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We present an overview of our work in developing hydrodynamic-

based methods for studying the structure and quantum dynamics of

rare-gas clusters. We use a hydrodynamical approach based on the

Bohm description of quantum mechanics (QM) to satisfy an orbital-

free density functional-like Euler–Lagrange equation for the ground

state of the system. In addition, we use an information theoretical

approach to obtain the optimal density function derived from a

series of statistical sample points in terms of density approximates.

These are then used to calculate an approximation to the quantum

force in the hydrodynamic description. We also show how this
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approach can be extended to finite temperature and use this to

examine the thermodynamic properties of rare-gas clusters with up

to 100 atoms.
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5.1 Introduction

In many-body systems, quantum mechanical effects become im-

portant when the de Broglie wavelength of a given atom becomes

comparable to the characteristic interatomic interaction length, σ . If

we define a characteristic temperature as T ∗ = ε/kB in terms of the

potential well depth, ε, one arrives at what is termed the de Boer

ratio [99].

� = λ(T ∗)

σ
= �

σ
√

mε
(5.1)

which is a useful quantity in determining whether or not quantum

mechanical effects are important in a given physical system. In the

strictly classical limit, � = 0, while systems with � > 0.3 should be

considered strongly quantum mechanical.

Atomic and molecular clusters provide almost ideal laboratory

systems for studying quantum versus classical dynamical and

structural effects as a function of the size and scale of a given system.

For example, the de Boer ratio for Ar clusters �Ar ≈ 0.03. As

such, quantum effects in Ar clusters and liquids play an insignificant

role, and their properties can be accurately modeled using classical

molecular dynamics techniques. However, for lighter atoms such as

Ne, where �N e ≈ 0.1, quantum mechanical effects are important,

especially at low temperatures. Quantum corrections are important

even in equilibrium calculations and finite temperature calculations

because the quantum character strongly affects the thermodynamics

via changes in the ground state structure due to increasing zero-

point energies. For example, quantum corrections have been shown

to lower solid-to-liquid transition temperatures by approximately

10%, and the zero-point energy for small clusters can equal up to

35% of the classical binding energy.

In this chapter, we present our development of a Bohmian

trajectory-based approach for computing the quantum mechanical

structure, energetics, and thermodynamics of multiatom systems.

These systems are important test cases for both theoretical

and computational studies since they are at the crossing point

between mesoscopic and microscopic length scales. Hence, quantum

confinement and delocalization effects may yet play an important
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role in their structure and properties. From a computational point

of view, these are particularly challenging systems since they have

too many degrees of freedom to be tackled by more standard basis

set approaches. Furthermore, many of their interesting quantum

properties are only manifest at very low temperature, making

them challenging systems for path-integral Monte Carlo-based

approaches due to the potentially infinitely long imaginary time

integration required to reach T = 0.

We shall first review the salient features of the Bohmian

approach, focusing upon how one might use it to develop new

computational approaches for many-body systems. We then present

a variational approach that finds the quantum ground state for

N -atom rare clusters using a statistical modeling approach for

determining a best estimate of the quantum potential for a

multidimensional system. We then extend this approach to finite

temperature and present results for systems as large as Ne100.

In the last part of the chapter, we present an idea based upon

supersymmetric (SUSY) QM that extends our approach to excited

states. We conclude with a discussion of the prospects of our

methods.

5.2 Mixture Modeling Approach

Perhaps the most fundamental objective in statistical analysis

pertains to the development of probabilistic models that can explain

and predict the observations of interesting physical processes. The

capacity to estimate the effectiveness of a statistical model goes

hand in hand with the ability to improve its explanatory and

predictive powers. Problems related to this idea are encountered

throughout the biological, physical, and social sciences. In some

cases, it is possible to construct a model that incorporates prior

knowledge and experience in terms of a few (or more often many!)

adjustable parameters. The primary goal is then to find a particular

set of parameters that best explains the observed data and can

predict the likely outcome of new observations. The mathematical

formalism that quantifies these notions is provided within the

Bayesian construction of statistical analysis [68]. In the Bayesian
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approach, probabilities are treated subjectively as a degree of belief

rather than a frequency of observation. Though this distinction is

somewhat controversial, Bayesian statistics are crucially important

to probabilistic learning [23], decision-making theory, and statistical

inference problems. In the quantum physics literature, Bayesian

probabilities have recently been addressed in connection with a

diverse range of problems, including many-body potential energy

surfaces [70, 71], the control of open quantum systems [103],

quantum tomography [27], measurement theory in quantum logic

devices [59–61, 98], and quantum Monte Carlo simulations [19, 56].

In this section we develop an approximate methodology for

estimating the multidimensional quantum distribution function

associated with a statistical ensemble of space-time trajectories. The

scheme that we propose is built upon a parameterized Gaussian

model for the quantum density. We explore the advantages and

limitations of this model and outline an iterative procedure based

upon Bayesian probability theory for finding a set of Gaussian

parameters that mimics the true density function. This fitted density

is then used to compute an approximate quantum force that drives

the ensemble of trajectories. We show how this approach can be

used to determine the ground state density and ground state energy

of a multidimensional quantum mechanical system.

5.2.1 Motivation for a trajectory-based approach

According to Newton’s second law, the physical motion of a particle

is characterized by a space-time path �r(t) that satisfies the equations

of motion:

�̇r(t) = �p(t)/m (5.2)

�̇p(t) = −�∇V (�r(t)) (5.3)

where m is the mass of the particle and −�∇V (�r) is the force

associated with an externally applied potential energy field. In

principle, the position �r and momentum �p of a classical particle can

be determined with arbitrary precision, and it is well known that

exactly specifying the initial conditions �r0 = �r(0) and �p0 = �p(0) will

completely determine the particle’s trajectory for all time.
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In QM, however, the situation is quite different. The precision

with which �r and �p can be simultaneously known is limited by

Heisenberg’s uncertainty principle: �x�p ≥ �/2. The dynamical

properties of a particle are embodied in a complex wave function

ψ(�r, t) that satisfies the time-dependent Schrödinger equation:

i�∂tψ(�r, t) = − �
2

2m
�∇2ψ(�r, t) + V (�r)ψ(�r, t) (5.4)

Traditionally, the wave function is interpreted as a time-dependent

amplitude associated with the instantaneous probability of finding

the particle in an infinitesimal volume of space d3�r about the point

�r . From this point of view, individual physical particles are treated as

statistical objects and the notion that particles follow definite paths

in space-time is apparently a meaningless concept in QM.

One way to rationalize this disparity among the classical and

quantum theories is the Feynman path integral approach to QM

[41]. According to Feynman’s analysis, a path �r(t) connecting two

points in space-time is associated with a complex phase factor φ =
exp(i Scl/�) determined by the classical action:

Scl [�r(t)] =
∫ t

0

ds
1

2
m�̇r2 − V (�r) (5.5)

along the path. The probability amplitude with which a particle

makes a transition from an initial point (�r0, 0) to some final point

(�rt, t) is expressed as the sum of phase factors over all possible paths

connecting the two points. For a quantum mechanical particle, no

particular path is preferred; therefore, we must consider an infinite

number of paths in order to compute the transition probability. For

macroscopic objects, however, the classical action is much larger

than �, implying that the net contribution of phase in the transition

amplitude is due to the path that minimizes the classical action.

Hence, the most probable path for a macroscopic object will be

a trajectory that also satisfies the classical equations of motion.

Feynman’s treatment is particularly enlightening because it allows

us to discuss both classical and quantum mechanical phenomena on

an equal footing, that is, in terms of an ensemble of all possible paths

that effectively reduces to the classical trajectory in the limit that �

is small.
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5.2.1.1 Bohmian interpretation

Another formulation of QM in terms of an ensemble of paths is due

to the work of de Broglie [31–33] and Bohm [15–17, 52]. In the de

Broglie–Bohm interpretation of QM one assumes that a quantum

mechanical system is physically composed of two parts, a wave and
a point particle. Mathematically, the wave is represented by a wave

function ψ(�r, t) that satisfies Eq. (5.4) and is associated with the

probability density ρ(�r, t) = |ψ(�r, t)|2 for finding the particle when

its exact position is unknown. Regardless of whether or not it can be

observed, the particle always follows a precisely defined trajectory.

The wave function plays a direct physical role in this by influencing

the particle’s trajectory through the introduction of a nonlocal

“quantum potential” that gives rise to all nonclassical behavior,

including zero-point energy, tunneling, and self-interference effects.

While the Bohm interpretation of QM is still a subject of

philosophical controversy and stimulating debate, it has also, over

the past several years, attracted attention in the chemical physics

community as a viable framework for the development of novel

trajectory-based computational methodologies.

To see this influence, we begin by writing the wave function in

complex polar form:

ψ(�r, t) = ρ(�r, t)1/2 exp(i S(�r, t)/�) (5.6)

where the density ρ(�r, t) and phase S(�r, t) (quantum action) are real

functions dependent upon space and time. The particle is assumed

to follow a definite trajectory �r(t) along which its velocity:

�̇r = �v(�r(t), t)

= �∇S(�r(t), t)/m (5.7)

is determined by the phase amplitude of the wave function. For

notational convenience we will drop the explicit dependence on �r
and t. Substituting Eqs. (5.6) and (5.7) into Schrödinger’s equation

and equating the real and imaginary components yield a pair of

coupled partial differential equations:

∂tρ = −�∇ · (ρ �v) (5.8)

∂t S = −(Q + V ) − 1

2
m�v2 (5.9)
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which are easily identified as the continuity equation and a

generalized Hamilton–Jacobi equation, respectively. The quantum

potential term Q = Q (�r, t), given by:

Q = − �
2

4m

⎛
⎝ �∇2ρ

ρ
− 1

2

( �∇ρ

ρ

)2
⎞
⎠ (5.10)

distinguishes Eq. (5.9) from a purely classical equation and

encapsulates the nonlocal influence of ψ on the trajectory of the

particle. The quantum potential is often interpreted as an internal

energy or “shape” energy associated with the curvature of the

quantum density. We can explicitly include Q into the equations of

motion for the particle by introducing a material time derivative:

dt f = ∂t f + �v · �∇ f (5.11)

such that the field equations of motion for ρ and S are given by:

dtρ = −ρ �∇ · �v (5.12)

dt S = 1

2
m�v2 − (Q + V ) (5.13)

where the notation dt signifies the time rate of change in the

inertial reference frame of a particle moving along the trajectory

�r(t) with velocity �v(�r(t), t). It is evident from the right-hand side of

Eq. (5.13) that dt S represents a generalized Lagrangian L(�r(t), t) for

the quantum mechanical system. Taking �∇L, we have the relations:

�̇v = −�∇(Q + V )/m (5.14)

�̇r = �v = �∇S/m (5.15)

which appear to be a quantum mechanical analogue of Newton’s

equations that bears a quantum force term FQ = −�∇ Q
supplementing the the classical force. We make a special note here

to emphasize that the fields ρ, S , �v , and all their derivatives in

Eqs. (5.12)–(5.15) are implicitly evaluated along the path �r = �r(t),

and this path is the trajectory of a physically real point particle, at

least within the Bohmian paradigm.

5.2.1.2 Quantum hydrodynamic trajectories

It is fairly obvious from Eqs. (5.12)–(5.15) that if the wave function

for a system were known, one would simply need to choose an initial
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position vector �r(0) to completely specify the state of the system for

all time. While this feature of the Bohmian picture is indeed a useful

interpretive tool, we are still faced with the often formidable task of

solving the time-dependent Schrödinger equation.

To remedy this situation, we begin by formally introducing an

ensemble of quantum trajectories:

R(t) = {�r1(t), . . . , �rn(t)} (5.16)

which are distinguished from one another by their initial positions

at time t = 0. Just as one can construct a conceptual ensemble

of fictitious fluid particles to represent a classical fluid, we have

established an analogous ensemble of probability fluid elements

to sustain the quantum density, phase, and velocity field. The

theoretical groundwork for the evolution of these “particles” has

already been laid out. One notable exception is that Eqs. (5.12) and

(5.13) are now to be defined over a whole ensemble of quantum

trajectories that simultaneously satisfy the set of differential

equations given by:

�̇vi = �∇L(�ri (t), t) (5.17)

�̇ri = �vi (5.18)

Given an initial wave function ψ(�ri (0), 0) defined over the

ensemble of points R(0), we can simultaneously solve Eqs. (5.12)

and (5.13) to reconstruct the wave function at a later time t
according to the relation:

ψ(�ri (t), t) = ψ(�ri (0), 0) exp

(
−1

2

∫ t

0

�∇ · �v(�ri (s), s) ds
)

× exp

(
i
�

∫ t

0

L(�ri (s), s) ds
)

(5.19)

where the wave function is represented point-wise along the ensem-

ble of paths R(t). We emphasize that there is no approximation in

Eq. (5.19), and it is a formal solution to the Schrödinger equation

evaluated explicitly over a set of hydrodynamic-like quantum

trajectories.

A few comments on the behavior of quantum trajectories are in

order. First, the single-valuedness of ψ(�r, t) requires that quantum

trajectories must not intersect one another. If two trajectories
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were to cross, it would imply that the wave function has two

distinct values of phase at the same point in space-time. Similarly,

trajectories are not allowed to cross through nodal regions of the

wave function where the phase is discontinuous and the probability

of finding a particle is zero. This restriction is strictly upheld by

the influence of the quantum force, which is very intense around

nodal surfaces. Moreover, if the ensemble of trajectories are initially

distributed according to the probability density ρ(�r, 0), then the

ensemble will be representative of ρ(�r, t) for all time. This is

simply a consequence of the statistical assumption on ψ(�r, t) and

is consistent with the continuity of quantum probability density.

Finally, in the limit that � → 0, the ensemble equations of motion

decouple, and the trajectories will evolve independently of one

another according to Newton’s equations.

In essence, the Bohm picture depicts a quantum mechanical

system in terms of an ensemble of correlated particle trajectories.

Though the true particle follows a unique trajectory, it is inextricably

coupled to an ensemble of alternate paths by the influence of the

wave function acting through a quantum force.

5.2.1.3 Computational considerations

Numerical solutions of the time-dependent Schrödinger equation

are traditionally obtained by calculating the short-time quantum

propagator using fast Fourier transforms [69], finite basis sets, or

discrete variable representations [73]. Typically, the computational

overhead associated with these techniques scales exponentially

with the dimensionality of the physical problem. Trajectory-based

methodologies, on the other hand, offer tremendous numerical

scaling advantages, especially for high-dimensional systems where

traditional techniques are not feasible. In particular, the Bohm

interpretation of QM has inspired a growing number of theoretical

and computational studies involving a wide range of problems

such as reactive scattering dynamics [94, 106], tunneling systems

[11, 12, 77, 91], mixed quantum/classical simulations [46–48, 90],

electronic transitions [20, 107, 108], photodissociation [38, 53, 85,

102], mixed quantum states [21, 22], and quantum dissipation [80,

81, 109].
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The quantum trajectory method (QTM), developed by Wyatt and

coworkers [77, 106], incorporates the ideas of computational fluid

dynamics to solve the hydrodynamic field equations over a discrete

ensemble of quantum fluid elements. Using finite element methods,

the fluid particles are arranged into small neighborhoods over which

a moving weighted least squares (MWLS) fitting procedure [75] is

used to locally expand the hydrodynamic fields ρ (more typically

log ρ), S , and �v in a simple polynomial basis. Once the fields and

their derivatives are known, the integrals in Eq. (5.19) along with

solutions to Eqs. (5.17)–(5.18) are evaluated over a short time

step. While this strategy scales almost linearly with the number

of trajectories, its versatility in practice is hindered by the fact

that the ensemble of particles generally tends to become extremely

disorganized for anharmonic systems making it difficult, if not

impossible, to fit the quantum hydrodynamic fields. This becomes

especially apparent around the nodes of the wave function, where

the fitting errors will oftentimes cause the quantum trajectories

to cross one another, leading to spurious numerical results. Very

recently [54, 100], new methods in adaptive grids have been

developed to formulate a reconstruction of the wave function over

an ensemble of generalized hydrodynamic trajectories that avoids

the problem with quantum nodes and provides a much more stable

framework for solving the hydrodynamic equations of motion.

Another application of the Bohmian apprioach includes the

development of semiclassical approximation strategies for including

quantum effects into otherwise classical calculations. Garashchuk

and Rassolov [42, 43] have recently presented a semiclassical

methodology based upon Bohm trajectories that is formally insen-

sitive to trajectory crossings and also avoids explicitly solving the

continuity equation. In this approximate methodology, the quantum

density is convoluted with a minimum uncertainty Gaussian wave

packet and expanded in a linear combination of Gaussian functions:

ρ(x) ≈ f (x) =
∑

n

c2
n exp(−a2

n (x − X n)) (5.20)

The Gaussian parameters s = {cn, X n, an} in Eq. (5.20) are

determined by minimizing the functional:

F =
∫

(ρ(x) − f (x))2dx (5.21)
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using an iterative procedure that explicitly involves solving the set

of equations ∂ F /∂sk = 0. The parameterized density leads to an

approximate quantum potential (AQP) that is used to propagate an

ensemble of trajectories. Garashchuk and Rassolov have presented

results for Eckart barrier tunneling that improve upon the Herman–

Kluck semiclassical IVR method and are shown to agree quite well

with exact quantum mechanical results.

5.2.2 Density estimation

5.2.2.1 The mixture model

Suppose that R = {�r1, . . . , �rN } is an ensemble of Bohm fluid

elements that statistically represents a multidimensional quantum

probability density. Such a distribution of data points can be

generated from a Metropolis sampling procedure or perhaps from

the output of a quantum Monte Carlo simulation [28, 50]. In order

to propagate these particles in time, we must evaluate ρ and its

derivatives for every member in the ensemble. Instead of solving

the hydrodynamic field equations explicitly, we intend to extract this

information directly from the ensemble of trajectories.

We assume that the quantum density can be represented by a

mixture model [45, 86] determined by summing a finite number,

M , of Gaussian components or “clusters.” The mixture model

decomposition is expressed as a sum of joint probabilities:

ρ(�r) =
M∑
m

p(�r, cm) (5.22)

where p(�r, cm) is the probability that a randomly chosen member

of R has the configuration �r and is a variant of the mth Gaussian

cluster designated by cm. Each Gaussian cluster is parameterized by

a weight p(cm), a mean position vector �μm, and a vector of variances

�σ 2
m. We can also replace the variance vector with a full covariance

matrix Cm, if necessary.

By definition [44], each joint probability in Eq. (5.22) is related

to a pair of conditional probabilities according to the relation:

p(�r, cm) = p(cm) p(�r|cm) = ρ(�r) p(cm|�r) (5.23)
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where the forward conditional probability p(�r|cm) refers to the

probability that a randomly chosen variant of cm has the configu-

ration �r . Conversely, the posterior probability p(cm|�r) refers to the

probability that the configuration point �r is a variant of the cluster

cm. In probability theory the factors ρ(�r) and p(cm) are marginal

probabilities; however, we shall simply refer to them as the quantum

density and weight of the mth Gaussian cluster, respectively. The

expansion weights are strictly positive semidefinite and sum to

unity. Substituting the first equality of Eq. (5.23) into Eq. (5.22), we

have:

ρ(�r) =
M∑
m

p(cm) p(�r|cm) (5.24)

where we can specify the form of p(�r|cm) to reflect our belief

that ρ(�r) is a mixture of Gaussian components. We explore this

approximation with two different Gaussian cluster models.

The first model assumes that each cluster is completely separable

and takes the form of a product over the Nd-dimensional configura-

tion space:

p(�r|cm) =
Nd∏
d

√
1

2πσ 2
m,d

e−(�rd−μm,d )2/(2σ 2
m,d ) (5.25)

The second model explicitly takes into account nonseparable corre-

lations in configuration space and incorporates the full covariance

matrix:

p(�r|cm) =
√

||C−1
m ||

(2π)Nd
e−(�r−�μm)T .C−1

m .(�r−�μm)/2 (5.26)

In comparison with the separable case, the fully covariant model

can represent a more complicated density structures with fewer

clusters; however, this is at the cost of greater computational

expense. For low-dimensional systems it is advantageous to use

the fully covariant model, but in high dimensions it is much more

efficient to use a larger number of separable clusters. The principle

at work here is related to the idea of collective correspondence

discussed by Heller [51] regarding the cooperative effort of

overlapping Gaussian wave packets to describe position-momentum

correlations in phase space. It is also feasible to construct a mixture
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model that incorporates any combination of covariant and separable

degrees of freedom, especially if there is reason to do so based on the

symmetry of the physical problem.

5.2.2.2 Expectation maximization

Now that we have established a model to work with, the trick is

to determine the Gaussian parameters p(cm), �μm, and Cm (or σm).

The mean position vector and covariance matrix of the clusters are

defined by the moments of the forward conditional probabilities:

�μm =
∫

�r p(�r|cm) d�r, (5.27)

Cm =
∫

(�r − �μm)T (�r − �μm) p(�r|cm) d�r (5.28)

For the separable case, the variances are given by the diagonal

elements σ 2
m,i = (Cm)i i . Rearranging Eq. (5.23) and substituting into

Eqs. (5.27)–(5.28), we can write these parameters as:

�μm =
∫

�r ρ(�r) p(cm|�r)

p(cm)
d�r (5.29)

Cm =
∫

(�r − �μm)T (�r − �μm)
ρ(�r) p(cm|�r)

p(cm)
d�r (5.30)

which are easily approximated by a pair of Monte Carlo sums over

the ensemble of Bohmian particles:

�μm ≈ 1

N p(cm)

N∑
n

�rn p(cm|�rn) (5.31)

Cm ≈ 1

N p(cm)

N∑
n

(�rn − �μm)T (�rn − �μm) p(cm|�rn) (5.32)

A similar expression for the expansion weights in terms of a sum

over R is given by:

p(cm) ≈ 1

N

N∑
n

p(cm|�rn) (5.33)

The posterior terms p(cm|�rn) for each data point in Eqs. (5.31)–

(5.33) are evaluated directly from the forward probabilities
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according to Bayes’s formula:

p(cm|�rn) = p(cm) p(�rn|cm)∑
m p(cm) p(�rn|cm)

(5.34)

In some sense, the ensemble of particles can be viewed as a data

set that catalogs the results of many successive measurements on an

ensemble of identically prepared quantum systems. Each member

of the ensemble wields an equal amount of information describing

the underlying probability distribution. The key to understanding

how this information is distributed among the Gaussian clusters is

contained within Bayes’s formula. From a Bayesian viewpoint the

numerator in Eq. (5.34) essentially boils down to a measure of how

well the cluster cm describes the fluid element with configuration

�rn. The sum in the denominator is a measure of how well the

particle at �rn is described by all of the clusters. The ratio of the two

quantities then determines the fraction of explanatory information

that the particle gives to the mth cluster. Hence, the cluster that best

describes �rn will have the largest posterior probability for that point.

The circular structure in Eqs. (5.22)–(5.34) provides the

framework for an iterative procedure known as the expectation

maximization (EM) algorithm [35, 45, 86] that seeks to find a

set of parameters that gives the best estimate for the density of

R. Computing the forward and posterior probabilities determines

how well an arbitrarily parametrized mixture model is expected to

represent the ensemble. Evaluating the sums in Eqs. (5.31)–(5.33)

gives rise to a new set of parameters that is said to maximize the log-

likelihood:

L = log
∏

n

ρ(�rn) (5.35)

of the distribution. A likelihood is a probability measure referring

to the outcome of an event that is already known to have occurred.

The log-likelihood of the distribution is a measure of how well the

overall density model describes the entire collection of data points.

The EM algorithm works very much like the variational principle, in

that, there is a likelihood equation defined over parameter space:

�∇cm L = 0 (5.36)

such that L is a maximum for models that are effective in describing

the ensemble’s distribution. Furthermore, it can be shown that
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the update rules in Eqs. (5.31)–(5.33) move the clusters through

parameter space in the direction along �∇cm L , that is, in the direction

that improves the density estimate. The cycle of estimating the

expected distribution function, and maximizing the log-likelihood

is repeated iteratively until a satisfactory estimate of the density is

achieved.

It is important to realize that finding the maximum likelihood

estimate of a distribution is not always a well-defined problem. In

fact, there are generally multiple roots to the likelihood equation,

and it is not necessarily guaranteed that there is a global maximum.

While this is an important problem, our main concern here is

simply to find an acceptable set of parameters that approximately

represents the quantum density. However, one problem that we

will need to address concerns the number, M , of Gaussian clusters

used in the density estimate. For a Gaussian wave packet evolving

in a parabolic potential field the answer is simple, but in general

we will never really know how many clusters to use. When a

wave packet bifurcates at a potential barrier, it will often develop

complicated oscillations and nodal structures that are impossible

to capture with Gaussians. Though there are statistical methods

for “guessing” the number of components in a statistical data set,

we do not incorporate them here. Instead, we simply try to use

a minimum number of Gaussian clusters that gives reasonable

results.

The overall scheme of the mixture model approximation and

EM algorithm is as follows: First we generate the ensemble of

probability fluid elements, usually a Gaussian density packet,

via some appropriate sampling technique. The EM algorithm is

initialized by choosing a set of parameters for a preset number of

Gaussian clusters. Typically the initial clusters are given a uniform

weight p(cm) = 1/M . The mean position vectors are randomly

selected from the domain of the ensemble. The initial variances

are chosen to be large enough to encompass the entire ensemble,

and the cross terms (Cm)i, j are zero. We cycle through the EM

routine until the parameters converge to an acceptable density

estimate. Convergence can be evaluated in a number of ways by

monitoring the cluster parameters, the conditional probabilities, the

log-likelihood, or any combination thereof.
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5.2.3 Computational results

5.2.3.1 Bivariate distribution with multiple nonseparable
Gaussian components

To illustrate some of the points in the previous section, we

demonstrate the convergence of the EM algorithm using a known

probability distribution function. In Fig. 5.1 we have plotted the

Figure 5.1. The contours reflect a multivariate probability distribution

comprised of four Gaussian components with nonzero xy covariances. The

solid black lines represent the half-widths of the Gaussian components.

The ensemble of gray points are generated from the exact probability

distribution function via a Metropolis sampling procedure and are taken as

the input data for the EM algorithm. The black squares labeled r1 and r2

are tagged data points discussed later in Figs. 5.4 and 5.5. Reprinted with

permission from Ref. [82]. Copyright 2003 American Institute of Physics.
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contours of a bivariate probability distribution function ρ(x, y)

consisting of four equally weighted nonseparable Gaussian com-

ponents. The solid lines reflect the half-width contours of each

component and their orientation with respect to the x and y axes.

The gray points correspond to an ensemble R of 2000 variants

of ρ(x, y), which were randomly generated using a Metropolis

sampling algorithm. Two of these data points, labeled �r1 and �r2, have

been tagged for later discussion.

In Fig. 5.2 we show the evolution of 16 separable Gaussian

clusters over the course of the EM fitting algorithm. The contour

plots indicate the relative intensity of the fitted density at various

stages of the EM fit. The black dots and ovals correspond to the

μm- and σm-contours for the individual Gaussian clusters. The

initial random guess for the clusters is not illustrated. After 1 EM

cycle, the clusters tend to aggregate near the mean of R, and

the estimated density does not reflect any details of the exact

distribution. After about 10 EM cycles, the clusters begin sorting

out the structure of the density. By 100 EM cycles, the clusters

have found all four Gaussian components of the distribution and

are struggling to recover the proper covariance in each component.

The separable clusters are hindered in this because they have no

freedom to rotate in the xy plane and must work collectively to

capture the xy correlations. At 400 cycles we can see that the

separable clusters have performed fairly well in finding the positions

and relative orientations of the density components; however, the

estimated density is somewhat distorted from the true distribution.

The density estimate can be improved by including more sampling

points and more clusters, but this also increases the computational

demand.

Figure 5.3 illustrates the performance of the fully covariant

model using four nonseparable clusters to describe the same data

set. As expected, the fully covariant model performs much better

than the separable case because the exact probability distribution

is rigorously a mixture of four equally weighted nonseparable

Gaussian components. After 1 EM cycle, the nonseparable clusters

also collect near the mean of R; however, they immediately develop

nonzero off-diagonal covariances. Between 10–20 EM cycles, the

clusters locate the individual density components. By 50 cycles, the
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Figure 5.2. This figure illustrates the EM algorithm for the data pictured

in Fig. 5.1 using 16 separable Gaussian clusters. The contours reflect

the approximated probability density during the course of the EM-fitting

routine. The black dots correspond to the average position of the Gaussian

cluster, and the solid black ellipses represents the Gaussian half-width

contours. Reprinted with permission from Ref. [82]. Copyright 2003

American Institute of Physics.

clusters have established a stable configuration, which very closely

mimics the true probability distribution.

Essentially, the EM algorithm performs a parallel search over

the Gaussian parameter space and looks for regions where the

clusters will be most effective in describing the data points. To

help quantify the collective effort of the clusters, we examine the

forward and posterior probabilities at the tagged data points �r1 and
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Figure 5.3. This figure illustrates the EM algorithm for the data pictured

in Fig. 5.1 using four nonseparable Gaussian clusters. Compared with the

separable case, the fully covariant model gives much more accurate results

with less clusters and fewer EM cycles. Reprinted with permission from Ref.

[82]. Copyright 2003 American Institute of Physics.

�r2. First, notice in Fig. 5.2 that there are never more than one or two

Gaussian clusters centered near the point �r1. Fig. 5.4a,b shows how

the p(�r1|cm)’s and p(cm|�r1)’s evolve for the separable cluster model.

Both plots indicate that for the first 75 EM cycles, there is really only

one cluster that dominates the density estimate at �r1. The posteriors

are particularly interesting because they reflect the fraction of

explanatory power a data point gives to each of the cluster. The

curve crossing at roughly 105 EM cycles reflects that the originally

dominant cluster is eventually displaced by a different cluster that
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Figure 5.4. Plot (a) shows 16 separable forward probabilities at the

tagged data point �r1 as a function EM cycles. Plot (b) shows the

corresponding posterior probabilities. Plots (c) and (d) depict the separable

forward and posterior probabilities, respectively, at the data point at

�r2. Reprinted with permission from Ref. [82]. Copyright 2003 American

Institute of Physics.

becomes nearly centered at �r1. The situation for �r2 is analogous to

that for �r1 but is complicated by the fact that there is greater overlap

between multiple clusters. The forward and posterior probabilities

at the point �r2 are shown in Fig. 5.16c,d. Ultimately one cluster

dominates the density estimate at �r2; however, this is true to a lesser

extent than at �r1.

In Fig. 5.5 we plot the forward and posterior probabilities

at �r1 and �r2 for the fully covariant model. It is clear that the

behavior of the nonseparable Gaussian clusters is consistent with
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Figure 5.5. Plot (a) shows four nonseparable forward probabilities at

the tagged data point �r1 as a function EM cycles. Plot (b) shows the

corresponding posterior probabilities. Plots (c) and (d) depict the four

nonseparable forward and posterior probabilities, respectively, at the data

point at �r2. Reprinted with permission from Ref. [82]. Copyright 2003

American Institute of Physics.

the separable ones. The exception to this is that the fully covariant

clusters converge to a stable configuration in fewer EM cycles.

This is due to the obvious fact there are many more equally good

arrangements for 16 nonseparable Gaussians than there are for only

4 nonseparable Gaussians. Another way of saying this is that the log-

likelihood has many more local maxima for the M = 16 separable

model compared to the M = 4 nonseparable model. This point

is highlighted by Fig. 5.6, where we plot the log-likelihood L for

several different density fits. The separable cases are designated



April 27, 2012 12:36 PSP Book - 9in x 6in c05

Mixture Modeling Approach 325

Figure 5.6. Plot of the log-likelihood verses number of EM cycles for

various density estimates of the data illustrated in Fig. 5.15. The notation

σm and Cm refers to a density fit performed with m Gaussian clusters

using the separable and fully covariant model, respectively. Reprinted with

permission from Ref. [82]. Copyright 2003 American Institute of Physics.

with a σm, where the integer m indicates how many Gaussians were

used to perform the fit. Likewise, Cm refers to a fully covariant

cluster fit with m nonseparable Gaussian components. The plateaus

in the log-likelihood indicate that the EM algorithm is converging

upon a root of the likelihood equation. It is conceivable that the

EM algorithm could essentially become stuck at a local maximum

or even a saddle point that does not give a particularly good density

estimate. For these situations it is necessary to incorporate a small

random perturbation in the cluster parameters in order to move the

fit away from such anomalous regions of parameter space. Another

problem is that a cluster might become too focused on a single
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data point. This is described as a root of the likelihood equation

lying on the exterior of parameter space. When this happens, the

variance and weight of the cluster become exceedingly small and in

numerical applications will often round to zero, causing some terms

in Eqs. (5.26)–(5.25) and (5.31)–(5.32) to diverge. This problem can

be avoided in practice by adding a small fraction to the diagonal

covariances in Eq. (5.32). This imposes an artificial boundary in

parameter space that forces the Gaussian clusters away from the

exterior roots.

5.2.4 The ground state of methyl iodide

Now that we have highlighted some key features of the mixture

model approximation and EM algorithm, we turn our attention to

a problem with more physical merits. In order to propagate the

quantum ensemble in time we must compute both the classical and

quantum forces acting on the ensemble particles. Given a maximum

likelihood estimate for ρ in the form of Eq. (5.25) or (5.26), it is

a fairly straightforward exercise in book-keeping to compute an

approximate quantum force:

FQ = �

4m

( �∇3ρ

ρ
−

�∇( �∇ρ · �∇ρ)

2ρ2
(5.37)

−
( �∇2ρ

ρ
−

�∇ρ · �∇ρ

ρ2

) �∇ρ

ρ

)

in terms of the Gaussian parameters. The quantum and classical

forces are then used to drive the ensemble of trajectories by

integrating Eqs. (5.17) and (5.18) over a short time step using a

Verlet leapfrog-type method. The EM algorithm is repeated using

the previously fit cluster parameters as the starting point. Recycling

the old parameters significantly decreases the number of EM cycles

required to obtain convergence in the next density estimate. The

whole process of alternating between EM cycles and Verlet steps

continues until we have integrated the equations of motion to some

appropriate final time.

For a Gaussian density packet evolving on a parabolic potential

surface, the mixture model approximation requires only one cluster
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and is exact for all time. For nontrivial problems, however, the

quantum density will generally exhibit a very complicated structure

in configuration space. Clearly, the mixture model approximation

will not be able to capture the exact intricacies of a realistic

quantum distribution. Consequently, it is not feasible, using the

present formulation of our methodology, to obtain numerically

accurate quantum densities for nonstationary systems. Ground state

quantum densities, on the other hand, are characteristically much

simpler than their excited state and nonstationary counterparts. We

believe our approach will be most useful for determining the ground

state properties of high-dimensional systems.

For stationary systems, the quantum force exactly counterbal-

ances the classical force and the ensemble of quantum trajectories

does not evolve in time. The ground state can then be realized from

a nonstationary state by adding a small damping term to Eq. (5.17):

�̇v = FQ − �∇V /m − γ �v (5.38)

where γ represents a small dissipative coefficient. This fictitious

friction, in turn, causes the ensemble particles to lose a small amount

of kinetic energy at each time step in the simulation. For a classical

ensemble, the distribution collapses to a delta function centered

about the minimum energy point(s) of the potential surface. For

the quantum mechanical ensemble, however, as the distribution

becomes increasingly narrow, the quantum force becomes very

strong and requires the ensemble to maintain some minimum finite

width. At longer simulation times an equilibrium is reached, and the

resulting distribution is representative of the ground state quantum

density. The corresponding ground state energy can be resolved to

within the statistical error of a Monte Carlo integration over the

ensemble elements.

To illustrate this, we demonstrate the convergence of an initial

Gaussian ensemble to the ground state distribution for the CH3-I

stretching/bending modes of the lowest electronic state of methyl

iodide. For our purposes this provides a nontrivial anharmonic

potential surface to test our methodology. The vibrational system

is treated as a single particle (m = 20 000 amu) evolving on a

two-dimensional (2D) model potential energy surface developed

by Shapiro and Bersohn [96]. The potential energy curves for this
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Figure 5.7. Plots (a) and (b) show the relaxation of a Gaussian wave

packet in an anharmonic potential well for both the separable and fully

covariant models, respectively. The gray contours reflect the potential

energy curves for a model of CH3I. The shaded contours indicate the shape of

the approximated density after (1) 0, (2) 10 000, and (3) 40 000 Verlet time

steps, respectively. The solid curves represent the half-width contours of

the Gaussian clusters. Plot (c) shows the numerically accurate DVR ground

state and the associated grid of quadrature points. Plot (d) shows the energy

of the estimated density as a function of time steps. The dotted and solid

data corresponds to the separable and nonseparable models, respectively,

while the dashed horizontal line represents the DVR energy. Reprinted with

permission from Ref. [82]. Copyright 2003 American Institute of Physics.

anharmonic surface are depicted in Fig. 5.7 by the gray contour

lines. In Fig. 5.7a we illustrate a numerically exact representation of

the ground state density obtained by diagonalizing the Hamiltonian

of the system using a 2D discrete variable representation (DVR).

The grid points indicate the minimum number of Chebychev
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quadrature points required to obtain convergence in the lowest-

energy eigenvalue. Obviously, a much larger grid would be necessary

to perform a dynamical calculation on this system.

Fig. 5.7b,c illustrates the estimated density for both the separable

and fully covariant models, respectively. The black ovals represent

the half-width contours of the Gaussian clusters. There are four

clusters in the separable case and two for the fully covariant model.

The various contour plots labeled (1), (2), and (3) correspond

to snapshots of the estimated density at different points in the

simulation. For both models, the initial density (1) is Gaussian,

and all but one of the clusters are redundant. As the ensemble

is propagated the individual clusters behave differently from

one another. The contours (2) show the quantum density at an

intermediate time after roughly 10 000 Verlet time steps (δt =
1 atomic time unit). At longer times an equilibrium is achieved

and the contours (3) are representative of the quantum ground

state. In Fig. 5.7d we plot the energy of the system relative to the

bottom of the potential well as a function of the number of Verlet

time steps. The DVR energy at 591 cm−1 serves as a benchmark

and is indicated by the dashed horizontal line. The dotted and

solid energy curves are for the separable and nonseparable models,

respectively. Dropping the first 20 000 time steps, we find that

the average energy for the separable case is 665.2 ± 33.6 cm−1,

which is well above the DVR energy. The average energy for the

nonseparable model falls just barely within reach of the DVR energy

at 580.0 ± 10.1 cm−1. The sharp energy spikes for the nonseparable

calculation are due to anomalous changes in the cluster parameters,

such as a sudden jump in μm or rotation of Cm. These effects do

not pose a significant problem since the clusters quickly respond

to correct the abnormalities within a few time steps. For the sake

of comparison we have also performed the same calculation for a

mixture model with four fully covariant clusters. The average energy

for the equilibrated system improved only slightly, but the statistical

variation doubled 581.6 ± 21.7 cm−1. The final arrangements of

the clusters for the M = 2 and M = 4 covariant models are not

discernible, and the additional clusters do not significantly aid or

disrupt the global density fit. However, they do contribute to the

sporadic deviations in the equilibrium energy.
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In the following sections we present some of our work in

applying this approach to study the thermodynamic properties

of mesoscopic rare-gas clusters and conclude by presenting an

extension for computing excitation energies.

5.3 Quantum Effects in Atomic Clusters at Finite
Temperature

Rare-gas clusters approximated by the simple LJ pair-wise potential

are ideal test cases for many-body simulations [10, 79, 93],

providing a useful benchmark for new methods. In addition, rare-gas

clusters are often used to probe the transition from microscopic to

macroscopic properties in atomic systems. The mesoscopic regime

has many unique properties

In this section, we extend the quantum hydrodynamic method

developed in the previous section [37] to study the nature of quan-

tum effects for mesoscopic systems at finite temperature through

the entropic functional given by Mermin [88]. Our approach assumes

that the configurational density n(�r1, . . . , �rN ) can be represented

with a superposition of statistical approximates, p(r1, . . . , �rN , cm).

The algorithm then uses a Bayesian analysis to determine the best

statistical approximates given a statistical sampling of the density.

It then uses a grid-free hydrodynamic adaptive approach to relax

sample points that make up a statistical sampling of the quantum

density to the ground state equilibrium density.

In what follows, we present a brief overview of the grid-

free adaptive hydrodynamic approach for computing the quantum

ground state density for a system of N nuclei introduced earlier and

then show how it can be extended to finite temperature. We also give

a review of the Bayesian analysis used to deduce the best set of m
statistical approximates from a statistical sampling of the density.

We then show the quantum hydrodynamical scheme used to adapt

the sample points toward a minimal energy configuration. We will

then present results on clusters of neon of up to 37 atoms (N = 37)

for temperatures from 0 K to 30 K, which spans the solid to liquid

transition for bulk Ne (Tm = 24.56 K and Tb = 27.07 K). In the

present work we will demonstrate that quantum effects can indeed
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be captured with our hydrodynamic method at finite temperature

and that quantum effects lead to some thermodynamic behavior for

small, symmetric clusters.

5.4 Quantum Structures at Zero and Finite Temperature

5.4.1 Zero temperature theory

The Euler–Lagrange equation for the motion of our particles is then

derived with the help of the hydrodynamic description of quantum

mechanics. We begin by specifying the full many-body Hamiltonian

and will follow along similarly to density functional theory (DFT)

[92]. The potential corresponds to the nuclear motion of a collection

of atoms with pair-wise interaction potentials.

H = −
N∑

i=1

1

2mi

�∇2
i +

∑
i 	= j

V (i j) (5.39)

where the first is the sum of the kinetic energies of the individual

atoms and the second is the sum of the potential energy contribu-

tions. �ri is the vector location of atom i , and ni is the corresponding

density. We also have an arbitrary N -body trial density given by:

n(�r) =
∑

i

ni (�ri ) (5.40)

The energy functional corresponding to this density and Hamil-

tonian is given by:

E [n] = T [n] +
∑
i 	= j

∫ ∫
ni (�ri )n j (�r j )V (i j)d�ri d�r j (5.41)

The kinetic energy operator is separable since we have assumed

distinguishability among the constituent atoms. Therefore, the

kinetic energy term is the sum of the individual kinetic energy

functionals.

T [n(1 · · · N )] =
N∑

i=1

Ti [ni (�ri )] (5.42)

As in electronic structure DFT, evaluating the kinetic energy

functionals is problematic since evaluating the quantum kinetic

energy is a nonlocal operator and the density is a local function [92].
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If instead we write the quantum wave function in polar form, as

in the hydrodynamic formulation of QM [31, 33, 83] and also in the

time-dependent DFT formulation [6, 7]:

�(�r) =
√

n(�r)eiφ(�r) (5.43)

we can arrive at a stationary condition that if �∇φ = 0[52],

V (1 · · · N ) −
∑

i

1

2mi

1√
ni (�ri )

∇2
i

√
ni (�ri ) = const (5.44)

at all points in space. The constant is the energy of the system.

We note here the similarity of the second term in the previous

equation with the quantum force from diffusion Monte Carlo, �∇ψ/ψ .

This term is also known as the quantum potential in the Bohm

formulation. By inspection, then, we can define our kinetic energy

functional as:

T [n(�ri )] = − 1

2mi

∫ √
ni (�ri )∇2

i

√
ni (�ri )d�ri (5.45)

Integrating by parts and taking n(i) → 0 at ±∞ produces the

familiar von Weizsacker kinetic energy functional [101]:

TW [n(�ri )] = + 1

8m

∫
1

ni (�ri )
�∇i ni (�ri ) · �∇i ni (�ri )d�ri (5.46)

Thus, the total energy functional is given in terms of the single-

particle densities.

E [n] =
N∑

i=1

TW [ni (�ri )] +
∑
i 	= j

∫ ∫
ni (�ri )ni (�r j )V (i j)d�ri d�r j (5.47)

Taking the variation of E [n] with respect to the single-particle

densities with the constraint that
∑

i

∫
ni (�ri )di = N :

δ

{
N∑

i=1

[
TW [ni (�ri )] +

∑
j 	=i

∫ ∫
ni (�ri )n j (�r j )V (i j)d�ri d�r j

− μ

(∫
ni (�ri )d�ri − 1

)]}
= 0 (5.48)

leads to the following Euler–Lagrange equations:

δTW [ni (�ri )]

δni (�ri )
+

∑
j 	=i

∫
V (i j)n j (�r j )d�r j − μ = 0 (5.49)
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When satisfied, μ is the vibrational ground state energy, and the

ni (�ri ) = |φi (i)|2 are the probability densities of the individual nuclei.

This leads to an effective mean field potential for each atom of the

form:

V e
i = Q (�ri ) + Ve(�ri ) +

N∑
j=1

Vp(ri , �r j ) (5.50)

Here, Q (�r) is the quantum potential, Ve(�ri ) is an external potential,

which corresponds to any external driving field (Ve = 0 in the

present study), and Vp(�ri , �r j ) is the pair-wise interatomic interaction

potential.

5.4.2 Finite temperature theory

An extension of Hohenberg–Kohn theorem to finite temperatures

was reported a number of years ago by Mermin [88, 111]. For

a system at finite temperature under the conditions of a grand

ensemble, Z (T, V , μ) = Tr{e−β(H −μN )}, an equilibrium state density

matrix will minimize �, the grand potential. This is given by:

� = − 1

β
ln(Tr{e−β(H −μN )}) (5.51)

where H is the Hamiltonian, N the number operator, and μ the

chemical potential. Nearly 40 years ago, Mermin [88] showed that

by writing � as a functional of an arbitrary trial density matrix:

�[ρ̂T ] = Tr{ρ̂T (K + V − μN + 1

β
lnρ̂T )} (5.52)

δ� = 0 only if the correct density matrix is used. Thus, for any trial

density matrix ρ̂T 	= ρ̂, then �[ρ̂T ] ≥ �[ρ̂]. Mermin also shows that

there is a unique density associated with the equilibrium density

matrix, n(�r) = tr{ρ̂|ψ(�r)|2}. This implies then that one can write

the grand potential as a functional of the density:

�[n(�r)] = F [n(�r)] − μ

∫
n(�r)d�r (5.53)

where our free energy functional F [n] is given by:

F [n(�r)] = Tr{ρ̂[n(�r)](K + V + 1

β
lnρ̂[n(�r)])} (5.54)

= Tw[n(�r)] + V [n(�r)] + 1

β
S[n(�r)] (5.55)
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Here we have made the substitution of S[n(�r)] for the entropic

term. The Tw functional is the Weizsacker functional, which along

with the potential functional, is identical to our previous work [37]

as well as Sec. 5.4.1. We have excluded exchange and correlation

terms since we have assumed noninteracting particles. The inverse

temperature, β , is a Lagrange multiplier used in the determination

of the ground state density. This is similar to the chemical potential

used previously in the determination of the ground state at T = 0.

The minimum of the � functional will correspond to the atomic

density profile of the system at a given temperature. Note that

the free energy functional, F [n], contains the kinetic energy and

external potential operators as well as an entropy/temperature term

so that now the stationary equilibrium state will be an energetic

compromise between the quantum and the entropic potentials, both

of which tend to destabilize the clusters, and a mean field interaction

potential that tends to stabilize the clusters. The net effect is that as

the cluster temperature increases, the clusters will be increasingly

unstable and undergo transitions from ordered to disorded states.

Since Eq. 5.52 corresponds to the grand

� = E − T S − μN (5.56)

we are trivially obeying the relation S = (∂�/∂T ). The thermody-

namic justification for the form of the entropic functional defined by

Mermin can be seen from the form of the entropy in Boltzmann’s

eulogistic equation:

S = kB ln(�mc) (5.57)

where �mc is the microcanonical density of states. Since we can

write the microcanonical density of states in terms of the density

matrix in the von Neumann definition of entropy, we can write the

above equation as:

S = −kB Tr{ρ̂ln(ρ̂)} (5.58)

This is also sometimes called differential entropy. The entropic

functional takes into account the contribution from temperature-

entropy work into our energy functional, and the β problem of path

integral based approaches is avoided.



April 27, 2012 12:36 PSP Book - 9in x 6in c05

Quantum Structures at Zero and Finite Temperature 335

We can minimize � to obtain the chemical potential:

μ = 1

β

δS[n]

δn(�r)
+ Q (�r) + Vext(�r) (5.59)

Again Q is the quantum potential derived from the functional

derivative of the Weizsacker term, Q = δT [n]/δn, and in a similar

manner V is simply the mean field potential of a given atom in

terms of all the other atoms. Now all that remains is to calculate

this iteratively as before with a temperature correction related to

S[n(�r)].

We assume that the entropic contribution is additive and can be

derived using the von Neumann entropy:

S[n(�r)] = 1

β

∑
i

∫
ni (�ri ) ln(ni (�ri ))d�ri =

∑
i

S[n(i)] (5.60)

where the sum is over individual atoms. Taking the functional

derivative with respect to the density, needed in the equations of

motion of the particles, we define an “entropic force” as:

δS[n(�r)]

δni
= 1

β
(ln (ni (�ri )) + 1) (5.61)

In order to test our assumption and verify its range of applica-

bility, we consider a simple harmonic system with a normalized

Gaussian density function:

n(x) =
√

a
π

e−x2/2〈x2〉 (5.62)

As such, the free energy is given by (with � = 1):

〈F 〉 = 1

8m〈x2〉 + mω2

2
〈x2〉 − 1

2β

(
ln(2π〈x2〉) + 1)

)
(5.63)

The first two terms are simply the average kinetic and potential

energies. The last term is temperature dependent (since β =
1/kB T ) and arises from the entropy contribution. Minimizing 〈F 〉
with respect to a yields an optimal width parameter of:

〈x2〉opt = kB T
2mω2

(
1 +

√
1 + (�ω/kB T )2

)
(5.64)
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Figure 5.8. 〈x2〉 vs. T comparing the approximate entropy functional of

Eq. 5.60 (- - -) to the exact (—) value for a harmonic system at finite

temperature. Reprinted with permission from Ref. [36]. Copyright 2007

American Chemical Society.

For comparison the exact expression for the width of a harmonic

oscillator at finite temperature is [40]:

〈x2〉exact = �

2mω
coth

(
�v

2T

)
(5.65)

where �v = �ω/kB is the vibrational temperature.

In Fig. 5.8 we compare our approximation for 〈x2〉 against its

exact value for a system with m = 1 and ω = 1 with all constants

in atomic units. At high temperature, we recover the correct limiting

behavior of the width. Significant deviation between the analytical

density matrix value of 〈x2〉 and that for hydrodynamic approach is

only seen for ω 
 1. Based upon a normal mode analysis of Ne13,

these clusters have values for ω that are typically on the order of

O (10)cm−1. In atomic units this corresponds to a frequency on the

order of ω ≈ O (10−6) so that excellent agreement can be expected

for the systems examined. In general, at temperatures below 2�ω/kB

there is slight disagreement, but we do recover the correct T = 0

value. Consequently, the Mermin functional utilized in the present
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work will introduce systematic error into our results; however, we

anticipate this to be quite minimal.

5.4.2.1 Computational approach: The mixture model

In order to utilize the hydrodynamic description one needs a

quantitative description of the density. This will be done directly

from an ensemble of points sampled from the initial quantum

density in the following way. To begin, the single-particle probability

distribution functions (PDF) can be represented by a mixture model

[45, 87] by summing a finite number M of density approximates:

n(�r) =
M∑
m

p(�r, cm) (5.66)

where p(�r, cm) is the probability that a randomly chosen member

of the ensemble has the configuration �r and is a variant of the

mth approximate designated by cm. These approximates may be

Gaussians or any other integrable multidimensional function, which

can be parameterized by its moments. For Gaussian clusters, we

have a weight p(cm), a mean position vector μm, and a covariance

matrix C m.

By definition, each joint probability in Eq. 5.66 is related to a pair

of conditional probabilities according to the relation:

p(�r, cm) = p(cm) p(�r|cm) = n(�r) p(cm|�r) (5.67)

The forward conditional probability p(�r|cm) refers to the probability

that a randomly chosen variant of cm has the configuration �r , and

the posterior probability p(cm|r) refers to the probability that the

configuration point �r is a variant of the approximate cm. Notice,

n(�r) and p(cm) are the quantum density and weight of the mth

approximate, respectively.

As shown in our previous works [37, 82], this formulation

can be used to define a multidimensional quantum density with

user-defined amounts of correlation between the particles. Briefly

we can outline our procedure as follows. With a Gaussian model

representing the full 3N dimensional system:

p(�r|cm) =
√

‖C−1‖
(2π)Nd

e(�rd−μm,d ).C−1
m .(rd−μm,d ) (5.68)
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the covariance matrix, C, can be used to eliminate (or maintain)

coupling between various degrees of freedom. Then one must deter-

mine the Gaussian parameters p(cm), μm, and Cm, which define the

density. This is facilitated using an iterative EM algorithm. In each

case, these are readily approximated by summing over an ensemble

of points {�rn} sampled from the n(�r) or probability distribution

function. For instance, the mean positions are approximated with:

�μm ≈ 1

N p(cm)

N∑
n

�rn p(cm|�rn) (5.69)

The updated Gaussian parameters are then used to update the

posterior terms p(cm|�rn) for each �rn sample point by inserting this

back into Eq. 5.68 and using Bayes’s equation:

p(cm|�rn) = p(cm) p(�rn|cm)∑
m p(cm) p(�rn|cm)

(5.70)

This procedure progressively solves for the best set of parameters,

given a distribution of sample points.

The EM algorithm described above allows us to generate

an approximate analytical functional form for the single-particle

density via statistical sampling over an ensemble of points. The

next step is to adjust the single-particle densities themselves to

produce a lower total energy. We do this by deriving the quantum

hydrodynamic equations of motion for the sample points, �rin, where

i labels a given atom and n labels a given sample point associated

with density ni (�r).

5.4.2.2 Computational approach: Equations of motion for the
sample points

The quantum Hamilton–Jacobi equation generates the equations

of motion for the ray lines of a time-dependent solution to the

Schrödinger equation [15, 16, 18, 110]. This allows convergence

to the ground state by relaxing along an action field determined

for each atom. This gives a set of time-dependent, self-consistent

field equations whereby the motion of atom i is determined by the

average potential interaction between atom i and the rest of the
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atoms in the system.

Ṡi (�r) + | �∇i S|2

2mi
+

∑
j 	=i

∫
V (i j)n j (�r)d�r

− 1

2mi

1√
ni (�r)

∇2
i

√
ni (�r) + 1

β

∫
ni (�r)ln(ni (�r)) = 0 (5.71)

Taking �∇S = p as a momentum of a particle, the equations of motion

along a given ray line or sample particle rin(t) of the quantum wave

function are given by:

mi �̈rin = −
∑
j 	=i

∫
( �∇i V (i j))n(�r j )d�r j − �∇i Q [n(�ri )] + �∇i

δS[n(i)]

δni

(5.72)

where Q [n(i)] is the Bohmian quantum potential specified by

the last term in Eq. 5.71. Stationary solutions of the time-

dependent Schrödinger equation are obtained whenever mi �̈rn = 0.

Consequently, we reach the ground state by relaxing the sample

points in a direction along the energy gradient:

�∇i E = −
∑
j 	=i

∫
( �∇i V (i j))n j (�r j )d�r j − �∇i Q [ni (�ri )] + �∇i

δS[n(i)]

δni

(5.73)

keeping n(�r j ) fixed. This generates a new statistical sampling that we

then use to determine a new set of approximates and the process is

repeated.

The algorithm can be summarized as follows:

(1) For each atom, generate and sample a normalized trial density

ni (�ri ).

(2) Using the EM routines and the given sample of points, compute

the coefficients for the density approximates.

(3) Compute the forces on each point using Eq. 5.71 and advance

each point along the energy gradient for one “time” step,

either discarding or dampening the velocity of each point. This

generates a new sample of points describing the single-particle

density for each atom. The new distribution should have a lower

total energy since we moved the sample points in the direction

toward lower energy.
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Iterating through these last two steps, we rapidly converge toward

the global quantum energy minimum of the system.

5.4.3 Computational studies

5.4.3.1 Zero temperature results

In all the calculations presented here, we used 100 statistical points

to represent the density of each atom and propagated the SCF

equations described above until the energy and the density were

sufficiently converged. To reach convergence, this typically required

a few hundred thousand iterations. The LJ parameters used for the

neon atoms are ε = 0.3059 kJ/mole and σ = 2.79 Å [76]. The initial

centers of the Gaussian approximates correspond to the position of

the global energy minima for each cluster with initial widths taken

from a harmonic oscillator approximation.

The primary motivation for continuing the study of these clusters

at zero temperature is the desire to be able to simulate the

quantum dynamics of bulk systems. In our previous work [37],

we were limited to systems with less than 20 atoms. Subsequent

improvement of our algorithms has allowed us to substantially

advance past this limit. Furthermore, it is recognized that roughly

110 atoms per unit cell are required to approximate the bulk

behavior of many-cluster systems [97]. Even so, our current

computational resources limited us to clusters with up to 85 atoms

at T = 0 K and roughly half this at higher temperatures.

Our T = 0 K results are summarized in Fig. 5.9, which shows

the various contributions to the total energy. First, we note that the

contribution from the quantum potential (average kinetic energy)

increases monotonically with system size. Moreover, the total energy

〈E 〉 decreases monotonically. This is to be expected since the larger

clusters have increasingly more nearest-neighbor interactions as the

size of the system increases.

In Fig. 5.9 we also compare the present results to a similar

semiclassical study by Calvo et al. [24]. In their results the zero-point

energy of the static structure of the global minimum was calculated

and then added in an ad hoc fashion to the pair-potential interaction.

Generally, our results lie somewhat lower in total energy than
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Figure 5.9. Various energetic contributions for quantum and classical

neon clusters versus cluster size, N . Key: 〈cl〉 = classical global potential

minimum energy, 〈cl+qc〉 = zero-point energy corrections from Ref. [24],

〈E〉 = total energy, 〈Q〉 = quantum kinetic energy (from quantum potential).

Reprinted with permission from Ref. [36]. Copyright 2007 American

Chemical Society.

the semiclassical estimates but above the classical global energy

minimum for each cluster. We do note, however, that the inclusion of

the quantum potential alters the total energy surface. Consequently,

in some cases, the system could relax to a different minimum or

in a superposition of close-lying minima due to tunneling. The

clustering model can handle this situation through the inclusion of

multiple Gaussian approximates for each atom. However, in each

case examined here, we did not observe serious deviations or

tunneling between nearly degenerate structures.

However, it is possible that the inclusion of quantum delocal-

ization can influence the energetic ordering of nearly equivalent

structures. Calvo et al. also investigated changes in the ground

state structure as a result of quantum delocalization. They did

this using a basin-hopping Monte Carlo optimization algorithm to

explore the energy landscape of small Ne clusters with less than

100 atoms. In this study the zero-point energy contributions were

again approximated in an ad hoc fashion similar to that shown in
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Table 5.1. Ground state vibrational energies for Nen

clusters for our results compared with the results tabulated

by Calvo et al. (Ref. [24])

Cluster order Energy (From Ref. [24]) order This work

17C (1) −11.0853 kJ/mol (2) −16.6336 kJ/mol

17B (2) −11.0814 (3) −16.3188

17A (3) −11.0633 (1) −16.6699

27B (1) −21.5483 (2) −27.6994

27A (2) −21.5099 (1) −28.2823

28B (1) −22.5892 (2) −28.7459

28A (2) −22.5496 (1) −29.3524

Adapted with permission from Ref. [36]. Copyright 2007 American Chemical

Society.

Fig. 5.9. This can be summarized with the following: An initial Monte

Carlo search over the potential energy hypersurface is performed

to determine a test configuration. The zero-point energy of this test

configuration is determined using the static atomic positions. The

calculated zero-point energy is then added to the classical potential

energy, and this sum is used for the Metropolis acceptance criteria.

This process is repeated until the lowest-energy configuration is

determined, now including both the pair-potential and the zero-

point energy.

In our study as well as that from Ref. [24], the starting

configurations were based upon the global classical minimum on

the potential energy hypersurface of the cluster. In Calvo et al.’s
semiclassical results, quantum effects produced a different global

minimum for 35 of 99 cases for Nen in the range of n ≤ 100. For

example, the 17-atom cluster has three nearly equivalent minima

(17A, 17B, and 17C) with energies EC < E B < E A separated by

substantial potential barriers. Likewise, n = 27 and n = 28 each

has two energetically similar minima. The energies (from Ref. [24])

of these are given in Table 5.1. The geometries of representative

clusters discussed in this section are shown in Fig. 5.10. Remarkably,

our results show a different ordering of the energies of these

structures compared with the semiclassical results. The difference

between the two results is consistent with the general trend shown

in Fig. 5.9 and corresponds to the different levels of theory used in
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Figure 5.10. Minimal-energy LJ clusters from the Cambridge Cluster data-

base. (http://www-wales.ch.cam.ac.uk) Point group is given in parenthesis.

a: 17a (C 2), b: 17b (C 1), c: 17c (C 3v ), d: 27a (C 2v ), e: 27b (C s ), f: 37a (C 1), g:

37b (C 1).

each study. In the semiclassical approach, zero-point contributions

are estimated from the curvature of the potential, after-energy
relaxation, on the potential energy hypersurface. However, in our

approach the quantum delocalization self-consistently alters the

3N -dimensional total energy hypersurface being sampled.

The effects from quantum delocalization were approximated by

using the structure’s pair-potential value as well as the zero-point

energy contribution inserted in an ad hoc manner to the Metropolis

acceptance probability of the sampling from the potential surface.

The initial structures used were based upon the global classical

minimum. We note that there could be slight differences in the
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ground state structures of the clusters compared in Fig. 5.9.

This is because, although the initial atom positions used for the

hydrodynamic simulations were also taken from the global classical

minimum, the hydrodynamic approach has a slightly altered energy

surface and could possibly relax to a new minimum. This is not

expected to result in serious deviations in the structure for the sizes

listed.

In Ref. [24] Calvo et al. also analyzed the lowest-energy

structures using a global optimization algorithm but with zero-point

energy added in an ad hoc fashion to see the changes the quantum

delocalization would have on the different ground state structures

compared with classical results. According to their results neon was

heavily influenced by quantum affects and showed a different global

minimum for 35 of 99 cases for Nen in the range of n ≤ 100. They

state:

Although challenging, it would be interesting to verify these

results (the structures and their energies) with more accurate

quantum Monte Carlo calculations at T = 0. A reasonable test case

would be the size n = 17 . . . [24]

We have done this for all three structures of 17 atoms as well

as the two structures they identified for 27- and 28-atom clusters

of neon. We summarize these results in Table 5.1. The different

structures are identified with 17A, 17B, etc., and the orderings of

the energies are identified in the columns, that is, the lowest-energy

structure is labeled with (1) and so on. The important point shown

in Table 5.1 is that the orderings of the energies are different. Note

that the difference in energies between columns 2 and 3 is consistent

with the general trend shown in Fig. 5.9 and corresponds to the

different levels of theory used. We think that our calculations are

consistent with the general statement that ground state structures

will be altered depending on the quantum delocalization, but our

results indicate that ad hoc techniques of correcting for quantum

delocalization are insufficient for global optimization algorithms

since the zero-point energy is added after the “relaxation” portion.

This is because the quantum delocalization actually changes the

3N -dimensional energy surface. The hydrodynamic method we
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have outlined might be used in conjunction with these global

optimization algorithms for a more accurate picture of the quantum

effects.

5.4.3.2 Finite temperature results

The thermodynamics of small mesoscale systems is of considerable

interest since what are typically extensive variables (e.g., total

energy, entropy, etc.) that scale monotonically with system size

can exhibit anomalous behavior as the system size becomes small.

Add to this the influences of quantum delocalization, and one

anticipates the predicted thermodynamics of these system to exhibit

behavior quite different from the bulk or even from a purely classical

prediction.

One attractive way to introduce quantum corrections into an

otherwise classical molecular dynamics or Monte Carlo simulation

is through the use of an effective “quantum potential.” Typically

such effective potentials are expansions of the quantum partition

function in powers of �. The Feynman–Hibbs potential is derived

by characterizing a quantum particle with a Gaussian that has a

width equal to the thermal de Broglie length centered about the

particle and accounts for the spread in density expected for quantum

particles. Under these assumptions the partition function can be

simplified, and with a Gaussian density the pair potential term

would be evaluated as:

V (�ri j ) =
(

2μ

πβ�2

)3/2 ∫
d RV (|r + R|)e− 2μ

β�2 R2

(5.74)

with some reduced mass, μ. The effective potential can then be

found by expanding about r and truncating at some convenient

order.

Veff(r) = V (r) + �
2β

24m
V ′′(r) (5.75)

Such an approach was used by Calvo et al. in Ref. [24] in their very

comprehensive survey of how quantum delocalization affects the

structure and energetics of rare-gas clusters and as such provides

a highly useful point of comparison for our approach. We do

note that these expansions assume λ to be small (compared to

the local variation in the potential), as per the semiclassical WKB
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Figure 5.11. The free energy of the different clusters vs. reduced

temperature kB T/ε. Error bars indicate numerical/statistical precision of

each computed free-energy value. Note the T = 0 values are offset to

a common origin for comparison. The energies at T = 0K for the three

clusters are as follows: F 13
0 = −11.21 kJ/mol, F 17

0 = −15.216 kJ/mol, and

F 37
0 = −39.03kJ/mol. Reprinted with permission from Ref. [36]. Copyright

2007 American Chemical Society.

criteria. Consequently, for lower temperatures and higher degrees of

quantum delocalization such effective quantum corrections are not

applicable.

Here we focus on three clusters, Ne13, Ne17, and Ne37 over

a temperature range spanning the solid to liquid transition for

bulk Ne. In the figures that display the thermodynamic data, the

temperature is given in terms of a reduced unit, which is the

temperature in Kelvin multiplied by Boltzmann’s constant and

divided by the well depth of the LJ potential, T ′ = T kB/ε. Figure 5.11

shows the total free energy (scaled to a common T = 0K origin)

versus temperature for the three clusters. Figure 5.12 shows the
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Figure 5.12. Plots of the quantum (a), total potential (b), and entropic (c)

contributions to the total free energy vs. reduced temperature kB T/ε for

Ne13. Reprinted with permission from Ref. [36]. Copyright 2007 American

Chemical Society.
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various contributions to the total free energy for the 13-atom cluster

with similar behavior for the other clusters. First, the contribution

from the quantum potential increases, as it should as T increases.

The averaged quantum potential is simply the average quantum

kinetic energy and as such is approximately inversely proportional

to the de Broglie wavelength squared, 〈Q 〉 ∝ λ−2. Hence, 〈Q 〉
increases as the system becomes more localized, corresponding

to an increasingly shorter thermal de Broglie wavelength as T
increases.

At higher temperatures, though, the quantum effects will be

washed out as the de Broglie wavelength goes to zero. So, we expect

that these factors will only be apparent at lower temperatures. The

de Broglie wavelength is decreasing because the entropic potential

causes an increase in the effective well depth that the atom feels

with increasing T . As this happens, the cohesive forces increase in

response to the decreased delocalization. This is a counterintuitive

result since the cohesive forces are expected to decrease at higher

temperatures. This results from the ability of atomic clusters to store

energy as internal interaction energy rather than as kinetic energy.

This aspect of mesoscopic clusters is discussed later.

It is useful to compare the results we have obtained with the

analytical results obtained using the Debye model, which is known

to have the correct low-temperature behavior for the heat capacity

in the bulk material. The Debye model has a single adjustable

parameter, the Debye temperature, defined by:

TD = hcs

2kB

(
6N
πV

)−3

(5.76)

where N/V = ρ is the bulk density and cs is the speed of sound in

the medium. From this we can derive the internal energy as:

U = 9N kB T (T/TD )3

∫ TD /T

0

x3

ex − 1
dx (5.77)

In general, TD is determined by fitting the model to experimental

thermodynamic data. For bulk Ne, TD = 75 K.

Figure 5.13 compares the internal energy from our results to the

Debye model with the Debye energy shifted so that it corresponds

at T = 0 K with our results. By comparing the curves it is evident

our results for the 17- and 37-atom systems will give similar Debye
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Figure 5.13. Internal energy for various-sized clusters (· · � · ·) compared

with the Debye model (−): (a) Ne13, (b) Ne17, and (c) Ne37. Reprinted with

permission from Ref. [36]. Copyright 2007 American Chemical Society.

temperatures to the bulk limit. The melting region can be identified

as the nonlinear regions of the internal energy curves. In all three

clusters, similar melting regions are observed for both approaches.

It may seem remarkable that the Debye model is still useful, given

the fact that these clusters are far from the bulk limit. However, the

Debye model was constructed to account for both the high- and low-

temperature caloric curves in condensed phase systems, and there

is no fundamental problem with it as an approximation in this case.

Closer inspection of the internal energy curve for Ne13 indicates

that tor temperatures, 0 < T ≤ 0.2T ′, the internal energy

decreases to some extent. This corresponds to a negative heat
capacity. Even given a computational error estimate of ± 0.1 kJ/mole

in the internal energy, the dip is clearly present in our results. This

is not entirely unreasonable or unprecedented as several recent

studies have predicted negative heat capacities for atomic clusters

[14, 24, 66]. However, in Ref. [24] it was dismissed as an unphysical

result. In addition negative heat capacities have also been observed
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recently for sodium clusters of 147 atoms [95] and they have been

predicted in astrophysics, where energy can be added to a star

whose temperature subsequently cools down [78]. Schmidt et al.
[95] explain this for small atomic systems as a purely microscopic

phenomenon. That is, for larger systems at a phase transition, energy

is added as potential energy rather than kinetic energy so that the

temperature remains constant over the course of the transition.

For mesoscopic-scale atomic systems, on the other hand, it can

be entropically favorable to avoid a partially melted state so that

some energy is actually transferred from kinetic to potential energy,

causing a negative heat capacity near phase transitions. Since this

is not observed in classical simulations nor in the Debye model,

it is possibly due to anharmonic quantum delocalization effects

in the system. Another factor is that N = 13 and 147 clusters

form complete icosohedral structures in their lowest-energy state.

These are called magic-number clusters because of the stability of

these highly symmetric forms. Since negative heat capacities have

only been observed and/or predicted for magic-number clusters,

this suggests that the negative heat capacity may be related to the

symmetry of the system.

In all instances of negative heat capacity, the common factor is

that the energy is not an extensive quantity and the interactions

between subsystems must be taken into account. In the clusters

we are examining, the temperature is raised but the atoms adjust

themselves to store energy in the pair-potential interaction between

atoms rather than increase the kinetic energy. Although this

explanation offered by Schmidt et al. [95] appears to indicate that

this is a purely classical effect; to our knowledge, no classical

molecular dynamic methods have predicted negative heat capacities.

Hence, we attribute the negative heat capacity to purely quantum

mechanical effects in this system.

The reason for the failure of the Debye model for the smaller

clusters is the continuous density of states for the phonons

assumed by the model as seen in Eq. 5.77. As the clusters get

smaller this becomes substantially different than the actual 3N-

6 vibrational levels that the cluster contains. Though this is a

powerful approximation, the levels very quickly become tightly

packed and approach the continuous limit. If we loosely think
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of the portions of the density that are not adequately accounted

for in this assumption as anharmonic regions, then our results

indicate that these are important for describing the thermodynamics

of these systems. Though we assume a Gaussian form for the

statistical approximates used in the present work, which amounts to

a harmonic approximation, we can sample the anharmonic regions

of the density. This is because the statistical points themselves

are free to sample the anharmonic regions. It happens that the

anharmonic regions are more important for smaller clusters since

they have more surface atoms and consequently experience more

delocalization relative to the larger systems [37].

Based upon the above discussions we can say the thermodynam-

ics of these clusters is influenced greatly by their relative ability to

store energy, preferentially in the potential energy. This aspect of

these systems can be studied by introducing a virial-like parameter

consisting of the ratio of the quantum potential with the total

internal energy, 〈Q 〉/〈U 〉. This parameter essentially measures the

percentage of energy contained in the kinetic energy. This will be

given by:

τm = − 〈Q 〉
〈Q 〉 + 〈V 〉

τm should approach 1 as the temperature is raised, since the

averaged quantum potential value is increasing with temperature

and the averaged potential interaction energy should remain about

constant, although the cluster will dissociate into a disordered state

long before this point is reached. The averaged quantum potential

value is a monotonically increasing function of the temperature

because it is inversely proportional to the delocalization, or the de

Broglie wavelength, 〈Q 〉 ≈ 1/λ2 ≈ T . τm is shown for the three

clusters in Fig. 5.14, and the curves clearly show that the smaller

clusters must increase the amount of kinetic energy at a greater

rate with temperature. Essentially the different rates of increase for

τm are due to the larger clusters increased ability to store energy

in the pair-potential. This explains the marked decrease in the

temperatures of phase transitions as the size of the clusters drops.

Locating the melting point for mesoscopic systems is often a diffi-

cult task, even for systems with negligible quantum effects, because

of the characteristic melting regions often seen for these systems.
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Figure 5.14. (〈Q 〉/〈U 〉) vs. reduced temperature kB T/ε. (Key: —: 13

atoms, · · · :17 atoms, − · −: 37 atoms). Reprinted with permission from Ref.

[36]. Copyright 2007 American Chemical Society.

Some factors that influence the melting characteristics of these

clusters are the well depth for the lowest-energy configuration, the

depths of the nearest neighbor wells around the ground state, and

the time scales of the transitions [8]. A simple means of examining

when melting has actually occurred is from the relative percentage

of energy contained in the kinetic energy. In the bulk this will show

a clear discontinuity at a phase transition and for microscopic or

mesoscopic systems To analyze this possibility we introduce a virial-

like term consisting of the ratio of the quantum potential with the

total internal energy, 〈Q 〉/〈U 〉, to help identify when melting has

occurred. This is given by:

τm = − 〈Q 〉
〈Q 〉 + 〈V 〉

where we have taken the negative in order to have positive values

for the parameter. τm should approach 1 as the temperature is

raised, since the averaged quantum potential value is increasing

with temperature, and the averaged potential interaction energy

should remain about constant, but the cluster will dissociate into

a disordered state long before this point is reached. The averaged

quantum potential value is a monotonically increasing function

of the temperature because it is inversely proportional to the

delocalization, or the de Broglie wavelength, 〈Q 〉 ≈ 1/λ2 ≈
T . τm is shown for all three cluster sizes examined at finite
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temperature in Fig. 5.14. These plots reveal some interesting aspects

of these clusters. They show that the rate of increase of τm versus

temperature is dependent on the cluster size, which explains the

significant decrease in the phase transition temperatures observed

for mesoscopic clusters compared to bulk values. The different rates

of increase in τm for the different cluster sizes is due to the larger

clusters’ increased ability to store energy in the pair-potential.

5.5 Overcoming the Node Problem

One of the difficulties encountered in a quantum density-based

scheme is that the quantum density is a positive quantity that

vanishes whenever there is a node in the quantum wave function.

The “node problem” has been a bugbear in the development of time-

dependent quantum trajectory approaches and plagues Monte Carlo

approaches. The difficulty within the quantum trajectory scheme

is that when ρ(x) → 0, the quantum potential becomes singular,

giving rise to a sharply repulsive force that pushes sample points

away from the node. One can adopt a “fixed-node” scheme to keep

separate ensembles of sample points for each nodal region; however,

this approach is not very flexible for high-dimensional systems,

which may have nodal hypersurfaces.

We present here an idea we developed that uses supersymmetric

(SUSY) QM within the context of a quantum Monte Carlo scheme

to get around the node issue. By using the fact that SUSY QM

gives rises to a series of isospectral Hamiltonians, we show that

Monte Carlo ground state calculations in the SUSY partners can be

used to reconstruct accurately both the spectrum and th estates of

an arbitrary Schrödinger equation. Since the ground state of each

partner potential is nodeless, we avoid any node problem typically

associated with the Monte Carlo technique. While we provide an

example of using this approach to determine the tunneling states

in a double-well potential, the method is applicable to any one-

dimensional (1D) potential problem [13, 63]. We conclude by

discussing the extension to higher dimensions.

The variational Monte Carlo (VMC) technique is a powerful way

to estimate the ground state of a quantum mechanical system. The
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basic idea is that one can use the variational principle to minimize

the energy expectation value with respect to a set of parameters: {α}

E (α) =
∫ |ψ(x, α)|2(H ψ)/ψ(x, α))dx∫ |ψ(x, α)|2dx

(5.78)

Following the Monte Carlo method for evaluating integrals, one

interprets:

p(x)dx = |ψ(x, α)|2dx∫ |ψ(x, α)|2dx
(5.79)

as a probability distribution function. Typically, one assumes a

functional form for the trial wave function, ψ(x, α), and the

numerical advantage is that one can evaluate the energy integral by

simply evaluating ψ(x, α). The method becomes variational when

one then adjusts the parameters to optimize the trial wave function.

Since the spectrum of H is bounded from below, the optimized trial

wave function provides a best approximation to the true ground

state of the system. However, since p(x) = |ψ(x, α)|2 is a positive

definite function, this procedure fails if the system has nodes or

if the position of the nodes is determined by the parameters.

One can in principle obtain excitation energies by constraining the

trial function to have a fixed set of nodes perhaps determined by

symmetry.

Given that VMC is a robust technique for ground states, it would

be highly desirable if the technique could be extended to facilitate

the calculation of excited states. In this section, we present such an

extension (albeit in one dimension) using SUSY QM. The underlying

mathematical idea behind SUSY QM is that every Hamiltonian H1 =
T + V1 has a partner Hamiltonian, H2 = T + V2 (T being the

kinetic energy operator) in which the spectrum of H1 and H2 are

identical for all states above the ground state of H1. That is to say,

the ground state of H2 has the same energy as the first excited

state of H1 and so on. This hierarchy of related Hamiltonians and

the algebra associated with the SUSY operators present a powerful

formal approach to determine the energy spectra for a wide number

of systems [5, 9, 26, 34, 39, 49, 55, 57, 72, 84, 89]. To date, little has

been done exploiting SUSY QM as a way to develop new numerical

techniques.
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We shall first use the ideas of SUSY QM to develop a Monte

Carlo-like scheme for computing the tunneling splittings in a

symmetric double-well potential. While the model can be solved

using other techniques, this provides a useful proof of principle for

our approach. We find that the SUSY/VMC combination provides a

useful and accurate way to obtain the tunneling splitting and excited

state wave function for this system. While our current focus is on a

1D system, we conclude by commenting upon how the technique can

be extended to multiparticle systems and to higher dimensions. In

short, our results strongly suggest that this approach can be brought

to bear on a more general class of problems involving multiple

degrees of freedom. Surprisingly, the connection between the Monte

Carlo technique and the SUSY hierarchy has not been exploited until

recently [13, 63, 64].

5.5.1 Supersymmetric quantum mechanics

SUSY QM is obtained by factoring the Schrödinger equation into the

form [29, 104, 105]:

H ψ = A† Aψ (1)
o = 0 (5.80)

using the operators:

A = �√
2m

∂x + W (5.81)

A† = − �√
2m

∂x + W (5.82)

Since we can impose Aψ (1)
o = 0, we can immediately write that:

W(x) = − �√
2m

∂x ln ψo (5.83)

W(x) is the superpotential that is related to the physical potential by

a Riccati equation.

V (x) = W2(x) − �√
2m

W ′(x) (5.84)

The SUSY factorization of the Schrödinger equation can always be

applied in one dimension.

From this point on we label the original Hamiltonian operator

and its associated potential, states, and energies as H1, V1, ψ (1)
n and
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E (1)
n . One can also define a partner Hamiltonian, H2 = A A†, with a

corresponding potential:

V2 = W2 + �√
2m

W ′(x) (5.85)

All of this seems rather circular and pointless until one recognizes

that V1 and its partner potential, V2, give rise to a common set of

energy eigenvalues. This principle result of SUSY can be seen by first

considering an arbitrary stationary solution of H1:

H1ψ
((1)
n = A† Aψn = E (1)

n ψ (1)
n (5.86)

This implies that (Aψ (1)
n ) is an eigenstate of H2 with energy E (1)

n

since:

H2(Aψ (1)
n ) = A A† Aψ (1)

n = E (1)
n (Aψ (1)

n ) (5.87)

Likewise, the Schrödinger equation involving the partner potential

H2ψ
(2)
n = E (2)

n ψ (2)
n implies that:

A† A A†ψ (2)
n = H1(A†ψ (2)

n ) = E (2)
n (A†ψ (2)

n ) (5.88)

This (along with E (1)
o = 0) allows one to conclude that the

eigenenergies and eigenfunctions of H1 and H2 are related in the

following way: E (1)
n+1 = E (2)

n ,

ψ (2)
n = 1√

E (1)
n+1

Aψ
(1)
n+1, and ψ

(1)
n+1 = 1√

E (2)
n

A†ψ (2)
n (5.89)

for n > 0.a Thus, the ground state of H2 has the same energy as the
first excited state of H1. If this state ψ (2)

o is assumed to be nodeless;

then ψ
(1)
1 ∝ A†ψ (2)

o will have a single node. We can repeat this

analysis and show that H2 is partnered with another Hamiltonian,

H3, whose ground state is isoenergetic with the first excited state of

H2 and thus isoenergetic with the second excited state of the original

H1. This hierarchy of partners persists until all of the bound states

of H1 are exhausted.

aOur notation from here on is that ψ
(m)
n denotes the nth state associated with the mth

partner Hamiltonian with a similar notation for related quantities such as energies

and superpotentials.
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5.5.2 Implementation of SUSY QM in an adaptive Monte
Carlo scheme

Having defined the basic terms of SUSY QM, let us presume

that one can determine an accurate approximation to the ground

state density ρ(1)
o (x) of Hamiltonian H1. One can then use this to

determine the superpotential using the Riccati transform:

W(1)
o = −1

2

�√
2m

∂ ln ρ(1)
o

∂x
(5.90)

and the partner potential:

V2 = V1 − �
2

2m
∂2 ln ρ(1)

o

∂x2
(5.91)

Certainly, our ability to compute the energy of the ground state of the

partner potential V2 depends on having first obtained an accurate

estimate of the ground state density associated with the original V1.

For this we turn to an adaptive VMC approach developed by

Maddox and Bittner [82], as discussed earlier in this chapter. To

recapitulate this approach, we assume we can write the trial density

as a sum over N Gaussian approximate functions:

ρT (x) =
∑

n

G n(x, cn) (5.92)

parameterized by their amplitude, center, and width.

G n(x, {cn}) = cnoe−cn2(x−cn3)2

(5.93)

This trial density then is used to compute the energy:

E [ρT ] = 〈V1〉 + 〈Q [ρT ]〉 (5.94)

where Q [ρT ] is the Bohm quantum potential:

Q [ρT ] = − �
2

2m
1√
ρT

∂2

∂x2

√
ρT (5.95)

The energy average is computed by sampling ρT (x) over a set of

trial points {xi } and then moving the trial points along the conjugate

gradient of:

E (x) = V1(x) + Q [ρT ](x) (5.96)

After each conjugate gradient step, a new set of cn coefficients is

determined according to an EM criteria such that the new trial
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density provides the best N -Gaussian approximation to the actual

probability distribution function sampled by the new set of trial

points. The procedure is repeated until δ〈E 〉 = 0. In doing so, we

simultaneously minimize the energy and optimize the trial function.

Since the ground state is assumed to be nodeless, we will not

encounter the singularities and numerical instabilities associated

with other Bohmian equations of motion-based approaches [12, 16,

52, 77, 82, 107].

5.5.3 Test case: Tunneling in a double-well potential

As a nontrivial test case, consider the tunneling of a particle between

two minima of a symmetric double-well potential. One can estimate

the tunneling splitting using semiclassical techniques by assuming

that the ground and excited states are given by the approximate

form:

ψ± = 1√
2

(φo(x) ± φo(−x)) (5.97)

where φo is the lowest-energy state in the right-hand well in the limit

the wells are infinitely far apart. From this, one can easily estimate

the splitting as [67]:

δ = 4
�

2

m
φo(0)φ′

o(0) (5.98)

If we assume the localized state (φo) to be Gaussian, then:

ψ± ∝ 1√
2

(e−β(x−xo)2 ± e−β(x+xo)2

) (5.99)

and we can write the superpotential as:

W =
√

2

m
�β (x − xo tanh(2x xoβ)) (5.100)

From this, one can easily determine both the original potential and

the partner potential as:

V1,2 = W2 ± �√
2m

W ′ (5.101)

= β2
�

2

m

(
2(x − xo tanh(2x xoβ))2

± (2x2
o sech2(2x xoβ) − 1

)
(5.102)
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While the V1 potential has the characteristic double minima giving

rise to a tunneling doublet, the SUSY partner potential V2 has a

central dimple, which in the limit of xo → ∞ becomes a δ-function,

which produces an unpaired and nodeless ground state [29]. Using

Eq. 5.88, one obtains ψ
(1)
1 = ψ− ∝ A†ψ (2)

o , which now has a single

node at x = 0.

For a computational example, we take the double-well potential

to be of the form:

V1(x) = ax4 + bx2 + Eo (5.103)

with a = 438.9 cm−1/(bohr2), b = 877.8 cm−1/(bohr)4, and

Eo = −181.1 cm−1, which (for m = mH ) gives rise to exactly two

states below the barrier separating the two minima with a tunneling

splitting of 59.32 cm−1 as computed using a DVR approach [74]. For

the calculations reported here, we used np = 1000 sample points

and N = 15 Gaussians and in the expansion of ρT (x) to converge the

ground state. This converged the ground state to 1 : 10−8 in terms

of the energy. This is certainly a bit of an overkill in the number of

points and number of Gaussians since far fewer DVR points were

required to achieve comparable accuracy (and a manifold of excited

states). The numerical results, however, are encouraging since the

accuracy of generic Monte Carlo evaluation would be 1/
√np ≈ 3%

in terms of the energy.a Plots of V1 and the converged ground state

are shown in Fig. 5.15.

The partner potential V2 = W2 + �W ′/
√

2m can be constructed

once we know the superpotential, W(x). Here, we require an

accurate evaluation of the ground state density and its first two

log-derivatives. The advantage of our computational scheme is that

one can evaluate these analytically for a given set of coefficients. In

Fig. 5.15a we show the partner potential derived from the ground

state density. Whereas the original V1 potential exhibits the double-

well structure with minima near xo = ±1, the V2 partner potential

has a pronounced dip about x = 0. Consequently, its ground state

should have a simple Gaussian-like form peaked about the origin.

aIn our implementation, the sampling points are only used to evaluate the requisite

integrals and they themselves are adjusted along a conjugate gradient rather than

by resampling. One could in principle forego this step entirely and optimize the

parameters describing the Gaussians directly.
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Figure 5.15. (a) Model double-well potential (blue) and partner potential

(purple). The energies of the tunneling doublets are indicated by the

horizontal lines at V = 0 cm−1 and V = 59.32 cm−1, indicating the

positions of the subbarrier tunneling doublet. (b) Final ground state density

(blue) superimposed over the Gaussians used in its expansion (purple).

Reprinted with permission from Ref. [13]. Copyright 2009 American

Chemical Society.

Once we determined an accurate representation of the partner

potential, it is now a trivial matter to reintroduce the partner

potential into the optimization routines. The ground state converges

easily and is shown in Fig. 5.16b, along with its Gaussians. After

1,000 CG steps, the converged energy is within 0.1% of the exact

tunneling splitting for this model system. Again, this is an order of

magnitude better than the 1/
√np error associated with a simple

Monte Carlo sampling. Furthermore, Fig. 5.16b shows ψ
(1)
1 ∝ A†ψ

(2)
0

computed using the converged ρ
(2)
0 density. As anticipated, it shows

the proper symmetry and nodal position.

By symmetry, one expects the node to lie precisely at the origin.

However, since we have not imposed any symmetry restriction or

bias on our numerical method, the position of the node provides a

sensitive test of the convergence of the trial density for ρ
(2)
0 . In the

example shown in Fig. 5.17, the location of the node oscillates about

the origin and appears to converge exponentially with the number of

CG steps. This is remarkably good considering that this is ultimately

determined by the quality of the third and fourth derivatives of ρ(1)
o
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Figure 5.16. (a) Ground state density of the partner Hamiltonian H2

(blue) superimposed over its individual Gaussian components. (b) Excited

state ψ
(1)
1 derived from the ground state of the partner potential, ψ (2)

o .

Reprinted with permission from Ref. [13]. Copyright 2009 American

Chemical Society.

Figure 5.17. Location of excited state node for the last 600 CG steps.

Reprinted with permission from Ref. [13]. Copyright 2009 American

Chemical Society.
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since these appear when computing the conjugate gradient of V2.

We have tested this approach on a number of other 1D bound-state

problems with similar success.

5.5.4 Extension to higher dimensions

Having demonstrated that the SUSY approach can be used to

compute excitation energies and wave functions starting from a

Monte Carlo approach, the immediate next step is to extend this to

arbitrarily higher dimensions. To move beyond 1D SUSY, Ioffe and

coworkers have explored the use of higher-order charge operators

[1–3, 25], and Kravchenko has explored the use of Clifford algebras

[65]. Unfortunately, this is difficult to do in general. The reason being

that the Riccati factorization of the 1D Schrödinger equation does

not extend easily to higher dimensions. One remedy is to write the

charge operators as vectors �A = (+�∂+ �W) and with �A† = (−�∂+ �W)T

as the adjoint charge operator. The original Schrödinger operator is

then constructed as an inner-product:

H1 = �A† · �A (5.104)

Working through the vector product produces the Schrödinger

equation:

H1φ = (−∇2 + W2 − ( �∇ · �W))φ = 0 (5.105)

and a Riccati equation of the form:

U (x) = W2 − �∇ · �W (5.106)

For a 2D harmonic oscillator, we would obtain a vector superpoten-

tial of the form:

�W = − 1

ψ
(1)
0

�∇ψ
(1)
0 = (x, y) = (Wx , Wy) (5.107)

Let us look more closely at the �∇· �W part. If we use the form that �W =
−�∇ ln ψ , then −�∇ · �∇ ln ψ = −∇2 ln ψ , which for the 2D oscillator

results in �∇ · �W = 2. Thus:

W2 − �∇ · �W = (x2 + y2) − 2 (5.108)
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which agrees with the original symmetric harmonic potential. Now,

we write the scaled partner potential as:

U 2 = W2 + �∇ · �W = (x2 + y2) + 2 (5.109)

This is equivalent to the original potential shifted by a constant

amount.

U 2 = U 1 + 4 (5.110)

The ground state in this potential would be have the same energy as

the states of the original potential with quantum numbers n+m = 2.

Consequently, even with this naive factorization, one can in principle

obtain excitation energies for higher-dimensional systems, but there

is no assurance that one can reproduce the entire spectrum of states.

The problem lies in the fact that neither Hamiltonian H2 nor

its associated potential U 2 is given in its most general form by the

expression implied by Eq. 5.105 and Eq. 5.109. Rather, the correct

approach is to write the H2 Hamiltonian as a tensor by taking the

outer product of the charges H 2 = �A �A† rather than as a scalar �A · �A†.

At first this seems unwieldy and unlikely to lead anywhere since the

wave function solutions of:

H 2 · �ψ = E �ψ (5.111)

are now vectors rather than scalars. However, rather than adding

an undue complexity to the problem, it actually simplifies matters

considerably. As we demonstrate in a recent paper, this tensor

factorization preserves the SUSY algebraic structure and produces

excitation energies for any n-dimensional SUSY system [62].

5.5.4.1 Discussion

In brief, we have used the ideas of SUSY QM to obtain excitation

energies and excited state wave functions within the context of a

Monte Carlo scheme. This was accomplished without prespecifying

the location of nodes or restriction to a specific symmetry. While it

is clear that one could continue to determine the complete spectrum

of H1, the real challenge is to extend this technique to higher

dimensions. Furthermore, the extension to multi-Fermion systems

may be accomplished through the use of the Gaussian Monte Carlo

method in which any quantum state can be expressed as a real

probability distribution [4, 30].
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5.6 Summary

In this chapter, we have explored an efficient strategy for determin-

ing the quantum density associated with a statistical ensemble of

space-time trajectories. Given a statistical ensemble of probability

elements, we can estimate the quantum force in terms of a

set of Gaussian fitting parameters. Our methodology incorporates

Bayesian probabilities and a mixture model approximation to

calculate a parameterized estimate of Bohm’s quantum force. The

EM procedure used to fit the density is not sensitive to trajectory

crossings because the error associated with an individual rogue

trajectory is essentially washed out by the statistical ensemble. After

a sufficient equilibration time the ensemble is representative of

the ground state distribution and can be used to gather statistics

on ground state properties such as the zero-point energy and

other expectation values. Moreover, because the density fitting is

formulated in terms of simple sums over data points, our method

is easily extended to high dimensions and can be conveniently

implemented on parallel computers.

We applied this approach to investigate the ground vibrational

state energies at zero temperature and the low-temperature

thermodynamics of mesoscopic rare gas clusters. Improvements in

the algorithm allowed the calculation of the ground state structure

at zero temperature, approaching the size necessary to simulate

bulk systems. Our method compares favorably against path-integral

Monte Carlo results on these systems and offers a systematic

improvement over semiclassical treatments.

Finally, we present some of our most recent work in using

the SUSY approach to compute quantum excited states using

our adaptive approach. This work holds considerable promise in

avoiding the node problem that has plagued both Monte Carlo and

Bohmian trajectory approaches for years.

Most implementations of the Bohmian theory use trajectories

as a way to gain deeper insight into a given problem or as a way

to compute properties given a quantum density, we take more

of synthetic approach to construct the quantum density from an

ensemble of particles, which obey the Bohm quantum equations

of motion. As discussed above, this presents a very difficult
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challenge, especially when extended to high-dimensional systems.

The methods and results presented in this chapter represent the first
successful implementations of a synthetic Bohmian approach that is

robust, stable, and computationally efficient enough to study large

numbers of atoms using realistic interatomic potentials. While we

have not discussed it here, our approach can be used in conjunction

with standard classical molecular dynamics algorithms to impart

quantum-like behavior (such as tunneling) to specific atoms within

the simulation.
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