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Enhancement of random finite element method
in reliability analysis and risk assessment of soil slopes
using Subset Simulation

Abstract Random finite element method (RFEM) provides a rigor-
ous tool to incorporate spatial variability of soil properties into
reliability analysis and risk assessment of slope stability. However,
it suffers from a common criticism of requiring extensive computa-
tional efforts and a lack of efficiency, particularly at small probability
levels (e.g., slope failure probability Pf<0.001). To address this prob-
lem, this study integrates RFEM with an advanced Monte Carlo
Simulation (MCS) method called “Subset Simulation (SS)” to devel-
op an efficient RFEM (i.e., SS-based RFEM) for reliability analysis
and risk assessment of soil slopes. The proposed SS-based RFEM
expresses the overall risk of slope failure as a weighed aggregation of
slope failure risk at different probability levels and quantifies the
relative contributions of slope failure risk at different probability
levels to the overall risk of slope failure. Equations are derived for
integrating SS with RFEM to evaluate the probability (Pf) and risk (R)
of slope failure. These equations are illustrated using a soil slope
example. It is shown that the Pf and R are evaluated properly using
the proposed approach. Compared with the original RFEM with
direct MCS, the SS-based RFEM improves, significantly, the compu-
tational efficiency of evaluating Pf and R. This enhances the applica-
tions of RFEM in the reliability analysis and risk assessment of slope
stability. With the aid of improved computational efficiency, a sen-
sitivity study is also performed to explore effects of vertical spatial
variability of soil properties on R. It is found that the vertical spatial
variability affects the slope failure risk significantly.
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Introduction
Slope stability analysis aims to evaluate the resistance of a natural
or human-made slope to the failure by sliding along any slip
surface, and to assess the safety margin of the slope against the
sliding. The safety margin of slope stability is conventionally
quantified by the factor of safety (FS), which is defined by com-
paring restoring to driving forces and/or moments, and can be
calculated using various deterministic slope stability analysis
methods, such as limit equilibrium methods (LEMs) (e.g., Duncan
and Wright 2005) and finite element methods (FEMs) (e.g.,
Griffiths and Lane 1999). Although these deterministic slope sta-
bility analysis methods are widely adopted in slope engineering
practice, they cannot, explicitly, account for the various
geotechnical-related uncertainties (such as spatial variability in
soil properties, uncertainties in loads, and calculation model un-
certainty) and provide no information on the variability of safety
margin of slope stability. In contrast, probabilistic slope stability
analysis approaches provide a rational vehicle to, explicitly, incor-
porate various geotechnical-related uncertainties into slope engi-
neering designs and quantify the safety margin of slope stability

probabilistically by probability of failure (Pf) or reliability index
(β) of slope stability.

In the past few decades, several probabilistic analysis ap-
proaches have been developed to evaluate the Pf or β of slope
stability in geotechnical reliability community, such as the first
order second moment method (e.g., Christian et al. 1994; Hassan
and Wolff 1999), first order reliability method (e.g., Low et al. 1998;
Cho 2013), and direct Monte Carlo Simulation (MCS) method (e.g.,
El-Ramly et al. 2002; Li et al. 2011; Zhang et al. 2011; Li et al. 2013,
2014; Tang et al. 2015) and its advanced variants (e.g., Ching et al.
2009; Wang et al. 2011). Although these efforts significantly facili-
tate the understanding and application of probability-based ap-
proaches in slope engineering, practicing engineers are reluctant
to adopt them in slope engineering practice (e.g., El-Ramly et al.
2002). This dilemma can be attributed to, at least, two reasons, as
observed by Griffiths and Fenton (2004) and Griffiths et al. (2009):
(1) the majority of probabilistic slope stability analysis methods in
previous studies make use of traditional slope stability analysis
techniques, i.e., LEMs, which need to assume the shape and loca-
tion of slope failure surfaces prior to the calculation and may fail
to locate the most critical failure mechanism in highly variable
soils; and (2) only the spatial variability of soil strength parameters
along the critical slip surface identified by LEMs can be taken into
account when using LEMs in the probabilistic analysis of slope
stability.

To address the abovementioned problems, Griffiths and Fenton
(2004) proposed a rigorous probabilistic analysis method called
“random finite element method (RFEM)” for reliability analysis of
slope stability. RFEM consists of three major components: random
field theory (Vanmarcke 2010) tomodel inherent spatial variability of
soil properties, FEM to assess the safety margin of slope stability, and
MCS for uncertainty propagation and calculation of Pf. Griffiths et al.
(2009) made use of RFEM to investigate the influences of spatial
variability of soil strength parameters on slope stability. Huang et al.
(2010) used RFEM to evaluate the system reliability of slope stability
and pointed out that RFEM provides a general way to assess the
system reliability of slopes. Then, Huang et al. (2013) combined
RFEMwith limit analysis and extended its application to risk assess-
ment of slope failure. These studies have demonstrated the great
potential of RFEM in reliability analysis and risk assessment of soil
slopes. However, RFEM still suffers from a common criticism of
requiring extensive computational efforts (e.g., Ji and Low 2012)
and a lack of efficiency at small probability levels (e.g., Pf<0.001)
because a large number of finite element analyses shall be performed
in MCS to ensure the desired accuracy of the estimated Pf. Such a
disadvantage becomes more profound when RFEM is applied to
assess slope failure risk R, in which the average consequence (C) of
slope failure is also needed besides Pf (e.g., Huang et al. 2013) and the
accurate estimation of C necessitates a large number of failure
samples during MCS. This subsequently calls for an efficient RFEM
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to evaluate Pf at small probability levels and to generate a large
number of failure samples for estimating C.

This paper proposes an efficient RFEM for reliability analysis
and risk assessment of soil slopes, in which RFEM is enhanced by
an advanced MCS called “Subset Simulation (SS)” to improve its
computational efficiency of evaluating Pf and generating failure
samples at small probability levels. The paper starts with a brief
review of the original framework of RFEM, followed by develop-
ment of the SS-based RFEM for reliability analysis and risk
assessment of soil slopes. Then, the proposed approach is illus-
trated through a soil slope example. Finally, a sensitivity study is
performed to explore effects of spatial variability on slope failure
risk using the illustrative example.

Reliability analysis and risk assessment of slope stability using RFEM

Random field modeling of inherent spatial variability of soil properties
in RFEM
RFEM provides a powerful and rigorous tool to incorporate
inherent spatial variability of soil properties into slope stability
analysis (e.g., Griffiths and Fenton 2004; Griffiths et al. 2009;
Huang et al. 2010; Le 2014). It employs the random field theory
(Vanmarcke 2010) to model the inherent spatial variability of soil
properties, by which the soil property X (e.g., undrained shear
strength Su) in different elements of the finite element mesh
adopted in slope stability analysis is represented by a series of
spatially correlated random variables (i.e., a random field). For
example, a two-dimensional (2-D) stationary lognormal random
field H(X) can be used to model the inherent spatial variability of
X in a statistically homogenous soil layer, where X in each
element is represented by a lognormal random variable with a
mean μX and standard deviation σX. Then, H(X) can be simulated
using several random field generation techniques, such as the
covariance matrix decomposition method (e.g., Wang et al. 2011;
Wang and Cao 2013; Cao and Wang 2014), local average subdivi-
sion method (e.g., Fenton and Vanmarcke 1990), and Karhunen-
Loève expansion method (e.g., Phoon et al. 2002; Cho 2010;
Huang et al. 2013; Jiang et al. 2014). Consider, for example, using
the covariance matrix decomposition method to simulate H(X)
in this study, by which H(X) can be written as:

H Xð Þ ¼ exp μN l þ σNLξð Þ ð1Þ

where μN=lnμX−σN
2/2 and σN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ σX=μXð Þ2
h iq

are the

mean and standard deviation of ln(X), respectively; l=a vector
with components that are all equal to unity; ξ=[ξ1, ξ2, …, ξNz]

T=a
standard Gaussian vector with Nz independent components; L=a
Nz-by-Nz lower-triangular matrix obtained from Cholesky de-
composition of the correlation matrix ρ satisfying ρ=[ρ]=LLT

(e.g., Fenton and Griffiths 2008). ρ is the correlation coefficient
between the values of ln(X) at different locations, and it is
calculated from a prescribed spatial correlation function, e.g., a
2-D single exponential correlation function ρ=exp(−2|dh|/
δh−2|dv|/δv), where δh and δv are horizontal and vertical scale of
fluctuation of ln(X), respectively, and dh and dv are horizontal
and vertical distances between two different locations,
respectively.

Finite element analysis of slope stability
As indicated by Eq. (1), H(X) is comprised of Nz spatially correlat-
ed random variables (i.e., X for different elements), each of which
corresponds to one element of the finite element mesh adopted in
finite element analysis of slope stability. For each realization of
H(X), the Nz spatially correlated X random variables are simulated
at the mid-point of the Nz elements of the finite element mesh in
this study, and represent the value of X in each element. The
simulated X values are used as inputs to perform the finite element
analysis of slope stability and to calculate the FS of slope stability.
In RFEM, the shear strength reduction technique (SSRT) (Matsui
and San 1992; Griffiths and Lane 1999) is usually applied to calcu-
late the FS, in which the slope failure is defined by the occurrence
of non-convergence of solution in finite element analysis.

Calculation of slope failure probability and risk using direct MCS
After the uncertainty model (e.g., the random field model of soil
properties) of uncertain parameters X=[X1, X2, …, XNp] involved
in slope stability analysis and deterministic finite element analysis
modeling are set up, RFEM calculates the probability (Pf) and risk
(R) of slope failure using direct MCS. Consider, for example, a
direct MCS run with NT realizations of X. For each realization of X,
its corresponding FS is calculated using the SSRT. This leads to NT

values of FS. Then, Pf is calculated as:

P f ¼ 1
NT

X
i¼1

NT

I FSi < fsð Þ ð2Þ

where fs=a threshold value for judging the slope failure, and it is
usually taken as 1, corresponding to the failure criterion FS<1; I(∙)
is an indicator function of the occurrence of slope failure. For the
i-th realization of X, I(∙) is taken as the value of 1 when its
corresponding FSi is less than fs, i.e., FSi<fs occurs; otherwise, it
is equal to 0. In addition, the coefficient of variation (COVP f ) of Pf
given by Eq. (2) can be estimated as (Ang and Tang 2007):

COVP f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−P f

P f NT

s
ð3Þ

Then, the risk R of slope failure is conventionally calculated as:

R ¼ P f C ð4Þ

where C=consequence of slope failure. Equation (4) works well for
a slope with a single failure mode (Huang et al. 2013). However, for
a slope problem, there might exist multiple failure modes due to
the spatial variability or stratification of geotechnical materials
(e.g., Chowdhury and Xu 1995; Huang et al. 2010; Wang et al.
2011; Zhang et al. 2011; Li et al. 2013; Jiang et al. 2015). To account
for the contributions of different failure modes to the overall risk
of slope failure, Huang et al. (2013) extends Eq. (4) to a more
general form:

R ¼
X
i¼1

N f

PiCi ¼ P f C ð5Þ

where Pi=1/NT and Ci are the probability and consequence of the
failure mode corresponding to the i-th failure sample during MCS,
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respectively; C=∑
i¼1

N f

Ci=N f=the average consequence of different

failure modes, in which Nf=the number of failure samples gener-
ated during MCS. As pointed out by Huang et al. (2013), the
consequence of slope failure depends on the sliding mass volume,
which can, therefore, be taken as an “equivalent” quantity to
quantify the consequence of slope failure in slope risk assessment.
Then, the average consequence C is estimated as the average of the
sliding mass volume for different failure modes. For this purpose,
the consequence Ci (i.e., the sliding mass volume) for the i-th
failure sample generated during MCS needs to be estimated. This
can be achieved by the K-means clustering method (KMCM)
(Huang et al. 2013). KMCM is a popular and simple classification
approach, and it aims to partition a set of observations into K
clusters, in which each observation belongs to the cluster with the
nearest mean value. For RFEM, node displacements obtained from
the finite element analysis of slope stability are taken as observa-
tions in KMCM, and the element nodes of the finite element mesh
are then classified into two clusters (i.e., K=2), including sliding
and stable masses, based on node displacements. Let Dl and Dt

denote the mean values of node displacements in sliding and
stable masses, respectively. The element nodes whose
displacements are closer to Dl than Dt are classified into sliding
mass; otherwise, they belong to stable mass. Note that determining
Dl and Dt is a key step in applying KMCM to identify stable and
sliding masses, and this usually requires an iterative procedure,
which can be referred to Huang et al. (2013) for more details. After
stable and sliding masses are determined, the critical slip surface is
taken as the boundary between them. Using the critical slip surface
identified by KMCM, the sliding mass volume can be estimated if
the slope failure occurs, and it is used in Eq. (5) to assess the slope
failure risk.

Although direct MCS is a conceptually simple and robust meth-
od, it suffers from a lack of efficiency and resolution at small
probability levels (e.g., Pf<0.001), which are of great interest in
design practice. To improve the computational efficiency, RFEM is
enhanced with Subset Simulation (SS) (Au and Beck 2001; Au and
Wang 2014) in the next section.

Subset Simulation-based RFEM for slope reliability analysis and risk
assessment

SS-based RFEM for reliability analysis of slope stability
SS stems from the idea that a small failure probability can be
expressed as a product of larger conditional failure probabilities
for some intermediate failure events, thereby converting a rare
event (small probability level) simulation problem into a sequence
of more frequent ones (Au and Beck 2001; Au and Wang 2014).
Consider, for example, the slope failure probability Pf, which is
defined as the probability of FS smaller than fs, i.e., Pf=P(FS<fs). In
the context of SS, the Pf can be expressed as (Au et al. 2010; Wang
et al. 2011):

P f ¼ P Fmð Þ ¼ P F1ð Þ∏
m

k¼2
P Fk Fk−1jð Þ ð6Þ

where Fk={FS<fsk, k=1, 2, …, m} are a set of the intermediate
failure events that are defined by a decreasing sequence of

intermediate threshold values fs1>fs2>…>fsm=fs, respectively;
P(F1)=P(FS<fs1) and P(Fk|Fk-1)=P(FS<fsk|FS<fsk-1), k=2, 3, …, m.
During SS, fs1, fs2, …, fsm-1 are determined adaptively so that the
sample estimates of P(F1) and P(Fk|Fk-1), k=2, 3, …, m−1, always
correspond to a common specified value of conditional probability
p0. This is shown in Fig. 1 schematically.

As shown in Fig. 1, SS starts with direct MCS, in which N
direct MCS samples are generated. The FS values of the N
samples are calculated from the finite element analyses of
slope stability (see “Finite element analysis of slope
stability”) and are ranked in a descending order. The
(1−p0)N-th FS value is chosen as fs1, and hence, the sample
estimate for P(F1)=P(FS<fs1) is p0. Then, the p0N samples with
F1={FS<fs1} are used as “seeds” for the application of Markov
Chain Monte Carlo Simulation (MCMCS) to simulate (1−p0)N
additional conditional samples given F1={FS<fs1}, the corre-
sponding FS values of which are calculated using SSRT during
the simulation. Therefore, there are a total of N samples with
F1={FS<fs1}. These N FS values are ranked again in a descend-
ing order, and the (1−p0)N-th FS value is chosen as fs2, which
defines the F2={FS<fs2}. Note that the sample estimate for
P(F2|F1)=P(FS<fs2|FS<fs1) is also equal to p0. Similarly, the
procedure described above is repeated m times until the
failure domain Fm={FS<fsm} is achieved. Finally, a total of
m+1 levels of simulations (including one direct MCS level
and m levels of MCMCS) are performed, resulting in N+m(1
−p0)N SS samples.

During SS, the sample space is divided into m+1 mutually
exclusive and collectively exhaustive subsets Ωk, k=0, 1, …, m,
by the m intermediate threshold values fs1, fs2, …, fsm, where
Ω0={FS≥fs1}, Ωk=Fk−Fk+1={fsk+1≤FS<fsk} for k=1, 2, …, m−1,
and Ωm=Fm={FS<fsm}. The random samples in different sub-
sets (i.e., Ωk, k=0, 1, …, m) carry different probability weights.
For a given Ωk, the probability weight is quantified by its
occurrence probability P(Ωk), which is taken as p0

k−p0k+1 for
k=0, 1, …, m−1, and p0

m for k=m (Au 2005; Wang and Cao
2013). Physically, the slope failure event may occur in any Ωk,
depending on the problem concerned. The plausibility of
slope failure given sampling in Ωk is quantitatively represent-
ed by the conditional failure probability P(F|Ωk) for Ωk, which
is estimated as the fraction of the failure samples with FS<fs
in Ωk. Since Ωk, k=0, 1, …, m, are mutually exclusive and
collectively exhaustive subsets and they carry different proba-
bility weights, the failure probability Pf is calculated as a
summation of the plausibility (i.e., P(F|Ωk)) of slope failure
given sampling in Ωk weighted by occurrence probability (i.e.,
P(Ωk)) of Ωk. This is, mathematically, expressed as the Total
Probability Theorem in terms of probability concepts (Ang
and Tang 2007):

P f ¼
Xm

k¼0

P FjΩkð ÞP Ωkð Þ ð7Þ

Using the N+m(1−p0)N samples generated by SS and Eq. (7),
the Pf is calculated accordingly. The COVP f of Pf obtained from SS
relies on the correlation among the estimators of P(F1) and P(Fk|Fk-
1), k=2, 3, …, m. By assuming these estimators are uncorrelated,
COVP f can be expressed by (Au and Beck 2001):

Landslides



COVP f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
COV2

P F1ð Þ þ
Xm

k¼2

COV2

P Fk

���Fk−1
� �

vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−P F1ð Þ
P F1ð ÞN þ

Xm

k¼2

1−P FkjFk−1ð Þ
P FkjFk−1ð ÞN 1þ γkð Þ

vuut ð8Þ

whereCOVP F1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−P F1ð Þ
P F1ð ÞN

q
andCOVP Fk jFk−1ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−P Fk jFk‐1ð Þ
P FkjFk‐1ð ÞN 1þ γkð Þ

q

are the coefficient of variation (COV) of P(F1) and P(Fk|Fk-1),
respectively; and γk=the correlation factor, and it can be esti-
mated from the conditional samples generated by MCMCS in
the k-th simulation level. Equation (8) indicates that the vari-
ability of Pf obtained from SS is resulted from the variability of
the estimators of P(F1) and P(Fk|Fk-1), which is quantitatively
reflected by their respective COVs (i.e., COVP F1ð Þ and
COVP FkjFk−1ð Þ). Although the estimators of P(F1) and P(Fk|Fk-1),
k=2, 3, …, m, are generally correlated, previous studies (e.g.,
Au and Beck 2001) showed that the COVP f in SS is well
approximated by Eq. (8). More details and discussions on
COVP f for SS are referred to Au and Beck (2001) and Au and
Wang (2014).

Note that the efficient generation of conditional samples is
pivotal to the success of SS, and it is made possible through the
machinery of MCMCS. The MCMCS generates a sequence of
samples of random variables or a random vector (e.g., uncertain
parameters X=[X1, X2, …, XNp] involved in slope reliability anal-
ysis) as states of Markov Chain with the probability density func-
tion (PDF) of random variables as the Markov Chain’s limiting
stationary distribution (e.g., Beck and Au 2002; Robert and Casella
2004). During SS, a candidate sample for next state in the Markov
Chain is first generated from a proposal PDF defined using the
current Markov Chain state, and it is accepted or rejected to be the
next state based on the acceptance ratio and the occurrence of
intermediate failure events. However, the acceptance ratio often
decreases exponentially in some original MCMCS algorithms (e.g.,
Metropolis algorithm) as the dimension (e.g., Np) of uncertain
parameters space increases, leading to many repeated samples
and reduction of computational efficiency and accuracy in high-
dimensional problems (Papaioannou et al. 2014). To address this
issue, a modified Metropolis algorithm (MMA) (Au and Beck 2001;
Au and Wang 2014) is developed to simulate conditional samples
in SS, which generates the candidate sample of a high dimensional
random vector component by component. For example, using
MMA to generate the candidate sample of X contains Np steps.
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Fig. 1 Schematic diagram of Subset Simulation procedure (modified from Au et al. (2010))
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In each step, the candidate sample of Xj, j=1, 2,…, Np, is generated.
After the candidate samples of all the components are obtained,
they are collectively taken as the candidate sample of X. If the X’s
candidate sample belongs to the intermediate failure event con-
cerned, it is taken as the next state of X in the Markov Chain.
Using MMA reduces the correlation among conditional samples
generated by SS in high-dimensional space and, therefore, makes
SS feasible in high-dimensional problems, e.g., slope reliability
analysis problems that consider geotechnical spatial variability
using random fields.

SS-based RFEM for risk assessment of slope failure
After the Pf is obtained, the average consequence C is still needed to
evaluate the risk R of slope failure according to Eq. (5). Based on the
conditional failure samples in different subsets (i.e., Ωk, k=0, 1, …,
m) that are progressively determined during SS and carry different
probability weights, C is calculated as a weighted summation:

C ¼ E CjFð Þ ¼
Xm

k¼0

CkP ΩkjFð Þ ð9Þ

where E(C|F)=the conditional expectation of the consequence giv-
en the occurrence of the slope failure; P(Ωk|F)=the probability of

the failure samples falling into Ωk; Ck=∑
i¼1

N f ;k

Ck;i=N f ;k=the average

consequence of different failure modes corresponding to failure
samples in Ωk, in which Nf,k=the number of failure samples gen-
erated in Ωk during SS and Ck,i is the consequence of the failure
mode corresponding to the i-th failure sample generated in Ωk.
Note that Ck,i is a key input in Eq. (9) to evaluate the average
consequence Ck of slope failure occurring in Ωk. For simplicity, Ck,i

is approximately taken as the sliding mass volume for the i-th
failure sample generated in Ωk in this study, which can be deter-
mined using KMCM based on the displacements of finite element
nodes, as suggested by Huang et al. (2013). Although such a
simplification provides a convenient way to evaluate the “equiva-
lent” consequence of slope failure, evaluation of the “actual”
consequence of slope failure can be a complicated issue and
requires more information on the site besides the sliding mass
volume (e.g., Li et al. 2009; Peng et al. 2014; Vranken et al. 2014),
which is worthwhile to be explored in future study. In addition,
P(Ωk|F) in Eq. (9) is calculated using the Bayes’ Theorem:

P ΩkjFð Þ ¼ P FjΩkð ÞP Ωkð Þ
P f

ð10Þ

where Pf, P(F|Ωk), and P(Ωk) are given in Eq. (7). Using Eqs. (9)
and (10) gives

C ¼

Xm

k¼0

CkP FjΩkð ÞP Ωkð Þ

P f
ð11Þ

Then, substituting Eq. (11) into Eq. (5) gives

R ¼
Xm

k¼0

CkP F
���Ωk

� �
P Ωkð Þ ð12Þ

Using Eq. (12), the risk R of slope failure is calculated using the
conditional samples generated during SS. Herein, it is worthwhile

to point out that although a simple and approximate way is
adopted in this study to estimate the consequence of slope failure,
the proposed approach is generally applicable for different
methods to evaluate the slope failure consequence (e.g., Ck,i and
Ck). Using a more accurate estimate of slope failure consequence
in Eq. (12), of course, leads to a more accurate estimate of slope
failure risk R. To gain more insights into the R estimated by SS,
Eq. (12) is further written as:

R ¼
Xm

k¼0

RkP Ωkð Þ ð13Þ

where Rk ¼ P FjΩkð ÞCk is an analogue of Eq. (5) and represents the
conditional risk of slope failure in Ωk. In the light of Eq. (13), the
overall risk of slope failure can be considered as a weighed aggre-
gation of the slope failure risk in different sampling spaces (i.e.,
Ωk, k=0, 1, …, m) that are progressively determined during SS and
have different occurrence probabilities. The contribution of slope
failure risk (COR) in each sampling space to the overall slope
failure risk is calculated as:

CORk ¼ 100RkP Ωkð Þ=R ð14Þ

where CORk=contribution of the risk of slope failure occurring in
Ωk to the overall risk R in percent (%). Since the occurrence
probabilities of Ωk, k=0, 1, …, m, are different, CORk quantifies
the relative contributions of the slope failure risk at different
probability levels to the overall risk R. Such insights are not
provided by the original RFEM with direct MCS.

Non-intrusive implementation of SS-based RFEM in practice
Compared with the direct MCS-based RFEM, the algorithm of SS-
based RFEM is somewhat more complicated, which might lead to
difficulty in using the proposed approach in practice because the
training of geotechnical practitioners in probability theory and
statistics is often limited. To facilitate the use of the SS-based
RFEM in practice, its implementation is deliberately divided into
three parts in this study, including SS for uncertainty propagation,
deterministic finite element analysis for evaluating FS of slope
stability, and the slope failure consequence assessment using
KMCM (see Fig. 2). By this means, the reliability analysis and risk
assessment of slope stability can proceed as an extension of deter-
ministic finite element analysis of slope stability in a non-intrusive
manner. This allows the uncertainty propagation using SS, deter-
ministic finite element analysis of slope stability, and slope failure
consequence assessment using KMCM to be performed separately
by personnel with different expertise and in a parallel fashion. SS
and KMCM can be programmed as user functions or toolboxes in
computer software, such as MATLAB and EXCEL (e.g., Au and
Wang 2014). In this study, in-house user functions of SS and
KMCM are developed in MATLAB (Mathworks Inc. 2014). These
user functions can be treated as a “black box”. Although a thor-
ough understanding of reliability algorithms is always advanta-
geous, it is not a prerequisite for engineers to use these user
functions. Geotechnical practitioners only need to focus on deter-
ministic finite element analysis of slope stability and develop a
finite element model of slope stability using commercial software
packages, e.g., Abaqus (Dassault Systèmes 2014). The user functions will
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repeatedly invoke the finite element model of slope stability during SS
and return Pf, C, and R as outputs. This allows engineers to use the SS-
based RFEM without being compromised by the complicated algo-
rithms. The proposed SS-based RFEM and its implementation proce-
dures are illustrated through a slope example in the next section.

Illustrative example
For illustration, this section applies the proposed SS-based
RFEM to evaluate Pf and R of a cohesive slope example. As
shown in Fig. 3, the slope has a height of 24 m and a slope
angle of 36.9°, and it is comprised of two soil layers. The
undrained shear strength Su1 and Su2 of the two soil layers
are lognormally distributed. Their respective mean values are
80 and 120 kPa, and both of them have a COV of 0.3. In
addition, the unit weights γ1 and γ2 of the two soil layers are
taken as deterministic values, and both of them are 19 kN/m3.
To enable the finite element analysis of slope stability, the
information on the Young’s modulus and Poisson’s ratio of

the two soil layers are also needed. In the case of no available
information on them, they are assumed to be 100 MPa and 0.3,
respectively (Griffiths and Lane 1999). Using the information
on the slope geometry and soil properties, a finite element
model of the slope is created using a commercial software
package Abaqus (Dassault Systèmes 2014) in this study. As
shown in Fig. 3, the upper layer is discretized into 585 ele-
ments, whose horizontal and vertical side lengths are 1.33 and
1 m, respectively; and the lower layer is discretized into 711
elements with the same size. Based on the mean values of soil
properties, the finite element analysis of slope stability is
performed using an elastic-perfectly plastic constitutive model
with a Mohr-Coulomb failure criterion in Abaqus. Then, the
critical slip surface (see the dashed line in Fig. 4) is identified
using KMCM based on node displacements, and its corre-
sponding FS calculated using SSRT is 1.443.

To incorporate the effects of spatial variability of soil
properties into reliability analysis and risk assessment, the
inherent spatial variability of Su1 and Su2 are taken into
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Fig. 2 Implementation procedures of SS-based RFEM for reliability analysis and risk assessment of slope stability
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account in this example. For each parameter, the random field
is simulated using Eq. (1), in which δh and δv are taken as 24
and 2.4 m, respectively. Each realization of the random field
is mapped onto the finite element mesh shown in Fig. 3.
Then, the finite element analysis of slope stability is per-
formed to calculate the FS by SSRT and the node displace-
ments. If the slope failure occurs (i.e., FS<fs), the node
displacements are subsequently used to determine the critical
slip surface by KMCM. Based on the critical slip surface, the
slope failure consequence is estimated as the sliding mass
volume. For example, Fig. 5 shows a typical realization of
the random fields of Su1 and Su2 and its corresponding results
of slope stability analysis obtained from the finite element
analysis, including the FS (i.e., 0.938) calculated by SSRT, the
critical slip surface identified by KMCM (see the bold solid
line), and the consequence (i.e., sliding mass volume in this
study) of about 882.0 m3/m (or 882.0 m2). Note that 2-D slope
stability analysis is performed in this study. Strictly speaking,
the sliding mass is an “area” but not a “volume” in this
example, and it, therefore, has a unit of “m3/m” (or “m2”
for simplicity), rather than “m3”. However, the term “sliding
mass volume” is still used in this study for easy understand-
ing and communication.

Based on the deterministic finite element model and random
field model of soil parameters described above, a SS run withm=4,
p0=0.1, and N=500 is performed in this study. This leads to a total
of 500+4×(1–0.1)×500=2300 random samples. Based on these 2300
random samples, Pf and R are calculated by Eqs. (7) and (12),
respectively.

Results of reliability analysis and risk assessment
Table 1 summarizes the procedures of evaluation of Pf and R in this
example. Among the 2300 samples from SS, 547 samples are
identified as failure samples for fs=1 (i.e., FS<1). These 547 failure
samples include 500 samples in simulation level 4 (i.e., all the
samples in simulation level 4 fail) and 47 samples in simulation
level 3, and no failure sample occurs in simulation levels 0 to 2.
Using these failure samples, P(F|Ωk) for k=0, 1,…, 4, are estimated
as 0, 0, 0, 47/450, and 500/500 (see Column 3), respectively, and Ck

for k=0, 1, …, 4, are calculated as 0, 0, 0, 669.11 m2, and 648.56 m2

(see Column 4), respectively. In addition, since p0 is taken as 0.1 in
SS, P(Ωk) for k=0, 1, …, 4, are 0.9, 0.09, 0.009, 0.0009, and 0.0001
(see Column 2), respectively. Using Eq. (7), Pf is estimated as
0.019 %, as shown in Column 6. In addition, C and R are also
estimated as 658.51 m2 (see Column 7) and 0.13 m2 (see Column 8)
by Eqs. (11) and (12), respectively. Compared with C, the value of R
is quite small because it is defined as the product of C and Pf in
this study and Pf is relatively small (i.e., 0.019 % in this example).
Since an “equivalent” quantity (i.e., the sliding mass volume) of
the slope failure consequence is used in this study to estimate the
slope failure risk R, the R obtained in this study is also considered
as an “equivalent” quantity of the “real” risk of slope failure that
accounts for the actual slope failure costs. Although the individual
value of the estimated R seems meaningless, the estimated R is
meaningful in a relative scale and provides a useful tool to quan-
tify the relative contributions of slope failure risk at different
probability levels to the overall risk of slope failure and to shed
light on the effects of spatial variability on the slope, as discussed
later in this paper.
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Fig. 3 An illustrative slope example
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Fig. 4 Results of deterministic slope stability analysis
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As indicated by Eq. (13), the risk of slope failure is de-
aggregated into different sampling spaces Ωk, k=0, 1, …, 4. The
relative contributions of slope failure risk occurring in these sam-
pling spaces are calculated using Eq. (14), and they are 0, 0, 0, 49,
and 51 % (see Column 5), respectively. The overall risk of slope
failure is attributed to the slope failure occurring in Ω3 and Ω4 in
this example. To enable a desired accuracy of the estimated R, a
large number of failure samples shall be generated in Ω4. This can
be achieved through SS with relative ease. As shown in Table 1, all
the 500 samples generated in Ω4 by SS are failure samples. On the
other hand, if using direct MCS to generate such a number of
samples in Ω4, a total of 500/0.0001=5,000,000 samples are re-
quired on average, because P(Ω4)=0.0001. Compared with direct
MCS, the proposed SS-based RFEM not only provides more in-
sights (e.g., contributions of slope failure risk in different sampling
spaces or at different probability levels) into the overall risk R, but
also improves significantly the computational efficiency of gener-
ating the samples of interest (e.g., samples in Ω4) for slope risk
assessment. This is of particular importance for RFEM, as further
discussed in the next subsection.

Validation of reliability analysis and risk assessment results
To validate the reliability analysis and risk assessment results
obtained from the SS-based RFEM, a direct MCS run with
60,000 samples is performed to calculate the Pf and R of the
slope example. Figure 6 shows the variation of the failure prob-
ability Pf=P(FS<fs) as a function of fs (i.e., the cumulative
distribution function of FS) obtained from direct MCS and SS
by a dashed line and a solid line, respectively. The solid line
generally plots closely to the dashed line. For fs=1, the Pf esti-
mated from direct MCS is 0.018 %, which agrees well with the
value (i.e., 0.019 %) of Pf obtained from SS. Such observations

indicate that the Pf is calculated properly using the SS-based
RFEM proposed in this study. Note that only 2300 random
samples are generated in the SS-based RFEM, and hence a total
of 2300 finite element analyses of slope stability are performed,
which are much less than the number (i.e., 60,000) of finite
element analyses of slope stability required in the original
RFEM with direct MCS.

Table 2 summarizes the reliability analysis results obtained
from direct MCS and SS. It takes 20.8 days (d) to finish 60,000
finite element analyses of slope stability in direct MCS on a
desktop computer with 8 GB RAM and one Intel Core i7 CPU
clocked at 3.4 GHz. On the other hand, 2300 finite element
analyses of slope stability in SS are finished within a day, specif-
ically in 0.8 d, on the same computer. In addition, the COVP f

values are also calculated from a single direct MCS run with
60,000 samples using Eq. (3) and a single SS run with 2300
samples using Eq. (8), and they are about 0.3 and 0.37 (see
Column 6 in Table 2), respectively. To validate the COVP f esti-
mated from Eq. (8) for SS, 20 independent SS runs are per-
formed, which give 20 Pf values. Using these 20 Pf values, the
COVP f is estimated as 0.38, which is almost identical to the value
(i.e., 0.37) given by Eq. (8) in this example. To enable a fair
comparison of the computational efficiency and eliminate effects
of sample size on COVP f , the values of unit COV, defined as

COVP f �
ffiffiffiffiffiffiffi
NT

p
(Au and Beck 2003), are calculated for direct

MCS and SS. As shown in Table 2, the unit COV (i.e., 73.5) in
direct MCS-based RFEM is about four times larger than that (i.e.,
17.7) in SS-based RFEM. The above observations demonstrate
that integrating SS with RFEM improves, significantly, the com-
putational efficiency at small probability levels and reduces the
computational time. This enhances the applications of RFEM in

171.6
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115.0
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58.5

30.2
S

u
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FS = 0.938 
C = 882.0 m2

Fig. 5 A typical realization of random fields and its corresponding results of slope stability analysis

Table 1 Results of reliability analysis and risk assessment in the slope example

Simulation level k P(Ωk) P(F|Ωk) Ck (m
2) CORk (%) Pf (%) C (m2) R (m2)

0 0.9 0 0 0 0.019 658.51 0.13

1 0.09 0 0 0

2 0.009 0 0 0

3 0.0009 47/450 669.11 49

4 0.0001 500/500 648.56 51
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the slope reliability analysis, particularly at small probability
levels (e.g., Pf<0.001).

Figure 7 shows the estimated C for different fs values (i.e., 1.0,
1.05, …, 1.3) obtained from RFEM with SS and direct MCS by the
lines with squares and circles, respectively. The line with squares
plots closely to the line with circles. The C values estimated from
the SS-based RFEM are in good agreement with those obtained
from the original RFEM with direct MCS. In addition, it is also
noted that the estimated C almost remains unchanged around
670 m2 as fs varies in this example. Figure 8 shows the variation
of R as a function of fs obtained from RFEM with SS and direct
MCS by the lines with squares and circles, respectively. The R
values estimated from the SS-based RFEM agree well with those
obtained from the original RFEM with direct MCS. This further
validates the risk assessment results obtained from the SS-based
RFEM.

As shown in Fig. 8, R increases significantly as fs increases. Note
that the desired safety level of the slope increases with the increase
of fs. As expected, for a given slope problem, R increases as the
desired safety level increases. Such an increase in R is mainly
attributed to the increase in Pf (see Fig. 6), since C remains almost
unchanged in this example (see Fig. 7). The proposed approach
properly depicts the slope failure risk at different safety levels
using a single SS run.

Effects of vertical spatial variability on the slope failure risk
With the aid of improved computational efficiency offered by the
SS-based RFEM, this subsection performs a sensitivity study to
explore effects of spatial variability with the depth on the slope
failure risk. Figure 9 shows the R estimated from the SS-based
RFEM for different δv values (i.e., 2.4, 6, 12, and 24 m). As δv
increases from 2.4 to 24 m (i.e., the vertical spatial variability
becomes weaker), the estimated R increases by about two orders
of magnitude in this example. Therefore, the vertical spatial vari-
ability affects R significantly. To gain more insights into such
effects on R, effects of vertical spatial variability on Pf and C are
further investigated, respectively. Figure 10 shows the variations of
Pf and C as a function of δv by the lines with squares and circles,
respectively. The estimated Pf increases by about two orders of
magnitude in this example when δv increases from 2.4 to 24 m. The
δv affects Pf significantly. On the other hand, the estimated C only
decreases slightly as δv increases (see the line with circles in
Fig. 10). The effect of vertical spatial variability on C is minimal.
Since R is defined as the product of Pf and C, it can be reasoned
that, as δv increases, the increase in R is mainly attributed to the
increase in Pf in this example. The effects of vertical spatial vari-
ability are properly incorporated into risk assessment of slope
failure using the proposed SS-based RFEM.

Summary and conclusions
This paper developed an efficient random finite element method
(RFEM) for reliability analysis and risk assessment of slope stabil-
ity. The proposed approach integrates RFEM with an advanced
MCS method called “Subset Simulation (SS)” to evaluate the slope
failure probability (Pf) and risk (R) in spatially variable soils. The
proposed SS-based RFEM expresses the overall risk of slope failure
as a weighed aggregation of slope failure risk at different proba-
bility levels that are progressively determined during SS. It quan-
tifies the relative contributions of the slope failure risk at different
probability levels to the overall risk R of slope failure. Such in-
sights are not available in direct MCS-based RFEM. In addition, SS
is deliberately decoupled from the deterministic finite element
analysis of slope stability in the proposed approach, so that the
reliability analysis and risk assessment of slope stability using
RFEM can proceed as an extension of deterministic finite element
analysis of slope stability in a non-intrusive manner. This effec-
tively removes the hurdle of reliability computational algorithms
and allows geotechnical practitioners to focus on the deterministic
slope stability analysis that they are familiar with.
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Fig. 6 Cumulative distribution function of the performance function of slope
stability

Table 2 Comparison of results obtained from direct MCS-based RFEM and SS-based RFEM

Method Number of
samples

Number of failure
samples

Time (d)a Pf (%) COVP f
Unit COVc

Direct MCS-based RFEM 60,000 11 20.8 0.018 0.30 73.5

SS-based RFEM 2300 547 (536b) 0.8 0.019 (0.017b) 0.37 (0.38b) 17.7 (18.2b)

a Performed on a desktop computer with 8 GB RAM and one Intel Core i7 CPU clocked at 3.4 GHz
b The results based on 20 independent SS runs
c Unit COV=COVP f �

ffiffiffiffiffiffiffi
NT

p
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Equations were derived for evaluating Pf and R using the
random samples generated by SS. These equations were illustrated
using a soil slope example. The results obtained from the SS-based
RFEM are validated against those obtained using the direct MCS-
based RFEM. It was shown that the Pf and R at different safety
levels (i.e., different fs values) are calculated properly using the
proposed approach. Compared with the direct MCS-based RFEM,
integrating SS with RFEM improves, significantly, the computa-
tional efficiency of generating failure samples for evaluating Pf and
R. This enhances the applications of RFEM in the reliability anal-
ysis and risk assessment of slope stability, particularly at small
probability levels (e.g., Pf<0.001). With the aid of improved com-
putational efficiency, a sensitivity study was performed to explore
the effects of vertical spatial variability on the slope failure risk. It
was found that the vertical spatial variability affects significantly
the slope failure risk.

In the end, it is also worthwhile to point out that although the
computational effort is significantly reduced by SS-based RFEM in

terms of time and number of finite element analyses of slope
stability (from 20.8 to 0.8 d and from 60,000 to 2300 in the slope
example), thousands of finite element analyses are still required at
extremely small probability levels (e.g., Pf<10

−4∼10−5). It might
take a few days to finish the calculation on a commonly used
desktop computer (e.g., the one used in this study) at such small
probability levels. More importantly, the computational time gen-
erally increases as the finite element model becomes more sophis-
ticated. This possibly occurs when a finer finite element mesh and/
or advanced soil constitutive models are applied in the finite
element analysis of slope stability, the slope geometry increases,
or a three-dimensional slope problem is concerned. In such a case,
evaluating slope failure probability and risk by RFEM with the
consideration of spatial variability at small probability levels is still
a computationally intensive problem and is not a trivial task in
slope engineering practice. More efforts on this aspect are still
needed in future study.
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Fig. 8 Overall risk of slope failure at different safety levels
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