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Abstract

As a result of the increased popularity of group-oriented applications and protocols, group com-
munication occurs in many different settings: from network multicasting to application layer tele- and
video-conferencing. Regardless of the application environment, security services are necessary to provide
communication privacy and integrity.

This paper considers the problem of key agreement in dynamic peer groups. (Key agreement, es-
pecially in a group setting, is the steeping stone for all other security services.) Dynamic peer groups
require not only initial key agreement (IKA) but also auxiliary key agreement (AKA) operations such as
member addition, member deletion and group fusion. We discuss all group key agreement operations and
present a concrete protocol suite, CLIQUES, which offers complete key agreement services. CLIQUES is
based on multi-party extensions of the well-known Diffie-Hellman key exchange method. The protocols
are efficient and provably secure against passive adversaries.
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Dynamic Peer Groups.
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1 Introduction

As a result of the increased popularity of group-oriented applications and protocols, group communication
occurs in many different settings: from network layer multicasting to application layer tele- and video-
conferencing. Regardless of the underlying environment, security services are necessary to provide commu-
nication privacy and integrity.

While peer-to-peer security is a mature and well-developed field, secure group communication remains rel-
atively unexplored. Contrary to a common initial impression, secure group communication is not a simple
extension of secure two-party communication. There are two important differences. Firstly, protocol ef-
ficiency is of greater concern due to the number of participants and distances among them. The second
difference is due to group dynamics. Two-party communication can be viewed as a discrete phenomenon: it
starts, lasts for a while and ends. Group communication is more complicated: it starts, the group mutates
(members leave and join) and there might not be a well-defined end. This complicates attendant security
services among which key agreement is the most important.

In this paper, we concentrate on secure and efficient group key agreement. We start by defining a class of
protocols that we call “natural” extensions of the 2-party Diffie-Hellman key exchange and prove the security
of all protocols in this class against passive adversaries, provided the 2-party Diffie-Hellman decision problem
is hard. This result allows us to craft a number of efficient protocols without having to be concerned about
their individual security. In particular, we present two new protocols, each optimal with respect to certain
aspects of protocol efficiency.

Subsequently, we consider a number of different scenarios of group membership changes and introduce
protocols which enable addition and exclusion of group members as well as refreshing of the keys. Altogether,
the protocols described below form a complete key management suite suited specifically for Dynamic Peer
Groups (DPGs). However, it should be noted from the outset, that many other group security properties and
services are not treated in this paper. These include: key authentication/integrity, entity authentication,
key confirmation, group signatures and non-repudiation of group membership. Protocols and mechanisms
in support of these are treated in another paper [1].

2 Dimensions of Key Agreement

All our protocols are based on contributory key agreement. This means that a group key K is generated
as f(Ny,..., Np), where f() is some one-way function and N; is an input (or key share) hosen by the é-th
party. The method of computing group keys must guarantee that:

e each party contributing one N; can calculate K;

e no information about K can be extracted from a protocol run; without knowledge of at least one of
the Nz'

e all inputs N; are kept secret, i.e., if party ¢ is honest then even a collusion of all other parties cannot
extract any information about N; from their combined view of the protocol.

The first two requirements are obviously needed. The last property ensures that the inputs z; can be reused
for subsequent key agreements. This is essential for DPGs, as will be seen below.

Several contributory schemes key agreement have been proposed in the literature [8, 18,4, 11, 20, 9], however,
none have been widely used. In practice, group key agreement is typically done in a centralized manner: one
dedicated party (typically, a group leader) chooses the group key and distributes it to all group members.
This actually translates into key transport, not key agreement.

While the centralized approach works reasonably well for static groups or very large groups, it turns out
that contributory key agreement is superior for DPGs, i.e, flat (non-hierarchical) groups with dynamically
changing membership.

In this paper we distinguish between Initial Key Agreement (IKA), a kind of group genesis, and Auxiliary
Key Agreement (AKA). AKA encompasses all operations that modify group membership, such as member



addition and deletion. The central security requirement on AKA is key independence, i.e., each AKA
operation should result in a new group key that i1s independent of all previous keys.

Ideally, the decision regarding who can add a new member, or delete on old one, should be taken according
to local policy. There is no inherent reason to require the a single group leader to make these decisions.
(One problem is with this setting is the exclusion of such a leader.) For instance, in some applications,
each peer must be allowed to add new members and delete members that it previously added. This policy
independence cannot be easily implemented in centralized schemes, while our schemes support it quite
elegantly and efficiently.

Another advantage of contributory schemes in general is that they automatically provide freshness of new
keys: each party ¢ can check whether x; was considered in K, hence, whether K is fresh. Furthermore,
our protocols can be easily extended to authenticated group key agreement providing perfect forward secrecy
(PFS) [15, 16, 12, 19], as shown in [1]. This is necessary for robust protocols withstanding active attacks.

2.1 Initial Key Agreement (IKA)

IKA takes place at the time of group genesis. This is the time when protocol overhead should be minimized
since key agreement is a pre-requisite for secure group communication. On the other hand, for highly dynamic
groups, certain allowances can be made: for example, extra IKA overhead can be tolerated in exchange for
lower AKA (subsequent key agreement operations) costs.

Note that it i1s the security of the IKA, not its overhead costs, that is the overriding concern. In this
context, security—as in the original 2-party Diffie-Hellman key agreement—-means resistance to passive attacks.
Equivalently, this means the inability to recover the group key by mere eavesdropping.

Naturally, IKA requires contacting every prospective group member. Contributory key agreement also calls
for a key share to be obtained from each member. Hence, it may be possible to coincide (or interleave)
with the IKA other security services such as authentication, access control and non-repudiation. This is
something to keep in mind for the follow-on work.

We also note that, in some environments, [IKA alone is sufficient. For example, if group membership is static
or changes are very infrequent, AKA protocols may be unnecessary. The exception might be key refresh
which can be mimicked (though expensively) with TKA.

2.2 Auxiliary Key Agreement Operations

As mentioned above, initial group key agreement is only a part, albeit a major one, of the protocol suite
needed to support secure communication in dynamic groups. In this section we discuss other auxiliary group
key operations and the attendant security issues. (See also Figure 1.)

The security property crucial to all AKA operations is key independence. Informally, it encompasses the
following two requirements:

e Old, previously used group keys must not be discovered by new group member(s). In other words, a
group member must not have knowledge of keys used before it joined the group.

e New keys must remain out of reach of former group members.

A related term found in the security literature is resistance to known key attacks (KKA) [15, 3]. A protocol
is said to be KKA-resistant if knowledge of one or more past session (short-term) keys cannot be used to
compute a current session key or a long-term secret. Generally, a known-key attack can be passive or active.
The latter is addressed in detail by Burmester [3]. Since this paper (and our protocol model) is concerned
with key agreement without any related services (e.g., implicit key authentication) we only consider passive
known-key attacks on short-term session keys.

Along the same lines, we are not considering PFS since no long-term keys are assumed in this context.
(Recall that PFS is premised on the possibility of compromise of long-term secrets.)
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Figure 1: AKA Operations

More precisely, our communication model assumes that all communication is authentic but not private. An
adversary is assumed to be strictly passive, i.e., it may eavesdrop on arbitrary communication but may not,
in any way, interfere with it. Furthermore, an adversary in the IKA/AKA protocols can be an outsider or a
quasi-insider. An outsider is a passive adversary not participating in the protocols. A quasi-insider is a one-
time group member who wants to (passively) discover group session keys used outside of its membership
interval.

While the requirement for key independence is fairly intuitive, we need to keep in mind that, in practice,
it may be undesirable under certain circumstances. For example, a group conference can commence despite
one of the intended participants running late. Upon its arrival, it might be best not to change the current
group key so as to allow the tardy participant to catch up. In any case, this decision should be determined
by local policy.

2.2.1 Single Member Operations

The AKA operations involving single group members are member addition and member exclusion. The
former is a seemingly simple procedure of admitting a new member to an existing group. We can assume
that member addition is always multi-lateral or, at least, bilateral (i.e., it takes at least the group leader’s



and the new member’s consent to take place.) Member exclusion is also relatively simple with the exception
that it can be performed either unilaterally (by expulsion) or by mutual consent. In either case, the security
implications of member exclusion are the same.

2.2.2 Subgroup Operations

Subgroup operations are group addition and group exclusion. Group addition, in turn, has two variants:

e Mass join: the case of multiple new members who have to be brought into an existing group and,
moreover, these new members do not already form a group of their own.

e Group fusion: the case of two groups merging to form a super-group; perhaps only temporarily.
Similarly, subgroup exclusion can also be thought of as having multiple flavors:

e Mass leave: multiple new members must be excluded at the same time.
e Group division: monolithic group needs to be broken up in smaller groups.

o Group fission: previously merged group must be split apart.!

Although the actual protocols for handling all subgroup operations may differ from those on single members,
the salient security requirements (key independence) remain the same.

2.2.3 Group Key Refresh

For a variety of reasons it is often necessary to perform a routine key change operation. This may include,
for example, local policy that restricts the usage of a single key by time or by the amount of data that this
key is used to encrypt or sign. To distinguish it key updates precipated by membership changes, we will
refer to this operation as key refresh.

2.3 Who controls a group?

All AKA operations will be started by a single party. It might be natural to assume that this party is a fized
group controller, and this controller is the only one deciding to add or delete members. On the other hand,
this is just one possible policy. Another reasonable policy would be to allow everybody to add new members,
but only a dedicated controller to delete members. Alternatively, member deletion can be performed only
by the party who orignally added them.

In general, AKA protocols should be designed in a way that can support (ideally) all kinds of policies. The
CLIQUES protocols actually allow any party to run any AKA protocol, thus, CLIQUES can serve as a basis
for a wide range of policies.

3 Generic n-Party Diffie-Hellman Key Agreement

The following notation is used throughout the remainder of this paper:

1 Arguably, group fission is only relevant in special scenarios and in most cases it might not be worth the bookkeeping effort
of keeping track of subgroups.



n | number of protocol participants (group members)
t,7,h,p,d,c | indices of group members
i-th group member; i € [1,n]
cyclic algebraic group
order of the algebraic group
exponentiation base; generator in the
algebraic group GG delimited by ¢
N; | random (secret) exponent € Z, generated by M;
S, T | subsets of {Ny,...,N,}
TI( product of all elements in set S
K, | group key shared among n members
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3.1 Security proof outline

All our key agreement protocols belong to a family of protocols that we refer to as “natural” extensions of
the 2-party Diffie-Hellman key exchange [5]: Like in the 2-party case, all participants My, ..., M, agree a
priori on a cyclic group, G. Let « be a generator of G. For each key exchange, each member, M;, choses
randomly a value N; € Z,. The group key will be K = aNr o Na

In the 2-party case, K is computed by exchanging o™¥* and a™¥2, and computing K = (a1 )V2 = (a¥2)N1,
To solve the n-party case, a certain subset of {a(¥)| & C {Ny,..., N,}} is exchanged between the players.
This set includes all values o™ Ni=1Nit1=Nu for all . Obviously, if M; gets o™Vt Ni=iNit1No it can easily
compute K.

The security of the 2-party case is directly based on the 2-party decision Diffie-Hellman (DDH) problem:
Given (a¥1, V2 aX) decide whether X = Ny N3 (i.e., the secret key K) or some randomly chosen exponent.

This can be easily generalized to what we call the n-party DDH problem: Given {a"S)| & € {Ny,..., N, }}
and o | decide whether X = (N1 -+ Np) or some random value.

In the following section we prove that if the 2-party DDH problem is hard, then the n-party DDH problem
is hard as well. This proves the security of all natural Diffie-Hellman extension at once.

3.2 Security of all natural extensions

Let £ be a security parameter. All algorithms run in probabilistic polynimial time with & and n as inputs.

For concreteness, we consider a specific class of groups G for which it is commonly assumed that the 2-party
Diffie-Hellman decision problem is hard:

On input k, algorithm gen chooses at random a pair (¢q,«) where ¢ is a k-bit value, ¢ and
¢ = 2q + 1 are both prime, and « is a generator of the unique subgroup G of ZZ’ of order q.
Groups of this type are used, e.g., in Schnorr signatures [17] and DSS [6].

For (¢, ) < gen(k), n € N, and X = (Ny,..., N,,) for N; € Z,,, let:

e view(q,a,n, X) := the ordered set of all a1 "Nim for all proper subsets {iy,...,im} of {1,...,n},

o K(qg,a,n, X) := a1 Na,

If (g, ) are obvious from the context, we omit them in view() and K (). Note that view(n, X) is exactly
the view of an adversary in the generic n-party DH-protocol, where the final secret key is K (n, X). Let the
following two random variables be defined by generating (¢, o) < gen(k) and choosing X randomly from

(Zy)":

.
s
3
Il

view(n, X),y), for a randomly chosen y € G,
n, X), K(n, X)).
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Let the operator "~,,,,” denote polynomial indistinguishability.

Remark: Polynomial indistinguishability of the 2-party Diffie-Helman key is considered, e.g., in [2]. The
notion of polynomial indistinguishability is related to polynomial time statistical test as defined in [22, 14].
In this context, it means that no polynomial-time algorithm can distinguish between a Diffie-Hellman key
and a random value with probability significantly greater that % More specifically, let K and R be [-bit
strings such that R is random and K is a Diffie-Hellman key. We say that K and R are polynomially
indistinguishable if, for all polynomial time distinguishers, A, the probability of distinguishing K and R
is smaller than (% + %) for all polynomials Q(!).

Theorem 1 For any n > 2, Asre o, Do tmplies Az, D .

Proof (by induction on n): Assume that Asrs,,, Ds and A, _1/%,,, Dy —1. Thus, we have to show Ap =y, Dhp.
We do this by defining random variables B, , C},, and showing A, & .1y BnRpay CnRpay Dn, Which immediately
yields: Apre,.,Dn.

We can rewrite view(n, (N1, No, X)) with X = (N3, ..., N,) as a permutation of:

(view(n — 1, (N1, X)), K(n = 1,(N1, X)),
view(n — 1, (N2, X)), K(n — 1, (Na, X)),
view(n — 1, (N1 N2, X)) )

and K(n, (N1, N2, X)) as K(n — 1, (N1 Na, X)).

We use this to redefine A, and D,,. All in all, we consider the following four distributions. All of them are
defined by (¢, @) — gen(k), choosing ¢, N1, N» € Z, and X € (Z,)"~? and y € G randomly.

o A, = (view(n —1,(Ny, X)), K(n—1,(Ny, X)),
view(n — 1, (N2, X)), K(n — 1, (N3, X)),
view(n — 1, (N1 No, X)), y)

(n—1,(Ny, X)), K(n—1,(Ny, X)),
view(n — 1, (N3, X)), K(n—1,(Ns, X)),

(
o Cy = (view(n — 1,(N1, X)), K(n —1,(Ny, X)),
. ( ))’[((n_ 1’(N2’X))’
K(n-1,(¢, X))

€ 1,(N1aX))aI((n_ 1,(N1,X)),
view(n — 1, (N2, X)), K(n — 1, (N3, X)),
1, (N1No, X)), K(n — 1, (N1 No, X))

Note that only the last two components vary.

Anr,a, By follows from Asx,,, Do

Assume that adv distinguishes A, and B,, and let (u, v, w) be an instance of Asre ., D2. We produce an
instance for adv by using u for a1, v for a™¥2, and w for ™"z (or a¢), and choosing X and y randomly.
If (u, v, w) belongs to Az (D), this new distribution belongs to By, (Ay).

Bnz2,.,C, follows from A, _1~,,,Dn_1:

Assume that adv distinguishes B,, and C},, and (ignoring a necessary permutation in order) let: (view(n —1,(¢, X)), y)
be an instance for A, _1/s,,,Dn—1 (i-e., the problem is to decide whether y = K(n — 1, (¢, X)).) We produce

an instance for adv by choosing N1, N3 randomly, and computing (view(n — 1, (N;, X)), K(n — 1, (N;, X)))

based on those values in view(n — 1, (¢, X)) that do not contain ¢ as an exponent. The rest follows as in the

last case.

CpRopay Dy follows from Asms, ., D2, almost exactly like the first statement. The only difference is that we
do not choose y randomly, but as K(n — 1, (w, X)).
Od



Hereafter, the above result allows us to construct a number of protocols belonging to the natural DH
extensions family without worrying about their individual security.

4 CLIQUES: Initial Key Agreement

The cornerstone of the CLIQUES protocol suite is formed by two IKA protocols called TKA.1 and TKA.2.
(They were referred to as GDH.2 and GDH3, respectively, in [20].)

4.1 1IKA.1

The first TKA protocol (TKA.1) depicted in Figure 2 is simple and straight-forward. It consists of an upflow
and downflow stages. The purpose of the upflow stage is to collect contributions from all group members,
one per round.

In round i — 1 (1 < i < n), M; receives a collection of ¢ values. Of these, i — 1 are intermediate and one is

cardinal. Let INT;‘1 denote the j-th intermediate value in round ¢ — 1. It is always of the form:

Ny Ny

INTji_1 =a N forl<j<2
whereas a cardinal value is simply:
CRD;_; = oMVr Nz

M;’s actions are as follows:

1. generate private exponent N;

2. set INT(i,j) = (INT(i—1,35) )N
3. set INT(4,4) = CRD;_4

4. set CRD; = (CRD;_1)N:

In total, M; composes ¢ intermediate values (each with (i — 1) exponents.) and a cardinal value containing
¢ exponents. For example, M, receives a set:

{OleN2N3,OzN1N2,OzN1N3, OéN3N2}

and outputs a set:
{OleN2N3N4,OleN2N3,OzN1N2N4, aN1N3N4’ aN3N2N4}

In round (n — 1), when the upflow reaches M,,, the cardinal value becomes o™ ¥n-1 M, is thus the
first group member to compute the key K,. Also, as the final part of the upflow stage, M, computes the
last batch of intermediate values. In the second stage M, broadcasts the intermediate values to all group
members.

IKA .1 has the following characteristics:?

rounds
messages

combined message size | (n —1)(n/2+2)—1
exponentiations per M; | (¢ + 1) for ¢ < n, n for M,

total exponentiations gn—"’;’m -1

n
n

The highest-indexed group member M, plays a special role by having to broadcast the last round of inter-
mediate values. (However, this special role does not afford M,, any added rights or privileges.)

2 Assuming atomic, one-message broadcast.

oo



M; M

{aH(Np|pE[1,i]Ap;éj)| ] c [1’i]}’aH(Np|pE[1vi])

Stage 1 (Upflow): round ¢; ¢ € [1,n — 1]

M; M,

{aH(Np|pe[1,n]Ap¢j)| je [1,71]}

Stage 2 (Broadcast): round n

Figure 2: Group Key Agreement: TKA.1

4.2 Group Initial Key Agreement: IKA.2

In certain environments, it is desirable to minimize the amount of computation performed by each group
member. This is particularly the case in large groups or groups involving low-power entities such as smart-
cards or PDAs. Since IKA.1 requires a total of (i+1) exponentiations of every M;, the computational burden
increases as the group size grows. The same is true for message sizes.

In order to address these concerns we construct a very different protocol, TKA.2 (see Figure 3). TKA.2
consists of four stages. In the first stage we collect contributions from all group members similar to the
upflow stage in IKA.1. After processing the upflow message M, _; obtains o/MNelP€Ln=11} and broadcasts
this value in the second stage to all other participants. At this time, every M; (¢ # n) factors out (divides
by) its own exponent and forwards the result to M,. (Note that factoring out N; requires computing its
inverse — Ni_l. This is always possible if we choose the group ¢ as a group of prime order). In the final stage,
M, collects all inputs from the previous stage, raises every one of them to the power of N, and broadcasts
the resulting n — 1 values to the rest of the group. Every M; now has a value of the form oMNelP€[lnAp#i}
and can easily generate the intended group key K,,.

IKA.2 has two appealing features:

e Constant message sizes

e Constant (and small) number of exponentiations for each M;
(except for M, with n exponentiations required)

Its properties are summarized in the following table:

rounds | n+1
messages | 2n — 1
combined message size | 3(n — 1)
exponentiations per M; | 4 for i < (n—1),
2 for M,,_q, n for M,
total exponentiations | bn — 6

One notable drawback of TKA.2 is that, in Stage 3 (n-th round), n — 1 unicast messages are sent to M,.
This might lead to congestion at M, .



M; M

QTN IpEl1,il}

Stage 1 (Upflow): Round ¢; ¢ € [1,n — 2]

Mi Mn—l

QTN Ipelt,n—11}

Stage 2 (Broadcast): Round n — 1

M; M,

I{Nplp€ll,n—1] )
« Ny

Stage 3 (Response): Round n

M; M,

O(Np |p€ll, n]

fo % yelln]}

Stage 4 (Broadcast): Round n + 1

Figure 3: Group Key Agreement: IKA.2

5 CLIQUES: Auxiliary Key Agreement

Both TKA protocols operate in two phases: a gathering phase whereby M,, collects all {oleN—an|i €[1,n]}
and a final broadcast phase. Our AKA operations take advantage of the keying information (i.e., partial
keys) collected in the gathering phase of the most recent IKA protocol run. This information is incrementally
updated and re-distributed to the new incarnation of the group.

Since the final broadcast phase is exactly the same for both IKA.1 and IKA.2 we also note that the AKA
operations described below work with both TKA protocols. This results in flexibility to choose an IKA
protocol that suits a particular DPG setting.

5.1 Member Addition

The member addition protocol is shown in Figure 4. The protocol’s main premise is that the new member
M, 41 becomes the new group controller. It is assumed that the “old” controller M, saves the contents of
the last Broadcast message that was sent in the last round in the IKA protocol of Figure 2.3

3This is only the case for the very first member addition; subsequent member additions require the current controller to save
the most recent Broadcast message from the preceding member addition protocol.

10



Mn Mn—l—l

Nall(VplpElt,nl) —
{OZ Ny |] = [1’n]}’aNnH(Np|pE[1y”])

Upflow: round 1 (N, %Nnm)
Mi Mn—|—1

NpI(Np [p€[L, n+1])

{a i |jellin+1]}

Broadcast: round 2

Figure 4: Member Addition: floating group controller

In effect, M, extends Stage 1 of the IKA protocol by one round: it generates a new exponent N:LN” and
creates a new upflow message (where N, N, is used in place of N, .)

It might seem more natural to replace N,, by Kf; instead of combining the two. However, this way not just the
group controller but any member who stores the latest broadcast message can initiate member addition. This
feature may prove useful in some environments. Unfortunately, this potential benefit becomes a drawback
in the context of member exclusion. (If any member can exclude any other member, anarchy will reign!)

The role of the group controller is thus passed on to the newest group member. Although this protocol
fits in nicely with the TKA | its basic assumption of a floating group controller might be unrealistic in some
environments. For example, the new member may, in fact, be the one least trusted by the rest of the group.*
In order to address this concern, we modify the present protocol to support a fixed group controller. For the
sake of clarity, we assume that, while the controller stays fixed, its index keeps growing. In other words, the
new member becomes M, and the group controller assumes the index n + 1.

The resultant protocol is shown in figure 5. The first message is a duplicate of either:

e Upflow message in round (n — 1) of the original ITKA protocol
(only if this is the first member addition)

OR

e Upflow message in round 2 of the last member addition protocol
One interesting and useful feature of the two member addition protocols is their ability to co-exist within

a group. Consequently, a group may start out with a fixed group controller and, later, switch over to the
floating controller mode or viceversa.

5.2 Mass Join

Distinet from both member and group addition is the issue of mass join. When is mass join necessary? In
cases when multiple new members need to be brought into an existing group. In most cases, the new members

40n the other hand, it can also be argued that this approach is fair since it off-loads the bulk of the computation to the
newcomer.

11



M, — new member My 41 — formerly M,
M, M, 4

II(Np|p€[l,n—1])
{a ;i 7€ [1,n—1]}, oll(Nolr€lln—1])

O(Np|p€[L,n])

fo" 5 |je [1n]}, aMOErnD

Simulated Upflow : rounds 1 &2 (N,, - new member’s contribution)

Mi Mn—|—1

I(Np|p€ll,n+1])

{a N lie [Ln+1]}

Broadcast: round 3

Figure 5: Member Addition: fixed group controller

are disparate (i.e., have no prior common association) and need to be added in a hurry. Alternatively, the new
members may already form a subgroup but policy might dictate that they should be admitted individually.

It is, of course, always possible to add multiple members by consecutive runs of a single-member addition
protocol. However, this would be inefficient since, for each new member, every existing member would have
to compute a new group key only to throw it away thereafter. To be more specific, if m new members were
to be added in this fashion, the cost would be:

e 3m rounds with fixed group controller and 2m — with floating.
e Included in the above are m rounds of broadcast

e m exponentiations by every “old” group member

The overhead is clearly very high.

A better approach is to chain the member addition protocol as shown in Figure 6. The idea is to capitalize
on the fact that multiple, but disparate, new members need to join the group and chain a sequence of Upflow
messages to traverse all new members in a certain order. This allows us to incur only one broadcast round
and postpone it until the very last step, 1.e., the last new member being mass-joined performs the broadcast.
The savings, compared with the naive approach, amount to m — 1 broadcast rounds.

For brevity’s sake Figure 6 shows only the floating controller model. A chained fixed controller model can
be trivially and similarly constructed from the protocol in Figure 5.

5.3 Group Fusion

Group fusion, as defined above, occurs whenever two groups merge to form a super-group. The only real
difference with respect to mass join is that group fusion assumes pre-existing relationships within both
groups. Thus, it is important to recognize from the outset that the most expedient way to address group
fusion is to treat it as either:
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M, My yiv1

NpII(Np|p€[l,nti])

{a N; |7 €, n+1i]}, aNnINplPELLn+]

Upflow: round ¢ (0 < ¢ < m, if (i = 0){N,, — Nnm})
M; M, m

NpII(Np|p€[l, ntm])

{a i |j e[l n+ml}

Broadcast: round m + 1

Figure 6: Mass Join (floating controller)

1) Special case of mass join as in Figure 6
or

2) Creation of a new super-group via IKA of Figure 2
The first choice is appropriate if one of the groups is small. (Recall that mass join takes m + 1 rounds where
m is the smaller group’s size.) On the other hand, creating a new group from scratch may be more secure®
and not too expensive if both groups are relatively small. Another reason can be the need to re-assign the

group controller’s role.

It is certainly possible to end the discussion of group fusion at this point. The outcome would be a heuristic-
or policy-driven decision to use (1) or (2) on a case-by-case basis. However, if only for purely academic
reasons, 1t might be worthwhile to investigate more efficient, or at least more elegant, solutions geared
specifically towards group fusion. Although this remains a subject for future work, we briefly sketch one
possible solution below.

One promising approach to group fusion is a technique fashioned after the one developed by Steer et al. in
[18]. In brief, suppose that two groups GG1 and G5 currently using group keys Ky and K, respectively, would
like to form a super-group. To do so, the two groups exchange their respective key residues: ot and o2
and compute a new super-group key Kis = o152 The actual exchange can be undertaken by the group
controllers. Note that this type of fusion is very fast since it can in principle be accomplished in one round
of broadcast. Furthermore, reverting to the original group structure is easy since each group can simply fall
back to using K7 and K- at any time thus effectively reversing the fusion but any other group split seems
to require two complete and inefficient IKA operations. So unless one only has groups which only grow or
only split into previously existing groups it seems easier to use the Mass Join protocol in Figure 6.

5.4 Member Exclusion

The member exclusion protocol is illustrated in Figure 7. In it, M, effectively “re-runs” the last round of
the TKA: as in member addition, it generates a new exponent N, and constructs a new Broadcast message—
but with N, N, instead of N,—using the most recently received Broadcast message. (Note that the last
Broadcast message can be from an IKA or any AKA, depending which was the latest to take place.) M,
then broadcasts the message to the rest of the group. The private exponents of the other group members
remain unchanged.

5Because re-running an IKA involves a liveness test of all group members.

13



EH(NP lp€lL,n])

{a i ljellinlAj# d}

Broadcast: round 1 (N, « Nnm)

Figure 7: Member Exclusion

Let M4 be the member to be excluded from the group. We assume, for the moment, that d # n. Since the
following sub-key:
aﬁH(NplpE[lyn]/\p;éd)

is conspicuously absent from the set of broadcasted sub-keys, the newly excluded M, is unable to compute
the new group key:

Ko = aNaT(Nlp€lLn))
A notable side-effect is that the excluded member’s contribution Ny is still factored into the new key.
Nonetheless, this in no way undermines the new key’s secrecy.

In the event that the current group controller M,, has to be excluded, any other M; can assume its role,
assuming it stored the last Broadcast message.

5.5 Subgroup Exclusion

In most cases, subgroup exclusion is even simpler than single member exclusion. The protocol for mass leave
is almost 1dentical to that in figure 7. The only difference is the group controller having to compute and send
fewer sub-keys in the final broadcast message. (Only those sub-keys corresponding to remaining members
are computed and broadcast.)

A slightly different scenario is that of group division when a monolithic group needs to be split into two or
more smaller groups. The obvious way of addressing this is to select for each of the subgroups a subgroup
controller which runs the group exclusion protocol within its subgroup by broadcasting only those sub-keys
corresponding to subgroup members.

5.6 Key Refresh

There are two main reasons for the group key refresh operation:

e limit exposure due to loss of group session keys

¢ limit the amount of ciphertext generated with the same key.®

Whereas the second reason does not pose any special requirements for the key refresh protocol, the first
makes it important for the key refresh protocol not to violate key independence. (For example, this rules
out using a straight-forward method of generating a new key as a result of applying a one-way hash function
to the old key.) Additionally, we note that loss of a member’s key share (N;) can result in disclosure of all
session keys contributed to by this member with this share. Therefore, not only should the session keys, but
also individual key shares must be periodically refreshed.

61t is easier to perform cryptanalysis with more plaintext/ciphertext pairs.
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This leads to following key refresh protocol: The member My which is the least recent to have refreshed its
key share” generates a new share (exponent) Nj, and “re-runs” the broadcast round as shown in figure 8

My, M;

Np I(Nplp€ltl,n])

{a i |j ell,n]}

Broadcast: round 1 (Ny, «— Nh]@)

Figure 8: Key Refresh

This procedure guarantees key independence between session keys and limits the damage of leaked key share
to at most n epochs. We also note that this one-round protocol can be piggy-packed easily and at almost
no cost on a group broadcast which is a likely operation assuming that the established group key 1s used to
protect intra group communication.

6 Security Considerations for AKA Operations

In order to demonstrate security of the AKA protocols, we need to consider a snapshot in a life of a group,
1.e., the lifespan and security of a particular short-term key.

The following sets are defined:

o C={M,..., M.} denotes all current group members and M, is the group controller.
o P={M.11,...,M,} denotes all past (excluded before) group members.

o F={My1,...,M,} denotes all future (subsequently added) group members.

Note that the term future is used relative to the specific session key. The issue at hand is the ability of all
past and future members to compute the current key.
K= aNl...NACNC+1...Nq

To simplify our discussion we collapse all members of P and F into a single powerful adversary (Eve). (This
is especially fitting since P and F are not necessarily disjoint.) The result is that Fve = P U F and she
possesses {N;, |M; € (P,F)}.

We can thus rewrite the key as:

K = oBU1)

where B is a constant known to Eve, £ = {Ny,..., N._1, N\c} are the secret exponents (contributions) of
current group members and ]/\7\0 is the group controller’s exponent. In Eve’s view, the only expressions

containing N, are in the last Broadcast round of either member addition or member exclusion protocols:
N1 Ne_ 1 Ne
fa" T My eCY
We can further assume that Eve also knows all:
{a'1¥] 5 C &}

However, Eve’s knowledge is a subset of what we previously referred to as view(c, £). Recall that in Section
3.2 we have shown that for any n:

Asre,a, Do implies Aprey, Dn

poly
where:

TOther policies, e.g., taking into account the vulnerability of individual members to subversion attacks, are also possible.
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o "~ ,,” denotes polynomial indistinguishability

o A, = (view(n, X),y), for a randomly chosen y € G,

o D, = (view(n, X), K(n, X)).

e view(n, X) := ordered set of all a1 Nim for all proper subsets {iy, ..., iy} of {1,... n},
o K(n,X):=aM Na,

o X =I{Ni,... Ny}

If we substitute n with ¢, X with £, and K(n, X) with K, it follows that K is polynomially indistinguishable
from a random value. O

Consequently, all AKA protocols presented above fall into the class of “natural” DH extensions defined in
Section 3.2 and benefit from the same security properties.

7 Related Work

The earliest attempt to extend DH to groups is due to Ingemarsson et al. [8] The protocol in figure 9 (called
ING) requires synchronous startup and executes in (n — 1) rounds. The members must be arranged in a
logical ring. In a given round, every participant raises the previously-received intermediate key value to the
power of its own exponent and forwards the result to the next participant. After (n — 1) rounds everyone
computes the same key K.

M; M(i-l-l)mod n

aN—k)mod n Ni

Figure 9: ING Protocol: Round &; k € [1,n — 1]

We note that this protocol falls into the class of natural DH extensions as defined in [20]. Tt is, thus, suitable
for use as an IKA protocol. However, because of its symmetry® (no natural group leader) it is difficult to
use 1t as a foundation for auxiliary key agreement protocols.

Another DH extension geared towards teleconferencing was proposed by Steer et al. in [18]. This protocol
(referred to as STR) requires all members to have broadcasting facilities and takes n rounds to complete.
In some ways, STR is similar to IKA.1. Both take the same number of rounds and involve asymmetric
operation. Also, both accumulate keying material by traversing group members one per round. However,
the group key in STR has a very different structure:

K, = aVae'mm® - NeaHV2

Interestingly, STR, is well-suited for adding new members; see figure 10. As in IKA.1, it takes only two
rounds to add a new member (assuming floating controller). Moreover, this protocol is computationally
more efficient than IKA.1 member addition since fewer exponentiations take place. Member exclusion, on
the other hand, is difficult in STR since there is no natural group controller. For example, excluding M7 or
M5 1s problematic since their exponents are used in the innermost key computation. In general, re-computing
a common key (when M; leaves) is straight-forward for all M;, j < i. While, all M;, j > i need to receive

input from lower-numbered members.

One notable recent result is due to Burmester and Desmedt [4]. They construct a very efficient protocol
(BD) which executes in only three rounds:

81t is also not very efficient.
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M; M1

aNn+1
P
Broadcast: round 1
My, M1
oFn
_

Exchange: round 2

Figure 10: Member Addition in STR.

1. Each M; generates its random exponent N; and broadcasts z; = alVi,
2. Each M; computes and broadcasts X; = (z;41/2-1)"

3. Each M; can now compute® the key K,, = zZ”_J\i’ ~XZ»"_1 ~Xf+_12 -+ X;_s modp

The key defined by BD is different from all protocols discussed thus far, namely K,, = o™t N2+NaNat+No N1
Nonetheless, the protocol is proven secure provided the DH problem is intractable.

Some important assumptions underlying the BD protocol:

1. the ability of each M; to broadcast to the rest of the group
2. the ability to of each M; to receive n — 1 messages in a single round

3. the ability of the system to handle n simultaneous broadcasts.

While the BD protocol is efficient and secure, we claim that it is not well-suited for dynamic groups. To
demonstrate this claim, we briefly consider what is takes to add a new member in BD. Note that, like in
IKA.1, at least one of the current members needs to generate a new exponent whenever a member 1s added.
Assuming synchronized clocks among members, the addition protocol takes two rounds:

o first round to distribute individual contributions Z, and z, 11 generated by M, and M, respectively.

e second round for each of: My, M, 41, My, Mp_1 to generate and broadcast to the rest of the group:

P

)/(\1,Xn+1, Xn, X1, respectively. Finally, all group members compute a new key in the usual fashion.

Despite the small number of rounds, every group member'? needs to receive four messages from four different
sources 1n the second round. This translates into relatively high overhead. Another point of concern is the
necessity for all members to keep transient state while the protocol executes, i.e., receiving the four messages
in the second round is not an atomic operation.

On the other hand, member addition in BD is computationally lighter since no one member performs the bulk
of the computation as in IKA.1. This is a definite benefit especially when low-power hardware is involved.

Member exclusion in BD is similar in spirit. As before, at least one remaining member (say, M,) must
generate a new exponent. Assuming that M; is to be excluded, a two-round protocol is executed:

o during the first round, M,, distributes its new contribution, %, = i to My and M,,_q. Then:

~

— M, computes )/(; = (22/2p—1)N¢

9 All indexes are modulo n.
0 Except My, Myt1,Mn, My_1 each of which receives three in the second round but at least one in the first.
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— M5 computes )/(\2 = (23/7n)N=

— M, _1 computes )/(\2 = (Zn/2n—2)Nn1

e during the second round : My, M,,_1, and M,, each broadcast to the rest of the group: )/(\2, X/ntl, and
Xy, respectively. Finally, all group members compute a new key in the usual fashion.

Although it is computationally efficient, this protocol requires each member to receive three messages from
three sources and to keep transient state in the process.

8 Summary

In summary, this paper identified the requirements for IKA and AKA operations and developed corresponding
CLIQUES protocols based on the Diffie-Hellman key exchange. The protocols presented above achieve secure
and efficient key agrement in the context of dynamic peer groups. Such groups are relatively small and non-
hierarchical. In large groups, it is unclear that key agreement is appropriate since collecting contributions
from all members can become very costly. Instead, key distribution mechanisms can be used. This subject
(key distribution in large and dynamic groups) is an active research area; for example, [7, 13, 10].

Our emphasis has been on bare key agreement resistant to passive attacks. In practice, one must contend
with active attacks and intruders; to this end, authenticated key agreement must be employed. Related
issues include key confirmation, group integrity and member authentication. These and other group security
services are addressed in another paper [1].
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