
Key Agreement in Dynamic Peer Groups�Michael SteinerIBM Research Division, Zurich Research LaboratoryCH-8803 R�uschlikon, Switzerlandsti@zurich.ibm.comGene Tsudik yzUSC Information Sciences InstituteMarina del Rey, CA 90292gts@isi.eduMichael WaidnerIBM Research Division, Zurich Research LaboratoryCH-8803 R�uschlikon, Switzerlandwmi@zurich.ibm.comJanuary 29, 1999
AbstractAs a result of the increased popularity of group-oriented applications and protocols, group com-munication occurs in many di�erent settings: from network multicasting to application layer tele- andvideo-conferencing. Regardless of the application environment, security services are necessary to providecommunication privacy and integrity.This paper considers the problem of key agreement in dynamic peer groups. (Key agreement, es-pecially in a group setting, is the steeping stone for all other security services.) Dynamic peer groupsrequire not only initial key agreement (IKA) but also auxiliary key agreement (AKA) operations such asmember addition, member deletion and group fusion. We discuss all group key agreement operations andpresent a concrete protocol suite, CLIQUES, which o�ers complete key agreement services. CLIQUES isbased on multi-party extensions of the well-known Di�e-Hellman key exchange method. The protocolsare e�cient and provably secure against passive adversaries.Keywords: Key Agreement, Secure Group Communication, Cryptography, Multi-Party Computation,Dynamic Peer Groups.�Some of the material in this paper has been adapted from [20] and [21].yResearch supported by the Defense Advanced Research Project Agency, Information Technology O�ce (DARPA-ITO),under contract DABT63-97-C-0031.zContact Author. 1

1 IntroductionAs a result of the increased popularity of group-oriented applications and protocols, group communicationoccurs in many di�erent settings: from network layer multicasting to application layer tele- and video-conferencing. Regardless of the underlying environment, security services are necessary to provide commu-nication privacy and integrity.While peer-to-peer security is a mature and well-developed �eld, secure group communication remains rel-atively unexplored. Contrary to a common initial impression, secure group communication is not a simpleextension of secure two-party communication. There are two important di�erences. Firstly, protocol ef-�ciency is of greater concern due to the number of participants and distances among them. The seconddi�erence is due to group dynamics. Two-party communication can be viewed as a discrete phenomenon: itstarts, lasts for a while and ends. Group communication is more complicated: it starts, the group mutates(members leave and join) and there might not be a well-de�ned end. This complicates attendant securityservices among which key agreement is the most important.In this paper, we concentrate on secure and e�cient group key agreement. We start by de�ning a class ofprotocols that we call \natural" extensions of the 2-party Di�e-Hellman key exchange and prove the securityof all protocols in this class against passive adversaries, provided the 2-party Di�e-Hellman decision problemis hard. This result allows us to craft a number of e�cient protocols without having to be concerned abouttheir individual security. In particular, we present two new protocols, each optimal with respect to certainaspects of protocol e�ciency.Subsequently, we consider a number of di�erent scenarios of group membership changes and introduceprotocols which enable addition and exclusion of group members as well as refreshing of the keys. Altogether,the protocols described below form a complete key management suite suited speci�cally for Dynamic PeerGroups (DPGs). However, it should be noted from the outset, that many other group security properties andservices are not treated in this paper. These include: key authentication/integrity, entity authentication,key con�rmation, group signatures and non-repudiation of group membership. Protocols and mechanismsin support of these are treated in another paper [1].2 Dimensions of Key AgreementAll our protocols are based on contributory key agreement. This means that a group key K is generatedas f(N1; :::; Nn), where f() is some one-way function and Ni is an input (or key share) hosen by the i-thparty. The method of computing group keys must guarantee that:� each party contributing one Ni can calculate K;� no information about K can be extracted from a protocol run; without knowledge of at least one ofthe Ni� all inputs Ni are kept secret, i.e., if party i is honest then even a collusion of all other parties cannotextract any information about Ni from their combined view of the protocol.The �rst two requirements are obviously needed. The last property ensures that the inputs xi can be reusedfor subsequent key agreements. This is essential for DPGs, as will be seen below.Several contributory schemes key agreement have been proposed in the literature [8, 18, 4, 11, 20, 9], however,none have been widely used. In practice, group key agreement is typically done in a centralized manner: onededicated party (typically, a group leader) chooses the group key and distributes it to all group members.This actually translates into key transport, not key agreement.While the centralized approach works reasonably well for static groups or very large groups, it turns outthat contributory key agreement is superior for DPGs, i.e, at (non-hierarchical) groups with dynamicallychanging membership.In this paper we distinguish between InitialKey Agreement (IKA), a kind of group genesis, andAuxiliaryKey Agreement (AKA). AKA encompasses all operations that modify group membership, such as member2

addition and deletion. The central security requirement on AKA is key independence, i.e., each AKAoperation should result in a new group key that is independent of all previous keys.Ideally, the decision regarding who can add a new member, or delete on old one, should be taken accordingto local policy. There is no inherent reason to require the a single group leader to make these decisions.(One problem is with this setting is the exclusion of such a leader.) For instance, in some applications,each peer must be allowed to add new members and delete members that it previously added. This policyindependence cannot be easily implemented in centralized schemes, while our schemes support it quiteelegantly and e�ciently.Another advantage of contributory schemes in general is that they automatically provide freshness of newkeys: each party i can check whether xi was considered in K, hence, whether K is fresh. Furthermore,our protocols can be easily extended to authenticated group key agreement providing perfect forward secrecy(PFS) [15, 16, 12, 19], as shown in [1]. This is necessary for robust protocols withstanding active attacks.2.1 Initial Key Agreement (IKA)IKA takes place at the time of group genesis. This is the time when protocol overhead should be minimizedsince key agreement is a pre-requisite for secure group communication. On the other hand, for highly dynamicgroups, certain allowances can be made: for example, extra IKA overhead can be tolerated in exchange forlower AKA (subsequent key agreement operations) costs.Note that it is the security of the IKA, not its overhead costs, that is the overriding concern. In thiscontext, security{as in the original 2-party Di�e-Hellman key agreement{means resistance to passive attacks.Equivalently, this means the inability to recover the group key by mere eavesdropping.Naturally, IKA requires contacting every prospective group member. Contributory key agreement also callsfor a key share to be obtained from each member. Hence, it may be possible to coincide (or interleave)with the IKA other security services such as authentication, access control and non-repudiation. This issomething to keep in mind for the follow-on work.We also note that, in some environments, IKA alone is su�cient. For example, if group membership is staticor changes are very infrequent, AKA protocols may be unnecessary. The exception might be key refreshwhich can be mimicked (though expensively) with IKA.2.2 Auxiliary Key Agreement OperationsAs mentioned above, initial group key agreement is only a part, albeit a major one, of the protocol suiteneeded to support secure communication in dynamic groups. In this section we discuss other auxiliary groupkey operations and the attendant security issues. (See also Figure 1.)The security property crucial to all AKA operations is key independence. Informally, it encompasses thefollowing two requirements:� Old, previously used group keys must not be discovered by new group member(s). In other words, agroup member must not have knowledge of keys used before it joined the group.� New keys must remain out of reach of former group members.A related term found in the security literature is resistance to known key attacks (KKA) [15, 3]. A protocolis said to be KKA-resistant if knowledge of one or more past session (short-term) keys cannot be used tocompute a current session key or a long-term secret. Generally, a known-key attack can be passive or active.The latter is addressed in detail by Burmester [3]. Since this paper (and our protocol model) is concernedwith key agreement without any related services (e.g., implicit key authentication) we only consider passiveknown-key attacks on short-term session keys.Along the same lines, we are not considering PFS since no long-term keys are assumed in this context.(Recall that PFS is premised on the possibility of compromise of long-term secrets.)3

Member Addition

Member Exclusion

Group Fusion

Group Fission

Mass Join

Mass Leave

Figure 1: AKA OperationsMore precisely, our communication model assumes that all communication is authentic but not private. Anadversary is assumed to be strictly passive, i.e., it may eavesdrop on arbitrary communication but may not,in any way, interfere with it. Furthermore, an adversary in the IKA/AKA protocols can be an outsider or aquasi-insider. An outsider is a passive adversary not participating in the protocols. A quasi-insider is a one-time group member who wants to (passively) discover group session keys used outside of its membershipinterval.While the requirement for key independence is fairly intuitive, we need to keep in mind that, in practice,it may be undesirable under certain circumstances. For example, a group conference can commence despiteone of the intended participants running late. Upon its arrival, it might be best not to change the currentgroup key so as to allow the tardy participant to catch up. In any case, this decision should be determinedby local policy.2.2.1 Single Member OperationsThe AKA operations involving single group members are member addition and member exclusion. Theformer is a seemingly simple procedure of admitting a new member to an existing group. We can assumethat member addition is always multi-lateral or, at least, bilateral (i.e., it takes at least the group leader's4

and the new member's consent to take place.) Member exclusion is also relatively simple with the exceptionthat it can be performed either unilaterally (by expulsion) or by mutual consent. In either case, the securityimplications of member exclusion are the same.2.2.2 Subgroup OperationsSubgroup operations are group addition and group exclusion. Group addition, in turn, has two variants:� Mass join: the case of multiple new members who have to be brought into an existing group and,moreover, these new members do not already form a group of their own.� Group fusion: the case of two groups merging to form a super-group; perhaps only temporarily.Similarly, subgroup exclusion can also be thought of as having multiple avors:� Mass leave: multiple new members must be excluded at the same time.� Group division: monolithic group needs to be broken up in smaller groups.� Group �ssion: previously merged group must be split apart.1Although the actual protocols for handling all subgroup operations may di�er from those on single members,the salient security requirements (key independence) remain the same.2.2.3 Group Key RefreshFor a variety of reasons it is often necessary to perform a routine key change operation. This may include,for example, local policy that restricts the usage of a single key by time or by the amount of data that thiskey is used to encrypt or sign. To distinguish it key updates precipated by membership changes, we willrefer to this operation as key refresh.2.3 Who controls a group?All AKA operations will be started by a single party. It might be natural to assume that this party is a �xedgroup controller, and this controller is the only one deciding to add or delete members. On the other hand,this is just one possible policy. Another reasonable policy would be to allow everybody to add new members,but only a dedicated controller to delete members. Alternatively, member deletion can be performed onlyby the party who orignally added them.In general, AKA protocols should be designed in a way that can support (ideally) all kinds of policies. TheCLIQUES protocols actually allow any party to run any AKA protocol, thus, CLIQUES can serve as a basisfor a wide range of policies.3 Generic n-Party Di�e-Hellman Key AgreementThe following notation is used throughout the remainder of this paper:1Arguably, group �ssion is only relevant in special scenarios and in most cases it might not be worth the bookkeeping e�ortof keeping track of subgroups. 5

n number of protocol participants (group members)i; j; h; p; d; c indices of group membersMi i-th group member; i 2 [1; n]G cyclic algebraic groupq order of the algebraic group� exponentiation base; generator in thealgebraic group G delimited by qNi random (secret) exponent 2 ZZq generated by MiS; T subsets of fN1; . . . ; Nng�(S) product of all elements in set SKn group key shared among n members3.1 Security proof outlineAll our key agreement protocols belong to a family of protocols that we refer to as \natural" extensions ofthe 2-party Di�e-Hellman key exchange [5]: Like in the 2-party case, all participants M1; . . . ;Mn agree apriori on a cyclic group, G. Let � be a generator of G. For each key exchange, each member, Mi, chosesrandomly a value Ni 2 ZZq. The group key will be K = �N1 ���Nn .In the 2-party case, K is computed by exchanging �N1 and �N2 , and computing K = (�N1)N2 = (�N2)N1 .To solve the n-party case, a certain subset of f��(S)j S � fN1; . . . ; Nngg is exchanged between the players.This set includes all values �N1���Ni�1Ni+1 ���Nn for all i. Obviously, if Mi gets �N1 ���Ni�1Ni+1���Nn it can easilycompute K.The security of the 2-party case is directly based on the 2-party decision Di�e-Hellman (DDH) problem:Given (�N1 ; �N2 ; �X) decide whether X = N1N2 (i.e., the secret key K) or some randomly chosen exponent.This can be easily generalized to what we call the n-party DDH problem: Given f��(S)j S � fN1; . . . ; Nnggand �X , decide whether X = (N1 � � � Nn) or some random value.In the following section we prove that if the 2-party DDH problem is hard, then the n-party DDH problemis hard as well. This proves the security of all natural Di�e-Hellman extension at once.3.2 Security of all natural extensionsLet k be a security parameter. All algorithms run in probabilistic polynimial time with k and n as inputs.For concreteness, we consider a speci�c class of groups G for which it is commonly assumed that the 2-partyDi�e-Hellman decision problem is hard:On input k, algorithm gen chooses at random a pair (q; �) where q is a k-bit value, q andq0 = 2q + 1 are both prime, and � is a generator of the unique subgroup G of ZZ�q0 of order q.Groups of this type are used, e.g., in Schnorr signatures [17] and DSS [6].For (q; �) gen(k), n 2 N, and X = (N1; . . . ; Nn) for Ni 2 ZZq, let:� view(q; �; n;X) := the ordered set of all �Ni1 ���Nim for all proper subsets fi1; . . . ; img of f1; . . . ; ng,� K(q; �; n;X) := �N1���Nn .If (q; �) are obvious from the context, we omit them in view() and K(). Note that view(n;X) is exactlythe view of an adversary in the generic n-party DH-protocol, where the �nal secret key is K(n;X). Let thefollowing two random variables be de�ned by generating (q; �) gen(k) and choosing X randomly from(ZZq)n:� An := (view(n;X); y), for a randomly chosen y 2 G,� Dn := (view(n;X);K(n;X)). 6

Let the operator "�poly" denote polynomial indistinguishability.Remark: Polynomial indistinguishability of the 2-party Di�e-Helman key is considered, e.g., in [2]. Thenotion of polynomial indistinguishability is related to polynomial time statistical test as de�ned in [22, 14].In this context, it means that no polynomial-time algorithm can distinguish between a Di�e-Hellman keyand a random value with probability signi�cantly greater that 12 . More speci�cally, let K and R be l-bitstrings such that R is random and K is a Di�e-Hellman key. We say that K and R are polynomiallyindistinguishable if, for all polynomial time distinguishers, A, the probability of distinguishing K and Ris smaller than (12 + 1Q(l)) for all polynomials Q(l).Theorem 1 For any n > 2, A2�polyD2 implies An�polyDn.Proof (by induction on n): Assume that A2�polyD2 and An�1�polyDn�1. Thus, we have to show An�polyDn.We do this by de�ning random variables Bn; Cn, and showing An�polyBn�polyCn�polyDn, which immediatelyyields: An�polyDn.We can rewrite view(n; (N1; N2; X)) with X = (N3; . . . ; Nn) as a permutation of:(view(n � 1; (N1; X));K(n� 1; (N1; X));view(n � 1; (N2; X));K(n� 1; (N2; X));view(n � 1; (N1N2; X)))and K(n; (N1; N2; X)) as K(n � 1; (N1N2; X)).We use this to rede�ne An and Dn. All in all, we consider the following four distributions. All of them arede�ned by (q; �) gen(k), choosing c;N1; N2 2 ZZq and X 2 (ZZq)n�2 and y 2 G randomly.� An := (view(n � 1; (N1; X));K(n� 1; (N1; X));view(n � 1; (N2; X)));K(n� 1; (N2; X));view(n � 1; (N1N2; X)); y)� Bn := (view(n � 1; (N1; X));K(n� 1; (N1; X));view(n � 1; (N2; X)));K(n� 1; (N2; X));view(n � 1; (c;X)); y)� Cn := (view(n � 1; (N1; X));K(n � 1; (N1; X));view(n � 1; (N2; X)));K(n� 1; (N2; X));view(n � 1; (c;X));K(n� 1; (c;X)))� Dn := (view(n � 1; (N1; X));K(n� 1; (N1; X));view(n � 1; (N2; X)));K(n� 1; (N2; X));view(n � 1; (N1N2; X));K(n� 1; (N1N2; X)))Note that only the last two components vary.An�polyBn follows from A2�polyD2:Assume that adv distinguishes An and Bn, and let (u; v; w) be an instance of A2�polyD2. We produce aninstance for adv by using u for �N1 , v for �N2 , and w for �N1N2 (or �c), and choosing X and y randomly.If (u; v; w) belongs to A2 (D2), this new distribution belongs to Bn (An).Bn�polyCn follows from An�1�polyDn�1:Assume that adv distinguishesBn andCn, and (ignoring a necessary permutation in order) let: (view(n � 1; (c;X)); y)be an instance for An�1�polyDn�1 (i.e., the problem is to decide whether y = K(n� 1; (c;X)).) We producean instance for adv by choosing N1; N2 randomly, and computing (view(n � 1; (Ni; X));K(n� 1; (Ni; X)))based on those values in view(n � 1; (c;X)) that do not contain c as an exponent. The rest follows as in thelast case.Cn�polyDn follows from A2�polyD2, almost exactly like the �rst statement. The only di�erence is that wedo not choose y randomly, but as K(n� 1; (w;X)).2 7

Hereafter, the above result allows us to construct a number of protocols belonging to the natural DHextensions family without worrying about their individual security.4 CLIQUES: Initial Key AgreementThe cornerstone of the CLIQUES protocol suite is formed by two IKA protocols called IKA.1 and IKA.2.(They were referred to as GDH.2 and GDH3, respectively, in [20].)4.1 IKA.1The �rst IKA protocol (IKA.1) depicted in Figure 2 is simple and straight-forward. It consists of an upowand downow stages. The purpose of the upow stage is to collect contributions from all group members,one per round.In round i � 1 (1 < i < n), Mi receives a collection of i values. Of these, i � 1 are intermediate and one iscardinal. Let INT i�1j denote the j-th intermediate value in round i � 1. It is always of the form:INT i�1j = �N1 ��� Ni�1Nj for 1 < j < iwhereas a cardinal value is simply: CRDi�1 = �N1 ��� Ni�1Mi's actions are as follows:1. generate private exponent Ni2. set INT (i; j) = (INT (i � 1; j))Ni3. set INT (i; i) = CRDi�14. set CRDi = (CRDi�1)NiIn total, Mi composes i intermediate values (each with (i � 1) exponents.) and a cardinal value containingi exponents. For example, M4 receives a set:f�N1N2N3 ; �N1N2 ; �N1N3 ; �N3N2gand outputs a set: f�N1N2N3N4 ; �N1N2N3 ; �N1N2N4 ; �N1N3N4 ; �N3N2N4gIn round (n � 1), when the upow reaches Mn, the cardinal value becomes �N1���Nn�1 . Mn is thus the�rst group member to compute the key Kn. Also, as the �nal part of the upow stage, Mn computes thelast batch of intermediate values. In the second stage Mn broadcasts the intermediate values to all groupmembers.IKA.1 has the following characteristics:2 rounds nmessages ncombined message size (n� 1)(n=2 + 2)� 1exponentiations per Mi (i+ 1) for i < n, n for Mntotal exponentiations (n+3)n2 � 1The highest-indexed group member Mn plays a special role by having to broadcast the last round of inter-mediate values. (However, this special role does not a�ord Mn any added rights or privileges.)2Assuming atomic, one-message broadcast. 8

Mi Mi+1�f��(Npjp2[1;i]^ p6= j)j j 2 [1; i]g; ��(Npjp2[1;i])�����������������������������������!Stage 1 (Upow): round i; i 2 [1; n� 1]Mi Mn �f��(Npjp2[1;n]^ p6= j)j j 2 [1; n]g������������������������������Stage 2 (Broadcast): round nFigure 2: Group Key Agreement: IKA.14.2 Group Initial Key Agreement: IKA.2In certain environments, it is desirable to minimize the amount of computation performed by each groupmember. This is particularly the case in large groups or groups involving low-power entities such as smart-cards or PDAs. Since IKA.1 requires a total of (i+1) exponentiations of every Mi, the computational burdenincreases as the group size grows. The same is true for message sizes.In order to address these concerns we construct a very di�erent protocol, IKA.2 (see Figure 3). IKA.2consists of four stages. In the �rst stage we collect contributions from all group members similar to theupow stage in IKA.1. After processing the upow message Mn�1 obtains ��fNpjp2[1;n�1]g and broadcaststhis value in the second stage to all other participants. At this time, every Mi (i 6= n) factors out (dividesby) its own exponent and forwards the result to Mn. (Note that factoring out Ni requires computing itsinverse { N�1i . This is always possible if we choose the group q as a group of prime order). In the �nal stage,Mn collects all inputs from the previous stage, raises every one of them to the power of Nn and broadcaststhe resulting n� 1 values to the rest of the group. Every Mi now has a value of the form ��fNpjp2[1;n]^p6=igand can easily generate the intended group key Kn.IKA.2 has two appealing features:� Constant message sizes� Constant (and small) number of exponentiations for each Mi(except for Mn with n exponentiations required)Its properties are summarized in the following table:rounds n+ 1messages 2n� 1combined message size 3(n� 1)exponentiations per Mi 4 for i < (n� 1),2 for Mn�1, n for Mntotal exponentiations 5n� 6One notable drawback of IKA.2 is that, in Stage 3 (n-th round), n � 1 unicast messages are sent to Mn.This might lead to congestion at Mn. 9

Mi Mi+1���fNp jp2[1;i]g�����������������!Stage 1 (Upow): Round i; i 2 [1; n� 2]Mi Mn�1 ���fNp jp2[1;n�1]g��������������������Stage 2 (Broadcast): Round n� 1Mi Mn���fNpjp2[1;n�1]Ni g�������������������!Stage 3 (Response): Round nMi Mn �f��(Np jp2[1;n]Nj j j 2 [1; n]g��������������������Stage 4 (Broadcast): Round n+ 1Figure 3: Group Key Agreement: IKA.25 CLIQUES: Auxiliary Key AgreementBoth IKA protocols operate in two phases: a gathering phase whereby Mn collects all f�N1��� NnNi ji 2 [1; n]gand a �nal broadcast phase. Our AKA operations take advantage of the keying information (i.e., partialkeys) collected in the gathering phase of the most recent IKA protocol run. This information is incrementallyupdated and re-distributed to the new incarnation of the group.Since the �nal broadcast phase is exactly the same for both IKA.1 and IKA.2 we also note that the AKAoperations described below work with both IKA protocols. This results in exibility to choose an IKAprotocol that suits a particular DPG setting.5.1 Member AdditionThe member addition protocol is shown in Figure 4. The protocol's main premise is that the new memberMn+1 becomes the new group controller. It is assumed that the \old" controller Mn saves the contents ofthe last Broadcast message that was sent in the last round in the IKA protocol of Figure 2.33This is only the case for the very �rst member addition; subsequent member additions require the current controller to savethe most recent Broadcast message from the preceding member addition protocol.10

Mn Mn+1�f�cNn�(Npjp2[1;n])Nj j j 2 [1; n]g; �cNn�(Npjp2[1;n])�����������������������������������!Upow: round 1 (Nn NncNn)Mi Mn+1 �f�cNn�(Np jp2[1;n+1])Nj j j 2 [1; n+ 1]g�������������������������������Broadcast: round 2Figure 4: Member Addition: oating group controllerIn e�ect, Mn extends Stage 1 of the IKA protocol by one round: it generates a new exponent cNnNn andcreates a new upow message (where cNnNn is used in place of Nn.)It might seem more natural to replace Nn by cNn instead of combining the two. However, this way not just thegroup controller but any member who stores the latest broadcast message can initiate member addition. Thisfeature may prove useful in some environments. Unfortunately, this potential bene�t becomes a drawbackin the context of member exclusion. (If any member can exclude any other member, anarchy will reign!)The role of the group controller is thus passed on to the newest group member. Although this protocol�ts in nicely with the IKA, its basic assumption of a oating group controller might be unrealistic in someenvironments. For example, the new member may, in fact, be the one least trusted by the rest of the group.4In order to address this concern, we modify the present protocol to support a �xed group controller. For thesake of clarity, we assume that, while the controller stays �xed, its index keeps growing. In other words, thenew member becomes Mn and the group controller assumes the index n + 1.The resultant protocol is shown in �gure 5. The �rst message is a duplicate of either:� Upow message in round (n� 1) of the original IKA protocol(only if this is the �rst member addition)OR� Upow message in round 2 of the last member addition protocolOne interesting and useful feature of the two member addition protocols is their ability to co-exist withina group. Consequently, a group may start out with a �xed group controller and, later, switch over to theoating controller mode or viceversa.5.2 Mass JoinDistinct from both member and group addition is the issue of mass join. When is mass join necessary? Incases when multiple new members need to be brought into an existing group. In most cases, the new members4On the other hand, it can also be argued that this approach is fair since it o�-loads the bulk of the computation to thenewcomer. 11

Mn { new member Mn+1 { formerly MnMn Mn+1 �f��(Np jp2[1;n�1])Nj j j 2 [1; n� 1]g; ��(Npjp2[1;n�1])��f��(Np jp2[1;n])Nj j j 2 [1; n]g; ��(Npjp2[1;n])�����������������������������������!Simulated Upow : rounds 1 &2 (Nn - new member's contribution)Mi Mn+1 �f��(Np jp2[1;n+1])Ni j i 2 [1; n+ 1]g�����������������������������������Broadcast: round 3Figure 5: Member Addition: �xed group controllerare disparate (i.e., have no prior common association) and need to be added in a hurry. Alternatively, the newmembers may already form a subgroup but policy might dictate that they should be admitted individually.It is, of course, always possible to add multiple members by consecutive runs of a single-member additionprotocol. However, this would be ine�cient since, for each new member, every existing member would haveto compute a new group key only to throw it away thereafter. To be more speci�c, if m new members wereto be added in this fashion, the cost would be:� 3m rounds with �xed group controller and 2m { with oating.� Included in the above are m rounds of broadcast� m exponentiations by every \old" group memberThe overhead is clearly very high.A better approach is to chain the member addition protocol as shown in Figure 6. The idea is to capitalizeon the fact that multiple, but disparate, new members need to join the group and chain a sequence of Upowmessages to traverse all new members in a certain order. This allows us to incur only one broadcast roundand postpone it until the very last step, i.e., the last new member being mass-joined performs the broadcast.The savings, compared with the naive approach, amount to m � 1 broadcast rounds.For brevity's sake Figure 6 shows only the oating controller model. A chained �xed controller model canbe trivially and similarly constructed from the protocol in Figure 5.5.3 Group FusionGroup fusion, as de�ned above, occurs whenever two groups merge to form a super-group. The only realdi�erence with respect to mass join is that group fusion assumes pre-existing relationships within bothgroups. Thus, it is important to recognize from the outset that the most expedient way to address groupfusion is to treat it as either: 12

Mn+i Mn+i+1�f�cNn�(Npjp2[1;n+i])Nj j j 2 [1; n+ i]g; �cNn�(Npjp2[1;n+i]���!Upow: round i (0 � i � m, if (i = 0)fNn NncNng)Mi Mn+m � f�cNn�(Npjp2[1;n+m])Nj j j 2 [1; n+m]g���Broadcast: round m+ 1Figure 6: Mass Join (oating controller)1) Special case of mass join as in Figure 6or 2) Creation of a new super-group via IKA of Figure 2The �rst choice is appropriate if one of the groups is small. (Recall that mass join takes m+1 rounds wherem is the smaller group's size.) On the other hand, creating a new group from scratch may be more secure5and not too expensive if both groups are relatively small. Another reason can be the need to re-assign thegroup controller's role.It is certainly possible to end the discussion of group fusion at this point. The outcome would be a heuristic-or policy-driven decision to use (1) or (2) on a case-by-case basis. However, if only for purely academicreasons, it might be worthwhile to investigate more e�cient, or at least more elegant, solutions gearedspeci�cally towards group fusion. Although this remains a subject for future work, we briey sketch onepossible solution below.One promising approach to group fusion is a technique fashioned after the one developed by Steer et al. in[18]. In brief, suppose that two groups G1 and G2 currently using group keys K1 and K2, respectively, wouldlike to form a super-group. To do so, the two groups exchange their respective key residues: �K1 and �K2and compute a new super-group key K12 = �K1K2 . The actual exchange can be undertaken by the groupcontrollers. Note that this type of fusion is very fast since it can in principle be accomplished in one roundof broadcast. Furthermore, reverting to the original group structure is easy since each group can simply fallback to using K1 and K2 at any time thus e�ectively reversing the fusion but any other group split seemsto require two complete and ine�cient IKA operations. So unless one only has groups which only grow oronly split into previously existing groups it seems easier to use the Mass Join protocol in Figure 6.5.4 Member ExclusionThe member exclusion protocol is illustrated in Figure 7. In it, Mn e�ectively \re-runs" the last round ofthe IKA: as in member addition, it generates a new exponent cNn and constructs a new Broadcast message{but with cNnNn instead of Nn{using the most recently received Broadcast message. (Note that the lastBroadcast message can be from an IKA or any AKA, depending which was the latest to take place.) Mnthen broadcasts the message to the rest of the group. The private exponents of the other group membersremain unchanged.5Because re-running an IKA involves a liveness test of all group members.13

Mn Mi�f�cNn�(Npjp2[1;n])Nj j j 2 [1; n]^ j 6= dg����������������������������������!Broadcast: round 1 (Nn NncNn)Figure 7: Member ExclusionLet Md be the member to be excluded from the group. We assume, for the moment, that d 6= n. Since thefollowing sub-key: �cNn�(Npjp2[1;n]^p6=d)is conspicuously absent from the set of broadcasted sub-keys, the newly excluded Md is unable to computethe new group key: Knew = �cNn�(Npjp2[1;n])A notable side-e�ect is that the excluded member's contribution Nd is still factored into the new key.Nonetheless, this in no way undermines the new key's secrecy.In the event that the current group controller Mn has to be excluded, any other Mi can assume its role,assuming it stored the last Broadcast message.5.5 Subgroup ExclusionIn most cases, subgroup exclusion is even simpler than single member exclusion. The protocol for mass leaveis almost identical to that in �gure 7. The only di�erence is the group controller having to compute and sendfewer sub-keys in the �nal broadcast message. (Only those sub-keys corresponding to remaining membersare computed and broadcast.)A slightly di�erent scenario is that of group division when a monolithic group needs to be split into two ormore smaller groups. The obvious way of addressing this is to select for each of the subgroups a subgroupcontroller which runs the group exclusion protocol within its subgroup by broadcasting only those sub-keyscorresponding to subgroup members.5.6 Key RefreshThere are two main reasons for the group key refresh operation:� limit exposure due to loss of group session keys� limit the amount of ciphertext generated with the same key.6Whereas the second reason does not pose any special requirements for the key refresh protocol, the �rstmakes it important for the key refresh protocol not to violate key independence. (For example, this rulesout using a straight-forward method of generating a new key as a result of applying a one-way hash functionto the old key.) Additionally, we note that loss of a member's key share (Ni) can result in disclosure of allsession keys contributed to by this member with this share. Therefore, not only should the session keys, butalso individual key shares must be periodically refreshed.6It is easier to perform cryptanalysis with more plaintext/ciphertext pairs.14

This leads to following key refresh protocol: The member Mh which is the least recent to have refreshed itskey share7 generates a new share (exponent) cNh and \re-runs" the broadcast round as shown in �gure 8Mh Mi�f�cNh�(Npjp2[1;n])Nj j j 2 [1; n]g���������������������������!Broadcast: round 1 (Nh NhcNh)Figure 8: Key RefreshThis procedure guarantees key independence between session keys and limits the damage of leaked key shareto at most n epochs. We also note that this one-round protocol can be piggy-packed easily and at almostno cost on a group broadcast which is a likely operation assuming that the established group key is used toprotect intra group communication.6 Security Considerations for AKA OperationsIn order to demonstrate security of the AKA protocols, we need to consider a snapshot in a life of a group,i.e., the lifespan and security of a particular short-term key.The following sets are de�ned:� C = fM1; . . . ;Mcg denotes all current group members and Mc is the group controller.� P = fMc+1; . . . ;Mqg denotes all past (excluded before) group members.� F = fMq+1; . . . ;Mng denotes all future (subsequently added) group members.Note that the term future is used relative to the speci�c session key. The issue at hand is the ability of allpast and future members to compute the current key.K = �N1���cNcNc+1 ���NqTo simplify our discussion we collapse all members of P and F into a single powerful adversary (Eve). (Thisis especially �tting since P and F are not necessarily disjoint.) The result is that Eve = P [F and shepossesses fNj; jMj 2 (P;F)g.We can thus rewrite the key as: K = �B(�E)where B is a constant known to Eve, E = fN1; . . . ; Nc�1;cNcg are the secret exponents (contributions) ofcurrent group members and cNc is the group controller's exponent. In Eve's view, the only expressionscontaining cNc are in the last Broadcast round of either member addition or member exclusion protocols:f�N1���Nc�1 bNcNi jMi 2 CgWe can further assume that Eve also knows all:f��S j S � EgHowever, Eve's knowledge is a subset of what we previously referred to as view(c; E). Recall that in Section3.2 we have shown that for any n: A2�polyD2 implies An�polyDnwhere:7Other policies, e.g., taking into account the vulnerability of individual members to subversion attacks, are also possible.15

� "�poly" denotes polynomial indistinguishability� An := (view(n;X); y), for a randomly chosen y 2 G,� Dn := (view(n;X);K(n;X)).� view(n;X) := ordered set of all �Ni1 ��� Nim for all proper subsets fi1; . . . ; img of f1; . . . ; ng,� K(n;X) := �N1��� Nn .� X = fN1; . . . ; NngIf we substitute n with c, X with E , and K(n;X) with K, it follows that K is polynomially indistinguishablefrom a random value. 2Consequently, all AKA protocols presented above fall into the class of \natural" DH extensions de�ned inSection 3.2 and bene�t from the same security properties.7 Related WorkThe earliest attempt to extend DH to groups is due to Ingemarsson et al. [8] The protocol in �gure 9 (calledING) requires synchronous startup and executes in (n � 1) rounds. The members must be arranged in alogical ring. In a given round, every participant raises the previously-received intermediate key value to thepower of its own exponent and forwards the result to the next participant. After (n � 1) rounds everyonecomputes the same key Kn. Mi M(i+1)mod n��N(i�k)mod n��� Ni���������������!Figure 9: ING Protocol: Round k; k 2 [1; n� 1]We note that this protocol falls into the class of natural DH extensions as de�ned in [20]. It is, thus, suitablefor use as an IKA protocol. However, because of its symmetry8 (no natural group leader) it is di�cult touse it as a foundation for auxiliary key agreement protocols.Another DH extension geared towards teleconferencing was proposed by Steer et al. in [18]. This protocol(referred to as STR) requires all members to have broadcasting facilities and takes n rounds to complete.In some ways, STR is similar to IKA.1. Both take the same number of rounds and involve asymmetricoperation. Also, both accumulate keying material by traversing group members one per round. However,the group key in STR has a very di�erent structure:Kn = �Nn�Nn�1� :::N3�N1N2Interestingly, STR is well-suited for adding new members; see �gure 10. As in IKA.1, it takes only tworounds to add a new member (assuming oating controller). Moreover, this protocol is computationallymore e�cient than IKA.1 member addition since fewer exponentiations take place. Member exclusion, onthe other hand, is di�cult in STR since there is no natural group controller. For example, excluding M1 orM2 is problematic since their exponents are used in the innermost key computation. In general, re-computinga common key (when Mi leaves) is straight-forward for all Mj , j < i. While, all Mj , j > i need to receiveinput from lower-numbered members.One notable recent result is due to Burmester and Desmedt [4]. They construct a very e�cient protocol(BD) which executes in only three rounds:8It is also not very e�cient. 16

Mi Mn+1 � �Nn+1���������Broadcast: round 1Mn Mn+1� �Kn���������!Exchange: round 2Figure 10: Member Addition in STR.1. Each Mi generates its random exponent Ni and broadcasts zi = �Ni .2. Each Mi computes and broadcasts Xi = (zi+1=zi�1)Ni3. Each Mi can now compute9 the key Kn = znNii�1 �Xn�1i �Xn�2i+1 � � �Xi�2 mod pThe key de�ned by BD is di�erent from all protocols discussed thus far, namelyKn = �N1N2+N2N3+���+NnN1 .Nonetheless, the protocol is proven secure provided the DH problem is intractable.Some important assumptions underlying the BD protocol:1. the ability of each Mi to broadcast to the rest of the group2. the ability to of each Mi to receive n� 1 messages in a single round3. the ability of the system to handle n simultaneous broadcasts.While the BD protocol is e�cient and secure, we claim that it is not well-suited for dynamic groups. Todemonstrate this claim, we briey consider what is takes to add a new member in BD. Note that, like inIKA.1, at least one of the current members needs to generate a new exponent whenever a member is added.Assuming synchronized clocks among members, the addition protocol takes two rounds:� �rst round to distribute individual contributionsczn and zn+1 generated by Mn andMn+1 respectively.� second round for each of: M1;Mn+1;Mn;Mn�1 to generate and broadcast to the rest of the group:cX1; dXn+1; cXn; dXn�1, respectively. Finally, all group members compute a new key in the usual fashion.Despite the small number of rounds, every group member10 needs to receive four messages from four di�erentsources in the second round. This translates into relatively high overhead. Another point of concern is thenecessity for all members to keep transient state while the protocol executes, i.e., receiving the four messagesin the second round is not an atomic operation.On the other hand, member addition in BD is computationally lighter since no one member performs the bulkof the computation as in IKA.1. This is a de�nite bene�t especially when low-power hardware is involved.Member exclusion in BD is similar in spirit. As before, at least one remaining member (say, Mn) mustgenerate a new exponent. Assuming that M1 is to be excluded, a two-round protocol is executed:� during the �rst round, Mn distributes its new contribution, czn = � bNi , to M2 and Mn�1. Then:{ Mn computes cXn = (z2=zn�1) bNi9All indexes are modulo n.10ExceptM1;Mn+1 ;Mn;Mn�1 each of which receives three in the second round but at least one in the �rst.17

{ M2 computes cX2 = (z3=czn)N2{ Mn�1 computes cX2 = (czn=zn�2)Nn�1� during the second round : M2;Mn�1; and Mn each broadcast to the rest of the group: cX2; dXn�1; andcXn, respectively. Finally, all group members compute a new key in the usual fashion.Although it is computationally e�cient, this protocol requires each member to receive three messages fromthree sources and to keep transient state in the process.8 SummaryIn summary, this paper identi�ed the requirements for IKA and AKA operations and developed correspondingCLIQUES protocols based on the Di�e-Hellman key exchange. The protocols presented above achieve secureand e�cient key agrement in the context of dynamic peer groups. Such groups are relatively small and non-hierarchical. In large groups, it is unclear that key agreement is appropriate since collecting contributionsfrom all members can become very costly. Instead, key distribution mechanisms can be used. This subject(key distribution in large and dynamic groups) is an active research area; for example, [7, 13, 10].Our emphasis has been on bare key agreement resistant to passive attacks. In practice, one must contendwith active attacks and intruders; to this end, authenticated key agreement must be employed. Relatedissues include key con�rmation, group integrity and member authentication. These and other group securityservices are addressed in another paper [1].9 AcknowledgementsThe authors thank N. Asokan, G. Ateniese, V. Shoup and U. Wille for comments on the drafts of this paper.References[1] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group key agreement and friends. In ACMSymposium on Computer and Communication Security, November 1998.[2] Stefan Brands. An e�cient o�-line electronic cash system based on the representation problem. TechnicalReport CS-R9323, CWI, March 1993.[3] M. Burmester. On the risk of opening distributed keys. In Advances in Cryptology { CRYPTO, 1994.[4] M. Burmester and Y. Desmedt. A secure and e�cient conference key distribution system. In Advancesin Cryptology { EUROCRYPT, 1994.[5] W. Di�e and M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,IT-22(6):644{654, November 1976.[6] The digital signature standard proposed by NIST. CACM, 35(7):36{40, Jul 1992.[7] H. Harney, C. Muckenhirn, and T. Rivers. Group key management protocol (gkmp) architecture, July1997. RFC 2094.[8] Ingemar Ingemarsson, Donald Tang, and C. Wong. A conference key distribution system. IEEE Trans-actions on Information Theory, 28(5):714{720, September 1982.[9] Mike Just and Serge Vaudenay. Authenticated multi-party key agreement. In Ueli Maurer, editor, Ad-vances in Cryptology { EUROCRYPT 96, number 1070 in Lecture Notes in Computer Science. Springer-Verlag, Berlin Germany, 1996. 18

[10] W. Kei, M. Gouda, and S. Lam. Secure group communications using key graphs. Technical report, UTAustin, CS Dept. TR-97-23, 1997.[11] Michael K.Just. Methods of multi-party cryptographic key establishment. Master's thesis, CarletonUniversity, Computer Science Department, Caleton University, Ottawa, Ontario, August 1994.[12] Hugo Krawczyk. SKEME: A versatile secure key exchange mechanism for internet. In Symposiumon Network and Distributed Systems Security, pages 114{127, San Diego, California, February 1996.Internet Society.[13] D. McGrew and A. Sherman. One-way function trees. Technical report, DARFT, in submission, 1998.[14] A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of applied cryptography. CRC Press serieson discrete mathematics and its applications. CRC Press, 1996. ISBN 0-8493-8523-7.[15] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied cryptography. CRC Press series ondiscrete mathematics and its applications. CRC Press, 1996. ISBN 0-8493-8523-7.[16] H. Orman. The oakley key determination protocol, Version 2.0 1997. INTERNET-DRAFT, work inprogress.[17] C. Schnorr. E�cient signature generation by smart cards. Journal of Cryptology, 4(3):161{174, 1991.[18] D. Steer, L. Strawczynski, W. Di�e, and M. Wiener. A secure audio teleconference system. In S. Gold-wasser, editor, Advances in Cryptology { CRYPTO 88, number 403 in Lecture Notes in ComputerScience, pages 520{528, Santa Barbara, CA, USA, August 1990. Springer-Verlag, Berlin Germany.[19] M. Steiner, G. Tsudik, and M. Waidner. Re�nement and extension of encrypted key exchange. ACMOperating Systems Review, 29(3):22{30, July 1995.[20] M. Steiner, G. Tsudik, and M. Waidner. Di�e-hellman key distribution extended to groups. In ACMSymposium on Computer and Communication Security, March 1996.[21] M. Steiner, G. Tsudik, and M. Waidner. Cliques: A new approach to group key agreement. In IEEEConference on Distributed Computing Systems, May 1998.[22] Douglas R. Stinson. Cryptography: theory and practice. CRC Press Series on Discrete Mathematics andIts Applications, edited by Kenneth Rosen. CRC Press, Boca Raton, Florida, 1995.
19

