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Abstract—Current methods for detecting nonlinear determin- tween decreased HRV and susceptibility to lethal ven-
ism in a time series require long and stationary data records, astricular arrhythmia¥? or sudden cardiac deati’ A

most of them assume that the observed dynamics arise only __. . . .
from the internal, deterministic workings of the system, and the major issue has been how to describe HRV mathemati-

stochastic portion of the signdthe noise componenis as- cally. The phenomenon of fluctuations in the inte_rVal
sumed to be negligible. To explicitly account for the stochastic between consecutive heart beats has been the subject of

portion of the data we recently developed a method based on ajnvestigations using a wide range of methodologies in-
stochastic nonlinear autoregressivENAR) algorithm. The cluding time—domair‘?;lz frequency-domaiﬁ;w

method iteratively estimates nonlinear autoregressive models . 24 . 120,28
for both the deterministic and stochastic portions of the signal. geometrlcz, and nonlinear’ methods. Although

Subsequently, the Lyapunov exponefit€) are calculated for ~ these techniques have been shown to be potentially pow-
the estimated models in order to examine if nonlinear deter- erful tools for characterizing various complex physi-

minism is present in the deterministic portion of the fitted ological systems, none has been established as a reliable

model. To determine if nonlinear dynamic analysis of heart-rate and accurate predictor of life threatening arrhythmias
fluctuations can be used to assess arrhythmia susceptibility by With th | it f i d -
predicting the outcome of invasive cardiac electrophysiologic ! € general recognition of nonfinear dynamics

study (EPS, we applied the SNAR algorithm to noninvasively —theory in the mid-1980s, it was proposed that HRV
measured resting sinus-rhythm heart-rate signals obtained fromshould be viewed as the result of nonlinear determinism
16 patients. Our analysis revealed that a positive LE was highly in the regulatory systems governing the heart rate. Pa-
correlated to a patient with a positive outcome of EPS. We 5 neters indicative of possible low-dimensional nonlin-
found that the statistical accuracy of the SNAR algorithm in det . include L E
predicting the outcome of EPS was 88%ensitivity=100%, ear cdeterminism Include yapunqv ex_poneﬂt )2'0
specificity=75%, positive predictive value80%, negative pre-  Strange attractors, and the correlation dimensior:
dictive value=100%, p=0.0019. Our results suggest that the For example, it has been suggested that the correlation
SNAR algorithm may serve as a noninvasive probe for screen- dimension (CD) could be used to distinguish patients
ing_high-risk populations for malignant cardiac arrhythmias. \yhq develop ventricular fibrillation during the monitor-
© 2002 Biomedical Engineering Society. . iod f th ho do ndt.Obtaini liabl
[DOI: 10.1114/1.1451074 ing period from those who do ndt.Obtaining a reliable
CD is not an easy task, however. The data record length

) _ ) needed to identify a nonlinear system is estimated to
Keywords—Stochastic  nonlinear — autoregressive  model, jhcrease approximately as 10 to the power of the CD of
Lyapunov exponent, Nonlinear dynamics, Heart-rate variability. the systen?z Thus, for most experimental data only low-
dimensional nonlinear systems can be identified during a
stationary segment of data.

Unlike the CD, LE values can be more reliably esti-
mated using fewer data recortisFor example, the
present author$,Aguirre and Billings® and Barahona
and Poof have found that, using the nonlinear autore-
gressive(NAR) model, nonlinear dynamical systems can

, _ be accurately modeled even under conditions of high
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10031. Electronic mail: chon@ccny.cuny.edu has shown that nonlinear determinism is prevalent in
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INTRODUCTION

From the time heart-rate variabilittHRV) was first
appreciated as a harbinger of sudden cardiac death in
postmyocardial infarction patients by Waf al,*® many
studies have established a significant relationship be-
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healthy hearts, and that nonlinear determinism is de- as a reliable, noninvasive screening technique for malig-
creased in patients with congestive heart faiftire. nant ventricular arrhythmias.

In this study, we present a new computational algo-
rithm to quantify nonlinear heart-rate dynamics. The METHODS i
method relies on fitting a stochastic nonlinear autoregres- SNAR Analysis
sive (SNAR) model to the heart-rate time series and For the SNAR analysis, we utilize a previously devel-
estimating the Lyapunov exponent for the estimated oped algorithm that is accurate in determining both
models. We coined the term SNAR model to emphasize whether determinism is present in a time series heavily
that the method models both the determiniggystem corrupted with stochastic noise, and whether this deter-
dynamicg and the stochasti¢noise dynamics compo- minism has chaotic attributes, i.e., sensitivity to initial
nents of the systef’® The SNAR algorithm has been conditions®® The latter is indicated by a positive LE.
shown to be accurate for relatively short and noisy data The method is based on the fast orthogonal se&fcS
record$®?® and more accurate than the tradition model algorithm previously developed by Korenb&g® and it
order search criteria such as the Akaike information cri- relies on fitting a stochastic nonlinear autoregressive
terion or minimum description lengft?>?*We have pre-  model to the time series followed by an estimation of the
viously shown that the SNAR provides far superior pa- LE of the model over the observed distribution of states
rameter estimation than does the deterministic NAR for the system. Estimation of the SNAR model is a
model®1° two-step procedure in which deterministic terms in the

The objective of this study is to demonstrate the ap- nonlinear difference equation model are first identified,
plicability and reliability of the SNAR algorithm  then stochastic NAR model parameters are estimated. In
(through LE value estimatigrin predicting the outcome  practice, linear and nonlinear model order selections are
of cardiac electrophysiologic stud{PS. Electrophysi- seldom knowna priori and so it becomes necessary to
ologic study is a highly sensitive procedure widely used consider how to determine the model structure. This is
in clinical practice to determine the source of abnormal especially important in the case of nonlinear systems
heart rhythms. Programed electrical stimulation, during since the number of candidate model terms is very large.
EPS, is an invasive procedure considered to be the mostThe SNAR algorithm, which exploits the orthogonal
reliable patient screening modality for sustained ven- (i.e., uncorrelated property, is designed to provide an
tricular arrhythmias. However, the balance of test cost, optimum model term selection so as to determine which
risks, and effectiveness has led to an increasing demandof the model terms are significant or not.
for noninvasive screening modalities. Our results suggest In the following section we briefly explain the SNAR
that LE values estimated from a SNAR model, applied to algorithm. The third-order SNAR model process is de-
noninvasive electrocardiographic recordings, may serve fined as
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whereK is the maximum deterministic linear model or- der. The parametera(k), b(l,l5), and c(m;,m,,m3)

der, (L1,L5) is the maximum second-order deterministic represent coefficients of the deterministic linear, second-
model order, and NI;,M,,M3) is the maximum third- order, and third-order autoregressii&R) terms, respec-
order deterministic model order. The teretn) in Eq. tively. The parameterd(p), f(q4,q,), andg(rq,r,rs)

(1) is considered a noise source or prediction error term represent coefficients of the stochastic linear, second-
where P is the maximum stochastic linear model order, order, and third-order autoregressive terms, respectively.
Q is the maximum second-order stochastic model order, The first step of the SNAR model involves estimating
and R is the maximum third-order stochastic model or- the deterministic linear and nonlinear AR terms accu-
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rately without considering the noise soureén). The
next step is then to estimate coefficieatd), b(l,,1,),
andc(my,m,,m3) associated with the chosen significant

ARMOUNDAS et al.

TABLE 1. Patient  characteristics. DC: dilated
cardiomyopathy; IC: idiopathic cardiomyopathy: RVD: right

ventricular dysplasia; RHD: rhematic heart disease; VT:
ventricular tachycardia; S: syncope; VF: ventricular

model terms using the least-squares approach. OnCeiprillation; NSVT: nonsustained ventricular tachycardia; EF:

proper linear and nonlinear deterministic AR model

terms have been selected using our robust model order

search criterion, the noise source or the prediction error
terms are estimated by subtracting the deterministic por-
tion of the dynamics from the experimentally obtained

output response. The next step is to estimate only the

significant parameters associated with the prediction er-

ror terms using the same robust model order search cri-

terion as described above. The procedure of finding only
the significant deterministic and stochastic terms is then

repeated several times to increase the accuracy of the

coefficient estimates, until there is little change in the

model. For the present analysis, we have chosen the

SNAR model order to be 20 linear, with 8 second-order,
5 third-order, and 3 error terms. From the search of 91
deterministic terms due to the selected model orders,
only those significant terms are select@drmally, only

10 terms out of 91

Lyapunov Exponent Estimation

Once a SNAR model is obtained, the LE of the de-
terministic componentincludes those terms that do not
include the prediction error terms,) are easily obtained
by writing the deterministic part of the SNAR model as
a j-dimensional system, whejeis the value of the larg-
est lag in the SNAR model. If the SNAR model ys,

=F(Yn-1.Yn-2:"*»¥Yn-j-1,Yn—j), Where F is some
polynomial, we get
A0 = A,
2 =,
3 (2)
A = A
20 = R, AP, 2P, AN,

from which the JacobiapDF(n)] is easily seen to be

1 0
0 1
DF(n)=
0 0 0 0 1
dF JF JF dF dF

)

ejection fraction; MI: myocardial infarction; Y: yes; N: no; M:
male; and F: female.

Heart Presenting

Study Age (yrs)/Sex EF/MI disease arrhythmia
1 72 M 15N CAD VT
2 67 M 45Y CAD VT
3 59 M 45Y CAD S
4 74 M 65Y DC S
5 69 M 34Y CAD VT
6 74 M 30Y CAD VF
7 31 M 40 N RVD VT
8 57 F 60 N RHD VT
9 79 M 42 N IC VT
10 61 M 18 N CAD VF

11 67 M 35Y CAD NSVT

12 65 M 28Y CAD VT
13 65 M 40 N CAD VT
14 57 M 3BY CAD S
15 73 M 38Y CAD VF
16 73 M 3BY CAD VT

By evaluating the Jacobian over the time series, it is
straightforward to calculate the LE of the system given
in Eq. (2). In the present study we used an algorithm
based orQR decompositiort!** For further details con-
cerning the algorithm as well as the calculation of the
LE, the reader is referred to recently published papers on
this subjecf®222

Clinical Study

We applied the SNAR algorithm to heart-rate time
series data obtained from a patient population scheduled
to undergo invasive cardiac EPS. The sign of the LE
obtained using the SNAR algorithm was compared
against the outcome of the EPS.

We studied 16 patients at the electrophysiology labo-
ratory at New England Medical Center. All patients en-
rolled in the study gave informed consent for both the
recording of the ECG data and the EPS. The patient
clinical characteristics are presented in Table 1. Surface
electrocardiographic data, in the form of three orthogonal
lead projectiongFrank orthogonal leaglswere recorded
for 4-5 min, while the patient's heart was in sinus
rhythm. Electrocardiographic signals were preamplified
(gain 1000 for sensitivity 1 cm/mMand filtered(0.05—
100 H2 in the cardiograph. Analog data from each of
three orthogonal ECG leads were digitized simulta-
neously(1000 Hz with 12 bit resolutionafter additional
amplification, and stored on the portable computer.

We first identified ECG complexes, then determined
fiducial points by a template-matching-based QRS detec-
tion algorithm?®! The annotation file was left not edited
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and reflected locations of normal as well as abnormal arrhythmia[positive (POS] only if sustained VT or VF
QRS complexegpremature ventricular depolarizations, was elicited, otherwise they were classified as having no
supraventricular beats, aberrantly conducted sinus bheats inducible arrhythmignegative(NEG)].

Once fiducial points for all complexes were identified, o

RR intervals for consecutive beats were calculated. Fol- Statistics

Iowing RR interval calculation, the heart-rate Signal was Chi_squared analysis was used to analyze the correla-
obtained using an efficient approach previously derived. tion between SNAR estimation and the outcome of EPS.
All p values reflect single-sided tesgsyalues less than
Electrophysiologic Study 0.05 were deemed significant. We used the Mann-
All patients referred for diagnostic EPS were eligible Whitney test to compare the LE of patients with a nega-
for this study. The indications for the selection of a Ve Or positive EPS.
patient for the study were broad and representative of a
typical electrophysiology referral population. Programed . _ ) :
ventricular stimulation was performed with up to three Simulation Result_s of Discrete and Continuous Systems
ventricular extrastimuli, using a protocol previously Using the SNAR Model
described” Patients were excluded if a permanent pace-  In this section, we illustrate the efficacy of the sto-
maker had previously been implanted. Twelve patients chastic NAR model for detecting nonlinear determinism
had documented coronary disease, ten of whom had ain short time series from discrete and continuous noise-
history of myocardial infarction. Eight patients had ejec- driven nonlinear dynamic systems. Two such well-known
tion fraction lower than 40%. Five studies were con- systems, the Henon map and the Lorenz attractor, were
ducted while the patients were on antiarrhythmic drugs. simulated, and the performance of the stochastic NAR
The results of EPS wera priori defined by the most  algorithm was compared to that of the deterministic
severe ventricular arrhythmia elicited during each study NAR algorithm. Note that the stochastic NAR algorithm
and were categorized as: either sustained ventricular ta-models both the system and the noise dynamics, whereas
chycardia(VT), a monomorphic ventricular rhythm that the deterministic NAR algorithm models only the system
persisted for at least 30 s or required active termination dynamics. Since the main focus of the present study is to
by either pacing or DC cardioversion due to hemody- identify deterministic chaos in noise-driven systems,
namic collapse; or ventricular fibrillatiofivF), a self- noise was added to both simulations.
sustained polymorphic ventricular rhythm at a rate in For the first example, we consider the Henon map
excess of 280 bpm that required defibrillation for termi- with a Gaussian white-nois€GWN) source, e,, de-
nation. Patients were considered to have an inducible scribed by the following difference equation:

RESULTS

3.168/,_1+0.3y,_,—y2_,+ke,, if —0.1<y,<5
"~ 0.1e,, otherwise '

Yn 4

The second line of Eq4) was necessary to prevent the calculated using the estimated NAR models and E2js.
system from approaching infinity for large values lof and (3). The deterministic NAR model is the same algo-
The value ofk was adjusted to provide different levels of rithm as the stochastic NAR model, including automatic
the signal-to-noise rati¢SNR), which was computed as model order search, but it does not model the noise
the ratio of the variance of the signal to the variance of source. The true model order for the Henon map of Eg.
the noise. (4) includes two linear lags, and one second-order non-

To demonstrate the advantages of the stochastic NARlinear lag. The space of candidate terms from which the
model algorithm in estimating the coefficients of the SNAR algorithm chose potential terms included five lin-
Henon map, we simulated E¢4) with 500 data points  ear lags ¥,_1,-.-.Yn_5), and three second-order lags
and a SNR of—9 dB. The latter signifies that the vari-  (Yn_1Yn_1+---¥Yn-3Yn_3,---¥Yn_2Yn_3), resulting in a
ance of the noise is about 2.8 times greater than thetotal of 12 terms(including a constant With the sto-
variance of the signal, and in this case the noise is chastic NAR model, we also selected a candidate space
significant enough to completely obliterate the structure with three linear lags for the noise terms. For compari-
of the strange attractor for the Henon map. LE were son, we also show the global L&Eme going to infinity
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TABLE 2. Lyapunov exponents for the Henon map with TABLE 3. Lyapunov exponents for the Lorenz attractor with
Gaussian white noise (N=500 data points, SNR =—9 dB). Gaussian white noise (N=1000 data points, SNR =—5 dB).
Global LE for  Local LE for Global LE for  Local LE for
noiseless case  noisy case  Deterministic  Stochastic noiseless case  noisy case  Deterministic Stochastic
1 0.61 0.86 —-0.05 0.46 1 2.16 1.30 0.12 0.83
2 -2.35 —2.60 -2.32 —2.74 2 0.00 -0.22 —5.11 —5.31
3 —32.40 —31.37 —69.42 —-71.70
4 —69.52 —72.61
5 —69.54 —72.63
6 —69.55

of the corresponding noiseless Henon ni&global LE
for noiseless casg"together with the local LE calculated
on the same 500 data points, but with no attempt to
estimate their limit as time goes to infinity, using the true
system equation€'local LE for noisy case’). As shown For both the deterministic and the stochastic NAR mod-
in Table 2, the deterministic NAR model incorrectly pro- €ls, a search space of ten linear, five second-order, and
vided a negative LE whereas the stochastic NAR model four third-order terms was used. In addition, a search
correctly identified the underlying system as having a space of three error lag terms was used for the stochastic
positive largest LE. Note that a positive Lyapunov expo- NAR model. Results based on 1000 data points are
nent is an indication of a deterministic chaotic system. shown in Table 3. The data were sampled with a time
This example signifies that noise can cause problems instep of 0.01, and the variable was used for the analysis.
deciding whether a system is deterministically chaotic or Dynamic noise in the form of three independent realiza-
not and that a sensitive method such as the SNAR algo-tions of GWN, was added to all three system variables in
rithm is needed to correctly determine whether a given EQ. (5) to provide a SNR of—5 dB. Notice that inde-
system is truly deterministic or not. pendent dynamic noise added to all three variables ef-
As an example of the continuous nonlinear dynamic fectively corresponds to a nonlinear noise source, despite
system, the Lorenz equations were simulated asthe fact that the individual terms are i.i.d. Gaussian ran-
follows:3’ dom variables. Figure 1 shows the Lorenz attractor for
1000 data points withoutleft pane) and with (right
dx/dt=16(y—x), pane) the —5 dB noise. For the Lorenz system both the
deterministic and the stochastic NAR models had a
dy/dt=x(45.92-2) -y, (5) single positive LE regardless of whether the models were
estimated on 1000 data point$able 3. However, the
dz/dt=xy—4z. stochastic NAR model provided an estimate for the larg-

e FIGURE 1. Lorenz attractor with  (right
panel) and without (left panel) —5 dB
noise (N=1000 data points ).

v
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TABLE 4. RR interval statistics for the patient subject group (NTOB: number of thrown out beats, RMSSD RR: root-mean sum of
squares of differences between adjacent RR intervals; RMSSD NN: root-mean sum of squares of differences between adjacent
normal-to-normal intervals; VT: ventricular tachycardia; VF: ventricular fibrillation; NSVT: nonsustained ventricular tachycardia;

NEG: negative; POS: positive, NA: not applicable; and S: significance ).

Mean=SD RR RMSSD RR RMSSD NN Induced Maximum Lyapunov Surrogate data MLE

Study NTOB (ms) (ms) (ms) arrhythmia exponent (MLE) Mean=SD, S (significance)
1 74 (18%) 643+120 174.4 85.88 VT (POS) POS (0.474) —0.181+0.162, (4.03)
2 7 (2%) 937+46 76.5 40.21 VT (POS) POS (0.561) —0.435+0.168 (5.93)
3 36 (7%) 727+48 77.1 10.87 NSVT (NEG) NEG (—0.330)

4 17 (5%) 90877 90.3 24.99 NSVT (NEG) POS (0.773) —0.314+0.332 (11.64)
5 290 (65%) 755+166 286.2 16.11 VT (POS) POS (0.435) —0.364+0.332 (2.40)
6 22 (4%) 864+85 139.1 20.12 VT (POS) POS (0.464) —0.434+0.254 (3.53)
7 11 (4%) 1085+120 131.6 1145 NEG NEG (—0.168)

8 9 (2%) 78643 51.8 17.94 NEG POS (0.760) —0.748+0.719 (2.11)
9 2 (1%) 914+41 47.9 30.93 NSVT (NEG) NEG (—0.636)

10 25 (5%) 638+56 74.9 22.28 NEG NEG (—0.238)

11 153 (46%) 745+196 346.0 80.63 VT (POS) POS (0.125) —0.141+0.111 (2.39)
12 34 (6%) 69560 100.2 4.90 NSVT (NEG) NEG (—0.382)

13 108 (26%) 1179+215 240.2 78.29 NEG NEG (—0.054)

14 2 (0%) 720*15 22.5 9.84 VT (POS) POS (1.231) —0.579+0.218 (8.28)
15 21 (5%) 869+99 156.1 12.78 VF (POS) POS (0.850) —0.153+0.137 (7.32)
16 2 (1%) 1487+37 31.6 31.70 VT (POS) POS (0.583) —0.461+0.211 (4.96)

est LE that was closer to the true value than did the 4. A positive or negative Lyapunov exponent is our pre-
deterministic model. Clearly, both algorithms overesti- diction of correspondence to a patient positive or nega-
mated the total model order as indicated by the large tive for EPS, respectively. A positive LE obtained from
number of spurious negative LE exponents. The simula- the SNAR identified the inducible patient population
tions were repeated ten times with independent realiza-yith sensitivity 100%, specificity 75%, positive predic-
tions of the noise process. In all cases both the deter-iie value 80%, negative predictive value 100%, and
ministic and the stochastic algorithm gave results similar overall accuracy(defined as true positive and true nega-

to those in Tgble 3. Similar to the.dlscrete case, beqausetive over all studiels 88% (P<0.002. The SNAR was
SNAR exclusively models the noise source, it provides . .
7 S able to correctly predict the outcome of EPS in three
better characterization of the deterministic system. . . . ,
cases with base-line prolongation of the unfiltered QRS
complex due to bundle branch block or other intraven-
tricular conduction. In addition, the Lyapunov exponent
We studied 16 patien{d5 male and one female, from  correctly predicted the EPS outcome in one patient who
31 to 79 years oldthe average was 65t211.2]. In had high ventricular ectopy>10%).
Table 4, the mean and standard deviation of the durations  In Fig. 2 we show representative Poincatets of the
of the RR intervals, the square root of the mean of the three groups of patients. The left, middle, and right pan-
sum of the squares of differencé®RMSSD between  els represent VT, nonsustained VT, and noninducible ar-
adjacent RR interval{RMSSD RR, as well as the  rhythmia, respectively. A study by Garfinket al. has

square root of the mean of the sum of the squares of shown that such Poincarglots may be used to distin-
differences between adjacent normal-to-normal intervals guish dynamics between normal and diseased

(RMSSD NN of the 16 patients is presented. conditions® It is not clear whether differences in dy-

namics between groups of subjects can be found in our

Application of Stochastic Nonlinear Autoregressive  data. Poincareplots require subjective interpretation

To investigate the ability of the SNAR algorithm to To compare the Lyapunov exponents in patients who
provide accurate detection of nonlinear determinism in had a positive or negative EPS, we used the Mann—
heart-rate fluctuations, we applied the SNAR algorithm Whitney U test and found that the amplitude of the LE
to heart-rate time series data obtained from a patientin patients with positive EPS was statistically signifi-
population scheduled to undergo invasive cardiac EPS.cantly higher compared to those patients with negative
The subject-by-subject LE results are presented in Table EPS (p=0.0063.

Clinical Study
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Ventricular Tachycardia Non-Sustained Ventricular Tachycardia Non-Inducible Arrhythmia
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FIGURE 2. Poincare plots of consecutive RR interval time series.

Application of Stochastic Nonlinear Autoregressive tive value 62%, negative predictive value 100%, and
Analysis in Predicting the Outcome of EPS in overall accuracy 69%p=0.05).
Normal-to-Normal Beat Sequences

We also analyzed the patient data in the case that only  confirmation of Determinism of Time Series Using

normal-to-normal beat sequences were included. A beat Surrogate Data
was classified as good when both of the following crite-
ria were satisfied(i) the morphology criterion, which In order to ensure that the SNAR algorithm is not

required the correlation coefficient between the current itself introducing deterministic nonlinearities, we per-
beat and the average beat to be greater than 0.95jiand formed a test on only the time series which had resulted
the RR criterion, which required that the current RR in positive Lyapunov exponents. The time series were
interval be less than 25% premature or delayed from the subjected to the surrogate data technique. The goal of the
mean RR interval of the previous five beats. If the mor- surrogate data transformation is to destroy the nonlinear
phology criterion was not satisfied for a beat, then that dynamics in the time series. This leaves a time series
and the next beatand their corresponding RR intervals  with only linear properties. If the SNAR proceeds to find
were classified as bad ones. If the RR criterion was not coefficients which lead to positive LE, then we know
satisfied for a beat, then only th@nd its corresponding  that SNAR introduces spurious nonlinear dynamics.
RR interva) was classified as a bad beat. After all bad We employed the amplitude-adjusted Fourier trans-
beats were discarded, the good beats were shifted for-form algorithm to generate surrogate data from the origi-
ward so as to form a normal-to-normal sequence of nal time serie$* The surrogate data are created by res-
beats. In Table 4, we present the number of thrown-out caling the original time series followed by the Fourier
beats(NTOB) and the percent of the NTOBs out of the transform of the rescaled time series. This manipulation
total number of beats in each data file. leads to the surrogate data having the same Fourier spec-
Following the above methodology, the analysis results trum. Finally, the surrogate time series is rescaled once
of the SNAR algorithm predicted the outcome of EPS more by applying the inverse map, so that it has the
with sensitivity 100%, specificity 40%, positive predic- same amplitude distribution as the original time series.
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To test the statistical significance of the surrogate It has been suggested that variability in the heart rate

data, we computed a dimensionless quan®ydefined is due to deterministic chaos in the physiological control
as systems that govern the function of the h&&rt How-
ever, a recent analysis based on calculation of both the
|Xd—XT correlation dimension, and the nonlinear prediction error,
S:T’ (6) on experimental and surrogate data, failed to provide

evidence for the presence of low-dimensional chaos in
- the hear® The normal heart beat is initiated by a group
wherexg is the LE value for the real data, axd, and of pacemaker cells in the sinus node. In isolation, the
o denote the mean value and the standard deviation ofgjnus node appears to be relatively stable, producing
the surrogates, respectively. A value fgreater than 2 neart peats at a regular rate. This is evident in heart
implies that the null hypothesis is rejected, meaning that transplant patients where the nervous innervation to the
true nonlinear dynamics exist in the experimental data. peart is missing. In these patients the instantaneous heart
For each of the positive LE heart-rate time series rate shows much less variation than in normal subjécts.
(including both normal and non-normal beatee gen-  Thjs implies that an important source of the normal vari-
erated ten surrogate data sets and applied the SNARgpjlity is due to the external forcing of the sinus node by
algorithm to estimate the corresponding LE of each. The he nervous system. Thus, the normal heart-rate variabil-
mean and standard deviation values of the LE are pro- ity could be an example of a system where the fluctua-
vided in Table 4. We consistently found negative LE for tjons arise as a consequence of a nonlinear deterministic
all of the surrogate data sets, meaning that the positivesystem (the sinus node being forced by a high-
LE found in the original data set§able 4 were due to  gimensjonal inpufthe activity in the nerves innervating
inherently nonlinear dynamics governing the system. ne sinus node It has been suggested that the variability
This is confirmed by the fact that for those with a posi- seen in the heart rate is not due to the action of the
tive LE, the significance facto§, as determined using  geterministic component of the system, but rather should
Eq. (6), is greater than the value of tw@able 4. There-  pe attributed to a high-dimensional input to the system
fore, the null hypothesis of the computed measure rejectsthat controls the heaftThe activity in autonomic nerves
linear correlation. is not only determined by simple feedback from the
baroreceptors(pressure sensorsn the cardiovascular
system, but is also influenced by inputs from many other
DISCUSSION systems, including hormonal systems, and higher centers
such as the cerebral cortex. Thus, transition from the
In this study, we evaluated the applicability and reli- higher-dimensional nonlinear behavior during normal
ability of the SNAR algorithm, as a potential noninva- physiological functioning to lower-dimensional nonlinear
sive technique for screening patients for malignant ven- determinism seen with patients who recorded positive
tricular arrhythmias. The SNAR algorithm employs EPS is consistent with the fact that heart-rate variability
nonlinear principles to capture heart-rate dynamics. The is reduced in patients with cardiac disease.
method presented in this article overcomes some of the The negative LE obtained for those patients with the
deficiencies associated with the traditional methods for negative EPS most likely reflects a high-dimensional sys-
detecting nonlinear determinism. The stochastic NAR ap- tem. To reliably estimate a high-dimensional system
proach allows an efficient estimation of the NAR model would require many data points, thus, a negative LE may
coefficients as well as the error terms, and makes it have been obtained due to having only limited heart-rate
possible to decouple system parameters from noisedata(note that even if we had had more data points, the
model parameters. This enables the approach to be accustationarity assumption would be violated and the results
rate for detecting nonlinear determinism for data lengths would be suspett
as short as 500 data points, and for a SNR as low 8s In this study, the SNAR algorithm applied to short
dB, in certain circumstances. With the shorter data length time series of non-normal-to-normal beats, irrespective
requirement, stationarity requirements are more easily of the presence of bundle branch block or ventricular
satisfied. Importantly, in some cases when either the dataectopy, was a more accurate predictor of the outcome of
length is short or the SNR is low, the deterministic NAR EPS than was application to the normal-to-normal beats,
model is unable to correctly identify sensitivity to initial a result that is consistent with the results of Huikuri
conditions in a time series, whereas the stochastic NAR et al'® who recently demonstrated that short-term fractal
model can. The method presented is computationally scaling exponents analyzed without exclusion of the pre-
fast, thus it has the potential for on-line application in mature beats performed even better as a predictor of
clinical settings. Despite short RR interval series, the all-cause mortality rate than that after editing for prema-
SNAR predicted the outcome of EPS with 88% accuracy. ture beats. Furthermore, the SNAR algorithm correctly
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predicted the outcome of EPS in three cases with bundle Rathlou. Detection of chaotic determinism in time series
branch block and in one case with a high incidence of lofé?]m ra}zld%ml)ll\ﬂfogceg magsl?hysucz RI95|’_¢|47H1—|4I8§ ég?r?{

H g 0, P on, K. M., . J. Korenberg, an . F. Rolstein-ratniou.
ectopic aCtIYIty (10%). This is an advantage of _the Application of fast orthogonal search to linear and nonlinear
SNAR algorithm compared to other proposed noninva-  siochastic systemsnn. Biomed. Eng25:793—801, 1994.
sive screening techniques like the time-domain signal- *Eckman, J. P., S. O. Kamphorst, D. Ruelle, and S. Ciliberto.
averaged electrocardiogram and QT dispersion that can- Lyapunov exponents from time seri¢zhys. Rev. 84:4971—
not be applied to patients with intraventricular 12,42917)9' 11?885- A S < Hvatkova A 1. C .
conduction abnormalites such as bundle branch 20 T. S, A Staunton, K. Hvatkova, A. J. Camm, and M.

Malik. Stepwise strategy of using short- and long-term heart-
block 3-3¢

S o rate variability for risk stratification after myocardial infarc-
A limitation of this pilot study was the small number tion. PACE 19:1845-1851, 1996.
of patients enrolled. Further investigations of the predic- **Garfinkel, A, P. S. Chen, D. O. Walter, H. S. Karagueuzian,
tive value of the SNAR algorithm needs to be conducted B- Kogan, S. J. Evans, M. Karpoukhin, C. Hwang, T. Uchida,

in larger and more homogeneous patient population M: GOtoh. O. Nwasokwa, P. Sager, and J. N. Weiss. Quasi-

groups. In addition, it will be important in future studies

periodicity and chaos in cardiac fibrillatiod. Clin. Invest.
99:156-157, 1997.

to compare SNAR with other noninvasive measures of 4Geist, K., U. Parlitz, and W. Lauterborn. Comparison of dif-

arrhythmic vulnerability as well as evaluate the ability of
SNAR to predict arrhythmia-free survival.
In summary, in this patient population, SNAR appears

ferent methods for computing Lyapunov exponer®sog.
Theor. Phys83:875-893, 1990.

5Grassberger, P., and I. Procaccia, Measuring the strangeness

of strange attractor?hysica D9:183-208, 1983.

to be a promising noninvasive technique, with the poten- 16y iyri 'N. v, T. H. Mzkikallio, C.-K. Peng, A. L. Gold-
tial to be used for screening populations susceptible to berger, U. Hintze, and M. Mter. For the DIAMOND study

ventricular arrhythmias.
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