteboards. All of this occurs within a persistent environment that provides the ability to

retain continuity and provide true virtual co-location.

The primary objective of the lab space project at Argonne is to create virtual electronic

laboratories that will allow distributed scientific research groups to collaborate naturally and

effectively. The project has primary goals of satisfying the essential objectives of persistence,

history, usage of existing tools, network independence, security, flexibility and scalability[37].



17

Chapter 3

Semantic Information Management (SIM) for Information

Coordination

3.1 Semantic Information Management (SIM )Approach

A key requirement for real-time systems for collaboration and knowledge sharing for distributed

(multimedia) applications (collaborative medicine, strategic battle planning and aerospace

simulations) is the definition of an effective and efficient model for information coordination and

replication in real-time. A further requirement for heterogeneous clients is the ability to locally

interpret the events to reflect the interests, capabilities and resources of each client. Traditional

distributed information management approaches are based on global naming services, where all

communications use unique names assigned to clients.  In such a system, every application client

that enters a session must register itself with the naming server, explicitly stating its interests.

The server then assigns capabilities to the entering clients and informs existing clients about the

new client’s interests.  Existing clients can now forward relevant information from the existing

collaboration session to the entering client. Clearly, the dynamics of such a collaborative

framework is limited by the rate at which the network can synchronize distributing names,

interests and capabilities. Furthermore, protocols for system reconfiguration, reorganization and

the addition/deletion of clients are centralized at the server and can become exceedingly complex.

    Semantic information management (SIM) [27] is a new approach for information coordination

and replication to support real-time collaboration amongst heterogeneous, distributed and

dynamic application clients. This approach implements the “pull” distributed interaction model

using semantically enhanced events and state-based [3] communication techniques. In this

scheme, each client maintains a profile that defines its current state, its interests and its



18

capabilities. All interactions in this scheme are then addressed to profiles rather than explicit

names.  As a result, the group of clients is determined only at run-time.  In this formulation,

clients can join or leave networks, and  will  result  in  truly distributed computation,  liberating

application clients  from static   sites and complex  tracking protocols,  allowing them    to

migrate freely   and utilize available resources. Clients can leave a collaboration session by

appropriately defining their profiles, without having  to update complex  membership  rosters.

State-based interaction techniques are the application of semantic content-based resolution

techniques, used by the naming service, directly to the run-time interaction between  clients.

These techniques are naturally suited to multicast communication.

3.2 Semantic Information Management

The Semantic Information Management (SIM) approach formulates all interactions between

dynamic sets of  distributed, collaborating clients as state-based multicasts.

3.2.1 SIM Model

The overall approach is summarized in Figure 2. Each client in a collaboration session will

locally export a “profile”.  A client’s profile is a mutable set of attributes that specify its type,

state, interests and capabilities.  Profiles are maintained and modified by the clients to reflect

their current interests.  All communications between the collaborating clients are now defined as

state-based multicast   messages  where   a message is semantically enhanced to include a sender-

specified “semantic-selector”  in addition to the message body.  The semantic-selector is a

prepositional expression over  all possible attributes and specifies the profile(s)  of clients   that

are   to  receive the message.   Thus the conventional notion of a static client or client group name

is subsumed by the selector which descriptively names dynamic sets of clients of arbitrary

cardinality (Conventional names of clients or clients groups are non-descriptive and statically

bound.). State-based messages are received by semantically interpreting message selectors in

terms of the client profiles. The interpretation is performed locally and asynchronously at the site



19

of each client.

Figure 2 SIM Interaction Model

Figure 3 illustrates the semantic interpretation process. The semantic selector describes the

attributes of the incoming stream as color video, with MPEG2 compression and 1 MB data.

 Client 1’s profile (Profile 1) matches this incoming selector and hence the message is accepted.

Client 2 (Profile 2) on the other hand is only interested in B/W video with no encoding and so the

message is rejected.

 Client 3 ( Profile 3) is interested in color video with JPEG encoding and has the capability to

Information
Transformations

Object

State-based Multicast

Message

Message + Semantic-Selector

Semantic Interpreter

Object

Client Profile

Interpreted Message

Semantic Interpreter

Client 2

Client 1



20

transform MPEG2 to JPEG. It thus accepts the message with a transformation.

Figure 3  Semantic Interpretation

A related approach is used by the emerging Jini[22] technology for distributed resource sharing,

which build on JavaSpaces[20].

3.3 Heterogeneity Management

The objective of heterogeneity management in collaboration is to enable the shared information

to be intelligently transformed so that it matches the client’s local capabilities and resources, and

yet maintains semantic contents for effective sharing. To manage client heterogeneity in the SIM

interaction model, semantic interpretation may involve information reduction and transformation,

using information transformation modules, to meet the client’s interests, resources and

capabilities.  For example, a client with a hearing disability can require speech information to be

transformed into text. This can be achieved by appropriately setting the client’s profile

expression. Clients control their own profiles and can add, delete or modify attributes in the

profile at any time.  The modification of a profile is an atomic action with respect to its matching

with a selector. The only global knowledge upon which such an interaction depends is the

program-specific meanings of the attributes. This implies that all clients have information about

possible application objects that can participate in a session and their states; information

inherently known to all clients.

Reject

(Video, Color, JPEG, 2MB)

(Video, B/W, No Encoding, 3MB)

(Video, Color, Mpeg2, 2MB)

Profile 1

Profile 2

Profile 3

(Video, Color, Mpeg2, 1MB)

Semantic Selector

Accept

Accept with
transformation



21

Chapter 4

An Adaptive Framework for Information Coordination

The objective of this section is to describe in detail the SIM architecture and identify the

various abstractions needed to implement a software framework for information sharing and

collaboration in heterogeneous distributed environments. The implementation of this framework

is also presented. The key issues that need to be addressed by an adaptive collaboration

framework are: event replication, event management, information  transformation and system

state interpretation.

4.1 Collaboration Framework

A schematic overview of the SIM-based collaboration architecture is shown in Figure 4. It

Figure 4 SIM Collaboration Framework: Architecture

Communication

Information
Database

App. Stack

App Interface

Communication

App Interface

App. Stack

Communication

App. Stack

Info Storage

SIM
Units

Communication Media

Archival Server



22

consists of a dynamic number of application clients and an archival server. Each client site has a

SIM-Unit (shown in Figure 5) which is responsible for transparently transmitting local events to

all to all other clients, and receiving all remote events of interest to the local application client.

The archival server maintains a repository of the objects in the collaboration session and their

current states. The states are used by new application clients joining a session to obtain the

current state of the ongoing session. It does not actively participate in a session. The different

components of the architecture are described below.

4.1.1 User Interface

A clients local user interface (UI) represents a global virtual space where all the clients in the

collaboration session interact. Locally generated events are transparently transformed into event

in the virtual space and are visible to all clients interacting in this space. Similarly, remote events

are transparently made visible to the local client. The UI is built on the SIM application interface.

4.1.2 Application Interface

The local application interface couples the user interface and the application stack. This

component is responsible for locally orchestrating an application client’s collaboration session. It

monitors all local objects of interest to the client and encodes their state as entries in the Globally

Coordinated Object-State Table (GCOST). This update is then transparently propagated via the

application stack to all "interested" clients in the session. Similarly, when a remote instance of the

object changes state, the change is received by the semantic information interpreter(SII) and

forwarded to the application interface (via GCOST) which in turn updates the client's session.

For example, consider a client session that contains a drawing canvas object. The client's

interest in this object and its current state is locally recorded by the application interface as an

entry in the GCOST. Each time the client interacts with the canvas (e.g. draws on it or changes

the background color), the SIM application interface updates the GCOST entry to reflect the



23

change. This GCOST entry update is then propagated using state-based multicast to all clients in

the session, the clients interested in the canvas object, filter and accept the event. Similarly

remote events of interest (e.g. remote client changes the background color of the canvas object)

are picked up by the local SII component from the communication media and replicated on the

local object. The implementation of the user and application interface are Java based and enable

users to leverage the elaborate Java delegation-event model[25]. The Java delegation event model

works by assigning event listeners to low level events like mousemoved, mousedrag1 and so on.

The information is transformed into semantic messages by the application interface to enable

collaboration.

Figure 5 SIM Collaboration Framework: SIM Unit

4.1.3 Globally Coordinated Object State Table(GCOST)

The function of the GCOST abstraction is to maintain and coordinate the local state of the

application. GOCST provides an associative query interface that is used to drive the local

                                                          
1 The functions in italics are implemented using the standard Java Interfaces available in JDK.

Semantic
Information
Interpreter

Information
Transformer

User Interface

System State
Interface

Communication

Application
Interface

Inference
Engine

GCOST

Profile

Application
Stack



24

interpretation of information. The table is directly indexed, using the “semantic selector” from

incoming messages, to determine whether the message is of interest to the clients, whether the

client is capable of receiving the information, and what transformations (if any) have to be

performed to match the information to the client’s profile.

4.1.3.1 GCOST Design:

GCOST is structured as a hierarchical and extendible hash table. Each client maintains a local

GCOST, and all local GCOSTs are globally coordinated so that if an entry  exists in more than

one GCOST, all its instances are consistent. The highest level of the hash table registers objects

of interest to a client; subsequent levels maintain information about the current state, attributes

and interests of each object.  The lowest level of the table contains lists of “parameter – value”

and “parameter – data” pairs. The storage at the lowest level is maintained in dynamically sized

buckets, which are managed using extendible hashing mechanisms. (Extendible hashing[24]is a

technique for efficiently managing dynamic databases by merging and splitting storage buckets.)

The GCOST hash key space is hierarchically constructed by concatenating keys at each level.

Searches into the table are performed by traversing the table hierarchy level by level.  The most

significant portion of a query index indexes into the highest level of the table identifying a

particular object and subsequent portions identify object states. The least significant portion of the

key corresponds to a particular attribute of the object. Each GCOST entry is a hierarchical

Figure 6 GCOST Entry

White
Board

Mouse
Moves

Mouse
Click

x

y

x

y

Value

Value

Value

Value



25

structure as shown in Figure 6 and corresponds to an object in the collaboration session capturing

its current state and interests. The existence of a particular entry in the GCOST implies that the

local client is interested in the associated object: the value at different levels of the entry defines

its state and the events of interest.

4.1.3.2 GCOST Coordination:

An asynchronous coordination of GCOST entries is achieved using a “publisher – subscriber”

interaction pattern built on state-based communications[29]. The message semantic-selector is

uniquely generated using the GCOST hash key. The local communication process monitors

message selectors and subscribes to messages when the semantically interpreted selector matches

an entry in the GCOST. It then updates the local GCOST entry. This update is forwarded through

the application interface to the user interface.

4.1.4 Semantic Information Interpreter (SII)

The semantic information interpreter is responsible for (a) associatively multicasting messages

on the communication media, and  (b) interpreting incoming messages, corresponding to remote

events, for relevance and translating them into local events. A receiver component in the SII

component monitors incoming event messages. For each incoming message, the SII extracts the

semantic selector uses it to filter events that are interesting to local the client. This is done by

translating it into the corresponding hash key and hierarchically querying the GCOST. The SII

has two components namely the information receiver and the information sender.

4.1.4.1 Information Receiver

Application clients in a collaboration session are typically not interested in all objects in the

session and hence should only process the relevant events. Furthermore, this set of relevant events

changes over time especially as clients change their interests. For example, a client may iconize

an object or hide it behind another object. In this case, events related to the iconized or hidden



26

object need not be processed. The SIM approach provides an efficient means for locally filtering

such events without having to update central rosters. The information receiver uses the semantic

header information to determine if the event has been locally generated or if event is remotely

generated, obtains the profile from the GCOST to determine client interest in the remote event. If

the event is relevant to current state of the object it is processed, else it is ignored.

4.1.4.2 Information Sender

The semantic event messages are transmitted over the communication media via multicast

within and beyond a sub-net. The client transmits the event asynchronously to all the other

interested clients in the collaboration session, without any knowledge of the current membership

of this group or the interests or capabilities of other clients.

4.1.5 Inference Engine and Client Profile

The inference engine abstraction encodes policies for information transformations. It uses the

application state (from the GCOST) and the system/network state (from the system abstraction

unit) to generate the local clients profile.  The former encodes the client’s interests, preferences

and capabilities, while the latter encodes available resources and their current state. The profile

can be locally changed to reflect changes in the client or system state. The inference engine uses

this profile along with the incoming semantic selector to determine the processing of incoming

information[26].

4.1.6 Information Transformer

The Information Transformer maintains a suite of media-specific information abstraction

algorithms.  Information abstraction aims at intelligently reducing information content while

maintaining semantics. Examples of information transformers include image-to-text, image-to-

speech, text-to-speech, and speech-to-text conversions.  Such a translation is critical for enabling

collaboration across heterogeneous clients and interconnects with large variation in capabilities.



27

The information transformer library is designed to be extendible so that new modules and media

types can be easily incorporated. The current implementation uses an image transformation

module capable of progressive description of the visual data[9][18]. The module separates the

minimal visual information essential to accomplishing the collaborative task.  Robust

segmentation of the image extracts a realistic sketch of the main features. This sketch, while

preserving the essential information, requires 2000 times less data than the original.  It can be

translated to a verbal description and sent to wireless users to keep them in synchrony with other

participants in a collaborative session. For users with more computational facilities, a more

detailed version, at about 200 times compression can also be produced. The hierarchical

representation of the same visual data, along with the verbal sketch, facilitates the collaboration

among users in a heterogeneous network.  Each of the users has access to the same visual objects

but at different resolutions or modalities.

In the system, the inference engine uses the profile to decide on an acceptable resolution for

the incoming that meets all requirements and constraints. The resolution threshold is used to

determine the number of segments (i.e. the number of image packets) that will be received.

4.1.7 System State Abstraction

The system abstraction is a generic component that encapsulates the state of the system. This

includes CPU load, memory available, network bandwidth, latency and jitter. In our

implementation, this component is built using the Simple Network Management Protocol

(SNMP) [34]to directly interact with network elements and obtain their state. It uses the IP

address of the network element, community string and the object identifier (OID) of the

parameters of interest (bandwidth, CPU load, page-faults, etc.). To obtain system state

information from the local host we built a simple extension agent that runs on the local machine.

This agent is built using Microsoft NT SNMP[19][34]. It executes as separate thread and



28

regularly polls instrumentation routines on the local host for system state parameters.

4.1.8 Archival Server

The archival server is a “passive” client in the collaboration architecture. Its sole purpose is to

archive ongoing session as well as the current state of all objects in each session. This enables

incoming clients to obtain the current state of an ongoing session. The archival server maintains

its GCOST using the persistent storage. (Note that extendible hashing on which GCOST is built

is primarily used for databases.) It passively listens to every published message and updates

corresponding entries in the GCOST. Note that this server is only loosely synchronized with the

clients and is only accessed when a new client joins a session. The archival server in our

implementation additionally maintains a recent history of each session. It also provides a

directory service of current clients in a session that can be queried only if a client needs to know

this information.

4.2 Framework Operation

4.2.1 Overall Operation

Figure 7 summarizes the overall interactions between the various components in the SIM

architecture. The events generated by the user interface are captured by the application interface,

which appropriately updates the local GCOST table. This update is \encoded into a semantically

enhanced message by the application interface and passed to the sender component of the SII that

places it on the communication media. It is possible to add user-related information in the event.

On receiving the data the local SII receiver can filter message based on their semantic selectors.

Messages of local interest are accepted; other messages are rejected. Received event messages are

used to update related entries in the GCOST.  The inference engine is invoked to determine the

interpretation of the incoming event and the required action is taken by the application interface.

The application interface can replicate the events on the local user interface.



29

Figure 7 SIM Collaboration Framework: Operation

4.2.2 Concurrency Control of Events

Interaction between a number of clients at distributed location leads to the issue of

concurrency control. Concurrency control in our implementation is administered via the passive

archival server. As this server passively listens to every event in a session, it can detect

concurrency violations. We use a simple detection algorithm using an event window; we consider

event messages with timestamps within a certain tolerance as concurrent.  When a conflict is

detected, the server resolves it and subsequently sends out a resolved event. Messages from the

User Interface App. Interface Inference
Engine

System State
Component

Information
Interpreter

Communication
Link

Encoded User
Event

Multicast Event
Local Event
Dropped

Receive Event and update the
table and Inference Engine

Query for System State

Response to Query

Forward
Response
to Engine

Service
request

Replicate Event Locally



30

server are given highest priority at the client and are immediately processed. Another service

provided by the server is to determine client priorities. Every client can negotiate a priority with

the server. The priority is then added to the semantic selectors and can be used to resolve conflicts

4.3 Implementation of the SIM Framework

Figure 8 The SIM User Interface with the Various Components

The adaptive collaboration framework user interface using the SIM approach is shown in

Figure 8. The framework is Java based and enables collaboration among wired and wireless

clients. It incorporates three components chat area, whiteboard to draw shapes and an image

viewer that uses multicast for all communication among the users in a collaboration session.

4.3.1 Multicast Communication

The SIM framework is built on a pair of multicast channels: the first is for control messages while

Chat Area Image Viewer WhiteBoard



31

the second is used for image data. The main motivation for maintaining two separate channels is

to prevent control messages from being blocked by larger image data messages. The separation of

the multicast channels requires the users to subscribe to two channels to collaborate with each

other.  Upon logging in to the system the user starts collaborating by sending events and image

viewer data, the SIM framework creates default channels for the transmission of events and data

to the various users in collaborations session. If the multicast group is created then the default

channel enables subscription to the channel. The SIM framework provides for the creation of new

multicast channels before starting a new collaboration session, which are different from the

default channels. The users could use the archival server to decide the multicast channels that

they would use for the current session.

Multicast uses UDP packets for transmission of data, there is a need to ensure reliability in

transmission of image data and events.  The SIM framework ensures in order delivery of the

image data packets. It has been seen that events require very small packets of data to be replicated

on remote terminals, these data packets are delivered with minimum or no losses. The image data

on the other hand is a high volume data and can entail delivery of many packets to be successfully

reproduced on the remote terminals. The SIM framework uses a simple scheme that marks every

outgoing image data packet with a number before transmission, this information along with the

data payload is sent over the multicast channel to all users in the collaboration session. If there is

packet drop owing to congestion at any particular router on the way then packets will be dropped.

It is also possible for packets to arrive out of order, especially when the communication takes

place over a wide area network. The packet numbers are stripped from the image data packets on

reception at the remote terminal and verified locally to be in order. The transmission of the

images is preceded by control messages to indicate that an image payload is being transmitted

and the name of the image. Upon reception of these messages all the terminals in the session



32

ready themselves to receive the actual image payload. A counter is started and every image data

packet received is initially checked the packet number before processing. The local counter keeps

a track of the order of packets by incrementing itself every time a packet is received. If at any

stage it is found that that packets are out of order, the first packet that arrives out of order is

dropped and the decoding of the image is initiated. The image viewer enables the framework to

view images with different number of packets. It is seen for real-time image data transfer that

retransmission to ensure reliability can  incur overhead and render the late reception of the data

meaningless, hence we use better information transformation to keep the views of  various users

in the session synchronized.

 4.3.2 Chat Area

Chat Area is built using Java AWT and the keyListener2 interface. The chat functionality is

integrated into the user interface and uses control multicast channel for communication.

Keyboard events are trapped in the chat area and on construction of a sentence, the data is

multicast to the various users.

 Chat events are generated when a key is depressed by the user, these are trapped by the

keyListener. The multicasting of each key event on the communication channel would put a

processing overhead on all the users of the channel, furthermore as the number of users increases

this communication will increase in direct proportion. This means that a substantial amount of

processing and communication overhead would be incurred for sending a line of useful

information. In addition to this if there are typographical errors on part of the users then  each of

the corrections will also have to be sent on the communication channel. To overcome this

keyboard events are trapped and stored in a buffer till the local user is ready to send a line of data

delimited by the " \n" key. Moreover corrections performed by users while typing a single line are

performed atomically without a global notion of these errors nor the subsequent corrections.

                                                          
2 The characters in italics are standard interfaces, a part of JDK 1.2



33

4.3.3 WhiteBoard

The whiteboard is collaborative space in which users interact. It can also be used to

collaboratively draw figures and schematic diagrams. The SIM whiteboard allows the user to

selectively filtering events based on interests. For example if a user is currently interested only in

lines, the software effectively filters out the other component events for example the rectangles,

circles drawn by the other users. The implementation of the whiteboard board uses Java AWT

components and AWT event listeners to trap and grab the events and replicate them on the

various client location.

The whiteboard used was originally "unaware" application that was not collaboration ready.

The "unaware" application is made collaborative by adding the thin layer of application interface

that interfaces the whiteboard with the underlying application level stack to replicate events. The

application generates low-level events for example mousemoved, mouseclicked, mousedragged

etc. The application interface listens to the events and encodes them before transmission over the

multicast channel. The application interface also replicates the events on the local user interface.

The component architecture enables any whiteboard to be integrated into the framework. A

important consideration in building the whiteboard was to integrate the whiteboard as a frame that

could be easily replaced with another whiteboard component.

4.3.4 ImageViewer

The image viewer enables users to collaboratively view images. The image data is sent  in an

encoded format to all the users using a separate multicast data channel. When the local user views

images on the local machine the data is multicast to other users in the collaboration session. The

image viewer uses a progressive transmission for very low bit rate context based image

compression. The image viewer also enables the user to encode images using compression

algorithm and decode images with lesser number of image data packets (see Appendix A). More



34

details about the usage of the SIM software can be found on the web[28] .

Figure 9 Interaction between the Various Components of the User Interface

The image viewer functionality is implemented using the JImageView, ImageCanvas,

ImageReader classes.

The wavelet encoding software is implemented in C and is called using the JNI interfaces. The

dynamically linked library for this implementation is bgcodec.dll of the various element of the

user interface and their interaction with OurInterface classes. Figure 9 shows the organization of

the various components of the Whiteboard and their interaction with the application level stack.

4.3.5 Application Interface Implementation

The Application interface component is used to convert the Java events generated in the user

interface into semantically encoded information. The classes obtain the information related to the

events from the components of the user classes. The application interface classes that perform the

encoding to the semantic format are OurInterface and SEMWriter2. This information is then

encoded into the semantic template after parsing the event obtained by the various listeners,

implemented as interfaces. The objective of  the application interface was to make the user

interface collaborative by creating the instance of the class in the user interface class of the

ImageViewer WhiteBoard

Chat Area OurInterface

Stack Interface Application Level Stack



35

collaborative software. The interface should be able to convert any collaboration unaware

application easily into a collaboration aware application by invoking the instance of this class in

the user interface where the listener interfaces are present. OurInterface class implements this

functionality.

4.3.6 System State Component

The system state component is a generic component that can be used to determine the state of

the system. The network state is a specific implementation of the generic component. It is

implemented using network management to determine the state of the network elements and

hosts. Since the software was evaluated on NT hosts, Windows based simple network

management protocol (SNMP) was used to build the network management component of the

software. There are two components in network management that have to work in conjunction

with each other to enable acquisition of system related data. The two components are the manager

component that runs on the management station and the agent component that runs on the

network element to be monitored. To monitor the various network elements it is necessary to

have agents running on them. Routers and switches have standard agents to monitor the local

parameters through instrumentation routines. To monitor NT hosts on the other hand there is a

need to build agents that run on the hosts and continuously obtain data network management data.

This data is then forwarded to management stations upon request and used to monitor the

behavior of the network element. The agents on the NT hosts have to be customized to obtain the

data parameters as per the requirement and have to built separately. Such agents are known as

extension agents.

4.4 Windows SNMP

Under Windows NT there are two SNMP services namely the agent service (SNMP.exe) and

the SNMP trap service (SNMPTRAP.exe). The SNMP agent service processes requests from the

                                                                                                                                                                            
2 The class name in bold and italics represent the SIM framework implementation classes



36

SNMP management systems and sends GetReponse messages in the reply. The agent handles the

interface with the Windows Socket API, SNMP message parsing and ASN.1 and BER encoding

and decoding. The agent is responsible for sending the trap messages to SNMP management

systems.

The SNMP trap service listens for the trap sent to the NT host and then passes the data to the

management API. The SNMP service allows the user to build an extension NT agent that allows

the MIB information to be dynamically added and supported as required. The extension agent

resides within the SNMP service. It receives the SNMP messages across the network using the

Winsock API, and passes the message data to one or more extension agents for processing.

4.4.1 Extension Agent using NT SNMP

Managed devices such as hosts and routers contain monitoring and (possibly) control

instrumentation. The NT agent provides the instrumentation of some critical information such as

CPU load for the manager. The NT agent represents hosts access to this instrumentation to the

manager via a MIB, filtered by the SNMP security mechanisms. The manager communicates with

the NT agent via SNMP to monitor and (possibly) control managed hosts.

The NT agent is based on the Microsoft SNMP Extension API that provides a basic

functionality for constructing an extension agent dynamic link library (DLL) capable of

communicating with the SNMP service and interacting with network management application

using SNMP.

Once the SNMP service is activated on a host, the NT agent DLL is loaded as an extension

agent DLL by the SNMP service. The DLL entry point function DllMain() is called first, then the

initialization functions such as SnmpExtensionInit() and SnmpExtensionInitEx() are called to

load the primarily supported MIB subtree, the handle used by the NT agent to assert that it needs

to send the trap message, and additional MIB Subtrees if appropriate.



37

When a request message from a manager is received, then the querying process is invoked.

Each request message will contain one or more variable bindings.  The NT agent iterates through

each binding and applies the Get, GetNext, and Set operation specified by the message type to the

OID and the data value present in each binding. For processing each variable binding, the

matching between the OID of the NT agent MIB variable and OID specified in the variable

binding is checked first, then their attributes are compared. Finally actions will be taken if all the

SNMP security checks have been passed.

4.4.2 WinSNMP based manager

The manager application is an SNMP-based network management application running under

the Microsoft Windows NT4, and it is based on WinSNMP API[39].  WinSNMP provides a

single interface to which application developers program.

Figure 10 WinSNMP Architecture

Figure 10 shows where WinSNMP fits in one possible scenario of end-to-end SNMP

connectivity from an entity acting in a managerial role (far left to an entity acting in an agent



38

role.). First a "session" is created by the SnmpOpen function that is used to manage the link

between the WinSNMP application and the WinSNMP interface implementation. Then it uses

SnmpSendMsg and subsequent SnmpRecvMsg calls to process querying information from the

managed devices such as routers and hosts. Finally SnmpClose is used to close the session.



39

Chapter 5

Design Patterns for Distributed Information Coordination in

Heterogeneous Environments

The objective of this section is to identify design patterns [10] that form an effective basis for

creating a generic solution to address the various issues in collaboration and information sharing.

The presented design patterns emerge from abstractions presented in the previous section and

include proactive event acceptor, active event service pattern and system state pattern. The

patterns are shown in Figure 11.

Figure 11 OO Design Pattern for Distributed Information Coordination

5.1 Proactive Event Acceptor Pattern

The Proactive Event Acceptor Pattern translates incoming events to client-specific events

based on the local context. This pattern de-couples the acceptance of service events from their

processing. The pattern has two components: the acceptor component that addresses the de-

coupling of event reception and processing, and the context profile component that encapsulates

Context ProfileAcceptor

Inference
Engine

Object Queue

Scheduler Job Handler

Active Event Service

Proactive Event Acceptor

System
State



40

local context to determine the type of processing[6][7].

5.1.1 Design

In the implementation, the acceptor component runs in a thread and listens for semantic

multicasts. The context profile is defined by the GCOST table, and reflects the current state,

interests and capabilities of the client.  The result is an adapted event that can then be processed

based on the policy defined.  The context profile is obtained by using the information from the

GCOST table and used to make the context specific transformation as in the case of

heterogeneous systems for example, converting an incoming event from text to voice to enable a

hearing impaired user to collaborate.

The state table is the component used to maintain information related to the state of the objects

in the collaboration session. The state acts as a repository of the information and can be queried to

obtain information relating to events and determines if the events need to be processed or not

based on the local client interests.

5.1.2 User Interface and Application Interface

The user interface is built in Java, enables the users leverage the delegation event model [25]

to obtain the events generated. The Java interface provides with the low-level events which are

semantically encoded by affixing the semantic header information and stored in the state table.

The classes OurInterface and SEMWriter signify the application interface that are primarily

responsible for converting the low level event into a semantic event.

SEMWriter
public static int object_count;
public static MultiHash gcost_hash;
public static OurInterface our_interface_to_owner;

public SEMWriter(OurInterfaceowner){our_interface_to_owner=owner;}
public void create_gcost(String[ ] objects_collaborating,int objects){
//create the state table}
public void event_update(String(event){//parse the string obtained from the
interface class and update the state table}
SEISender(event,gcost_hash,object_count,our_interface_to_owner);
//Send the event to the sender component of the message interpreter



41

5.1.3 Proactive Event Acceptor Implementation

The state table forms the center of information storage and acts as a repository is the

MultiHash class. This class is responsible for providing the context profile to process incoming

events. There are two functions to get and set the profiles for the users. The acceptor portion of

this pattern uses the SEISender and SEIReceiver. The receiver runs in a thread and continuously

listens for semantic multicast and picks up events from other clients in a collaboration session.

Together both the components accept and process user events and obtain local client profile to

process the events.

 5.2 Active Event Service Pattern

The Active Event Service Pattern extends the existing Active Object Pattern [7] to enable use

of different service handlers based on local context (system state, application interests, type of

information). This pattern implements context specific event processing where the event handling

actively adapts based on local context and local policy. An important component of the pattern is

the Inference Engine that encapsulates service policies. The inference engine determines which

handler is to be invoked and accordingly schedules the job via the object queue. The inference

MultiHash

public void PutValue (String Level1Key, String Level2Key,String

VectorKey,String parameter,String value)

public String GetValue (String Level1Key, String Level2Key, String

VectorKey,String parameter)

SEISender

DatagramPacket dp = new DatagramPacket(data,data.length,ia,port);

thesocket.send(dp);



42

engine acts as a policy database to separate the policy and the servicing mechanism.

5.2.1 Design

The Active Event Service pattern extends and enhances the benefits obtained from the

proactive active event acceptor. The main components of the active event service pattern are the

inference engine that can decide on the basis of a rule base. The rule base can be set and modified

by the user. The inference engine also schedules the job in an object queue. The object queue

queues a job for processing by the service handler mechanism. The scheduler schedules the job to

the event handler depending on the priority of the job. This allows the usage of different

scheduling mechanisms depending on the user requirements. The object queue and the scheduler

are optional components of this pattern and can be used when real-time events have to be serviced

especially with varying priority[36].

5.2.2 Implementation

The code for this implementation is extensive and to explain the implementation and the flow

of the program we have used pseudo-code. The events received by the proactive event service are

forwarded to the inference engine only if the local client profiles reflect the client interest in the

Receive Event {
if (Process Event (using the  semantic template) == user interest)
 {
                         forward to Inference Engine

}
else  drop event

}
Inference Engine code
Query state table
If( handler)
{

Query various modules like network, local constraints etc
Obtain all the values for the above parameters
Compare values with rule base set by the user/ hard coded
Process the event request based on the constraints

}
else drop event/ process with text message display.



43

event. The inference engine checks if there is a handler for the requests. It also obtains the

network state related information from the system state abstraction. It compares the parameters

with the user specified rule-base to decide on the best way to service the event.

5.3 System State Pattern

The System State Pattern maintains the local state of the system and defines the system

context in which incoming events are serviced. Along with the context profile, it is used to drive

the inference engine.  For example, network abstraction is a specific instance of this pattern,

which determines the current state of the network in terms of parameters like round trip delays,

latencies and throughput. In our implementation, we use the information from the management

information base (MIB)[8] that stores system parameters about the network elements such as

switches and routers.

5.3.1 Design

The network management component is placed such that it obtains data on the state of the

network. The abstraction can use various mechanisms to determine the state of the local network

element or the local host and hence the network. This enables the component to place a set of

constraints for the inference engine. The component queries the network and/or system elements

to determine the state of the network as per the client needs. Network elements like the switches

and the routers store information in a management information base (MIB). The MIB parameters

enable the local component to determine information for e.g. Bandwidth can be found by

determining the difference between the ifInOctets and the ifOutOctets at the local router interface.

Additional information about the local host can also be found using the network management

parameters at the host.

5.3.2 Implementation

The network abstraction is a simple class called snmp, this class accepts the input rule-base



44

from the inference engine. The snmp class accepts the IP address of the network element to be

queried, community string and the object id. This class interfaces with a dynamic linked library

(DLL) javamgr.dll that holds the native code, which in turn interfaces winsnmp.dll[39]to query

the network element. For the sake of the initial testing we used the CPU load parameter on an NT

4.0 machine to determine the time frame of reception of a particular stream.

To enable the acquisition of network management information from the local host we built a

simple extension agent that runs on the local machine. The agent was built using microsoft NT

SNMP[19]. The agent on the continuously polls the machine for the local data and upon request

from the SNMP class, which is built on top of WinSNMP manager API, obtains the information

from the instrumentation routines to reply to the SNMP get command. The user rule base was is

the policy base for the network management parameters to be monitored. This rule base is entered

by the user  after logging on to the system. The test application was an image viewer with ability

to encode and decode images based on wavelet transformation. The inference engine in response

to an event to view images queries the network to interpret its state, then uses the parameter

received to decide the time-frame to receive the image stream. This in turn reflects the response

to the state of the network

SNMP
public long []_routerId = new long[11];
public String _router;
public String _community;
public long value;

public static native long snmpget(String router,String community,long[]routerId);
public snmp(String router,String community,String oid){ //Accepting the input in the
constructor}
static {
System.loadLibrary("javamgr"); // load native library}
public long getSnmpData(){
// code interfaces the c- native code to get the parameter

……
return(value);

}



45

5.4 Salient Points About Implementation

The Image viewer uses the encoding and decoding scheme for images is built in C and

interacts with the Java code through JNI.

The SNMP querying component is built using WinSNMP dll and is loaded using JNI. This

component queries the various network elements to obtain network parameters related

information.

The interaction between the Java based code and the network management component can

result in substantial timing  overheads. It was found that if this information acquisition is done in

the same module as data reception and servicing then it could result in an overhead on the real-

time nature of servicing data information. Hence the SNMP module is made multithreaded and

there are separate threads to service the different user requests for the network parameters.

The SNMP parameters to detect congestion in the network are at a coarser granularity and this

could be made finer for example using the network management data from the RMON MIB to

determine the state of the network. However the data obtained with finer granularity is liable to

change very rapidly resulting in oscillations in the decisions made. Owing to this the SNMP

parameters from the standard MIB’s are used to make decisions about the state of the network.



46

Chapter 6

Experimental Evaluation of SIM

The experimental evaluation of the SIM collaboration framework consists of four

experiments: the first experiment evaluates the framework in an actual collaboration scenario,

while the second experiment uses a simulation of an extreme scenario, the third experiment on the

other hand compares the behavior of the SIM architecture with a point to collaboration among

clients in a dynamically changing environment and the fourth experiment evaluates the behavior

of the SIM architecture in an environment of dynamically changing interests.

 Parameters measured in the first three experiments were the setup time, client-to-client delay

(CCD), and local client update time.  Setup time included the time required to create and initialize

the GCOST. Local update time was the time required for replicate the action locally once the

event was received and included semantic interpretation, local GCOST update and user interface

processing. The measured timing in both the experiments depended on the network load and the

presented results are averages. In addition to network load, a significant overhead was due to

processing in the underlying Java virtual machine, which depended on the number of events.

6.1 Actual Collaboration

Parameters Measured Time in (ms)
GCOST table

creation
3 – 5

Local client update 10

Client-Client Delay
CCD

20-30

Table 1 - Experiment 1: Acual Collaboration

The actual collaboration session consisted of five Windows NT clients, including a wireless

laptop, distributed across two different sub-nets. The session used three objects – chat area, white

board and the adaptive image viewer. Each client randomly joined/left the collaboration session



47

and randomly defined its objects of interest. The measured parameters are summarized in Table 1.

The CCD value was found to be well below the maximum of 60 ms for multimedia collaboration

as prescribed by the Multimedia Communication Forum[33]. The effects clients leaving/joining

the session were negligible. This may not be the case as we move to a larger number of clients

and needs further evaluation.

6.2 Simulated Collaboration

In the simulated collaboration session, each client had a randomly varying number of objects

of interest (from 0 to 6 objects) at each step of the simulation. Each object generated a random

number  (0 or more) of events. The average number of events that were generated in this

simulation were of the order of 3000 per second, thus representing a stress test of the framework.

The resulting measurements are summarized in Table 2.

Parameters
Measured

Time in (ms)

GCOST table
creation

3 - 5

Local client update 12

Client-Client Delay
CCD

50

Table 2 - Experiment 2: Simulated Collaboration

The CCD parameter was again below the prescribed maximum for multimedia collaboration.

Note that this experiment used broadcast to transmit the events both within and across sub-nets

(instead of multicast used in the first experiment) which added to the CCD time.

6.3 Relative Comparison of SIM and Centralized Server Architecture

To validate the usage of the SIM architecture a test was performed with the set up used for

simulation. A comparison was made between the behavior of a SIM system and a unicast point to

point session of collaboration. The test involved the usage of the class built for simulation. The

parameters monitored where the number of objects in a session and time for event replication. To

demonstrate the dynamism of the system the number of objects were rapidly changing between 2-



48

6.  The objects signified the user interest that was rapidly changing. The measurements for the

normal collaboration and the SIM scheme were measured under similar network conditions so

that the event replication times for each of the schemes could be measured.

Figure 12 Relative Behavior of SIM and point-to-point scheme in an environment of   dynamically
changing interests

Figure 12 represents the result obtained from the test. From the first graph of the number of

objects and the time step it can be seen that the number of objects are varying dynamically. The

second graph traces the event replication time during dynamically changing conditions. It can be

seen that that the event replication times for the SIM and the point to point architectures are

similar. Thus it can be concluded that SIM introduces negligible overhead in event replication in

a dynamically changing environment where clients with varying interests rapidly join and leave

the collaboration session.

6.4 Behavior in Dynamically Changing Conditions

2

3

4

5

6

0 50 80 100 150 200 250 300 350 400 450 500

Time Step

O
b

je
ct

s
 o

f 
In

te
re

s
t

Client 1 Client 2 Client 3

0

20

40

60

80

100

0 50 80 100 150 200 250 300 350 400 450 500

Time Step

Ev
e

n
t 

R
e

p
lic

at
io

n
 T

im
e

Collaboration No Collaboration (Pt-to-Pt)



49

To demonstrate the adaptability of the SIM framework in dynamically changing conditions,

SNMP parameters on the host and the image viewer performance were monitored. The

experimental set up consisted of three NT work stations. The objective of the experiment was to

determine the behavior of the image viewer software by plotting the compression ratios, the

number of packets received and the quality of image (bits per pixel) versus the SNMP parameters

obtained from the local hosts. The two SNMP parameters monitored were the number of page

faults and the CPU Load.

6.4.1 The Image Viewer Parameters versus the Page Faults

Compression Ratio vs Page Faults

3.6 5.4 16.3

65.5

131

0

50

100

150

30 50 70 90 100

Page Faults

C
o

m
p

re
ss

io
n

 R
at

e

Compression
Ratio

Bits per pixels vs Page Faults

2.1 1.9
1.4

0.3 0.10
0.5

1
1.5

2
2.5

30 50 70 90 100

Page Faults

B
it

s 
P

er
 P

ix
el

Bits per pixel



50

Figure 13 Three Graphs indicating the image viewer parameters versus page faults

Figure 13 shows the adaptability of the SIM framework to changing conditions on the host. These

measurements indicate that as the number of the page faults increases the number of packets that

can be processed at the local host decreases.

The number of packets vary from 1 to16 in powers of 2. This is set by the rule base. It can be

seen that as the number of packets decreases the compression ratio increases indicating that lesser

data is available for information transformation. The bits per pixel (BPP) is an indicator of the

quality of the image, this parameter decreases as the number of packets decrease. The image

viewer component adapts to provide images of varying BPP ranging between 2.1to 0.1 and

compression ratios from 3.6 to 131. The number of page faults vary between 30-100 in steps of

20.

6.4.2 The Image Viewer Parameters versus the CPU Load

The compression ratio, bits per pixel (BPP) and the number of packets were measured for

varying CPU Load conditions. Figure 14 shows the BPP, compression ratios of the images and

the number of packets versus the CPU Load. The number of packets and the BPP decreases as the

CPU load increases and the compression ratios increases in direct proportion to the CPU Load.

No of Packets vs Page Faults

16

8
4 2 10

5
10
15
20

30 50 70 90 100

Page Faults

N
o

. o
f 

P
ac

ke
ts

No of Packets



51

The  variations in the BPP are between 14.3 and 0.7 for number of packets between 16 to 0.

Figure 14 Three Graphs indicating the image viewer parameters versus CPU load

Bits/Pixel vs CPULoad 

14.3

2.2 1.4 0.7 00

5

10

15

30 50 70 90 100

 CPULoad (%)

B
it

s 
P

er
 P

ix
el

Bits per pixel

Bits/Pixel vs CPULoad 

14.3

2.2 1.4 0.7 00

5

10

15

30 50 70 90 100

 CPULoad (%)

B
it

s 
P

er
 P

ix
el

Bits per pixel

No of Packets vs CPU Load

16

8
4

2
00

5

10

15

20

30 50 70 90 100

CPU Load (%)

N
o

. O
f 

P
ac

ke
ts

No of Packets



52

The image viewer can display images with varying compression ratios between 1.6 and 32.7.

From the above two experiments it can be clearly see that it possible to obtain a wide range of

compression ratios and quality of images for different network/ system state parameters. This

demonstrates the ability of the SIM architecture to obtain changing system state dynamically and

adapt to varying conditions to transform varying data using the image viewer to maintain

synchrony among heterogeneous clients.



53

Chapter 7

Conclusions and Future work

7.1 Summary and Conclusions

This thesis presented the design, implementation and evaluation of the Semantic Information

Management (SIM), an adaptive framework for collaboration among distributed, heterogeneous

(wired and wireless) clients. The framework is built on a semantic information model that

implements the "pull” knowledge management model by defining semantically enhanced

messages, and uses state-based interactions techniques to communicate and replicate these

messages. This model introduces a different direction in the area of collaboration by addressing

communication to profiles associated with individual clients rather than specific IP addresses.

The information from the various clients is encoded in the semantic format and the header

information for each in the form of a semantic selector is used to compare the incoming

information with the client profile. The update of the client profile is performed locally and

alleviates the need to update global rosters to indicate interests thus easing the mechanism of

registering and de-registering interests at a centralized server, which can become a bottleneck.

The usage of the SIM architecture is particularly suited to situations where the system \ client

state changes rapidly.

The SIM architecture is built using object oriented design patterns for distributed information

coordination in heterogeneous environments, and underlies. The presented architecture and

design underlies a Java based collaboration framework. This thesis describes the Java

implementation of the SIM architecture. The emphasis has been on the usage of simple a modular

components and a lightweight architecture to enable efficient replication of events in real-time.

The components enable user interface to be made collaboratively by adding an intermediate layer.

Note that the collaboration is limited to low-level events, as there is no assumption of the



54

knowledge of the complex events.

7.2 Contributions

The main contributions of  the SIM framework are: Semantic Information Management Object

oriented design pattern based multi layer architecture that separates the functionality of the

various elements, multicast communication for data and event replication and information

transformation maintaining the semantic content. The implementation of the SIM framework to

adapt to changing network conditions, distributed event handling, filtering, local interpretation

based on local profiles and the semantic selector and includes usage of an image viewer

module(Appendix A). The network management module to obtain SNMP information from the

network elements and information transformation based on the information from the network

management module. Current work is focussed on the evaluation of the framework with larger

numbers of clients as well as the incorporation of other information transformation modules.

7.3 Future Work

The usage of distributed information co-ordination in heterogeneous environments introduces

challenges in maintaining the causality of the events, event synchronization and concurrency

control. The thrust of the future work will be in two directions: one would be enhancing the

features in the current framework by adding different information transformation modules for

heterogeneity management, enhancing the interpretation of the network and system state, adding

new and advanced features to improve the user rule base. The rule base can form the basis of

inference engine for decision making. The other  thrust area would be the enhancement of the

basic framework to incorporate the concurrency control mechanism, adding features to enhance

the archival server and implementation of the concurrency and synchronization modules of the

architecture outlined here.



55

References:

1. B. Bradeen et al. ,"Integrated Services in the Internet," RFC-1633, June 1994, www.ietf.org.

2. B. Carpenter et al .,"A Framework for Differentiated Services," Internet-Draft, March  1999.

3. B. Bayerdorffer, "Distributed Programming with Associative Broadcast," Proceedings of the

27th   Annual Hawaii International Conference on System Sciences. Volume 2: Software

Technology (HICSS94-2), Wailea, HW, USA, pp.353-362, 1994.

4. Chabert et al., "NCSA Habanero-Synchronous collaborative framework and environment,"

http://havefun.ncsa.uiuc.edu/habanero/Whitepapers/ecscw-habanero.html

5. Common Object Request Broker Architecture references http://www.omg.org

6. D. Schmidt et al.., "Proactor-An Object Behavioral Pattern for Demultiplxing and Dispatching

Handlers for asynchronous events," Pattern languages for programming, September 1997.

7. D. Schmidt et al., "Active Object - An  Object Behavioral Pattern for concurrent

programming," September 1995.

8.  Dave Perkins et al., "Understanding SNMP MIB’s," Prentice Hall, Nov 1996.

9. E. Lamboray, "Progressive Transmission for Very low bit rate context based image

compression," June 1997.

10. E. Gamma, Helm, et al., "Design Patterns," Addision Wesley, September 1994

11. Eliot Rusty Harold, "Java Network Programming," O’Reilly Pulishers.

12.  Geoffrey Fox et al.., " Tango - A Collaborative Environment for the World Wide Web,"

NPAC Center Syracuse.

13. Hennesey & Patterson, "Computer Architecture: A Quantitative Approach ," Morgan

Kaufmann



56

14.  Henning Schulzrinne, " Real Time Transport Protocol," MCNC 2nd Packet Video Workshop,

vol. 2, (Research Triangle Park, North Carolina), Dec. 1992.

15.  I. Marsic, "A Collaboration-Enabling framework for Java -Beans," Rutgers University.

16.  Info-Bus Specifications http://www.javasoft.com/beans/infobus/spec/index.html

17.  J. Munson, "Collaboration Bus Infrastructure: Bus Agents,"

http://www.cs.unc.edu/~munson/DARPA/busagent.html

18. J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," IEEE

Transactions on signal processing, San Fransico,CA, Pagers 657-660,1992.

19.  James Murray, "Windows NT SNMP," O’Reilly publishers, January 1998.

20.  JavaSpaces, http://www.sun.com/developers/hqbrief/javaspaces/

21.  Jim Farley, " Java Distributed Computing," O’Reilly Publications.

22.  Jini, http://www.sun.com/jini.

23.  K. Mani Chandy, Joseph Kiniry, Adam Rifkin and Daniel Zimmerman, " A Framework for

Structured Distributed Object Computing," California Institute of Technology.

24.  Korth, Abraham Silberschatz, "Database Systems Concepts," 2nd edition ,1991.

25.  Mary Campione, Kathy Walrath, "The Java Tutorial," http://java.sun.com/docs/books/tutorial/

26.  P. Bhandarkar and Manish Parashar, " An Adaptive Framework for distributed Heterogeneous

Collaboration,", to be published in Groups’99 Conference.

27.  P. Bhandarkar, M. Parashar, "Semantic Communication for Distributed Information Co-

ordination," IEEE conference on Information technology,1998.

28.  Pravin Bhandarkar, “Semantic Information Management ver 0.5- User Manual,”

http://www.caip.rutgers.edu/~SEM/sim.html



57

29.  R.Rajkumar, M.Gagliardi and L.Shua, "The Real-Time Publisher Subscriber Inter-Process

Communication model for distributed Real-Time Systems," Technical report, SMI,Carneige

Mellon University,1997.

30.  Richard Grimes, "Professional DCOM programming," Wrox publishers.

31.  Roseman, and Greenberg, S., "Groupkit: A Groupware Toolkit for Building Real-Time

Conferencing Applications," In Proceedings of the ACM 1992 Conference on Computer

Supported Cooperative Work (CSCW ’92), 43-50, Toronto, Canada, November 1992.

32.  S. Shervin, J.C. Oliveira and N.D. Georganas, "Applet-Based Telecollaboration:  A Network-

centric Approach," IEEE Multimedia, Spring/Summer 1998.

33.  Shervin Shirmohammadi et al., " Java-Based Multimedia Collaboration: Approaches and

Issues," University of Ottawa Canada.

34.  SNMP Documentation, http://www.snmpinfo.com

35.  Stephen Juth, "Collaboration Components for programming Real-time synchronous

Groupware applications," Thesis report, CAIP 1999.

36.  T-Harrison et al., "The Design and Performance of a Real Time CORBA Object Event

Service," OOPSLA 1997

37.   T.L.Disz et al., "Argonne's computing and communications infrastructure Futures laboratory"

38. W.Richard Stevens "TCP/IP Illustrated," chapter 26,Addision Wesley publication.

39. WinSnmp Documentation http://www.winsnmp.com

40. Zhang L et al., "Resource Reservation Protocol (RSVP)," RFC-2205,IETF.



58

Appendix A

(This work is contributed by Bogdan Georgescu and Peter Meer from Robust Image
Understanding Lab (RIUL), CAIP Center)

The Image viewer is an image encoding/decoding system based on two channel coding. One

channel is dedicated to the low frequencies, which carry average colors or gray levels of regions

in the image. By delimiting regions in an image, the main contours are implicitly defined. The

second channel is dedicated to the high frequencies, which carry the discontinuities like edges

and textures. The low frequency information provides a low quality but accurate reproduction of

the image. The details or the residuals for the whole image can be added through progressive

transmission. This advantage of the software enables several users to share an image during a

collaborative session. One user can send an image while at the receiving sites it can be optimally

reconstructed given the available bit rate.

A.1 The Encoding Process

The image viewer software is based on the Embedded Zerotree Wavelet algorithm combined

with run-length coding, DPCM coding of the lowest frequency components and arithmetic

coding. The obtained bitstream is fully embedded and supports progressive transmission. Figure1

gives an overview of the implemented image encoder. The encoder accepts as input a color or

grayscale image (PPM or PGM formats). If the input image is a color image, first a color space

transform from RGB to YCrCb is performed and the chrominance is subsampled. The three

resulting colorplanes are introduced as three separate grayscale image into the discrete wavelet

transform coder (DWT). If the input image is a grayscale image, it is introduced into the DWT

directly. The central part of the image coder is based upon the Embedded Zerotree Wavelet

algorithm (EZW). The transform coefficients may be encoded in three different ways:

The coefficients of the lowest subband are encoded using DPCM and the remaining

coefficients are encoded using EZW.



59

Figure 1 Image Viewer Encoding Process

      The different modes cater to the requirements of different images for example if the input

image is residual image resulting from the color image segmentation method then the

combination of DPCM and EZW coding is better. If the image is not segmented then coding

using EZW leads to better results. Along with the EZW encoding, run-length coding is performed

(RLC). A header containing useful information for the decoder is built and all the resulting

bitstreams are integrated and embedded. Finally the whole bitstream is arithmetically encoded.

A.2 Image Viewer Decoding

Figure 2 presents the decoding process. First the header is decoded in order to retrieve all the

necessary information before starting to decode the image. The decompressed bitstream is

decomposed into its components and, according to the encoding, the different subbands are

decoded. An inverse discrete wavelet transform (IDWT) is performed and the output image is

obtained. In case of color images the chrominance is first upsampled and the YCrCb bands are

Color
Image

Gray
Image

RGB to YcrCb
Down sampling

DWT

Extract
LL0

DPCM

Uniform

Header

EZW
RLC

Integrate
Arithmetic
Coder

Encoded Image



60

transformed back into RGB.

Figure 2 Image Viewer Decoding Process

The DWT is presented in an intuitive form, discussing its implementation using tree-

structured filter banks. The signal is first split into its lowpass and highpass components. Each set

of components is called a subband. Both subbands are downsampled by 2. The lowpass subband

is recurrently split and down sampled using the same filter bank. We stop when the requested

number of scales is obtained. Because of the recurrent splitting and dividing into lowpass and

highpass components, these filters banks are also called octave-band filter banks. For

reconstruction the obtained subbands are upsampled by 2, filtered by the respective inverse filters

and added.

The results of the one-dimensional wavelet transform can be extended to the two-dimensional

case, which applies for image compression. Considering the high pass filter Hh and the low pass

Encoded Image

Arithmetic
Decoder

Arithmetic
Decoder

Header

Separate

DPCM

Uniform
Insert
LL0

EZW
RLC

EZW
RLC

UpSampling
YcrCb to RGB

Color
Image

Gray
Image

Y

Cb

R

G

B

Cr



61

filter Hl, first we apply them to the rows of image X of size 2nx2n and obtain two resulting

matrixes HlX and HhX of size 2n-1x2n.

Then we apply the filters to the columns of HlX and HhX and obtain four resulting matrixes

HlHlX, HlHhX, HhHlX and HhHhX of size 2n-1x2n-1. Each of these four matrixes represents a

subband, HlHlX representing the average (low frequencies) of X and the other three representing

the details. And we continue decomposition by further decomposing HlHlX. The transform

coefficients can be interpreted such that at each coarser scale, one coefficient represents a larger

spatial area of the original image but also a narrower band of frequencies.

The implementation based on the Embedded Zerotree Wavelet algorithm proposed by Shapiro

is a simple image compression algorithm having the property that the bits in the stream are

generated in order of importance. The algorithm is based on four key concepts:   discrete wavelet

transform or hierarchical subband decomposition,  prediction of the absence of significant

information across scales by exploiting the self-similarity inherent in images; entropy-coded

successive-approximation quantization, universal lossless data compression through arithmetic

encoding.


