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Adaptive Modulation and Joint Temporal Spatial
Power Allocation for OSTBC MIMO Systems with

Imperfect CSI
Quan Kuang, Shu-Hung Leung, and Xiangbin Yu

Abstract—We propose a novel adaptive transmission scheme
for space-time coded multiple-input multiple-output beamform-
ing systems with imperfect channel state information at the
transmitter, of which the signal constellation, total transmit
power (temporal power), and power allocation among eigen-
beams (spatial power) are jointly adapted to maximize the
average spectral efficiency, subject to a target bit-error-rate and
an average power constraint. The power allocation over the
spatial and temporal domains makes the traditional approach of
partitioning the received signal-to-noise ratio (SNR) inapplicable
to the above design problem. By introducing a new variable,
called as effective signal-to-noise-to-modulation ratio (ESNMR),
we derive a rate-selection policy by partitioning the range of
the ESNMR with an optimal set of thresholds. A closed-form
temporal power control policy and a simple spatial power alloca-
tion algorithm are also obtained. Numerical results demonstrate
that the new adaptive transmission scheme yields a significant
performance gain over existing adaptation systems.

Index Terms—Adaptive modulation, orthogonal space-time
block coding (OSTBC), multiple-input multiple-output (MIMO),
beamforming, imperfect CSI, power allocation.

I. INTRODUCTION

THE increasing demand of high data rate services always
looks for spectrally efficient communication systems un-

der limited radio spectrum. Adaptive modulation (AM), as
a powerful technique for improving spectral efficiency (SE),
has attracted lots of research efforts for single-input single-
output (SISO) systems [1]–[5]. The channel state information
(CSI) at the transmitter (CSIT) is crucial to the operation of
AM, which may be obtained through a feedback channel.
In practical systems, CSIT suffers from imperfection due
to channel estimation errors, feedback delay, or quantization
errors [6]. Imperfect CSI can adversely affect AM perfor-
mance. Therefore, it should be taken into account explicitly
in performing system design.
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Multiple-input multiple-output (MIMO) approach is another
promising SE technique with diversity and coding benefits.
Therefore, AM and MIMO can be combined to leverage
both of their potentials. Among all the MIMO signaling
schemes, orthogonal space-time block coding (OSTBC1) has
been widely used due to its simplicity. Although OSTBC is
a diversity-based scheme which aims at minimizing bit-error-
rate (BER) at fixed spectral efficiency, it can be combined with
AM to achieve high spectral efficiency for a target BER [7]–
[11]. Actually, at low SNRs, OSTBC can yield higher spectral
efficiency than spatial multiplexing scheme [11]. In [10],
the performance of a variable-power (in time) variable-rate
OSTBC system is analyzed under imperfect CSI. However,
none of the above systems consider the power allocation
among transmit antennas. Without the spatial power allocation,
these works can use received signal-to-noise ratio (SNR) to
derive adaptation policies by partitioning the range of SNR,
parallel to the previous SISO cases. It is well-known that the
BER performance of OSTBC systems can be improved by
spatial power allocation for fixed data rate transmission [12].
Intuitively speaking, if we combine spatio-temporal power
allocation with AM for OSTBC systems, the SE can be further
increased for given target BER and average power constraint.
However, this design problem is difficult and has not yet been
solved.

Making use of CSIT, the OSTBC has been combined with
beamforming (BF) to provide robustness against imperfection
in CSIT [6], [13], [14]. The outputs of the OSTBC, after being
power loaded, are transmitted through the eigen-directions of
the autocorrelation matrix of the spatial channel estimate. AM
for OSTBC-BF systems has been investigated in [15]. In order
to alleviate the difficulty incurred by spatio-temporal power
allocation, [15] focuses on constant-power transmission, only
adjusting the constellation size and spatial power allocation.
Though the time domain freedom is put aside, the constant-
power AM-MIMO problem has been solved by trial and error:
start with the largest constellation and calculate the expected
BER with optimal spatial power allocation, then decrease the
constellation size until the target BER is satisfied. However,
this constant-power approach restricts the system performance.
In other words, the existing AM schemes for OSTBC or
OSTBC-BF systems lack of an efficient design algorithm
and do not fully utilize the degrees of freedom of spatial

1OSTBC denotes orthogonal space-time block coding/coded/code/codes
according to the context.
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and temporal power adaptation, which results in performance
inferiority.

In this paper, we develop optimal AM schemes for
OSTBC/OSTBC-BF MIMO systems with joint spatio-
temporal power allocation under imperfect CSI. The constel-
lation size, total transmit power and spatial power allocation
parameters are jointly optimized to maximize the average
spectral efficiency (ASE), subject to a target BER and an
average power constraint. The initial formulation seems to be
complicated. However, by introducing a new variable, called
as effective signal-to-noise-to-modulation ratio (ESNMR), we
can modify the original problem as an inner-outer optimization
problem resulting in an efficient solution. Employing this
variable, we can derive a rate-selection policy by partitioning
the range of the ESNMR with optimal thresholds. A closed-
form temporal power control policy and a simple spatial
power allocation algorithm are also obtained. The complexity
of the proposed variable-rate and variable-power adaptation
algorithm is reduced to one-dimensional root-finding of a
monotonic function.

The rest of this paper is organized as follows. In Section II,
the system model is introduced and the problem is formulated.
The variable-rate spatio-temporal power adaptation algorithm
is developed in Section III. Numerical results and practical
issue of peak power constraint are discussed in Section IV.
Finally, we conclude the paper in Section V.

Notation: Bold upper case and lower case letters denote ma-
trices and vectors, respectively. The superscript (·)H denotes
the Hermitian transposition. ‖·‖F denotes the Frobenius norm
of a matrix. E[·] denotes the expectation. tr(·) denotes the trace
of a matrix. IN is the N ×N identity matrix.

II. SYSTEM DESCRIPTION

A. System Model

We consider a wireless multi-antenna communication sys-
tem with Nt transmit antennas and Nr receive antennas
operating over a flat and quasi-static Rayleigh fading channel
as depicted in Fig.1. The adaptive modulator in the system
employs M -ary quadrature amplitude modulation (MQAM).
The space-time encoder, which is represented by an Nt × T
OSTBC transmission codeword matrix [16], is used to encode
K data symbols into an Nt-dimensional vector sequence of
T time slots with code rate r = K/T . The OSTBC vector
sequence is then sent along the Nt eigen-directions of the
autocorrelation matrix of the spatial channel estimate at the
transmitter with power allocation in space and time.

The channel is represented by an Nr × Nt matrix H =
{hij}, where hij denotes the channel gain from the jth
transmit antenna to the ith receive antenna. It is assumed that
hij remains constant over an OSTBC frame and varies from
frame to frame, and {hij} are modeled as independent iden-
tically distributed (i.i.d.) complex Gaussian random variables
(r.v.s) with zero-mean and variance 0.5 per dimension. At the
transmitter, only an imperfect channel estimate Ĥ is available
for the current frame, modeled as Ĥ = H+E [9], [17], where
E is the channel error matrix independent of H. The elements
of E are assumed to be i.i.d. complex Gaussian r.v.s with zero
mean and variance σ2
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Fig. 1. System diagram.

Let h = vec(H), ĥ = vec(Ĥ), and e = vec(E) be the
column vectors constructed by stacking the columns of H,
Ĥ, and E respectively. Based on the Bayesian Linear Model
and Theorem 10.3 in [18], the mean and covariance matrices
of h given ĥ are given as

E[h|ĥ] = Ch(Ch +Ce)
−1ĥ = (1 + σ2

e)
−1ĥ (1)

Ch|ĥ = Ch −Ch(Ch +Ce)
−1Ch = σ2

e(1 + σ2
e)

−1INrNt (2)

where Ce = σ2
eINrNt and Ch = INrNt are the covariance

matrices of e and h respectively. Hence, conditioned on Ĥ,
the elements {hij} of H are complex Gaussian r.v.s with mean
(1 + σ2

e)
−1ĥij and variance σ2

e(1 + σ2
e)

−1.
The received signals of the system can be expressed as

Y =
√
SHÛPD+ Z =

√
SH̄PD+ Z (3)

where H̄ � HÛ, Û = {ûij} is an Nt × Nt unitary matrix
containing the Nt-eigenvectors of ĤHĤ corresponding to
the eigenvalues {ζ̂j} sorted in decreasing order, D is the
OSTBC codeword matrix with normalized average power as
E[tr(DDH)]/T = 1, Z is an Nr × T received noise matrix
with i.i.d. entries modeled as complex Gaussian r.v.s with zero
mean and variance σ2

n, S is the total transmit power radiated
from the Nt transmit antennas, Y is the Nr × T received
signal matrix, and P = diag(

√
P1,

√
P2, . . . ,

√
PNt) denotes

a diagonal power allocation matrix which satisfies

Nt∑
j=1

Pj = 1, Pj ≥ 0, ∀j. (4)

It is assumed that the receiver perfectly knows the CSI.
After space-time decoding, the instantaneous received SNR
per symbol at the receiver is expressed as [19]

ρ =
S

rσ2
n

‖H̄P‖2F =
S

rσ2
n

Nt∑
j=1

Pjβj (5)

where βj is the jth eigen-channel power gain defined as

βj =

Nr∑
i=1

|h̄ij |2 =

Nr∑
i=1

|
Nt∑
ν=1

hiν ûνj |2. (6)

If we consider OSTBC without beamforming, (6) becomes
βj =

∑Nr

i=1 |hij |2, which is the channel power gain of the jth
transmit antenna.



1916 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 7, JULY 2012

Now we derive the conditional probability density function
(pdf) of βj in (6) given Ĥ. According to (1), (2) and
H̄ � HÛ, the mean and covariance matrix of h̄ = vec(H̄)
conditioned on ĥ can be written as

mh̄|ĥ = E[vec(HÛ)|ĥ] = (1 + σ2
e)

−1vec(ĤÛ) (7)

Ch̄|ĥ = σ2
e(1 + σ2

e)
−1INrNt . (8)

Hence, conditioned on Ĥ, the elements {h̄ij} of H̄
become i.i.d. complex Gaussian r.v.s with mean (1 +
σ2
e)

−1
∑Nt

ν=1 ĥiν ûνj and variance σ2
e(1 + σ2

e)
−1. Thus given

Ĥ, {βj} in (6) are independent noncentral chi-square r.v.s.
Utilizing Eq.(2.1-118) in [20], the conditional pdf of βj given
Ĥ is

fβj|Ĥ(βj |Ĥ) =
1

σ2

(
βj

β̃j

)Nr−1
2

e−
β̃j+βj

σ2 INr−1

⎛⎝2
√
β̃jβj

σ2

⎞⎠ ,

j = 1, . . . ,min{Nr, Nt} (9)

where the variance σ2 and the sum of squared means, denoted
by β̃j , are given by

σ2 = σ2
e(1 + σ2

e)
−1 (10)

β̃j =

Nr∑
i=1

|
Nt∑
ν=1

ĥiν ûνj|2(1 + σ2
e)

−2 = ζ̂j(1 + σ2
e)

−2, (11)

β̃1 ≥ β̃2 · · · ≥ β̃Nt since ζ̂1 ≥ ζ̂2 · · · ≥ ζ̂Nt , and Iv(x) is the
vth order modified Bessel function of the first kind [20]. For
systems with Nt > Nr, there are Nt−Nr beams with ζ̂j = 0.
Given Ĥ, {βj} of those beams are independent central chi-
square distributed, with the conditional pdf given as [20]

fβj|Ĥ(βj |Ĥ) =
βNr−1
j

σ2NrΓ(Nr)
e−

βj

σ2 , j = Nr + 1, . . . , Nt. (12)

B. Problem Formulation

The BER for square MQAM of constellation size M with
Gray mapping and received SNR ρ can be approximated
by the tight upper bound [1], [7], [10], [15]: BERMQAM ≈
0.2 exp

(
− 1.5ρ

M−1

)
. With (5), the above approximation can be

written as

BERMQAM ≈ 0.2 exp

⎛⎝−γ
Nt∑
j=1

Pjβj

⎞⎠ (13)

where an effective signal-to-noise-to-modulation ratio (ES-
NMR) is defined as

γ =
1.5S

(M − 1)rσ2
n

. (14)

In this paper, our goal is to design variable-power and
variable-rate control policies for the transmitter to adapt signal
constellation size M =M(β̃), transmit power S = S(β̃) and
spatial power allocation parameters Pj = Pj(β̃) to maximize
the average transmission rate according to the imperfect CSIT
β̃ = (β̃1, . . . , β̃Nt), subject to average power and target BER
constraints. The average BER given Ĥ is expressed as

BER =

∫
BERMQAM(M(β̃), S(β̃), Pj(β̃),β)fβ|Ĥ(β|Ĥ)dβ

(15)

where fβ|Ĥ(β|Ĥ) is the joint conditional pdf of {βj}, given

the channel estimate Ĥ. Applying (9), (12) and the indepen-
dence of {βj} to (15), the average BER given Ĥ can be
expressed as (16), which will be used as a performance metric
in the following,

BER = 0.2

Nt∏
j=1

exp
(
− β̃jγ(β̃)Pj(β̃)

1+σ2γ(β̃)Pj(β̃)

)
(1 + σ2γ(β̃)Pj(β̃))Nr

(16)

where γ(β̃) = 1.5S(β̃)

(M(β̃)−1)rσ2
n

.
For discrete-rate MQAM, we consider L+1 different QAM

constellations with Ml = 2kl , l = 1, . . . , L + 1, where kl ∈
{0, 2, 4, . . . , 2L}, of which 20 corresponds to no transmission.
We can partition the Nt-dimensional space of β̃ into L +
1 regions, {Dl, l = 1, ..., L + 1}, each associated with one
constellation. Specifically, we choose

M(β̃) =Ml, for β̃ ∈ Dl. (17)

Thus, the constrained ASE maximization problem is formu-
lated as

maximize
{Dl},S(β̃),{Pj(β̃)}

L+1∑
l=1

r log2(Ml)

∫
Dl

fβ̃(β̃)dβ̃

subject to
∫
S(β̃)fβ̃(β̃)dβ̃ = S̄, S(β̃) ≥ 0

BERl ≤ BERtgt, l = 1, . . . , L+ 1
Nt∑
j=1

Pj(β̃) = 1, Pj(β̃) ≥ 0 ∀j

Ml ∈ {20, 22, . . . , 22L} (18)

where S̄ is the average transmit power, BERl is obtained by
inserting γ(β̃) = 1.5S(β̃)

(Ml−1)rσ2
n

into (16), BERtgt is the target

BER, fβ̃(β̃) is the joint pdf of β̃, which can be obtained from
the joint pdf of ordered eigenvalues of the Wishart matrix, as
shown in (54) in Appendix B.

Generally, it is not easy to specify the multi-dimensional
boundaries of {Dl} and the computation of the probability
that β̃ lies in {Dl} is mathematically intractable because it
involves multiple integrals over regions of arbitrary shapes. To
solve this problem in next section, we will make use of the
ESNMR parameter γ, defined in (14), to express the BER and
constellation size. By doing so, the constrained maximization
problem can be transformed to an inner-outer optimization
problem with constraints being decoupled. This approach can
help reduce the multi-dimensional partition problem to an one-
dimensional partition problem.

III. JOINT RATE AND SPATIO-TEMPORAL POWER

ADAPTATION

In this section, we first study the continuous-rate case to
obtain useful intuition for the discrete-rate case.

A. Continuous Rate

If we assume M can take any positive value satisfying M ≥
20, then the average transmission rate maximization problem
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for the continuous case is formulated as

maximize
M(β̃),S(β̃),{Pj(β̃)}

∫
r log2(M(β̃))fβ̃(β̃)dβ̃

subject to
∫
S(β̃)fβ̃(β̃)dβ̃ = S̄, S(β̃) ≥ 0

BER(M(β̃), S(β̃), Pj(β̃)) ≤ BERtgt

Nt∑
j=1

Pj(β̃) = 1, Pj(β̃) ≥ 0 ∀j

M(β̃) ≥ 20. (19)

The above constrained optimization problem is difficult to
solve because the BER formula of (16) is complicated and the
spatial and temporal power are coupled in the BER constraint.
We now express M in terms of the transmission power S and
parameter γ by using (14). Hence, the objective function in
(19) can be expressed as

g(S(β̃), γ(β̃)) =

∫
r log2

(
1 +

1.5S(β̃)

rσ2
nγ(β̃)

)
fβ̃(β̃)dβ̃ (20)

and the problem (19) now becomes

maximize
S(β̃),γ(β̃),{Pj(β̃)}

g(S(β̃), γ(β̃)) (21a)

subject to
∫
S(β̃)fβ̃(β̃)dβ̃ = S̄, S(β̃) ≥ 0 (21b)

BER(Pj(β̃), γ(β̃)) ≤ BERtgt (21c)
Nt∑
j=1

Pj(β̃) = 1, Pj(β̃) ≥ 0 ∀j (21d)

γ(β̃) ≥ 0. (21e)

Note that the constraints in (21b) depend only on S(β̃), while
the constraints in (21c)-(21e) depend on γ(β̃) and Pj(β̃). The
spatial power and temporal power are now decoupled in the
constraints. Hence, the maximization problem of (21) can be
expressed as an inner-outer problem as follows

maximize
S(β̃)≥0

g̃(S(β̃))

subject to
∫
S(β̃)fβ̃(β̃)dβ̃ = S̄ (22)

where

g̃(S) = sup
γ,{Pj}

{g(S, γ)|BER(Pj , γ) ≤ BERtgt, γ ≥ 0,

Nt∑
j=1

Pj = 1, Pj ≥ 0} (23)

and we drop the dependence of β̃ in (23) and the sequel for
simplicity unless there is ambiguity.

Note that for fixed S, maximizing g(S, γ) subject to the
constraints from (21c) to (21e) is equivalent to maximiz-
ing log2

(
1 + 1.5S

rσ2
nγ

)
for any given β̃, because these con-

straints are imposed on every realization of β̃. Furthermore,
log2

(
1 + 1.5S

rσ2
nγ

)
is a monotonically decreasing function of

γ for fixed S. Hence, (23) can be obtained by solving the

following inner minimization problem for every realization of
β̃:

minimize
γ≥0,{Pj≥0}

γ

subject to BER(Pj , γ) ≤ BERtgt,

Nt∑
j=1

Pj = 1. (24)

We show in Appendix A that the solution to the optimization
problem of (24) is

γ� =
1

σ2

⎛⎝ N̄t∑
j=1

Ij(λ�)− N̄t

⎞⎠ (25)

P �
j = max

{
0,

1

σ2γ�
(Ij(λ�)− 1)

}
(26)

where

Ij(λ) =
√
N2

r σ
4 + 4β̃jλ+Nrσ

2

2λ
(27)

and λ� is the positive root of the following monotonically
increasing function:

FN̄t
(λ) = log

0.2

BERtgt
−

N̄t∑
j=1

(
Nr log Ij(λ)− β̃j

Ij(λ)σ2
+

β̃j

σ2

)
.

(28)
Notice that the positive root always exists and is unique since
FN̄t

(0+) = −∞ and FN̄t
(∞) = ∞. If {P �

j }j=1,...,N̄t
are

positive, then γ� is positive. N̄t is the number of eigen-beams
allocated with nonzero power. To determine the value of N̄t,
we can use the following conventional iterative Algorithm 1.

Algorithm 1 of finding γ� and {P �
j } for given β̃

(i) Initially set N̄t = Nt.
(ii) Obtain the root of the monotonic function FN̄t

(λ)
numerically by Newton’s method (or bisection method),
denoted as λ◦. Substituting λ◦ into (25) and (26) obtains
γ and {Pj}. If {Pj} all are positive, then λ� = λ◦ and
γ� = γ, P �

j = Pj ; otherwise go to step (iii).
(iii) Set N̄t = N̄t − 1 and go to step (ii).

The above procedure needs to compute the root for each
iteration during the determination of N̄t. To reduce the compu-
tational complexity, we provide the following theorem which
gives a necessary and sufficient condition to determine the
value of N̄t without resort to iterative calculation.

Theorem 1: The optimal {P �
j , j = 1, . . . , N̄t} are pos-

itive if and only if FN̄t
(λ

(u)

N̄t
) > 0, where N̄t =

argmax
ν

Fν(λ
(u)
ν ) > 0, Fν(λ) is given by (28), and λ(u)ν is an

upper bound of λ� defined as λ� < Nrσ
2 + β̃ν � λ

(u)
ν , ν =

1, . . . , Nt.
Proof: The proof is based on the monotonically increas-

ing property of FN̄t
(λ), and omitted here due to lack of space.

Thanks to Theorem 1, the algorithm that solves the inner
optimization problem can determine the value of N̄t directly
and calculate only once the root of FN̄t

(λ) numerically to
obtain λ�. The whole algorithm of obtaining γ� and {P �

j } is
now summarized as follows.

Algorithm 2 of finding γ� and {P �
j } for given β̃
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(i) Starting from ν = Nt to ν = 1, determine the largest ν
such that Fν(λ

(u)
ν ) > 0 and let N̄t = ν.

(ii) Use Newton’s method (or bisection method) to solve
FN̄t

(λ) = 0 to obtain λ�.
(iii) Compute γ� using (25).
(iv) Compute {P �

j } using (26).

The outer optimization problem of (22) can be solved
by the Calculus of Variations [22]. We define J(S(β̃)) =[
r log2

(
1 + 1.5S(β̃)

rσ2
nγ

�(β̃)

)
+ ξ(S̄ − S(β̃))

]
fβ̃(β̃), where ξ is a

Lagrange multiplier. Note that J is concave in S(β̃). By
setting ∂J/∂S(β̃) = 0, we obtain the global maximizer as

S�(β̃) =

(
r

ξ log 2
− rσ2

nγ
�(β̃)

1.5

)+

=
rσ2

n

1.5
(γ0 − γ�(β̃))+

(29)
where (x)+ = max(x, 0) and γ0 is a constant. According to
(14), the optimal rate adaptation policy is

M�(β̃) = max

(
γ0

γ�(β̃)
, 1

)
. (30)

From (29) and (30), we can see that whenever γ�(β̃) is beyond
γ0, no transmission occurs. Thus, γ0 is referred to as threshold,
whose value can be found by substituting (29) into the average
power constraint in (22) and solving the resulting equation∫

rσ2
n

1.5
(γ0 − γ�(β̃))+fβ̃(β̃)dβ̃ = S̄. (31)

Since the left-hand side of (31) is a monotonically increasing
function of γ0, a unique solution of γ0 exits and can be found
numerically. The integration can be calculated by Gauss-
Laguerre method [23] or the Monte-Carlo method. We provide
in Appendix B the mathematical details of the numerical
calculation.

Remark 1: From (29) and (30) we observe that the obtained
adaptation policies actually use larger constellation size and
higher transmit power when γ� is small, and vice versa. This
adaptation strategy can be explained intuitively as follows.
From the definition of γ expressed as (14), assuming the
current channel state needs a large γ� to satisfy the BER
requirement, the system will consume a large amount of
transmit power S if the constellation size is not reduced,
causing inefficient power consumption. Therefore, the optimal
adaptation policy prefers to reduce the constellation size in
order to save transmit power. Even more, it may decide not
to use the current channel state for transmission if it requires
too large power (when γ� > γ0). Hence, γ� can be regarded
as a channel quality indicator for given BER requirement.

B. Discrete Rate

By introducing the same new variable γ in (14) to the
discrete rate problem of (18), we can separate it into an
inner optimization problem which is the same as (24) and an
outer one. As mentioned previously, γ� can be regarded as an
indicator to reflect the channel fading quality. This motivates
us to solve the outer optimization problem based on the value
of γ�. Specifically, we partition the range of γ� values into
L + 1 regions with boundaries {γ0 = 0, γ1, . . . , γL, γL+1 =

∞}, and assign constellation Ml to the lth region [γl−1, γl)
(1 ≤ l ≤ L + 1), giving the data rate rkl = r log2(Ml)
bits/symbol. As discussed in Section III-A, the smaller the
γ�, the larger the constellation size M should be. So we have
M1 > M2 · · · > ML+1. The discrete-rate outer optimization
problem is now reformulated as

maximize
{γl}

L+1∑
l=1

r log2(Ml)

∫ γl

γl−1

p(γ�)dγ� (32a)

subject to
L+1∑
l=1

∫ γl

γl−1

S(γ�)p(γ�)dγ� = S̄ (32b)

S(γ�) =
(Ml − 1)rσ2

nγ
�

1.5
, γl−1 ≤ γ� < γl (32c)

M1 > M2 · · · > ML+1. (32d)

where p(γ�) is the pdf of γ�.
The optimal thresholds {γl}Ll=1 can be obtained by using

the Lagrangian method [2, Section VI-D] [10], resulting in

γl = μ
1.5(kl − kl+1)

σ2
n(Ml −Ml+1)

= μtl (33)

where

tl �
1.5(kl − kl+1)

σ2
n(Ml −Ml+1)

, l = 1, . . . , L

and we define t0 = 0, tL+1 = ∞. The μ parameter is
the positive Lagrangian multiplier determined by substituting
(33) and (32c) into the average power constraint (32b) and
solving the resulting equation. We denote the left-hand side
of the equation as ψ(μ). It is easily proved that ψ(μ) is
a monotonically increasing function of μ, with ψ(0) = 0

and ψ(∞) =
(M1−1)rσ2

n

1.5

∫∞
0
γ�p(γ�)dγ�. Thus, the existence

condition of the Lagrangian multiplier is ψ(∞) > S̄. If it is
satisfied, the solution of μ is unique. Although closed-form
of p(γ�) is not available, we can calculate the integration
numerically. Appendix C provides the details of finding μ.
Once μ is obtained, it can be inserted into (33) to get the
optimal boundaries. On the other hand, if ψ(∞) < S̄, it
means that we can choose the largest modulation M1 for
all the channel realizations, while still keeping the average
power below the power budget. This happens when σ2

n is
very small (high SNR regions). Under this circumstance, the
optimal boundaries become {γ0 = 0, γ1 = ∞}.

After we obtain the optimal boundaries, the discrete rate
adaptive transmission design is completed. Now we summa-
rize the adaptation policy for the discrete-rate case as follows.

(i) Use the algorithm 2 proposed in Section III-A to find
γ� and {P �

j } for given CSIT β̃.
(ii) Choose Ml when γ� ∈ [γl−1, γl).

(iii) Compute S(γ�) using (32c).

C. Special Cases

In this section, we will discuss several special cases, where
the degrees of freedom in power adaptation are somehow
restricted. Specifically, we now restrict the system to have
constant transmit power and/or equal spatial power allocation.
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1) Variable power and equal spatial allocation (VP-EQ):
Here the spatial power parameters are fixed to {Pj =
1/Nt}Nt

j=1. Thus the BER in (16) is expressed as

BEReq = 0.2

(
Nt

Nt + γ(β̃)σ2

)NtNr

exp

(
−γ(β̃)

∑Nt
j=1 β̃j

Nt + γ(β̃)σ2

)
.

(34)
We can obtain the optimal γ�eq by solving the following
problem for given β̃:

minimize
γ≥0

γ

subject to BEReq ≤ BERtgt

Since (34) is a monotonically decreasing function of γ, the
optimal γ gives

BEReq = BERtgt. (35)

To solve for γ from (35), we define η as

η � Nt

Nt + γσ2
. (36)

Hence, substituting (34) and (36) into (35), we obtain

(η�)NtNrebη
�

= 5BERtgte
b

where according to (11),

b �
∑Nt

j=1 β̃j

σ2
=

‖ Ĥ ‖2F
(1 + σ2

e)σ
2
e

. (37)

The solution of η� is thus given by the Lambert W function
[24] as

η� =
NtNr

b
W

(
b

NtNr
(5BERtgte

b)
1

NtNr

)
(38)

where W (·) denotes the principal branch of the Lambert W
function, whose value can be accurately calculated [24]. Since
W (x) is a monotonic function of x for x ≥ 0, the value of
η� is unique. Generally, BERtgt < 0.2, then η� is shown to be
less than 1 as follows:

η� <
NtNr

b
W

(
b

NtNr
e

b
NtNr

)
= 1.

With the value of η� less than 1, we can obtain positive γ�eq
from (36) as

γ�eq =
Nt

σ2

(
1

η�
− 1

)
. (39)

Thus, for the VP-EQ case, (38) and (39) provide the closed-
form formulae to calculate optimal γ�eq. After we obtain γ�eq,
we can follow the same procedures described in Section III-B
to calculate the optimal thresholds for our variable-power
variable-rate policy.

2) Constant power and spatial power allocation (CP-NE):
Under this scheme, we determine the constellation size and
spatial power parameters by using the BER minimization
results in Appendix A. The procedure can be summarized as
follows.

(i) Initially set M =M1 (the largest constellation).
(ii) Use (14) to compute γ with the fixed transmit power

and the constellation size M .
(iii) Solve for λ based on (25) by letting γ� = γ, and

then substitute the obtained λ into (26) to calculate the
optimal spatial power parameters.

(iv) Calculate the BER using (16). If BER ≤ BERtgt, the
optimal constellation size is set equal to M , otherwise
reduce M to a smaller size and repeat from step (ii).

3) Constant power and equal spatial allocation (CP-EQ):
The only parameter to be adjusted is the modulation level. The
optimal modulation is

M = arg max
M∈{Ml}L+1

l=1

BEReq ≤ BERtgt. (40)

where BEReq is given in (34). Equation (40) is solved by
evaluating BEReq starting from the largest constellation size.

IV. NUMERICAL RESULTS

In this section, we present numerical results to show the
superiority of the proposed variable-rate variable-power with
spatial power allocation (VP-NE) adaptation policy. For com-
parison, we also provide the results of the 3 restricted-methods
described in Section III-C and the existing methods from [10]
(Yu et al.), [7] (Ko et al.), and [15] (Zhou et al.). The practical
issue of the peak power constraint is also addressed.

We assume the set of MQAM constellation is
{0, 4, 16, 64, 256} and BERtgt = 10−3. This target BER
value has been considered as the QoS requirement for voice
communications. We have also obtained similar numerical
results for smaller target BERs, but omitted to present here
for brevity. In the following figures, SNR is defined as S̄/σ2

n

and a system with Nt transmit antennas and Nr receive
antennas is denoted by Nt×Nr system. The ASE and average
BER are evaluated respectively by [2]

ASE = EĤ[r log2(M(β̃))] (41)

BER =
EH,Ĥ[r log2(M(β̃))BERMQAM(M(β̃), S(β̃), Pj(β̃),β)]

EĤ[r log2(M(β̃))]
(42)

where the expectation is averaged over 500 000 channel
realizations generated by the channel model described in
Section II-A, and BERMQAM(·, ·, ·, ·) is a BER expression for
MQAM.

A. Performance Comparison

Fig.2 and Fig.3 compare the ASE and average BER of
variable-rate system versus SNR with different power adapta-
tion policies respectively. A 2× 1 system with Alamouti code
(r = 1) [12] is considered. The CSIT quality is assumed to be
perfect. As shown in the Fig.2, the proposed VP-NE strategy
significantly improves the ASE. As expected, restricting the
degree of freedom of power adaptation either in space or time
results in considerable ASE degradation. Among the existing
methods, Yu et al. and Zhou et al. are equivalent to the VP-
EQ and CP-NE strategies respectively for the system setups
considered in Figs.2 and 3, hence yielding the same ASE as
those two strategies. Ko et al. method is basically a constant-
power in time and equal-power in space approach, but with
additional threshold optimization. Thus it achieves better ASE
performance than the CP-EQ strategy described in Section
III-C. In Fig.3, we evaluate the average BER by substituting
the BER upper bound in (13) into (42). As seen, the target
BER is fulfilled by the variable-power schemes and Ko et al..
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Fig. 2. Average spectral efficiency of 2×1 variable-rate system for different
power adaptation strategies with Alamouti code (r = 1) and σ2
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Fig. 3. BER performance of 2× 1 variable-rate system for different power
adaptation strategies with Alamouti code (r = 1) and σ2

e = 0.

However, the constant-power schemes (including CP-NE, CP-
EQ and Zhou et al.) have BER lower than the target BER due
to the rate discretization and constant power restriction. Notice
that even the lowest constellation size cannot be supported at
0dB for the CP-EQ method. So no BER performance is given
at that point.

Fig.4 plots the ASE of a 4 × 1 system for the different
adaptation policies with imperfect CSIT, where σ2

e = 0.2.
The H4 code with r = 3/4 [16] is adopted. In the figure,
we also include the ASE performance of MIMO systems that
use the two largest eigen-beams with the full-rate Alamouti
code for transmission, denoted as 2D-VP-NE. This 2D system
was suggested by Zhou et al. in [15]. In Fig.4, we observe the
similar superiority of the VP-NE (2D-VP-NE) over Ko et al.
(Zhou et al.) as found in Fig.2. We did not include the method
from Yu et al. in Fig.4, because the imperfection assumption
on the channel model therein is different from here. The
average BER performance is also similar to what was reported
in Fig.3, thus omitted. Regarding the online computational
complexity of the proposed VP-NE scheme, the extra cost is
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Fig. 4. Average spectral efficiency for 4×1 variable-rate system for different
power adaptation strategies with σ2

e = 0.2. For the solid curves, H4 code
(r = 3/4) is used. For the dash curves, the two largest eigen-beams with
Alamouti code (r = 1) is used for transmission.

the calculation of γ� for the given CSIT, as compared to Zhou
et al. Nevertheless, this calculation can be done efficiently
via one-dimensional root-finding of a monotonic function by
bisection or Newton’s method, as described in Algorithm 2 in
Section III-A. The complexity of this root-finding is small in
comparison with the eigen-decomposition of ĤHĤ.

Fig.5 and Fig.6 respectively plot the ASE and BER of
the 2 × 1 system using the VP-NE versus SNR for σ2

e =
0, 0.05, 0.1, 0.2, 0.5, 1. As shown in Fig.5, the ASE increases
with SNR, but decreases as σ2

e increases. Fig.6 plots the
average BER upper bound and accurate BER, which are
obtained by substituting the upper bound in (13) and the
accurate BER formula in [3, Eq.(46)] into (42) respectively.
It is shown that the average BER obtained from the upper
bound equals the target BER for different σ2

e . However, we
can observe gaps between the target BER and the actual BER
obtained from the accurate BER formula. This is because
the design is based on the upper bound approximation. One
can also notice that the gaps increase as the SNR increases,
and decrease as the σ2

e increases. The reason is that the
BER approximation in (13) is more accurate when low-order
constellation is used, as reported in Fig.1 of [15]. When the
SNR is low or σ2

e is large, the probability of choosing the low-
order modulation increases (resulting in lower ASE in Fig.5).
Hence, the BER approximation is getting closer to the actual
BER and resulting in narrower gap.

B. Peak-to-Average-Power Ratio (PAPR) Issue

The proposed VP-NE scheme dynamically adapts the total
transmit power in accordant with the instantaneous CSI. The
transmit power allocation may be too large to cause nonlinear
distortion in power amplification that degrades transmission
reliability. We will illustrate in this subsection that the pro-
posed power adaptation has moderate peak-to-average-power
ratio (PAPR). Also, we will incorporate the power allocation
algorithm with a peak power constraint so that the proposed
variable-power strategy has a mechanism to control the tempo-
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proposed VP-NE strategy and Alamouti code for different estimation error
variances.
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Fig. 6. BER performance of 2 × 1 variable-rate system with the proposed
VP-NE strategy and Alamouti code for different estimation error variances.

ral power subject to a given PAPR. First, the temporal power
versus γ� for the VP-NE policy at SNR=20dB and SNR=5dB
are given in Fig.7 and Fig.8, respectively. The system configu-
ration is the same as that of Fig.5 with σ2

e = 0.1. The temporal
power of 1,000 random channel realizations is plotted in the
figures. An inset with the range of γ� in the low value region is
also plotted in each figure for better illustration. As observed
in Fig.7, the range of γ� is partitioned into 5 regions, with the
thresholds {γl}4l=1 = {1.18, 4.72, 18.87, 75.49}. The temporal
power is a piece-wise linear function of γ� in accordance with
(32c). The constellations corresponding to the partitions are
sorted in descending order. All γ� values have been used
for data transmission, except for those larger than 75.49,
resulting in high ASE. In contrast, at SNR=5dB, although the
values of γ� are all the same as that of SNR=20dB (since
the inner problem (24) is independent of SNR), the optimal
thresholds are {γl}4l=1 = {0.08, 0.31, 1.25, 4.99}, which are
much smaller than that of SNR=20dB in order to satisfy the
average power constraint (32b) for larger noise variance σ2

n.
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Fig. 7. Normalized temporal power versus γ� value of 2× 1 variable-rate
system with the proposed VP-NE strategy and Alamouti code for SNR=20dB
and σ2

e = 0.1.

As shown in Fig.8, a large number of realizations falls in
the region of “no transmission". Note that none of the 1,000
channel realizations falls in the two regions of highest rate,
but mostly fall in the two regions of lowest rate. These results
explain why higher ASE can be achieved by the VP-NE at
higher SNR’s in Fig.5.

Fig.7 and Fig.8 demonstrate that the VP-NE has moderate
PAPR that is less than 3dB and 6dB at high and low SNR’s
respectively. In order to further control the PAPR, we can
amend the VP-NE scheme to take into account the additional
peak power constraint S(β̃) ≤ Smax as follows. Based on
(32c) and the observations from Figs.7 and 8, we know that
the temporal power must hit the peak only at the boundaries of
{γl}, and nowhere else. Then we can revise the boundaries as
γnewl = min{γl, 1.5Smax

(Ml−1)rσ2
n
}, for l = 1, . . . , L. By doing so,

we still maintain the BER target because we did not change
the value of γ�. However, the ASE will be reduced and so is
the average power from (32a) and (32b).

Fig.9 plots the temporal power versus γ� at SNR=5dB
with the additional peak power constraint of S(β̃) ≤ 3S̄.
The system parameters are the same as those in Fig.8,
but the boundaries have been modified to {γnewl }4l=1 =
{0.06, 0.23, 0.95, 4.74} to satisfy the peak power constraint. In
the sub-figure, we compare the ASE with and without the peak
power constraint when the SNR varies from 0dB to 25dB. As
seen, the peak power constraint reduces the ASE in the low
SNR region.

V. CONCLUSION

In this paper, we have proposed the joint rate and spatio-
temporal power adaptation scheme for OSTBC/OSTBC-BF
MIMO systems with imperfect CSIT. The proposed transmitter
optimally adjusts the signal constellation, temporal power,
and spatial power allocation to maximize the average spectral
efficiency, subject to a target bit-error-rate and an average
power constraint. By introducing a new variable, the so-
called ESNMR, we have obtained the rate-selection policy by
partitioning the range of the ESNMR with optimal thresholds.
A closed-form temporal power control policy and a simple
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Fig. 8. Normalized temporal power versus γ� value of 2 × 1 variable-rate
system with the proposed VP-NE strategy and Alamouti code for SNR=5dB
and σ2

e = 0.1.
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Fig. 9. Normalized temporal power versus γ� value of 2 × 1 variable-rate
system with the proposed VP-NE strategy and Alamouti code, and with peak
power constraint: S(β̃) ≤ 3S̄, for SNR=5dB and σ2

e = 0.1. In the sub-figure,
average spectral efficiency of the VP-NE is plotted versus SNR with/without
the peak power constraint.

spatial power allocation algorithm have also been obtained.
Compared to adaptive systems with restricted freedoms on
power adaptation, our adaptation scheme significantly im-
proves the ASE. The additional peak power constraint can be
incorporated into the proposed scheme. The simulation results
show that the ASE of the VP-NE scheme with an additional
peak power constraint may be reduced in the low SNR region.

APPENDIX A
SOLUTION FOR THE INNER OPTIMIZATION PROBLEM

In this Appendix, we derive the solution to the inner opti-
mization problem of (24). First, the BER constraint is modified
by taking the natural log of both sides of the constraint, we
have

B̃ER ≤ ε = log(BERtgt)− log 0.2 (43)

where

B̃ER = −
Nt∑
j=1

[
Nr log(1 + γσ2Pj) +

γβ̃jPj

1 + γσ2Pj

]
(44)

Note that (44) is a convex function of {Pj} for given γ and
a decreasing function of γ for given {Pj}. These properties
suggest that the constrained problem of (24) can be interpreted
or solved as a maximin problem as follows. We first minimize
B̃ER with respect to {Pj} for given γ subject to the spatial
power constraints. If there exist nonzero γ and {Pj} yielding
B̃ER less than ε, then we can reduce the value of γ to increase
B̃ER. The minimum value of γ that makes B̃ER reach ε is the
optimal value of (24). Mathematically, the problem can be
rewritten as

maximize
γ≥0

minimize
{Pj}

B̃ER

subject to B̃ER ≤ ε,

Nt∑
j=1

Pj = 1, Pj ≥ 0. (45)

The solution to the inner convex minimization problem of
(45) can be obtained by the KKT conditions [21]:

∑
Pj =

1, Pj ≥ 0,− Nrγσ
2

1+γσ2Pj
− γβ̃j

(1+γσ2Pj)2
+ η − μj = 0, μj ≥

0, μjPj = 0, where j = 1, . . . , Nt, η and {μj} are the
Lagrangian multipliers for the sum power constraint and the
inequality constraints respectively. From the complementary
slackness condition, we know that if Pj > 0, then μj = 0.
Then applying the gradient vanishing condition, we have

Nrγσ
2

1 + γσ2Pj
+

γβ̃j
(1 + γσ2Pj)2

= η.

Let us define a parameter λ as

λ =
η

γ
=

Nrσ
2

1 + γσ2Pj
+

β̃j
(1 + γσ2Pj)2

. (46)

Solving (46) for Pj subject to the nonnegative condition give

Pj = max

{
0,

1

γσ2
(Ij(λ)− 1)

}
(47)

where

Ij(λ) =
√
N2

r σ
4 + 4β̃jλ+Nrσ

2

2λ
. (48)

Assume the number of eigen-beams with nonzero power is
N̄t (whose value is determined by Theorem 1). From (47) and
the sum power constraint

∑N̄t

j=1 Pj = 1, we obtain

γ =
1

σ2

⎛⎝ N̄t∑
j=1

Ij(λ) − N̄t

⎞⎠ (49)

The λ parameter of (47) and (49) can be determined as
follows. The optimal {Pj} and γ values of the maximin
problem (45) will set B̃ER equal to the maximum allowable
value ε. That is

B̃ER = ε. (50)

Substituting (44) and (47) into (50) obtains

FN̄t
(λ) = log

0.2

BERtgt
−

N̄t∑
j=1

(
Nr log Ij(λ) + Ij(λ)β̃j − β̃j

Ij(λ)σ2

)
.

(51)
The value of λ is obtained by solving the root of FN̄t

(λ) in
(51).



KUANG et al.: ADAPTIVE MODULATION AND JOINT TEMPORAL SPATIAL POWER ALLOCATION FOR OSTBC MIMO SYSTEMS WITH IMPERFECT CSI 1923

The above BER minimization can be applied to the case
of constant transmit power and given constellation size with
spatial power allocation. Under this scheme, according to (14),
the γ is fixed. The λ value for computing the optimal spatial
power parameters in (47) can be obtained by solving (49).

APPENDIX B
NUMERICAL CALCULATION OF γ0 IN (31)

From [25], the joint pdf of the ordered eigenvalues {ζi} of
the Wishart matrix HHH, where the entries of H are i.i.d.
complex Gaussian with zero mean and unit variance, is given
as

fζ(ζ1, . . . , ζm0) =
1

Km0,n0

e−
∑

i ζi
∏
i

ζn0−m0

i

∏
i<j

(ζi − ζj)
2

(52)
where m0 = min{Nt, Nr}, n0 = max{Nt, Nr}, Km0,n0 =∏m0

i=1(m0−i)!(n0−i)! is a normalized factor. According to our
channel estimation model and (11), the nonzero eigenvalues
{ζ̂i} of ĤHĤ can be expressed in terms of {ζi} as ζ̂i =
ζi(1 + σ2

e). Then the nonzero entries of β̃ can be expressed
in terms of {ζi} as

β̃i =
ζ̂i

(1 + σ2
e)

2
=

ζi
1 + σ2

e

, i = 1, . . . ,m0. (53)

Hence, the pdf fβ̃(β̃) is obtained as

fβ̃(β̃1, . . . , β̃m0) = (1 + σ2
e)

m0fζ(ζ1, . . . , ζm0)|ζi=β̃i(1+σ2
e)
.

(54)
According to Gauss-Laguerre quadrature formula [23], the

integration in (31) can be evaluated as

Np∑
i1=1

· · ·
Np∑

im0=1

wi1 . . . wim0
φ(zi)

rσ2
n

1.5
(γ0 − γ�(zi))

+ (55)

where {wi} denote the weights associated with zeros {zi} of
the one-dimensional Npth order Laguerre polynomial, zi =
(zi1 , · · · , zim0

) denotes the vector of zeros associated with
the index vector i = (i1, · · · , im0), and φ(zi) is given as

φ(zi) =
1

m0!Km0,n0

m0∏
l=1

⎡
⎣
⎛
⎝m0∑

j=l

zij
j

⎞
⎠

n0−m0
m0−1∏
j=l

(
j∑

k=l

zik
k

)2
⎤
⎦

(56)
and γ�(zi) in (55) is obtained by assigning {β̃j} with the
following values

β̃j =

{∑m0
k=j

(zik/k)

(1+σ2
e)

for j = 1, . . . ,m0

0 for j = m0 + 1, . . . , Nt

(57)

and following the algorithm 2 proposed in Section III-A. We
use bisection method to find the value of γ0 by comparing
the computed expectation value based on (55) with the power
budget S̄.

APPENDIX C
NUMERICAL CALCULATION OF μ IN (33)

The average power constraint (32b) can be rewritten as

ψ(μ) =

∫
(MI(γ�) − 1)rσ2

nγ
�

1.5
fβ̃(β̃)dβ̃ = S̄ (58)

where I(γ�) is an indicator function to indicate which region
of γ that γ� belongs to, defined as

I(γ�) = l, μtl−1 ≤ γ� < μtl.

According to (55), we can calculate the integration in (58)
as
Np∑
i1=1

· · ·
Np∑

im0=1

wi1 . . . wim0
φ(zi)

(MI(γ�(zi)) − 1)rσ2
nγ

�(zi)

1.5
.

To check the condition of existence of μ, we first evaluate
ψ(∞) as

ψ(∞) =

Np∑
i1=1

· · ·
Np∑

im0=1

wi1 . . . wim0
φ(zi)

(M1 − 1)rσ2
nγ

�(zi)

1.5
.

If ψ(∞) > S̄, μ exists. Then we use the bisection method to
refine the value of μ to satisfy the average power constraint.
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