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1.  Introduction

Multiagent systems are computational systems in which two or more agents interact or work
together to perform some set of tasks or to satisfy some set of goals. These systems may be
comprised of homogeneous or heterogeneous agents. An agent in the system is considered a locus
of problem-solving activity, it operates asynchronously with respect to other agents, and it has a
certain level of autonomy. Agent autonomy relates to an agent’s ability to make its own decisions
about what activities to do, when to do them, what type of information should be communicated
and to whom, and how to assimilate the information received. Autonomy can be limited by policies
built into the agent by its designer, or as a result of an agent organization dynamically coming to an
agreement that specific agents should take on certain roles or adopt certain policies for some
specified period. Closely associated with agent autonomy is agent adaptability — the more
autonomy an agent possesses the more adaptable it is to the emerging problem solving and network
context. The degree of autonomy and the range of adaptability are usually associated with the level
of intelligence/sophistication that an agent possesses.

Agents may also be characterized by whether they are benevolent (cooperative) or self-interested.
Cooperative agents work toward achieving some common goals, whereas self-interested agents
have distinct goals but may still interact to advance their own goals. In the latter case, self-
interested agents may, by exchanging favors or currency, coordinate with other agents in order to
get those agents to perform activities that assist in the achievement of their own objectives. For
example, in a manufacturing setting where agents are responsible for scheduling different aspects
of the manufacturing process, agents in the same manufacturing company would behave in a
cooperative way while agents representing two separate companies where one company was
outsourcing part of its manufacturing process to the other company would behave in a self-
interested way.

Scientific research and practice in multiagent systems, which in the past has been called
Distributed Artificial Intelligence (DAI), focuses on the development of computational principles
and models for constructing, describing, implementing and analyzing the patterns of interaction
and coordination in both large and small agent societies. Multiagent systems research brings
together a diverse set of research disciplines and thus there is a wide range of ideas currently
being explored. It is impossible to adequately address the full spectrum of issues and research
perspectives of the field in such a short article.1 Therefore, this article will of necessity be biased
by my own research experience that has concentrated mainly on issues involved in cooperative
interaction among sophisticated agents.

In the remainder of the article, I provide a personal view of some of the underlying principles
governing the design of such multiagent systems, and the major directions and challenges of the
field. The following three sections set the context for these discussions. The first section details
the major application areas for multiagent systems and the potential benefits of structuring an
application as a multiagent system.  In the second section, a model of subproblem interaction is
presented as the basis for cooperative interaction among agents. As part of this section, a number
of examples of different types of subproblem interaction from implemented systems are analyzed.
These examples are intended to motivate the need for coordination to effectively manage the
cooperation necessary to solve interacting subproblems. Finally, the need for sophisticated
quantitative-based coordination strategies to support effective cooperation among complex agents
operating in open environments is discussed.

                                                
1 A more comprehensive and historical view of the field can be obtained from the following special issues of
journals [56, 61, 62], proceedings of the main conference of the field [63, 64, 73], collected sets of articles [57, 58,
65], recent books [44, 60], and a new journal Autonomous Agents and Multiagent Systems, Kluwer Academic
Publishers.



3

2. Application of Multiagent Systems

Multiagent systems over the last few years have come to be perceived as crucial technology not
only for effectively exploiting the increasing availability of diverse, heterogeneous, and distributed
on-line information sources, but also as a framework for building large, complex, and robust
distributed information processing systems which exploit the efficiencies of organized behavior.
Multiagent systems also provide a powerful model for computing in the twenty-first century, in
which networks of interacting, real-time, intelligent agents seamlessly integrate the work of people
and machines, and dynamically adapt their problem solving to effectively deal with changing usage
patterns, resource configurations and available sources of expertise and information. Application
domains in which multiagent system technology is appropriate typically have a naturally spatial,
functional or temporal decomposition of knowledge and expertise. By structuring such applications
as a multiagent system rather than as a single agent, the system will have the following advantages:
speed-up due to concurrent processing; less communication bandwidth requirements because
processing is located nearer the source of information; more reliability because of the lack of a
single point of failure; improved responsiveness due to processing, sensing and effecting being co-
located; and finally, easier system development due to modularity coming from the decomposition
into semi-autonomous agents.

Examples of application domains that have used a multiagent approach include:

•  Distributed situation assessment which emphasizes how (diagnostic) agents with different
spheres of awareness and control (network segments) should share their local interpretations to
arrive at consistent and comprehensive explanations and responses (e.g., network diagnosis
[50], information gathering on the Internet [11, 39], distributed sensor networks [3, 36]);

•  Distributed resource scheduling and planning which emphasizes how (scheduling) agents
(associated with each work cell) should coordinate their schedules to avoid and resolve
conflicts over resources, and to maximize system output (e.g., factory scheduling [38, 41, 51],
network management [1], and intelligent environments [74, 75]);

•  Distributed expert systems which emphasize how agents share information and negotiate over
collective solutions (designs) given their different expertise and solution criteria (e.g.,
concurrent engineering [32], network service restoral [6, 30]).

The next generation of applications will integrate characteristics of each of these generic domains.
The need for a multiagent approach can also come from applications in which agents represent the
interests of different organizational entities (e.g., electronic commerce [40] and enterprise
integration [2]). Other emerging uses of multiagent systems are in layered systems architectures in
which agents at different layers need to coordinate their decisions (e.g., to achieve appropriate
configurations of resources and computational processing [53]), and in the design of survivable
systems in which agents dynamically reorganize to respond to changes in resource availability,
software and hardware malfunction, and intrusions. In general, multiagent systems provide a
framework in which both the inherent distribution of processing and information in an application
and the complexities that come from issues of scale can be handled in a natural way.

An example of this next-generation application is the WARREN system based on the RETSINA
architecture [8, 9]. This multiagent system, which can be considered a multi-user, distributed
information gathering system, (see Fig. 1) assists with the management of financial portfolios.
Many of the features of the portfolio management domain are likely to become more common in the
future: (1) an enormous amount of available information that is changing, unorganized,
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overlapping and possibly contradictory (e.g., market data, financial report data, technical models,
analysts' reports, and breaking news), (2) a wide variety of analyses, each implemented as a
separate agent by different designers, that can and should be brought to bear on the task, (3)
analyses that can differ widely in their resource requirements, quality of results, and speed, (4)
many sources of uncertainty and dynamic change in the environment, (5) time pressures that
present agents with real-time deadlines for certain tasks, and (6) resource and cost constraints —
since not all data and processing is available for free. Efficient performance of this information
processing task requires dynamically locating appropriate expertise and information sources, high-
level planning of how to decompose the overall task based on both user objectives and
resource/agent availability, protocols for agents to come to consensus when they have conflicting
viewpoints, careful scheduling of local activities and their interaction with activities of other agents
so as to achieve coherent inter-agent behavior, and execution monitoring/adaptation of agent
activities to guarantee that the overall task is accomplished in a cost-effective manner given the
evolving state of network problem-solving and resources.
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Figure 1: The WARREN System as Represented in RETSINA

As exemplified by the requirements laid out above for a WARREN-type application, it is the need
to be able to adapt intra-agent and inter-agent problem solving to the dynamics of the environment
in both short- and long-term ways that will differentiate these types of agent-based systems from
more conventional distributed systems architectures where adaptability, especially at the domain
problem-solving level, is not a primary motivation.

3.  The Nature of Multiagent Interaction

One of the key problems in cooperative multiagent systems is how to get agents to cooperate
effectively. The need to interact in such systems occurs because agents solve subproblems that are
interdependent, either through contention for resources or through relationships among the
subproblems. These relationships arise from two basic situations related to the natural
decomposition of domain problem solving into subproblems. The first situation is where the
subproblems are the same or overlapping, but different agents have either alternative methods or
data that can be used to generate a solution. For example in a distributed situation assessment
application, overlapping subproblems occur when different agents are interpreting data from
different sensors (independent information sources) that have overlapping sensor regions (cover
similar information) [3]. Another form of interdependence occurs when two subproblems are part
of a larger problem in which a solution to the larger problem requires that certain constraints exist
among the solutions to its subproblems. For example, in a distributed expert system application
involving the design of an artifact where each agent is responsible for the design of a different
component (subproblem), there are constraints among these subproblems that must be adhered to if
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the individual component designs will mesh together into an acceptable overall design [32].  We
include in this latter case the simple situation where the results of one subproblem are needed to
solve another. Additional interdependencies among subproblems, not inherent in the problem
domain, arise when it is not possible to decompose the problem into a set of subproblems such that
there is a perfect fit between the computational requirements for effectively solving each
subproblem and the location of information, expertise, processing, and communication resources
in the agent network [33, 34]. This lack of a perfect fit often leads to a situation where there may
be insufficient local information or resources for an agent to completely or accurately solve its
assigned subproblems through its own processing. Further, resource contention issues in
multiagent systems do not entail simply reasoning about exclusive access to a shared resource, but
may involve more subtle issues such as what percentage of a resource’s capacity an agent will use
(e.g., a communication channel), the creation of shared agent plans so that the use of a scarce
resource can satisfy multiple objectives [52], or the reconfiguration of resources to better meet the
competing needs of agents [53].

Depending upon the character of subproblem interdependencies, the interactions among agents in a
multiagent system can be complex, often requiring a multi-step dialogue similar to an
asynchronous co-routine type of interaction. For example, it may be impossible for one agent to
completely solve subproblem pj without another agent first partially solving subproblem pi, or
solving pi may simply make it easier to solve pj, or knowing the solution to pi may obviate the need
to solve pj. These types of interactions are exemplified in a recently fielded commercial multiagent
system for service restoral of an electricity transportation grid involving agents for fault detection,
fault isolation and diagnosis, and network reconfiguration [6]. Consider the example of two expert
agents in this system performing different forms of fault diagnosis, i.e., overlapping subproblems
whose solutions need to be consistent. Each of these agents, operating concurrently, uses very
different algorithms to do their diagnosis and the information they use is not identical. Both can
make mistakes but generally will not make the same mistake. They interact by exchanging partial
results to focus their local diagnostic search processes towards promising areas of the
transportation grid where the fault likely originated, and away from unpromising ones. They also
exchange final results to increase the confidence in the eventual diagnosis that they agree to; if they
disagree then a more complicated interaction is warranted (i.e., negotiation) in order to understand
the basis of the disagreement and to subsequently reach a different diagnosis based on this
resolution of conflicting viewpoints. Thus, by working together, they not only produce a solution
of higher quality, but will often accomplish the task quicker as well.

These types of agent interactions can lead to the need for coordination decisions by agents about
which tentative diagnosis hypotheses to communicate and how reliable and precise these
hypotheses need to be before they are sent to another agent. Choices also need to be made about
the areas on which to focus diagnosis, based on the information needs of other agents. Though not
emphasized in this example, there can be additional needs for coordination in order to:  recognize
when other agents are working on interacting subproblems; identify which other agents can and
should solve a specific subproblem; decide if, how and when to solve a specific subproblem based
on local and non-local criterion.

A more detailed example of the issues involved in the sharing of partial results involves a
distributed interpretation application [3]. In this application, each agent is sensing and interpreting
data from overlapping acoustic sensor regions in order to track vehicle movements in the sensed
environment (see Figure 2). This example shows that a complete and accurate track map could not
be created from agent A and B’s independently developed solutions.  Major adjustments of
individual interpretations are required. Agent A can use the information from agent B to recognize
that its interpretation of the data associated with track G2 was faulty. This data, instead of being a
representation of an actual vehicle moving in the environment at those locations, was in reality
environmental reflections of a vehicle moving in a different region, i.e., a ghost track. Agent A can
also use agent B’s portion of track T4 as predictive information, allowing agent A to make
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assumptions about its sensor having missed signals at times 4 and 5 that could complete track T4.
Further, agent A can produce an acceptable interpretation for the remainder of its original ghost
track (times 4 through 7 data), based on communication with agent B to confirm most of this data
(times 5 through 7 in the overlapping region) as ghost data and can provide a source (T4) for the G2
ghost track. Agent B’s uncertainty over its interpretations (the time 5 through 10 portion of track
T4) because of the limited number of points over which it is able to track the vehicle can be
decreased due to agent A’s ability to find a continuation of the track in its area. This cooperative
adjustment process requires back-and-forth communication between the agents rather than simply
having one agent’s “better” solutions override the others. As in the first example, the coordination
decisions about when and what hypotheses (and what level of detail) to transmit, what hypotheses
to work on, and how much effort to put into the development of specific hypotheses can have
dramatic impact on how fast this resolution process converges.
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Figure 2: Example of a Two-agent Distributed Aircraft Monitoring Scenario2

A final example of the need for cooperative interaction in order to solve interdependent
subproblems (in this case subproblems related through the use of similar resources) is distributed
airport scheduling [66]. In this application, each arriving plane needs to be assigned not only a gate
at which to land but also baggage handlers/trucks to unload and load baggage, and equipment and
personnel for servicing the plane (fueling, cleaning, etc.). If we assume that different concourses
of an airport are scheduled by different scheduling agents with their own complement of resources,
the need for cooperation (the lending of resources) occurs when there are insufficient resources
assigned to a particular concourse given the set of flights that need to be handled during a specified
period. This lack of sufficient resources will then delay the scheduled landing and departure times
for planes. In this overload situation, other concourse agents could potentially lend resources
(assuming cooperative agents) if they have appropriate resources available during the period of
overload. An example of one of the coordination problems in this domain is how to decide which

                                                
2The left-hand figure is the acoustic input to the two agents and the right-hand figure is the final interpretation of the
agents. Agent A’s sensor region is the upper and  middle regions of the figure and agent B’s sensor region is the
middle and lower regions. The agents independently sense events occurring in the middle region. The data point
symbols represent the positions of groups of acoustic signals detected by the sensors. The numbers associated with
the data points give the times that these signals were generated and the subscripts indicate the agent receiving the
data.  Data points include the position of the signal source and the frequency class of the signal. The shading of each
box indicates the loudness of the sounds being sensed (the darker the shading the louder) and is an indication of the
likelihood of the sensory data being correct. Box 4 of track T4, which only appears in the final solution, is not
directly supported by acoustic data (only high-level predictions) and thus is not shaded. T4 is a vehicle track and G2 is
a ghost track caused by the environmental reflections of sounds from T4.
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agent(s) should be asked to lend resources and how much this agent should disrupt the scheduling
of its own concourse’s activities in order to accommodate the needs of another. An interesting
aspect of this problem is that when there is no coordination among agents it is often the case that
when an overloaded agent asks for help it will be costly and disruptive to the lending agents’
concourse schedule to revise it to make the needed resources available. However, if the scheduling
agents can communicate about their anticipated resource needs for particular time periods before the
detailed allocation of resources has been made, then this meta-level information can be extremely
helpful in allowing underloaded agents to anticipate specific resource shortages. This anticipation
allows them to not prematurely commit those resources that may be needed by other agents until
they understand the exact nature of the requests by overloaded agents. In this way, they will
maintain as much scheduling flexibility with respect to the overloaded resource as is consistent
with their own needs; thus, they will be able to respond to a borrowing request with less disruption
to their own concourse schedule. By implicitly coordinating through the exchange of meta-level
information, the agents’ solutions to their own local scheduling problems will be more optimal
from a global perspective.

In summary, the need for interaction among agents to efficiently solve their interacting
subproblems may require agents to closely coordinate their activities during problem solving. This
coordination is based on reasoning about the nature of subproblem interdependencies, the agents’
current state of problem solving, and the status of network resources. Inappropriate or lack of any
coordination can contribute to groups of agents generating solutions that are sub-optimal, wasting
both computational and communication resources due to generating and communicating unneeded,
redundant or poorly timed results, and in the most serious case, failing to generate an overall
solution because of the outright failure to generate key results.

4.  Quantitative/Statistical Perspective on Coordination

Coordination strategies enable groups of agents to solve problems effectively through decisions
about which agents should perform specific tasks and when, and to whom they should
communicate the results. The potential complexity involved in making these decisions can be seen
in the simple situation where one agent needs the results of a subproblem that another agent is
solving. If it can be arranged that the producing agent will deliver the desired result in a timely
fashion so that the consuming agent does not have to idle waiting for the results, then system
performance is improved. On the surface this coordination decision is simple. However, suppose
that the producing agent has other tasks to do with their own deadlines in addition to producing a
result for the other agent. To further complicate this decision process, the agent may have
alternative methods for doing those tasks that trade off the quality of the task solution against the
time to complete the task. Similarly, the consuming agent may also have flexibility about when it
does its tasks because there are other tasks it is also working on, and it may also be able to make
trade-offs in how it accomplishes its tasks. Additional complexity is introduced when neither the
time that a method takes nor the quality of its results are known precisely but rather can be
described by a statistical distribution. Meta-level reasoning may also be involved in the
coordination decision process when there are alternative coordination strategies that can be used in
the current situation. In this case, alternative coordination strategies must be analyzed in terms of
their computational and communication resource requirements, the end-to-end delay in reaching a
decision, the optimality of the coordination achieved, the potential gains achieved as a result of
more effective coordination, and the current need for resources by other activities and their relative
priority.

This coordination decision process can be further complicated when the information an agent is
using to make its decisions is incomplete, out-of-date or inconsistent with that of other agents.
Obtaining all the appropriate non-local information is often not practical due to:
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•  Limited communication bandwidth and computational capabilities which make it infeasible to
package, transfer, and assimilate all pertinent information in a timely manner;

•  The heterogeneity of agents which makes it difficult to share information; and the potential for
competitive agents who, out of self-interest, are not willing to share certain information;

•  The dynamic character of the environment due to changing problems, agents, and resources
and the inability to predict with certainty the outcome of agents' actions.

Thus, making effective coordination decisions that appropriately deal with the uncertainty of
information combined together with the complex set of factors that need to be taken into account is
potentially a complex process.

It is my strong feeling that in order to design efficient and effective coordination strategies that will
work in a wide variety of environments they must explicitly account for the benefits and the costs
of coordination in the current situation in a quantifiable way [69]. The current situation includes the
goals (and their importance or value) that the agent is currently pursuing and likely to pursue in the
near term, the performance characteristics of the methods available to the agent for achieving its
goals, the requirements these goals/methods impose on other agents, the requirements that the
goals/methods of other agents impose on this agent, the state of network resources, and domain
constraints on agent activities.  Another way of saying this is that making coordination decisions is
a complex, multi-level optimization problem based on how coordination actions (usually involving
a statistical perspective) contribute to high-level system tasks meeting their performance objectives,
and the relative importance of each of these tasks.

This emphasis on a quantitative/statistical perspective on coordination should not distract from the
importance of mechanisms, protocols and formal frameworks [2, 6, 7, 16, 20, 21, 29, 43, 71]
that: establish which tasks are important to accomplish and which agents/resources are capable of
accomplishing them; determine how to decompose tasks into subtasks and provide sequencing
constraints among these tasks; decide what information to transmit upon completion of a task and
to whom; and define how to react to unexpected events in terms of what needs to be communicated
to whom and what further actions need to be taken. These intended activities are in response to the
various objectives (desires) of the agent, such as the local processing goals it is pursuing and the
various requests by other agents for its assistance.

In essence, what is being suggested is that there must be a quantitatively oriented mechanism [77]
at the lowest control layer to arbitrate among activities generated by higher, non-quantitative layers.
This is especially true in situations where there are complex subproblem interdependencies among
agents, where there are time pressures and resource bounds which preclude all goals of the system
being solved in an optimal manner, where there are many choices available about how to solve a
goal, and where the goals being solved and the agents/resources available to solve them are
changing over time.

5.  Key Principles Used in Building Multiagent Systems

The ubiquitousness of uncertain and incomplete information and the computational complexity of
making optimal coordination decisions leads to a number of principles that are useful for
structuring multiagent systems.
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The first principle relates to the need to view the performance of a multiagent system in terms of a
complex set of criteria in which there is rarely a way to optimize all criteria simultaneously. This
principle, usually called “satisficing” behavior [35, 47, 48], was developed as a way of explaining
how large organizations function. It underlies most of the other principles to be discussed in this
section. For most real-world multiagent applications, the design goal of producing an “optimal”
answer with minimal use of communication and processing resources, while at the same time being
able to respond gracefully to a dynamically changing environment, is unrealistic; this is due to the
communication and computational costs and delays that would be necessitated in acquiring the
information necessary to make these “optimal” decisions. Instead, “satisficing” criteria for
successful performance are adopted based on using a “reasonable” amount of resources to reduce
uncertainty “sufficiently” so that it is “likely” that an “acceptable” answer will be achieved [33].
This emphasis on satisficing behavior also subtly moves the focus from the performance of
individual agents to the properties and character of the aggregate behavior of agents.

An associated corollary is, given the rich set of criteria that can be used to define satisficing
behavior and the tremendous diversity of environments and tasks, there is no single approach to
organizing agent behavior that will be right for all situations. It has been shown that even in a
relatively simple environment where there is a lot of variance in the performance characteristics of
tasks, a single coordination strategy is not optimal over the range of task characteristics. In this
situation, dynamically choosing a strategy at run time based on the known characteristics of the
tasks leads to better performance than using any one fixed strategy [37]. It is my conjecture that in
the future agents will be required to perform some form of meta-level reasoning so as to balance
the level of optimality of their control decisions with the level of resources required to make the
decisions, based on the characteristics of their tasks and the environment [9, 12, 15, 34, 76].3

The second principle relates to the need for flexibility in agent problem solving. Agent flexibility
with respect to the availability, completeness and accuracy of its information and the availability
and capabilities of external resources is often a key aspect of a multiagent system design. It enables
agents to react dynamically to the emerging state of the group problem-solving effort. In other
words, hard-coded assumptions about the character and availability of information and resources
are typically avoided. In general, agent problem-solving architectures that deal explicitly with the
uncertainty of information and the incompleteness of their local data bases are more adaptable for
use in a multiagent context [25, 33, 34]. This flexibility can be equated with agent autonomy. One
way this can be accomplished is through a sophisticated domain problem-solving architecture that
can respond opportunistically to emerging conditions. Another way of achieving flexibility is for
agents to have alternative methods available for solving subproblems that have varying information
and resource requirements. The agent then pieces together at run time a set of methods that will be
appropriate for the given situation. These are end points on a spectrum and, obviously,
combinations of these approaches are possible. Additionally, flexibility can come from increasing
the scope of activities that an agent is involved in so that the agent may pursue multiple goals.
Thus, the agent can change focus when information or resources are not currently available to
pursue a specific goal. This flexibility can come at the cost of increased reasoning about the nature
of the problem-solving system itself, resulting in less computational time directed toward actual
problem solving and more directed toward coordinating effectively with other agents. It can be
expected that, for agents in some of the more advanced multiagent applications that are beginning
to emerge, this coordination reasoning could be quite complex and time consuming.

Sophisticated control of local domain problem solving is also necessary in many cases for effective
agent interaction. Agents need to explicitly reason about the intermediate states of their computation
(in terms of what actions they expect to take in the near term, what information from other agents
would be valuable for making further progress in their local problem solving, etc.). An aspect of
                                                
3A key issue is how to make this meta-level reasoning sufficiently powerful, yet not a significant computational
cost in its own right.
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this reasoning can involve an explicit representation of the uncertainty and incompleteness of its
current problem-solving state. By having this representation, an agent can make more informed
decisions about the value of obtaining specific information or doing further work locally to resolve
its uncertainty [3]4. Agents also need to be able to acquire, represent and reason about beliefs
concerning the state of other agents, and to use assumptions about the rationality of other agents’
problem solving in their reasoning. It has been shown that even the exchange of a coarse
description of other agents’ states (meta-level information) can be used to make effective
coordination decisions [12]. However, if agents have very good models of the behavior of other
agents, it may not be necessary to coordinate through the exchange of meta-level information but,
rather, just the observation by one agent of the external actions of another agent may be sufficient
[26].

The third principle relates to the need to exploit the efficiencies of organized behavior in
coordinating large agent societies. Organizing the agents in terms of roles and responsibilities can
significantly decrease the computational burden on coordinating their activities since there are fewer
options and constraints that need to be evaluated in order to make appropriate coordination
decisions. However, these assignments (long-term commitments) should not be so strict that an
agent does not have sufficient latitude to respond to unexpected circumstances, nor should they be
necessarily fixed for the duration of problem solving. Organizational control should be thought of
as modulating (circumscribing) local control rather than dictating [8]. Implicit in this discussion are
the concepts of commitment and intention. The ability to appropriately bound the intentions of
agents, and to create and sufficiently guarantee the commitments of agents to accomplish certain
tasks is at the heart of efficient organized behavior. These concepts, either implicitly or explicitly
represented, are important keys to not only understanding but also implementing complex
organized agent behavior in both small and large agent societies [5, 15, 19, 21, 29, 31].

6.  Major Challenges and Research Directions

The field faces many challenges, some pragmatic and others deeply theoretical. A pragmatic one
that seems very important and pressing is the development of an appropriate high-level software
infrastructure/ framework to support the building of multiagent systems. At this point, the
programming overhead to create a non-trivial multiagent system is still high and, thus, the number
of fielded commercial applications is small. The development of such a framework is timely
because of the emerging software infrastructure and standards being developed for mobile
computing and interoperability among programs residing at distant sites (e.g., Java) which will
simplify the construction of agents. However, this work will only partially solve the problems of
building multiagent systems since it does not deal with high-level coordination issues. There are
two possible approaches to building these higher level capabilities. One takes a language-oriented
view, providing a set of operations and associated protocols for locating and communicating with
agents such as KQML [16]. The decision about when to use the protocol, what information to
transmit, etc., is left to the agent programmer. An alternative approach is a high-level framework
where, once an agent has described its needs and capabilities for interacting with other agents in a
domain-independent way, the framework will automatically make all the coordination decisions
[10]. Again, these are extreme points on a continuum of possible approaches [6] to creating a
software framework to ease the burden of implementing multiagent coordination strategies.
Another continuum in terms of choices for coordination frameworks is centered on the following
question:  When is an end-to-end planning viewpoint (in terms of how a specific choice explicitly

                                                
4Resolution of all uncertainty may not be necessary for meeting the criteria of “satisficing” performance. In general,
problem-solving architectures that deal explicitly with the uncertainty of information and the incompleteness of their
local data bases are more adaptable for use in a multiagent context [25, 33, 34].
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contributes to achieving the global objective) warranted for making an effective coordination
decision, versus a reactive and local view of the effects?

Along these lines, one of the important developments in the field over the last few years has been
the development of high-level coordination frameworks inspired by logic-based approaches to
explicitly modeling cooperative interaction among small human teams. The computational viability
of these agent coordination frameworks is often accomplished by limiting their model semantics so
that they can be implemented via procedural reasoning. Examples include the joint intentions
framework [7, 43, 70], the SharedPlan model [20, 21], joint responsibility [6, 67, 68], and hybrid
models such as [71]. There is also recent work, in this case motivated by modeling of complex
software processes, on an agent coordination language that also shows much promise for being
able to specify and implement complex agent interaction patterns [72].

Multiagent research has long been divided into two camps, one concerned with cooperative
(benevolent) agents and the other concerned with self-interested agents [14]. There has been very
little cross-fertilization of ideas between these camps. Research on self-interested agents is often
based on classical game theory with its assumptions of common knowledge among agents and
complete rationality of agent reasoning. This is in contrast with the research on cooperative agents
which makes no such assumptions; rather, it has generally been based on heuristic approaches
having their roots in knowledge-based AI search, planning and scheduling mechanisms. However,
researchers studying self-interested agents have recently begun to realize, as the class of problems
being solved by their agents have become more complex, that these assumptions are not always
reasonable [23, 45]. It is interesting to speculate whether there is more in common among
cooperative and self-interested coordination mechanisms than currently believed — especially as the
environments within which these mechanisms operate become more complex in terms of the
computational difficulty of taking all appropriate factors into consideration and the increased level of
information uncertainty and incompleteness [78]. An obvious challenge is how to construct agent
societies consisting of a mixture of self-interested and cooperative agents that need to coordinate
their activities. For example, consider a variant of the example in the introduction. Suppose in this
case factory-1 is outsourcing both to factory-2 (owned by a different organization) and factory-3
(which is also owned by the parent company of factory-1). In this scenario, the scheduling agent of
factory-1 will interact in a self-interested way with the scheduling agent of factory-2 while
concurrently interacting in a cooperative way with the scheduling agent of factory-3.

There has also been a long tradition of work dating back to the inception of the field on
coordination based on logical reasoning about the beliefs, desires, intentions (BDI) and
commitments of agents [7, 20, 43, 49], and more recent work on the use of market mechanisms
for solving multiagent resource allocation problems [54]. Similarly, there has been little cross-
fertilization among these areas and the self-interested and cooperative camps. The synthesis of
ideas from each of these different approaches to coordination holds great potential for future
developments in the field.

Another issue is how to scale up to agent societies of hundreds and thousands of agents. There has
been interesting work on cooperative behavior of a large number of agents [22, 27], and on
organization self-design [13, 18]. However, this work has been done on simple reactive agents
operating in artificial environments. Whether or not the results of this work can be applied to more
complex agent societies operating in real-world environments is an open question. The challenge of
how to design large-scale agent societies and how to evolve them as the environment changes is
rapidly becoming a major issue in the field. Working on this problem will also shed light on many
of the basic issues in multiagent systems research. For example, how complex must an agent be in
order to interact effectively with other agents in a societal context? Is it best to think about an agent
organization as an emergent property based on simple agent interactions, or do agents need to
explicitly reason about and analyze their roles in the current organization to effectively adapt them
to the changing state of the environment and the demands placed on the agent organization?
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An important trend in the field is the development of analysis techniques to predict the performance
of multiagent systems [4, 9, 46]. These performance characterizations also relate to the
applicability of techniques. For example, it has been shown that certain self-interested agent
interaction protocols can be guaranteed to produce truthful communications in problem domains
with particular properties, while other domains can be guaranteed to produce lying [44]. The ability
to bound the performance characteristics of systems is crucial to the acceptance of this field by the
larger computer science community. Both the work on large-scale agent societies and this work on
performance analysis are beginning to shift the field from focusing mainly on the syntax and
semantics of agent interaction to the more encompassing study of the properties and characteristics
of the aggregate behavior of agents.

Multiagent learning has also emerged as a major focus of study in the field over the last few years
[55, 59]. This is not surprising because of the increasingly complex nature of multiagent systems,
the fact that system performance can be very sensitive to the characteristics of the environment, and
the dynamic and “open” operating environments of these systems. Thus, the ability to
automatically tailor a system to its possibly evolving environment is crucial for its effectiveness. In
the future, a learning component will be an integral part of the design of a multiagent architecture.
To my knowledge, most of the current work in multiagent learning exploits existing learning
algorithms that were designed to operate in a single-agent context; it will be interesting to see
whether new learning techniques will evolve out of the multiagent character of the learning.

The issues and challenges discussed here so far are on the active agenda of the field. More long-
term issues involve, for example, semantic interoperability among agents. How can agents with
different internal representations, created at different times and operating in different environments,
communicate and coordinate effectively? For example, can agents with different coordination
protocols construct a new protocol that is appropriate for their intended interactions? Some of the
surface issues associated with this problem are beginning to be studied in both the multiagent
systems community [28, 42] and in the federated and multi-database community.  However, the
deeper issues still await serious work [17]. Another long-term issue is the integration of the work
in the computer-supported cooperative work community, the intelligent user interfaces community,
and the multiagent community. If a model of computing in which networks of computational
agents and people seamlessly interact is to become a reality in the twenty-first century, then it
seems obvious that these disparate fields will have to be more tightly integrated.

In summary, even though the use of multiagent systems technology is still in its infancy and the
number of fielded commercial applications to date are small, there is tremendous potential and an
exciting research agenda for the field. The field has already developed a rich set of concepts and
mechanisms, both theoretical and practical, which will provide a solid base for future work. I
expect the impact of multiagent systems on computer science to increase significantly during the
next decade.
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