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Abstract—Current methods for detecting nonlinear determ
ism in a time series require long and stationary data records
most of them assume that the observed dynamics arise
from the internal, deterministic workings of the system, and
stochastic portion of the signal~the noise component! is as-
sumed to be negligible. To explicitly account for the stochas
portion of the data we recently developed a method based
stochastic nonlinear autoregressive~SNAR! algorithm. The
method iteratively estimates nonlinear autoregressive mo
for both the deterministic and stochastic portions of the sign
Subsequently, the Lyapunov exponents~LE! are calculated for
the estimated models in order to examine if nonlinear de
minism is present in the deterministic portion of the fitt
model. To determine if nonlinear dynamic analysis of heart-r
fluctuations can be used to assess arrhythmia susceptibilit
predicting the outcome of invasive cardiac electrophysiolo
study ~EPS!, we applied the SNAR algorithm to noninvasive
measured resting sinus-rhythm heart-rate signals obtained
16 patients. Our analysis revealed that a positive LE was hig
correlated to a patient with a positive outcome of EPS.
found that the statistical accuracy of the SNAR algorithm
predicting the outcome of EPS was 88%~sensitivity5100%,
specificity575%, positive predictive value580%, negative pre-
dictive value5100%, p50.0019!. Our results suggest that th
SNAR algorithm may serve as a noninvasive probe for scre
ing high-risk populations for malignant cardiac arrhythmia
© 2002 Biomedical Engineering Society.
@DOI: 10.1114/1.1451074#

Keywords—Stochastic nonlinear autoregressive mod
Lyapunov exponent, Nonlinear dynamics, Heart-rate variabi

INTRODUCTION

From the time heart-rate variability~HRV! was first
appreciated as a harbinger of sudden cardiac deat
postmyocardial infarction patients by Wolfet al.,38 many
studies have established a significant relationship
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tween decreased HRV and susceptibility to lethal ve
tricular arrhythmias17,29 or sudden cardiac death.6,21 A
major issue has been how to describe HRV mathem
cally. The phenomenon of fluctuations in the interv
between consecutive heart beats has been the subje
investigations using a wide range of methodologies
cluding time-domain,2,12 frequency-domain,7,18

geometric,24 and nonlinear19,20,28 methods. Although
these techniques have been shown to be potentially p
erful tools for characterizing various complex phys
ological systems, none has been established as a rel
and accurate predictor of life threatening arrhythmias

With the general recognition of nonlinear dynami
theory in the mid-1980s, it was proposed that HR
should be viewed as the result of nonlinear determini
in the regulatory systems governing the heart rate.
rameters indicative of possible low-dimensional nonl
ear determinism include Lyapunov exponent~LE!,
strange attractors, and the correlation dimension.15,19,20

For example, it has been suggested that the correla
dimension ~CD! could be used to distinguish patien
who develop ventricular fibrillation during the monito
ing period from those who do not.30 Obtaining a reliable
CD is not an easy task, however. The data record len
needed to identify a nonlinear system is estimated
increase approximately as 10 to the power of the CD
the system.32 Thus, for most experimental data only low
dimensional nonlinear systems can be identified durin
stationary segment of data.

Unlike the CD, LE values can be more reliably es
mated using fewer data records.1 For example, the
present authors,9 Aguirre and Billings,3 and Barahona
and Poon4 have found that, using the nonlinear autor
gressive~NAR! model, nonlinear dynamical systems ca
be accurately modeled even under conditions of h
noise and for data record lengths as small as 1000 po
in some cases. Clinical application of the NAR mod
has shown that nonlinear determinism is prevalent
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193Nonlinear Dynamics of Heart-Rate Fluctuations
healthy hearts, and that nonlinear determinism is
creased in patients with congestive heart failure.26

In this study, we present a new computational alg
rithm to quantify nonlinear heart-rate dynamics. T
method relies on fitting a stochastic nonlinear autoreg
sive ~SNAR! model to the heart-rate time series a
estimating the Lyapunov exponent for the estima
models. We coined the term SNAR model to emphas
that the method models both the deterministic~system
dynamics! and the stochastic~noise dynamics! compo-
nents of the system.8,10 The SNAR algorithm has bee
shown to be accurate for relatively short and noisy d
records10,23 and more accurate than the tradition mod
order search criteria such as the Akaike information c
terion or minimum description length.8,22,23We have pre-
viously shown that the SNAR provides far superior p
rameter estimation than does the deterministic N
model.8,10

The objective of this study is to demonstrate the a
plicability and reliability of the SNAR algorithm
~through LE value estimation! in predicting the outcome
of cardiac electrophysiologic study~EPS!. Electrophysi-
ologic study is a highly sensitive procedure widely us
in clinical practice to determine the source of abnorm
heart rhythms. Programed electrical stimulation, dur
EPS, is an invasive procedure considered to be the m
reliable patient screening modality for sustained ve
tricular arrhythmias. However, the balance of test co
risks, and effectiveness has led to an increasing dem
for noninvasive screening modalities. Our results sugg
that LE values estimated from a SNAR model, applied
noninvasive electrocardiographic recordings, may se
r-
tic

rm
er,
er,
r-
-

t

d
t

as a reliable, noninvasive screening technique for ma
nant ventricular arrhythmias.

METHODS
SNAR Analysis

For the SNAR analysis, we utilize a previously deve
oped algorithm that is accurate in determining bo
whether determinism is present in a time series hea
corrupted with stochastic noise, and whether this de
minism has chaotic attributes, i.e., sensitivity to initi
conditions.8,9 The latter is indicated by a positive LE
The method is based on the fast orthogonal search~FOS!
algorithm previously developed by Korenberg22,23 and it
relies on fitting a stochastic nonlinear autoregress
model to the time series followed by an estimation of t
LE of the model over the observed distribution of sta
for the system. Estimation of the SNAR model is
two-step procedure in which deterministic terms in t
nonlinear difference equation model are first identifie
then stochastic NAR model parameters are estimated
practice, linear and nonlinear model order selections
seldom knowna priori and so it becomes necessary
consider how to determine the model structure. This
especially important in the case of nonlinear syste
since the number of candidate model terms is very lar
The SNAR algorithm, which exploits the orthogon
~i.e., uncorrelated! property, is designed to provide a
optimum model term selection so as to determine wh
of the model terms are significant or not.

In the following section we briefly explain the SNAR
algorithm. The third-order SNAR model process is d
fined as
y~n!5 (
k51
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whereK is the maximum deterministic linear model o
der, (L1 ,L2) is the maximum second-order determinis
model order, and (M1 ,M2 ,M3) is the maximum third-
order deterministic model order. The terme(n) in Eq.
~1! is considered a noise source or prediction error te
where P is the maximum stochastic linear model ord
Q is the maximum second-order stochastic model ord
and R is the maximum third-order stochastic model o
der. The parametersa(k), b( l 1 ,l 2), and c(m1 ,m2 ,m3)
represent coefficients of the deterministic linear, seco
order, and third-order autoregressive~AR! terms, respec-
tively. The parametersd(p), f (q1 ,q2), and g(r 1 ,r 2 ,r 3)
represent coefficients of the stochastic linear, seco
order, and third-order autoregressive terms, respectiv

The first step of the SNAR model involves estimatin
the deterministic linear and nonlinear AR terms acc
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194 ARMOUNDAS et al.
rately without considering the noise sourcee(n). The
next step is then to estimate coefficientsa(k), b( l 1 ,l 2),
andc(m1 ,m2 ,m3) associated with the chosen significa
model terms using the least-squares approach. O
proper linear and nonlinear deterministic AR mod
terms have been selected using our robust model o
search criterion, the noise source or the prediction e
terms are estimated by subtracting the deterministic p
tion of the dynamics from the experimentally obtain
output response. The next step is to estimate only
significant parameters associated with the prediction
ror terms using the same robust model order search
terion as described above. The procedure of finding o
the significant deterministic and stochastic terms is th
repeated several times to increase the accuracy of
coefficient estimates, until there is little change in t
model. For the present analysis, we have chosen
SNAR model order to be 20 linear, with 8 second-ord
5 third-order, and 3 error terms. From the search of
deterministic terms due to the selected model ord
only those significant terms are selected~normally, only
10 terms out of 91!.

Lyapunov Exponent Estimation

Once a SNAR model is obtained, the LE of the d
terministic component~includes those terms that do n
include the prediction error terms,en) are easily obtained
by writing the deterministic part of the SNAR model a
a j-dimensional system, wherej is the value of the larg-
est lag in the SNAR model. If the SNAR model isyn

5F(yn21 ,yn22 ,•••,yn2 j 21 ,yn2 j ), where F is some
polynomial, we get

zn
(1) 5 zn21

(2) ,

zn
(2) 5 zn21

(3) ,

A A A, ~2!

zn
( j 21) 5 zn21

( j ) ,

zn
( j ) 5 F~zn21

( j ) ,zn21
( j 21) ,•••,zn21

(2) ,zn21
(1) !,

from which the Jacobian@DF(n)# is easily seen to be

DF~n!5S 0 1 0 0 ••• 0

0 0 1 0 ••• 0

0 0 0 1 A 0

A A A A � A

0 0 0 0 ••• 1

]F
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•••
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e

r

-

e

,

By evaluating the Jacobian over the time series, it
straightforward to calculate the LE of the system giv
in Eq. ~2!. In the present study we used an algorith
based onQR decomposition.11,14 For further details con-
cerning the algorithm as well as the calculation of t
LE, the reader is referred to recently published papers
this subject.8,9,22,23

Clinical Study

We applied the SNAR algorithm to heart-rate tim
series data obtained from a patient population schedu
to undergo invasive cardiac EPS. The sign of the
obtained using the SNAR algorithm was compar
against the outcome of the EPS.

We studied 16 patients at the electrophysiology lab
ratory at New England Medical Center. All patients e
rolled in the study gave informed consent for both t
recording of the ECG data and the EPS. The pati
clinical characteristics are presented in Table 1. Surf
electrocardiographic data, in the form of three orthogo
lead projections~Frank orthogonal leads!, were recorded
for 4–5 min, while the patient’s heart was in sinu
rhythm. Electrocardiographic signals were preamplifi
~gain 1000 for sensitivity 1 cm/mV! and filtered~0.05–
100 Hz! in the cardiograph. Analog data from each
three orthogonal ECG leads were digitized simul
neously~1000 Hz with 12 bit resolution! after additional
amplification, and stored on the portable computer.

We first identified ECG complexes, then determin
fiducial points by a template-matching-based QRS de
tion algorithm.31 The annotation file was left not edite

TABLE 1. Patient characteristics. DC: dilated
cardiomyopathy; IC: idiopathic cardiomyopathy: RVD: right
ventricular dysplasia; RHD: rhematic heart disease; VT:
ventricular tachycardia; S: syncope; VF: ventricular
fibrillation; NSVT: nonsustained ventricular tachycardia; EF:
ejection fraction; MI: myocardial infarction; Y: yes; N: no; M:

male; and F: female.

Heart Presenting
Study Age (yrs)/Sex EF/MI disease arrhythmia

1 72 M 15 N CAD VT
2 67 M 45 Y CAD VT
3 59 M 45 Y CAD S
4 74 M 65 Y DC S
5 69 M 34 Y CAD VT
6 74 M 30 Y CAD VF
7 31 M 40 N RVD VT
8 57 F 60 N RHD VT
9 79 M 42 N IC VT

10 61 M 18 N CAD VF
11 67 M 35 Y CAD NSVT
12 65 M 28 Y CAD VT
13 65 M 40 N CAD VT
14 57 M 35 Y CAD S
15 73 M 38 Y CAD VF
16 73 M 35 Y CAD VT
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195Nonlinear Dynamics of Heart-Rate Fluctuations
and reflected locations of normal as well as abnorm
QRS complexes~premature ventricular depolarization
supraventricular beats, aberrantly conducted sinus be!.
Once fiducial points for all complexes were identifie
RR intervals for consecutive beats were calculated. F
lowing RR interval calculation, the heart-rate signal w
obtained using an efficient approach previously derive5

Electrophysiologic Study

All patients referred for diagnostic EPS were eligib
for this study. The indications for the selection of
patient for the study were broad and representative o
typical electrophysiology referral population. Program
ventricular stimulation was performed with up to thr
ventricular extrastimuli, using a protocol previous
described.25 Patients were excluded if a permanent pa
maker had previously been implanted. Twelve patie
had documented coronary disease, ten of whom ha
history of myocardial infarction. Eight patients had eje
tion fraction lower than 40%. Five studies were co
ducted while the patients were on antiarrhythmic dru

The results of EPS werea priori defined by the mos
severe ventricular arrhythmia elicited during each stu
and were categorized as: either sustained ventricular
chycardia~VT!, a monomorphic ventricular rhythm tha
persisted for at least 30 s or required active terminat
by either pacing or DC cardioversion due to hemod
namic collapse; or ventricular fibrillation~VF!, a self-
sustained polymorphic ventricular rhythm at a rate
excess of 280 bpm that required defibrillation for term
nation. Patients were considered to have an induc
e

of
s
of

AR
e

i-
the
is

ure
re
-

arrhythmia@positive ~POS!# only if sustained VT or VF
was elicited, otherwise they were classified as having
inducible arrhythmia@negative~NEG!#.

Statistics

Chi-squared analysis was used to analyze the corr
tion between SNAR estimation and the outcome of EP
All p values reflect single-sided tests;p values less than
0.05 were deemed significant. We used the Man
Whitney test to compare the LE of patients with a neg
tive or positive EPS.

RESULTS
Simulation Results of Discrete and Continuous Syste

Using the SNAR Model

In this section, we illustrate the efficacy of the st
chastic NAR model for detecting nonlinear determinis
in short time series from discrete and continuous noi
driven nonlinear dynamic systems. Two such well-know
systems, the Henon map and the Lorenz attractor, w
simulated, and the performance of the stochastic N
algorithm was compared to that of the determinis
NAR algorithm. Note that the stochastic NAR algorith
models both the system and the noise dynamics, whe
the deterministic NAR algorithm models only the syste
dynamics. Since the main focus of the present study i
identify deterministic chaos in noise-driven system
noise was added to both simulations.

For the first example, we consider the Henon m
with a Gaussian white-noise~GWN! source, en , de-
scribed by the following difference equation:
yn5
3.168yn2110.3yn222yn21

2 1ken , if 20.1,yn,5

0.1en , otherwise
. ~4!
o-
tic
ise
q.

on-
the
n-
s

ace
ri-
The second line of Eq.~4! was necessary to prevent th
system from approaching infinity for large values ofk.
The value ofk was adjusted to provide different levels
the signal-to-noise ratio~SNR!, which was computed a
the ratio of the variance of the signal to the variance
the noise.

To demonstrate the advantages of the stochastic N
model algorithm in estimating the coefficients of th
Henon map, we simulated Eq.~4! with 500 data points
and a SNR of29 dB. The latter signifies that the var
ance of the noise is about 2.8 times greater than
variance of the signal, and in this case the noise
significant enough to completely obliterate the struct
of the strange attractor for the Henon map. LE we
calculated using the estimated NAR models and Eqs.~2!
and ~3!. The deterministic NAR model is the same alg
rithm as the stochastic NAR model, including automa
model order search, but it does not model the no
source. The true model order for the Henon map of E
~4! includes two linear lags, and one second-order n
linear lag. The space of candidate terms from which
SNAR algorithm chose potential terms included five li
ear lags (yn21 ,...,yn25), and three second-order lag
(yn21yn21 ,...,yn23yn23 ,...,yn22yn23), resulting in a
total of 12 terms~including a constant!. With the sto-
chastic NAR model, we also selected a candidate sp
with three linear lags for the noise terms. For compa
son, we also show the global LE~time going to infinity!
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196 ARMOUNDAS et al.
of the corresponding noiseless Henon map~’’global LE
for noiseless case’’! together with the local LE calculate
on the same 500 data points, but with no attempt
estimate their limit as time goes to infinity, using the tr
system equations~’’local LE for noisy case’’!. As shown
in Table 2, the deterministic NAR model incorrectly pr
vided a negative LE whereas the stochastic NAR mo
correctly identified the underlying system as having
positive largest LE. Note that a positive Lyapunov exp
nent is an indication of a deterministic chaotic syste
This example signifies that noise can cause problem
deciding whether a system is deterministically chaotic
not and that a sensitive method such as the SNAR a
rithm is needed to correctly determine whether a giv
system is truly deterministic or not.

As an example of the continuous nonlinear dynam
system, the Lorenz equations were simulated
follows:37

dx/dt516~y2x!,

dy/dt5x~45.922z!2y, ~5!

dz/dt5xy24z.

TABLE 2. Lyapunov exponents for the Henon map with
Gaussian white noise „NÄ500 data points, SNR ÄÀ9 dB ….

Global LE for
noiseless case

Local LE for
noisy case Deterministic Stochastic

1 0.61 0.86 20.05 0.46
2 22.35 22.60 22.32 22.74
-

For both the deterministic and the stochastic NAR mo
els, a search space of ten linear, five second-order,
four third-order terms was used. In addition, a sea
space of three error lag terms was used for the stocha
NAR model. Results based on 1000 data points
shown in Table 3. The data were sampled with a tim
step of 0.01, and thex variable was used for the analysi
Dynamic noise in the form of three independent realiz
tions of GWN, was added to all three system variables
Eq. ~5! to provide a SNR of25 dB. Notice that inde-
pendent dynamic noise added to all three variables
fectively corresponds to a nonlinear noise source, des
the fact that the individual terms are i.i.d. Gaussian ra
dom variables. Figure 1 shows the Lorenz attractor
1000 data points without~left panel! and with ~right
panel! the 25 dB noise. For the Lorenz system both th
deterministic and the stochastic NAR models had
single positive LE regardless of whether the models w
estimated on 1000 data points~Table 3!. However, the
stochastic NAR model provided an estimate for the la

TABLE 3. Lyapunov exponents for the Lorenz attractor with
Gaussian white noise „NÄ1000 data points, SNR ÄÀ5 dB ….

Global LE for
noiseless case

Local LE for
noisy case Deterministic Stochastic

1 2.16 1.30 0.12 0.83
2 0.00 20.22 25.11 25.31
3 232.40 231.37 269.42 271.70
4 269.52 272.61
5 269.54 272.63
6 269.55
FIGURE 1. Lorenz attractor with „right
panel … and without „left panel … À5 dB
noise „NÄ1000 data points ….



197Nonlinear Dynamics of Heart-Rate Fluctuations
TABLE 4. RR interval statistics for the patient subject group „NTOB: number of thrown out beats, RMSSD RR: root-mean sum of
squares of differences between adjacent RR intervals; RMSSD NN: root-mean sum of squares of differences between adjacent
normal-to-normal intervals; VT: ventricular tachycardia; VF: ventricular fibrillation; NSVT: nonsustained ventricular tachycardia;

NEG: negative; POS: positive, NA: not applicable; and S: significance ….

Mean6SD RR RMSSD RR RMSSD NN Induced Maximum Lyapunov Surrogate data MLE
Study NTOB (ms) (ms) (ms) arrhythmia exponent (MLE) Mean6SD, S (significance)

1 74 (18%) 6436120 174.4 85.88 VT (POS) POS (0.474) 20.18160.162, (4.03)
2 7 (2%) 937646 76.5 40.21 VT (POS) POS (0.561) 20.43560.168 (5.93)
3 36 (7%) 727648 77.1 10.87 NSVT (NEG) NEG (20.330)
4 17 (5%) 908677 90.3 24.99 NSVT (NEG) POS (0.773) 20.31460.332 (11.64)
5 290 (65%) 7556166 286.2 16.11 VT (POS) POS (0.435) 20.36460.332 (2.40)
6 22 (4%) 864685 139.1 20.12 VT (POS) POS (0.464) 20.43460.254 (3.53)
7 11 (4%) 10856120 131.6 114.5 NEG NEG (20.168)
8 9 (2%) 786643 51.8 17.94 NEG POS (0.760) 20.74860.719 (2.11)
9 2 (1%) 914641 47.9 30.93 NSVT (NEG) NEG (20.636)
10 25 (5%) 638656 74.9 22.28 NEG NEG (20.238)
11 153 (46%) 7456196 346.0 80.63 VT (POS) POS (0.125) 20.14160.111 (2.39)
12 34 (6%) 695660 100.2 4.90 NSVT (NEG) NEG (20.382)
13 108 (26%) 11796215 240.2 78.29 NEG NEG (20.054)
14 2 (0%) 720615 22.5 9.84 VT (POS) POS (1.231) 20.57960.218 (8.28)
15 21 (5%) 869699 156.1 12.78 VF (POS) POS (0.850) 20.15360.137 (7.32)
16 2 (1%) 1487637 31.6 31.70 VT (POS) POS (0.583) 20.46160.211 (4.96)
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est LE that was closer to the true value than did
deterministic model. Clearly, both algorithms overes
mated the total model order as indicated by the la
number of spurious negative LE exponents. The simu
tions were repeated ten times with independent real
tions of the noise process. In all cases both the de
ministic and the stochastic algorithm gave results sim
to those in Table 3. Similar to the discrete case, beca
SNAR exclusively models the noise source, it provid
better characterization of the deterministic system.

Clinical Study

We studied 16 patients@15 male and one female, from
31 to 79 years old~the average was 65.2611.2!#. In
Table 4, the mean and standard deviation of the durat
of the RR intervals, the square root of the mean of
sum of the squares of differences~RMSSD! between
adjacent RR intervals~RMSSD RR!, as well as the
square root of the mean of the sum of the squares
differences between adjacent normal-to-normal interv
~RMSSD NN! of the 16 patients is presented.

Application of Stochastic Nonlinear Autoregressive
Analysis to Predicting the Outcome of EPS

To investigate the ability of the SNAR algorithm t
provide accurate detection of nonlinear determinism
heart-rate fluctuations, we applied the SNAR algorith
to heart-rate time series data obtained from a pat
population scheduled to undergo invasive cardiac E
The subject-by-subject LE results are presented in Ta
-
-

e

f

t
.

4. A positive or negative Lyapunov exponent is our pr
diction of correspondence to a patient positive or ne
tive for EPS, respectively. A positive LE obtained fro
the SNAR identified the inducible patient populatio
with sensitivity 100%, specificity 75%, positive predic
tive value 80%, negative predictive value 100%, a
overall accuracy~defined as true positive and true neg
tive over all studies! 88% ~P,0.002!. The SNAR was
able to correctly predict the outcome of EPS in thr
cases with base-line prolongation of the unfiltered Q
complex due to bundle branch block or other intrave
tricular conduction. In addition, the Lyapunov expone
correctly predicted the EPS outcome in one patient w
had high ventricular ectopy (.10%!.

In Fig. 2 we show representative Poincare´ plots of the
three groups of patients. The left, middle, and right pa
els represent VT, nonsustained VT, and noninducible
rhythmia, respectively. A study by Garfinkelet al. has
shown that such Poincare´ plots may be used to distin
guish dynamics between normal and diseas
conditions.13 It is not clear whether differences in dy
namics between groups of subjects can be found in
data. Poincare´ plots require subjective interpretatio
rather than quantitative analysis.

To compare the Lyapunov exponents in patients w
had a positive or negative EPS, we used the Man
Whitney U test and found that the amplitude of the L
in patients with positive EPS was statistically signi
cantly higher compared to those patients with negat
EPS ~p50.0063!.
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FIGURE 2. Poincaré plots of consecutive RR interval time series.
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Application of Stochastic Nonlinear Autoregressive
Analysis in Predicting the Outcome of EPS in

Normal-to-Normal Beat Sequences

We also analyzed the patient data in the case that o
normal-to-normal beat sequences were included. A b
was classified as good when both of the following cri
ria were satisfied:~i! the morphology criterion, which
required the correlation coefficient between the curr
beat and the average beat to be greater than 0.95, an~ii !
the RR criterion, which required that the current R
interval be less than 25% premature or delayed from
mean RR interval of the previous five beats. If the m
phology criterion was not satisfied for a beat, then t
and the next beat~and their corresponding RR interval!
were classified as bad ones. If the RR criterion was
satisfied for a beat, then only that~and its corresponding
RR interval! was classified as a bad beat. After all b
beats were discarded, the good beats were shifted
ward so as to form a normal-to-normal sequence
beats. In Table 4, we present the number of thrown-
beats~NTOB! and the percent of the NTOBs out of th
total number of beats in each data file.

Following the above methodology, the analysis resu
of the SNAR algorithm predicted the outcome of EP
with sensitivity 100%, specificity 40%, positive predi
t

-

tive value 62%, negative predictive value 100%, a
overall accuracy 69%~p50.05!.

Confirmation of Determinism of Time Series Using
Surrogate Data

In order to ensure that the SNAR algorithm is n
itself introducing deterministic nonlinearities, we pe
formed a test on only the time series which had resul
in positive Lyapunov exponents. The time series we
subjected to the surrogate data technique. The goal of
surrogate data transformation is to destroy the nonlin
dynamics in the time series. This leaves a time se
with only linear properties. If the SNAR proceeds to fin
coefficients which lead to positive LE, then we kno
that SNAR introduces spurious nonlinear dynamics.

We employed the amplitude-adjusted Fourier tra
form algorithm to generate surrogate data from the or
nal time series.34 The surrogate data are created by re
caling the original time series followed by the Fouri
transform of the rescaled time series. This manipulat
leads to the surrogate data having the same Fourier s
trum. Finally, the surrogate time series is rescaled o
more by applying the inverse map, so that it has
same amplitude distribution as the original time serie
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199Nonlinear Dynamics of Heart-Rate Fluctuations
To test the statistical significance of the surrog
data, we computed a dimensionless quantity,S, defined
as

S5
uxd2xsurr̄u

ssurr
, ~6!

wherexd is the LE value for the real data, andxsurr̄ and
ssurr denote the mean value and the standard deviatio
the surrogates, respectively. A value ofS greater than 2
implies that the null hypothesis is rejected, meaning t
true nonlinear dynamics exist in the experimental da

For each of the positive LE heart-rate time ser
~including both normal and non-normal beats!, we gen-
erated ten surrogate data sets and applied the SN
algorithm to estimate the corresponding LE of each. T
mean and standard deviation values of the LE are p
vided in Table 4. We consistently found negative LE f
all of the surrogate data sets, meaning that the posi
LE found in the original data sets~Table 4! were due to
inherently nonlinear dynamics governing the syste
This is confirmed by the fact that for those with a po
tive LE, the significance factorS, as determined using
Eq. ~6!, is greater than the value of two~Table 4!. There-
fore, the null hypothesis of the computed measure reje
linear correlation.

DISCUSSION

In this study, we evaluated the applicability and re
ability of the SNAR algorithm, as a potential noninv
sive technique for screening patients for malignant v
tricular arrhythmias. The SNAR algorithm employ
nonlinear principles to capture heart-rate dynamics. T
method presented in this article overcomes some of
deficiencies associated with the traditional methods
detecting nonlinear determinism. The stochastic NAR
proach allows an efficient estimation of the NAR mod
coefficients as well as the error terms, and makes
possible to decouple system parameters from no
model parameters. This enables the approach to be a
rate for detecting nonlinear determinism for data leng
as short as 500 data points, and for a SNR as low as29
dB, in certain circumstances. With the shorter data len
requirement, stationarity requirements are more ea
satisfied. Importantly, in some cases when either the d
length is short or the SNR is low, the deterministic NA
model is unable to correctly identify sensitivity to initia
conditions in a time series, whereas the stochastic N
model can. The method presented is computation
fast, thus it has the potential for on-line application
clinical settings. Despite short RR interval series,
SNAR predicted the outcome of EPS with 88% accura
f

-

It has been suggested that variability in the heart r
is due to deterministic chaos in the physiological cont
systems that govern the function of the heart.26,33 How-
ever, a recent analysis based on calculation of both
correlation dimension, and the nonlinear prediction err
on experimental and surrogate data, failed to prov
evidence for the presence of low-dimensional chaos
the heart.20 The normal heart beat is initiated by a grou
of pacemaker cells in the sinus node. In isolation,
sinus node appears to be relatively stable, produc
heart beats at a regular rate. This is evident in he
transplant patients where the nervous innervation to
heart is missing. In these patients the instantaneous h
rate shows much less variation than in normal subject27

This implies that an important source of the normal va
ability is due to the external forcing of the sinus node
the nervous system. Thus, the normal heart-rate varia
ity could be an example of a system where the fluct
tions arise as a consequence of a nonlinear determin
system ~the sinus node! being forced by a high-
dimensional input~the activity in the nerves innervatin
the sinus node!. It has been suggested that the variabil
seen in the heart rate is not due to the action of
deterministic component of the system, but rather sho
be attributed to a high-dimensional input to the syst
that controls the heart.9 The activity in autonomic nerves
is not only determined by simple feedback from t
baroreceptors~pressure sensors! in the cardiovascular
system, but is also influenced by inputs from many oth
systems, including hormonal systems, and higher cen
such as the cerebral cortex. Thus, transition from
higher-dimensional nonlinear behavior during norm
physiological functioning to lower-dimensional nonline
determinism seen with patients who recorded posit
EPS is consistent with the fact that heart-rate variabi
is reduced in patients with cardiac disease.

The negative LE obtained for those patients with t
negative EPS most likely reflects a high-dimensional s
tem. To reliably estimate a high-dimensional syste
would require many data points, thus, a negative LE m
have been obtained due to having only limited heart-r
data~note that even if we had had more data points,
stationarity assumption would be violated and the res
would be suspect!.

In this study, the SNAR algorithm applied to sho
time series of non-normal-to-normal beats, irrespect
of the presence of bundle branch block or ventricu
ectopy, was a more accurate predictor of the outcome
EPS than was application to the normal-to-normal be
a result that is consistent with the results of Huiku
et al.16 who recently demonstrated that short-term frac
scaling exponents analyzed without exclusion of the p
mature beats performed even better as a predicto
all-cause mortality rate than that after editing for prem
ture beats. Furthermore, the SNAR algorithm correc
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200 ARMOUNDAS et al.
predicted the outcome of EPS in three cases with bun
branch block and in one case with a high incidence
ectopic activity (.10%). This is an advantage of th
SNAR algorithm compared to other proposed nonin
sive screening techniques like the time-domain sign
averaged electrocardiogram and QT dispersion that c
not be applied to patients with intraventricul
conduction abnormalities such as bundle bran
block.35,36

A limitation of this pilot study was the small numbe
of patients enrolled. Further investigations of the pred
tive value of the SNAR algorithm needs to be conduc
in larger and more homogeneous patient populat
groups. In addition, it will be important in future studie
to compare SNAR with other noninvasive measures
arrhythmic vulnerability as well as evaluate the ability
SNAR to predict arrhythmia-free survival.

In summary, in this patient population, SNAR appea
to be a promising noninvasive technique, with the pot
tial to be used for screening populations susceptible
ventricular arrhythmias.

ACKNOWLEDGMENT

This work was supported by the Whitaker Foundatio

REFERENCES

1Abarbanel, H. D. I. Analysis of Observed Data. New Yor
Springer, 1996.

2Adamson, P. B., M. H. Huang, E. Vanoli, R. D. Foreman,
J. Schwartz, and S. S. Hull. Unexpected interaction betw
adrenergic blockade and heart-rate variability before and a
myocardial infarction. A longitudinal study in dogs at hig
and low risk for sudden death.Circulation 90:976–982,
1994.

3Aguirre, L. A., and S. A. Billings. Identification of model
for chaotic systems from noisy data: Implications for perfo
mance and nonlinear filtering.Physica D85:239–258, 1995.

4Barahona, M., and C. S. Poon. Detection of nonlinear
namics in short, noisy time series.Nature (London)381:215–
217, 1996.

5Berger, R. D., S. Akselrod, D. Gordon, and R. J. Cohen.
efficient algorithm for spectral analysis of heart-rate variab
ity. IEEE Trans. Biomed. Eng.33:900–904, 1986.

6Bigger, J. T., J. L. Fleiss, R. C. Steinman, L. M. Rolnitzk
R. E. Kleiger, and J. N. Rottman. Frequency-domain m
sures of heart period variability after myocardial infarctio
Circulation 85:164–171, 1992.

7Bigger, Jr., J. T., L. R. Rolnitzky, R. C. Steinman, and J.
Fleiss. Predicitng mortality after myocardial infarction fro
the response of RR variability to antiarrhythmic drug thera
J. Am. Coll. Cardiol.23:733–740, 1994.

8Chon, K. H., K. P. Yip, B. M. Camino, D. J. Marsh, and N
H. Holstein-Rathlou. Modeling nonlinear determinism
short time series from noise driven discrete and continu
systems.Int. J. Bifurcation Chaos Appl. Sci. Eng.10:2745–
2766, 2000.

9Chon, K. H., J. K. Kanters, R. J. Cohen, and N. H. Holste
-

Rathlou. Detection of chaotic determinism in time seri
from randomly forced maps.Physica D99:471–486, 1997.

10Chon, K. H., M. J. Korenberg, and N. H. Holstein-Rathlo
Application of fast orthogonal search to linear and nonline
stochastic systems.Ann. Biomed. Eng.25:793–801, 1994.

11Eckman, J. P., S. O. Kamphorst, D. Ruelle, and S. Cilibe
Lyapunov exponents from time series.Phys. Rev. A34:4971–
4979, 1985.

12Faber, T. S., A. Staunton, K. Hvatkova, A. J. Camm, and
Malik. Stepwise strategy of using short- and long-term hea
rate variability for risk stratification after myocardial infarc
tion. PACE 19:1845–1851, 1996.

13Garfinkel, A., P. S. Chen, D. O. Walter, H. S. Karagueuzia
B. Kogan, S. J. Evans, M. Karpoukhin, C. Hwang, T. Uchid
M. Gotoh, O. Nwasokwa, P. Sager, and J. N. Weiss. Qu
periodicity and chaos in cardiac fibrillation.J. Clin. Invest.
99:156–157, 1997.

14Geist, K., U. Parlitz, and W. Lauterborn. Comparison of d
ferent methods for computing Lyapunov exponents.Prog.
Theor. Phys.83:875–893, 1990.

15Grassberger, P., and I. Procaccia, Measuring the strange
of strange attractors.Physica D9:183–208, 1983.
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