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and the major directions and challenges for future developments in this field.
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1. Introduction

Multiagent systemsare computationasystems in which two omore agentsnteract orwork
together to perform some set tafsks or to satisfy some set gbals. These systemsmay be
comprised of homogeneous or heterogeneous agents. An agensystem is considered a locus

of problem-solving activity, it operates asynchronously with respect to atfets,and it has a
certain level of autonomyAgent autonomy relates to an agendiility to makeits own decisions

about whatactivities todo, when to do thenwhat type of informatiorshould becommunicated

and to whom, and how to assimilate the information received. Autonomy can be limited by policies
built into the agent by its designer, or as a result of an agent organization dynamically coming to an
agreement that specifegents shouldake on certairroles or adopfcertain policiesfor some
specified period. Closelyassociated with agent autonomy is agadaptability — the more
autonomy an agent possesses the more adaptable it is to the emerging problem solving and network
context. The degree of autonomy and the range of adaptability are usually assdthatied level

of intelligence/sophistication that an agent possesses.

Agents mayalso becharacterized byhether they are benevolent (cooperativeealf-interested.
Cooperative agentwork towardachieving some commogoals, whereaself-interested agents
have distinct goals bunay still interact to advance themwn goals. Inthe lattercase, self-
interested agents may, by exchanging favors or curreocydinate with other agents in order to
getthose agents to perforattivities thatassist inthe achievement of theoswn objectives. For
example, in a manufacturing setting where ageargsesponsible for schedulindjfferent aspects

of the manufacturingrocess,agents in the same manufacturing compamuld behave in a
cooperativeway while agents representinggvo separate companies where one company was
outsourcing part of its manufacturimyocess tothe other companyvould behave in a self-
interested way.

Scientific research angractice in multiagensystems, which inthe past hasbeen called
Distributed Atrtificial IntelligencgDAI), focuses orthe development of computational principles
and models for constructing, describimgplementing and analyzing the patterns of interaction
and coordination in both large and small agentieties.Multiagent systems research brings
together a diverse set of research disciplinestandthere is a wide range of ideas currently
beingexplored. It is impossible tadequatel}addressthe full spectrum ofssuesand research
perspectives of the field in such a shanticle: Therefore, thisarticle will of necessity be biased
by my ownresearch experiendbat hasconcentrated mainly orssuesinvolved in cooperative
interaction among sophisticated agents.

In the remainder of the article, | provideparsonal view of some dhe underlying principles
governing the design of suchultiagentsystemsand the major directions and challenges of the
field. Thefollowing three sections séfte contextfor thesediscussionsThe first sectiondetails
the major application aredsr multiagentsystems andhe potential benefits o$tructuring an
application as a multiagesystem. Inthe second section, model ofsubproblemnteraction is
presented as the basis for cooperative interaction among agents. As parsettibis, anumber

of examples of different types of subproblem interaction firmplementedsystemsare analyzed.
These examples are intended to motivate the meedoordination to effectively manage the
cooperation necessary to solirgeracting subproblems. Finallythe needfor sophisticated
guantitative-based coordination strategiesupporteffective cooperation among complex agents
operating in open environments is discussed.

' A more comprehensivand historical view of thefield can be obtainedrom the following special issues of
journals [56, 61, 62], proceedings of the main conference of the field [63, 64;oll8¢tedsets of articles [57, 58,
65], recentbooks [44, 60],and anew journalAutonomous Agentand Multiagent Systems Kluwer Academic
Publishers.



2. Application of Multiagent Systems

Multiagentsystems ovethe lastfew yearshave come to be perceived as crucial technology not
only for effectively exploiting the increasing availability diverse, heterogeneousnd distributed

on-line informationsources,but also as a framework for building large, complex, and robust
distributed information processirgystems whictexploit the efficiencies of organizeaehavior.
Multiagentsystems also provide a powerfubdel for computing in thetwenty-first century, in

which networks of interacting, real-time, intelligent agents seamlessly integrat@itkef people

and machines, and dynamically adapt their problem solving to effectively deal with changing usage
patterns, resource configurations anailablesources ofexpertise and informatiorApplication
domains in whiclmultiagentsystem technology is appropridigically have a naturallgpatial,
functional or temporal decomposition of knowledge and expertise. By structuring such applications
as a multiagent system rather than as a single agent, the system will Hallevifrey advantages:
speed-up due to concurrent processilegs communicationbandwidth requirements because
processing isocated nearer theource of information; moreeliability because of the lack of a
single point of failure; improved responsiveness due to processing, sensing and effecting being co-
located; and finally, easier system development due to modularity cominghieodecomposition

into semi-autonomous agents.

Examples of application domains that have used a multiagent approach include:

» Distributed situationassessmenivhich emphasizefiow (diagnostic) agents with different
spheres of awareness and control (network segments) should shac#ienterpretations to
arrive at consistent and comprehensive explanationsemmbnsege.g., network diagnosis
[50], information gathering on the Internet [11, 39], distributed sensor networks [3, 36]);

» Distributed resourceschedulingand planning which emphasizef©ow (scheduling)agents
(associated witteachwork cell) should coordinate their schedules to avoid and resolve
conflicts over resources, and to maximize system output (e.g., factory scheduling (88|, 41,
network management [1], and intelligent environments [74, 75]);

» Distributed expersystemswvhich emphasiz@éow agents share information andgotiate over
collective solutions (designsyiven their different expertise and solutiamiteria (e.g.,
concurrent engineering [32], network service restoral [6, 30]).

The next generation of applications will integrate characteristics of each of these demeatins.
The need for a multiagent approach can aoefrom applications in which agents represent the
interests of different organizational entiti€s.g., electronic commercd40] and enterprise
integration [2]). Other emerging uses of multiagent syst@msn layeredystemsarchitectures in
which agents at different layers need to coorditiager decisionge.g., toachieve appropriate
configurations of resources andmputationaprocessing [53])and in thedesign of survivable
systems in which agentyynamically reorganize teespond to changes in resoueilability,
software and hardware malfunction, amdrusions. In generalmultiagentsystems provide a
framework in which both the inherent distributiongbcessing and information in application
and the complexities that come from issues of scale can be handled in a natural way.

An example otthis next-generation application ise WARRENSsystem based othe RETSINA
architecture[8, 9]. This multiagentsystem, whichcan be considered multi-user, distributed
information gatheringsystem, (sed-ig. 1) assistwith the management of financipbrtfolios.

Many of the features of the portfolio management domain are likely to become more common in the
future: (1) an enormousamount of available information that ishanging, unorganized,



overlapping and possibly contradictdig.g., marketdata,financial reportdata,technicalmodels,
analysts' reportsand breakinghews), (2) awide variety of analyses,each implemented as a
separate agent by differedesignersthat canand should be brought teear on thetask, (3)
analyseghat candiffer widely in their resourceequirementsquality of results,and speed, (4)
many sources ofuncertainty and dynamic change in teevironment, (5)time pressureshat
present agents witteal-time deadlinefor certaintasks,and (6) resource and cost constraints —
since notall dataand processing iavailablefor free. Efficient performance othis information
processing task requires dynamically locating appropriate expertise and inforseatioas high-
level planning of how to decompose the overathsk based on both useabjectives and
resource/agent availability, protocdts agents tacome toconsensus whetiney have conflicting
viewpoints, careful scheduling of local activities and their interaction adtivities of other agents
SO0 as to achieve coherent inter-agbahavior, andexecution monitoring/adaptation of agent
activities to guarantee that the ovetaltk is accomplished in a cost-effective manner given the
evolving state of network problem-solving and resources.
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Figure 1. The WARREN System as Represented in RETSINA

As exemplified by the requirements laid out abmea WARREN-type application, it is the need
to be able to adapt intra-agent and inter-agent probtdwing tothe dynamics of the environment
in both short- andong-termways that will differentiate theséypes of agent-based systems from
more conventional distributeslystemsarchitectures where adaptabilitgspecially at the domain
problem-solving level, is not a primary motivation.

3. The Nature of Multiagent Interaction

One of thekey problems in cooperativaultiagentsystems is how taet agents to cooperate
effectively. The need to interact in such systems occurs because agents solve subfirabbrms
interdependentgither through contentionfor resources or through relationshipsnong the
subproblems.These relationships arise frortwo basic situationsrelated to the natural
decomposition of domain problem solving irdabproblems.The first situation is where the
subproblemsre the same averlapping, but different agentsive either alternativenethods or
data that can based togenerate aolution. Forexample in a distributed situaticassessment
application, overlapping subproblems oceuhen different agents are interpretingata from
different sensorqindependent informatiosources)that haveoverlappingsensor regiongcover
similar information) [3]. Another form of interdependencecurs when two subproblerage part
of a larger problem in which a solution ttee larger problenmmequiresthat certainconstraints exist
among thesolutions to itssubproblems. For example, indsstributed expert systerapplication
involving thedesign of arartifact where each agent isesponsible foithe design of a different
component (subproblem), there are constraints among these subproblems that must be adhered to if



the individual componerdesignswill mesh together into aacceptable overatlesign[32]. We
include in thislatter case the simpkdtuation wherdhe results of one subprobleare needed to
solve anotherAdditional interdependencies amosgbproblemsnot inherent in the problem
domain, arise when it is not possible to decompose the problem into a set of subproblettmat such
there is a perfect fit between the computational requiremiamtseffectively solving each
subproblem andhe location ofinformation, expertise, processingnd communicatiomesources
in the agent network [33, 34]. Thiack of a perfect fit often leads to a situativherethere may
be insufficientlocal information orresources for amagent to completely or accuratedplve its
assigned subproblems through itsvn processing. Further, resourocentention issues in
multiagent systems do not entail simply reasoning about exclusive access to aeswrezk, but
may involve more subtle issues such as what percentage of a resoapaeity an agent will use
(e.g., acommunicatiorchannel),the creation ofsharedagentplans sothat theuse of ascarce
resource can satisfy multiple objectives [52], or the reconfiguratisasofurces tdetter meet the
competing needs of agents [53].

Depending upon the character of subproblem interdependencies, the interactions among agents in a
multiagent system can be complex, often requiring amulti-step dialogue similar to an
asynchronouso-routine type of interactiorzor example, ithay be impossibléor one agent to
completelysolve subproblem;pvithout another agerftrst partially solving subproblem ;p or

solving p may simply make it easier to solve @ knowing the solution to may obviate the need

to solve p These types dhteractions are exempllfled in a recently fielded commercial multiagent
system for service restoral of atectricity transportation grid involving agents ffault detection,

fault isolation and diagnosis, and network reconfiguration [6]. Considextmaple oftwo expert

agents in this system performing different forms of fdidignosis, i.e.overlapping subproblems

whose solutionsieed to beconsistentEach of thesegents,operating concurrentlyisesvery

different algorithms to do thettiagnosis andhe information theyse is notidentical. Both can
makemistakes but generally will nohake the sammistake.They interact by exchangingartial

results to focustheir local diagnostic searchprocesses towards promisingreas of the
transportation grid where the fault liketyiginated, and away from unpromisioges.They also
exchange final results to increase the confidence in the eventual diagnosis that they agree to; if they
disagree then a more complicated interaction is warrgn&dnegotiation) in order to understand

the basis ofthe disagreement and w&ubsequentlyreach a differendiagnosis based on this
resolution of conflicting viewpoints. Thus, by working togethiieey not only produce a solution

of higher quality, but will often accomplish the task quicker as well.

These types ofgent interactions can lead to the nmdcoordination decisions by agents about
which tentative diagnosis hypotheses toommunicateand how reliable and precise these
hypothesesieed to be before they agent to anotheagent. Choices alsweed to be made about

the areas on which to focus diagnosis, based on the information needs of other agents. Though not
emphasized in this example, thean be additionaheeds forcoordination in ordeto: recognize
whenother agents ar@orking oninteractingsubproblems; identify which other ageman and

should solve a specific subproblem; decide if, how and when to solve a specific subproblem based
on local and non-local criterion.

A more detailed example of thiesuesinvolved in thesharing of partial results involves a
distributed interpretation application [3]. In this applicatieach agent isensing andhterpreting
datafrom overlapping acoustisensor regions in order taack vehicle movements in treensed
environment (see Figure 2). This example shows tleat@pleteand accurate track map could not
be createdrom agent A andB’s independently developesdolutions. Major adjustments of
individual interpretations are required. Agent A caethe informationfrom agent B to recognize
that its interpretation of the data associatéth track G, was faulty. This datanstead of being a
representation of aactual vehiclemoving in the environment @hose locations, was ireality
environmental reflections of a vehicle moving in a different region, i.e., a ghostAgehkt A can
also useagentB’s portion of track T, as predictiveinformation, allowingagent A to make



assumptions about its sensor having missed signsitaext 4 and Shat could complete track,T
Further,agent A can produce atceptable interpretaticior the remainder of its originajhost
track (times 4 through 7 data), basedcommunication with agent B to confirm most of thesta
(times 5 through 7 in the overlapping region) as ghost data and can provide a spdoceh@ G
ghost track AgentB’s uncertainty over its interpretations (ttsme 5through 10 portion ofrack
T,) because of thémited number of points over which it iable to track the vehicle can be
decreased due to agent Ability to find a continuation othe track in itsarea. Thiscooperative
adjustmenprocess requires back-and-fodbmmunication between the agents rather than simply
having one agent’s “better” solutions override titleers. As inthe first example the coordination
decisions about when and what hypotheses (and what ledetail) totransmit, what hypotheses
to work on,andhow much effort to put into the development of spedfigpothesesan have
dramatic impact on how fast this resolution process converges.
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Figure 2: Example of a Two-agent Distributed Aircraft Monitoring Scenario

A final example of the needor cooperative interaction irorder to solve interdependent
subproblems (in this caseibproblemselatedthroughthe use ofsimilar resources) is distributed
airport scheduling [66]. In this application, each arriving plane needs to be assigned nagately a
at which to land but also baggage handlers/trucks to unload anddggdge, andquipment and
personnel for servicinthe plang(fueling, cleaninggtc.). If we assumehat differentconcourses
of an airport are scheduled by different scheduling agents with their own complemesbufces,
the needor cooperation (the lending aksources) occurs whehere are insufficientesources
assigned to a particular concourse given the set of flights that need to be handled during a specified
period. This lack of sufficient resources will théelay the scheduled landing and departunes

for planes. In thisoverload situation, other concourse agents cqatbntially lendresources
(assumingcooperative agents) if they have approprigsourcesavailableduring the period of
overload. An example of one tife coordinatiorproblems in this domain isow to decidewhich

*The left-hand figure is the acoustic input to the two agents and the right-hand figure is the final interpretation of the
agents. Agent A’'s sensor region is the upgrest  middleregions of the figur@andagent B’ssensor region is the

middle andlower regions. The agentsdependentlysense events occurring the middle region. Thedatapoint
symbols represent the positions of groups of acoustic sigetdsted bythe sensors. The numbeassociatedvith

the datapoints give the times that these signakye generated arttie subscriptsndicatethe agent receiving the

data. Data points include the position of the signal source and the frequency class of the sighaldimeofeach

box indicates the loudness of the sounds beansedthe darkerthe shadingthe louder)and is anindication of the
likelihood of the sensordatabeing correct. Box 4 of track j which only appears inthe final solution, is not
directly supported by acoustic data (only high-level predictions) and thus is not shadexdv@hicle tracland G is

a ghost track caused by the environmental reflections of sounds from T



agent(s) should be asked to lend resources and how muagdnitshould disrupthe scheduling

of its own concourse’sctivities inorder toaccommodate theeeds of another. Amteresting
aspect of this problem ihatwhenthere is no coordination among agents it is often the tbase
when anoverloaded agerasks forhelp it will be costly and disruptive to the lending agents’
concourse schedule to revise it to make the needed resources avdoa@eer, ifthe scheduling
agents can communicate about their anticipated resource needs for particular time periods before the
detailed allocation ofesources haseenmade,then thismeta-level information can be extremely
helpful in allowing underloaded agentsanticipate specifitesource shortages. Thamticipation

allows them tonot prematurelycommitthose resourcethat may be needed by othagentsuntil

they understandhe exact nature of theequests by overloadeafjents. In thisway, they will
maintain as muclscheduling flexibilitywith respect tathe overloadedesource as is consistent

with their own needs; thus, they will be able to respond to a borrowing request with less disruption
to theirown concourse schedule. Byplicitly coordinating throughthe exchange of meta-level
information,the agents'solutions totheir own local scheduling problems will be mogtimal

from a global perspective.

In summary, the needfor interaction among agents to efficientlgolve their interacting
subproblems may require agents to closely coordinate their actddtiggy problemsolving. This
coordination is based on reasoning altbet nature osubproblem interdependenciéise agents’
current state of problem solving, and the status of network resolmappropriate otack of any
coordination can contribute tgroups ofagents generatingplutionsthat aresub-optimal, wasting
both computational and communication resources due to generating and commumitaiEged,
redundant or poorlyimed results,and in themost serious casdailing to generate an overall
solution because of the outright failure to generate key results.

4. Quantitative/Statistical Perspective on Coordination

Coordination strategies enalgeoups ofagents to solve probleneffectively through decisions
about which agentshould performspecific tasks andwhen, and to whomthey should
communicate the results. The potential complexity involved in making these deceiohe seen
in the simple situatiomvhere oneagentneedsthe results of a subproblerthat another agent is
solving. If it can be arrangethat theproducing agent will delivethe desired result in amely
fashion sothat theconsuming agendloes nothave to idle waitingor the results,then system
performance is improved. Qhe surface this coordination decisionsignple. However, suppose
that the producing agent has otkesks to do withtheir own deadlines in addition to producing a
result for the otheragent. To furthercomplicatethis decisionprocess,the agent may have
alternative methodfor doing those taskthat tradeoff the quality of theask solution againghe
time to complete th&ask. Similarly,the consuming agennay also havelexibility about when it
does its tasks because there are dtmks it is also workingn, and it mayalso beable to make
trade-offs in how iaccomplishes itsasks.Additional complexity is introducedhen neither the
time that amethod takeshor the quality of itsresults are known precisely but rather can be
described by a statisticallistribution. Meta-level reasoningmay also be involved in the
coordination decision process when there are alternative coordination stréttagess beised in
the currensituation. In this caselternative coordination strategiegist be analyzed in terms of
their computational and communication resousgplirementsthe end-to-end delay in reaching a
decision,the optimality of the coordinatioachieved,the potentialgainsachieved as a result of
more effective coordination, and the current need for resources byaotivéiies and theirelative
priority.

This coordination decisioprocesscan be furtheccomplicatedwhen the information an agent is
using tomakeits decisions is incomplete, out-of-date or inconsistent g of otheragents.
Obtaining all the appropriate non-local information is often not practical due to:



* Limited communicatiorbandwidth anccomputational capabilitiewhich make it infeasible to
package, transfer, and assimilate all pertinent information in a timely manner;

* The heterogeneity of agents which makes it difficult to share informatiortharbtential for
competitive agents who, out of self-interest, are not willing to share certain information;

» The dynamic character of the environment due to changioglems, agentsand resources
and the inability to predict with certainty the outcome of agents' actions.

Thus, making effective coordinatiomlecisionsthat appropriately dealith the uncertainty of
information combined together with the complex set of factors that need to be taken into account is
potentially a complex process.

It is my strong feeling that in order to design efficient and effective coordination strategiesl|

work in a wide variety of environments they magplicitly accountfor the benefits and theosts

of coordination in the current situation in a quantifiable way [69]. The current situation includes the
goals (and their importance or value) that the agent is currently pursuing and ligelgte in the
nearterm, the performance characteristics of the metradslable to the ageribr achieving its
goals, the requirements these goals/methods impose on agjesits,the requirements that the
goals/methods of other agents impose ondbisnt,the state oinetwork resourcesand domain
constraints on agent activities. Another way of saying this is that making coordination decisions is
a complex, multi-level optimization problem basedhanwv coordination actions (usually involving

a statistical perspective) contribute to high-level system tasks meeting their perfooijactiees,

and the relative importance of each of these tasks.

This emphasis on quantitative/statistical perspective on coordinasbould notdistract from the
importance oimechanisms, protocols afarmal frameworks [2, 6, 7, 16, 20, 21, 29, 43, 71]
that: establish whiclasksare important to accomplish amchich agents/resourcese capable of
accomplishing them; determiriw to decompose taskisito subtasksand provide sequencing
constraints among these tas#ieridewhat information to transmitponcompletion of a task and
to whom; and define how to react to unexpected events in terms of what need®nonheicated
to whom and what further actions need to be taken. These intaciigties are imesponse to the
various objectives (desires) thfe agent, such athe localprocessing goals it is pursuing and the
various requests by other agents for its assistance.

In essence, what is being suggestdtias theremust be aguantitatively oriented mechanigim7]

at the lowest control layer to arbitrate among activities generated by higher, non-quaidayatise
This is especially true in situations wheiere are complegubproblem interdependencies among
agents, where there are time pressures and resource bounds which pikeghale ofthe system
being solved in awptimal manner, wheré¢here are many choices available abdoav to solve a
goal, and wherethe goals being solved anthe agents/resourceavailable tosolve them are
changing over time.

5. Key Principles Used in Building Multiagent Systems

The ubiquitousness afincertain and incomplete information and the computational complexity of
making optimal coordinatiordecisions leads to a number of principkbsit are useful for
structuring multiagent systems.



The first principle relates to the need to view the performance of a multggdeim in terms of a
complex set otriteria inwhich there is rarely avay tooptimize all criteriasimultaneously. This
principle, usually called “satisficing” behavior [35, 47, 48], was developed as a wexplaining
how large organizationfunction. It underlies most dhe other principles to béiscussed in this
section. For most real-worlehultiagentapplications,the design goal of producing &loptimal”
answer with minimal use of communication and processing resources, while at the same time being
able to respond gracefully to a dynamically changingironment, isunrealistic; this is due to the
communication and computationabsts and delaythat would benecessitated in acquiring the
information necessary tonake these “optimal’decisions. Instead;satisficing” criteria for
successful performance are adopted basegsimy a“‘reasonable” amount akesources toeduce
uncertainty “sufficiently” so that it is “likely” that an “acceptablahswerwill be achieved[33].
This emphasis on satisficing behavior also subtly mdiiesfocus fromthe performance of
individual agents to the properties and character of the aggregate behavior of agents.

An associated corollaris, given the rich set otriteria that can beaised todefine satisficing
behavior and the tremendous diversity of environmentdasidc,there is no single approach to
organizing agent behavidinat will be rightfor all situations. It haveenshownthat even in a
relatively simple environment where there is a lot of variance in the performance characteristics of
tasks, asingle coordination strategy is ngptimal over the range otask characteristics. In this
situation,dynamicallychoosing a strategy at riime based orthe known characteristics of the

tasks leads to better performance than using any one fixed stfafggit is my conjecture that in

the future agents will be required to perfosome form ofmeta-levelreasoning so as thalance

the level of optimality of their contralecisions withthe level ofresources required tmake the
decisions, based on the characteristics of their tasks and the environment [9, 12, 15, 34, 76].

The secondprinciple relates to the neddr flexibility in agent problensolving. Agent flexibility
with respect tdhe availability, completeness and accuracy of its information andviibility
and capabilities of external resources is often a key aspect of a multiagentdssigm Itenables
agents toreact dynamically to the emerging state of ¢meup problem-solving effort. lother
words, hard-coded assumptions abdl character anavailability of informationand resources
are typicallyavoided. In generahgent problem-solving architectursgt deal explicitlywith the
uncertainty of information and the incompleteness of fbeal databasesare more adaptable for
use in a multiagent context [25, 33, 34]. This flexibiign be equatedith agentautonomy. One
way this can be accomplished is through a sophisticated domain problem-sobhitgcture that
canrespondopportunistically to emergingonditions.Anotherway of achieving flexibility is for
agents to have alternative methods available for solving subproblems that have varying information
and resource requirements. The agent then pieces togethetiater@set of methodshat will be
appropriatefor the given situation. Theseare endpoints on a spectrunand, obviously,
combinations of these approaches @wssible.Additionally, flexibility can comefrom increasing
the scope ofactivities that an agent igvolved in sothat the agent magursuemultiple goals.
Thus, the agent can chandecus wheninformation or resourceare not currentlyavailable to
pursue a specific goal. This flexibility can come at the cost of increased reasoninghabmattre
of the problem-solving system itself, resulting in lessmputationaltime directedtoward actual
problem solving and mordirectedtoward coordinatingeffectively with otheragents. ltcan be
expected that, for agents in sometltd more advanced multiagent applications thabaginning
to emerge, this coordination reasoning could be quite complex and time consuming.

Sophisticated control of local domain problem solving is also necessary in many castectioe

agent interaction. Agents need to explicitly reason about the intermediate states of their computation
(in terms of what actions they expecttéie in the neaterm, whatinformation from other agents

would bevaluablefor making furtherprogress irtheir local problensolving, etc.). Anaspect of

A key issue is how to makihis meta-level reasoning sufficiently powerful, yedt a significant computational
cost in its own right.



this reasoningan involve an explicit representation of the uncertaamgt incompleteness of its
current problem-solvingtate. By having this representation, agyent can make more informed
decisions about the value of obtaining specific information or doing fustbe locally to resolve

its uncertainty [3]. Agents also need to lable toacquire, represent and reason abloeliefs
concerning the state of othegentsand to use assumptioabout the rationality of other agents’
problem solving intheir reasoning. It haveenshown that even the exchange of a coarse
description of other agents’ stat@seta-level information) can beised to make effective
coordination decisionfl2]. However, ifagents have vergood models othe behavior of other
agents, it may not be necessary to coordinate thrtheglbxchange of meta-level informatibut,
rather, just the observation by cagent of the external actions of another agent may be sufficient
[26].

The third principle relates to the need to exploit the efficiencies of organized behavior in
coordinating large agent societi€xganizing the agents in termsmales and responsibilities can
significantly decrease the computational burden on coordinating their activities since there are fewer
options and constraintthat need to be evaluated order to make appropriate coordination
decisions. Howeverthese assignments (long-tecommitmentskhould not be satrict that an
agent does not have sufficient latitude to respond to unexpected circumstancdguldthey be
necessarily fixed for the duration of problemlving. Organizational contrashould be thought of

as modulating (circumscribing) local control rather than dictating [8]. Implicit indiksussion are

the concepts oEommitmentand intention.The ability to appropriatelypoundthe intentions of
agents,and tocreateand sufficiently guarantee the commitments of agents to acconuglitdin

tasks is athe heart of efficient organizdsehavior.Theseconceptsgither implicitly or explicitly
representedare importantkeys to not only understanding but algoplementing complex
organized agent behavior in both small and large agent societies [5, 15, 19, 21, 29, 31].

6. Major Challenges and Research Directions

The field faces manghallenges, sompragmatic anathers deeply theoretical. pfragmatic one
that seems very important anqfessing ighe development of an appropriate high-leseftware
infrastructure/ framework tesupport the building of multiagentsystems. Atthis point, the
programming overhead to create a non-trivial multiagent system is stilah@hthusthe number
of fielded commercial applications &mall. The development osuch a framework igimely
because of the emergingpftware infrastructure and standards being develdpedmobile
computing and interoperability amomgograms residing at distant sitgs.g., Java) whichwill
simplify the construction o&gents. Howeveltthis work will only partially solve the problems of
building multiagensystemssince itdoes notdealwith high-level coordinationssues.There are
two possible approaches to building these hidgweal capabilities.Onetakes a language-oriented
view, providing a set of operations and associated protémolecating and communicating with
agents such asQML [16]. The decision abouivhen to usehe protocol, whatinformation to
transmit, etc., ideft to the agenprogrammer. Aralternative approach is a high-lefedmework
where, once an agent has described its needsagadbilitiesfor interacting with other agents in a
domain-independenway, the framework will automatically make all theoordination decisions
[10]. Again,these are extremgoints on a continuum of possible approacl@sto creating a
software framework to easte burden ofimplementing multiagent coordinatiostrategies.
Another continuum in terms of choicés coordination frameworks isentered on th&llowing
guestion: When is an end-to-end planning viewpoint (in terntewf aspecific choice explicitly

“Resolution of all uncertainty may not be necessary for meetingritiegia of “satisficing” performance. In general,
problem-solving architectures that deal explicitly with the uncertainty of information and the incompleteness of their
local data bases are more adaptable for use in a multiagent context [25, 33, 34].
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contributes to achieving the global objective) warrarftadmaking an effective coordination
decision, versus a reactive and local view of the effects?

Along these lines, one of the important developmentharfield over the lastfew years ha®een

the development of high-level coordinatilameworks inspired by logic-based approaches to
explicitly modeling cooperative interaction among small huteams.The computational viability

of these agent coordination frameworks is often accomplished by limiting their model semantics so
that they can be implemented via proceduessoning.Examples include the joint intentions
framework [7, 43, 70], the SharedPlan model [20, 21], joint responsibility [6, 67, 68], and hybrid
models such af/1]. There is alsaecentwork, inthis casemotivated by modeling of complex
software processes, on agent coordination language tfaso shows much promiseor being

able to specify and implement complex agent interaction patterns [72].

Multiagent research has longeen divided intotwo camps,one concerned with cooperative
(benevolent) agents and the other concemidd self-interested agenf&4]. Therehasbeen very

little cross-fertilization of ideas between thesemps.Research on self-interested agents is often
based on classicgametheory with its assumptions @ommon knowledge among agents and
complete rationality of ageméasoning. This is igontrast withthe research on cooperative agents
which makes neuch assumptions; rather, it hgsnerally been based on heuristic approaches
having their roots in knowledge-based Al seamhnning and scheduling mechanisiAswever,
researchers studying self-interested agents teentlybegun to realize, ahe class of problems
being solved byheir agents have become ma@mplex,that theseassumptionsare notalways
reasonablg23, 45]. It isinteresting to speculate whether there is more in common among
cooperative and self-interested coordination mechanisms than currently believed — especially as the
environments within which these mechanisoperate become more complex in terms of the
computational difficulty of taking all appropriate factors into consideration and the incteasiedf
information uncertainty and incompleten¢s8]. An obviouschallenge ishow to constructagent
societies consisting of mixture of self-interested and cooperative agéimé$ need to coordinate
their activities. For example, consider a varianthaf example in thentroduction. Suppose ithis

case factory-1 is outsourcing both to factorgefvned by adifferent organization) and factory-3
(which is also owned by the parent company of factory-1). In this scetta@ischeduling agent of
factory-1 will interact in a self-interestedvay with the scheduling agent of factory-2 while
concurrently interacting in a cooperative way with the scheduling agent of factory-3.

There has alsobeen a long tradition o#vork dating back to the inception of the field on
coordination based omogical reasoning abouthe beliefs, desires,intentions (BDI) and
commitments of agen{s, 20, 43, 49],and more recenwork onthe use ofmarket mechanisms
for solving multiagentresourceallocation problems[54]. Similarly, there has beenlittle cross-
fertilization among these areas and the self-interested and coopesatips. The synthesis of
ideas fromeach of these differerapproaches to coordinatidmolds great potentiafor future
developments in the field.

Another issue is how to scale up to agent societies of hundreds and thousands of lagrenteas
been interestingvork on cooperative behavior of a large number of ag¢afs 27], and on
organization self-desigfi3, 18]. Howeverthis work hasbeen done on simpleeactive agents
operating in artificial environments. Whether or not the results ofsbi& can be applied to more
complex agent societies operating in real-world environments is an open question. The challenge of
how to desigHarge-scale agent societies dmulv to evolve them as the environmettianges is
rapidly becoming a major issue in the field. Working on this problem willsdisdlight on many

of the basic issues in multiagent systems research. For example, how complex agesit do0@ in
order to interact effectively with other agents in a societal context? Is it best to think alagenan
organization as an emergent propdrgsed on simplagent interactions, or do agents need to
explicitly reason about and analyze theiles inthe current organization to effectively ad#émm

to the changing state of the environment and the demands placed on the agent organization?
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An important trend in the field is the development of analysis techniques to predict the performance
of multiagent systems [4, 9, 46].These performance characterizations alstate to the
applicability of techniques. For example, it hégenshown that certain self-interested agent
interactionprotocolscan be guaranteed to produce truthful communications in problem domains
with particular properties, while other domains can be guaranteed to produce lying [4dilithe

to bound the performance characteristics of systemrsicgal to the acceptance thiis field by the

larger computer science community. Both the work on large-scale agent societies aaaktlua
performance analysiare beginning tcshift the field from focusingmainly on thesyntax and
semantics of agent interaction to the more encompasgidy ofthe properties and characteristics

of the aggregate behavior of agents.

Multiagent learning has also emerged as a major focstudf inthe field overthe lastfew years

[55, 59]. This is not surprising becausetlod increasingly complex nature of multiagepstems,

the fact that system performance can be very sensitive to the characteristics of the environment, and
the dynamic and “open” operating environments of thegstems. Thus,the ability to
automatically tailor a system to its possibly evolving environment is ctiacidtis effectiveness. In

the future, a learning component will be an integral part ofléssgn of amultiagent architecture.

To my knowledge, most ahe currentwork in multiagent learning exploits existing learning
algorithms thatwere designed to operate in a single-agemitext; it will be interesting to see
whether new learning techniques will evolve out of the multiagent character of the learning.

The issues andhallengediscussedere so far are on treetive agenda of thigeld. More long-
termissues involve, for exampleemantic interoperability amoraggents. Howcan agents with
different internal representations, created at different times and operating in different environments,
communicateand coordinate effectively?or example,can agentswith different coordination
protocols construct a new protodbht is appropriatéor their intended interactions? Some of the
surface issuesssociated with this probleare beginning to be studied loth the multiagent
systemscommunity[28, 42] and in the federated and multi-databesenmunity. However, the
deeper issues still await serious wftk]. Another long-termssue isthe integration of thevork

in the computer-supported cooperative work community, the intelligeninisgfaces community,
and the multiagentommunity. If amodel of computing irwhich networks ofcomputational
agents and people seamlessiteract is to become a reality in theenty-first centurythen it
seems obvious that these disparate fields will have to be more tightly integrated.

In summary.even thoughhe use ofmultiagentsystemsechnology is still in its infancy and the
number of fieldeccommercial applications to date amall, there is tremendous potential and an
exciting research agendar the field. The fieldhasalready developed a rich set of concepts and
mechanisms, bottheoreticaland practical, which will provide a solid bake future work. |1
expect the impact of multiagesystems orcomputer science to increase significardlyring the
next decade.
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