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grating away the mixing proportions for the components and the parameters for each component.As a result, the Gibbs sampling procedure only updates the latent indicator variables associatingmixture components with data observations. This particular Gibbs sampling method was �rst dis-cussed by Neal (1992) for models of categorical data and MacEachern (1994) for normal mixturemodels.Although the Gibbs sampling approach is straightforward and easily implemented, it can be slowto converge and mix poorly. When two or more mixture components have similar parameters, theGibbs sampling method may become trapped in a local mode that corresponds to an incorrectclustering of data points. Celeux et al (2000) attribute this mixing problem to the incrementalnature of the Gibbs sampler, which is unable to simultaneously move a group of observations to anew mixture component. Incremental updates are unlikely to move a single observation to a newmixture component because such an intermediate state has low probability. A sampling schemewhich allows a group of observations to be updated simultaneously may remedy this problem, sinceneighbouring observations would support the formation of a new component if appropriate.Split-merge and birth-death updates have previously been proposed by Phillips and Smith (1996)and Green and Richardson (1999). Phillips and Smith (1996) consider the birth and death of mix-ture components using a jump-di�usion sampling algorithm. In the mixture model context, theywish to estimate the number of components and approach this as a model comparison problem formodels of varying dimensions. Their algorithm generates a Markov chain by a local \jump" step inwhich discrete transitions are made between mixture models di�ering by one component and a \dif-fusion" step in which model parameters are updated between the jumps. In their one-dimensionalexample, the parameters of a possible new component are drawn from the prior. When proposingto create or delete a component, the weights of adjacent components are modi�ed appropriately.This method does not generalize easily to higher dimensional problems.Green and Richardson (1999) introduce a complex split-merge scheme in the reversible jumpframework (Green 1995). Changes to the parameter space are proposed by increasing or decreasingthe number of mixture components by one in a single iteration. The split-merge proposals arebased on conserving speci�c moment conditions and are evaluated by a Metropolis acceptanceprobability. Their method requires the inclusion of tuning parameters so that asymmetrical splitsmay be proposed and to adjust for unequal sample sizes when merging. Depending on the typeof statistical mixture model, there are numerous ways to propose an appropriate split proposal.Green and Richardson provide general guidelines in constructing split proposals that satisfy variousmoment conditions. It is not clear whether adequate split proposals are simple to construct orcompute in high-dimensional multivariate mixture problems using their technique.This article introduces a new Metropolis-Hastings method that avoids the problems associatedwith the Gibbs sampling procedure and is suitable for high-dimensional data. Typically, Metropolis-Hastings updates involve simple parametric distributions as the proposal distribution. To splitmixture components, our method employs a more complex proposal distribution obtained by usinga restricted Gibbs sampling scan for the latent class variables. This method is able to quicklytraverse the state space and frequently visit high-probability modes because it splits or mergesa group of observations in each update, thereby bypassing the incremental updates of the Gibbs2



sampler. Furthermore, although the proposal distribution used is complex, it does not need tobe specially tailored to each model, since the same scheme can be applied to any model with aconjugate prior.In Section 2, notation and terminology for the Dirichlet process mixture model and a Gibbssampling algorithm suitable for conjugate priors are introduced. Section 3 presents our split-mergeMetropolis-Hastings procedure and its variants. In Section 4, we empirically compare our split-merge method to the Gibbs sampler and demonstrate its improved performance for a categoricaldata problem. We conclude, in Section 5, by discussing possible extensions of the split-mergealgorithm and the general applicability of our new Metropolis-Hastings technique.2 A Gibbs sampling procedure for the Dirichlet process mixturemodelIn this section, we present the Dirichlet process mixture model (for early references, see Ferguson1973 and Antoniak 1974) and describe a Gibbs sampling algorithm to sample from the posteriorof this model. This procedure completely utilizes the conjugacy in the model to integrate awaymodel parameters and mixing proportions, eliminating them from the algorithm. In Section 4, thisversion of the Gibbs sampler is compared to the new split-merge Metropolis-Hastings algorithm.2.1 The Dirichlet process mixture modelWe consider a hierarchical mixture model in which the observations, y1; : : : ; yn, are modelled asa mixture of distributions having the form F (�). There is no restriction on the dimensionalityof the yi, and the data may be categorical or quantitative. For each observation yi, the modelparameters, �i , are considered to be independent draws from some mixing distribution, G. Ratherthan requiring G to take some parametric form, a Dirichlet process prior, a distribution over thespace of distribution functions, is placed on G. This yields a mixture model of the following form:yi j �i � F (�i)�i j G � GG � DP (G0; �) (1)where G0 and � are the two Dirichlet process parameters. G0 de�nes a baseline distributionfor the Dirichlet process prior, while � is a total mass parameter that takes values greater thanzero. Equation (1) represents the most basic Dirichlet process mixture model. Further stagesmay be added to this hierarchy by placing priors on � and the parameters of G0 (for example,see MacEachern 1998). The usual conditional independence assumptions for a hierarchical modelapply, so that the only dependencies are those that are explicitly shown.This model may be regarded as a countably in�nite mixture model (Ferguson 1983), a viewthat is adopted in the remainder of this article. When G is integrated over its prior distribution in3



equation (1), we see that the �i follow a generalized Polya urn scheme (for details, refer to Blackwelland MacQueen 1973 and Ferguson 1973). The prior distribution for the �i may be represented bythe following conditional distributions:�1 � G0�i j �1; : : : ; �i�1 � 1i�1+� i�1Xj=1 �(�j) + �i�1+� G0 (2)where �(�j) is the distribution which is a point mass at �j. The model of equation (1) has beensimpli�ed by integrating away the random distribution, G. We can represent the fact that (2)results in some of the �i being identical by setting �i = �ci , where ci represents the \latent class"associated with observation i. The Polya urn scheme for sampling the �i is equivalent to thefollowing scheme for sampling the latent variables, ci, and associated �c:P (ci = cj for some j<i j c1; : : : ; ci�1) = ni;cji� 1 + �P (ci 6= cj for all j<i j c1; : : : ; ci�1) = �i� 1 + � (3)where ni;c is the number of ck for k < i that are equal to c. The labelling of the indicator ci isirrelevant in the above probabilities, since counts of the ci that are equal to each other are all thatmatter. The �c are drawn independently from the initial distribution G0. The probabilities shownin (3) de�ne the Dirichlet process model and are equivalent to the mixture model in equation (1).This notation will be employed in subsequent sections.2.2 Gibbs sampling for the conjugate Dirichlet process mixture modelFor this model, if G0 is a conjugate prior for F , it is straightforward to sample from the posteriordistribution using Gibbs sampling. There have been several Gibbs sampling approaches proposed inthe Dirichlet process mixture model literature, but we consider the procedure in which conjugacy isfully exploited, which was �rst introduced by Neal (1992) and MacEachern (1994). This procedureintegrates away the model parameters, �ci . Eliminating �ci simpli�es the algorithm considerably,so that the state of the Markov chain for the Gibbs sampler now consists only of the indicators ci.The Markov chain is initialized by setting the ci to some initial state, for example, all the ci set tothe same component or all to di�erent components. The ci are then updated via Gibbs sampling byrepeatedly drawing a new value for each ci from its conditional distribution, which is proportionalto the product of its conditional prior and likelihood. Because the observations are exchangeable,the conditional prior is derived from equation (3) by considering observation i to be the last of then observations. This yields the following conditional probabilities:P (ci = cj for some j 6= i j c�i; yi) = b n�i;cjn�1+� Z F (yi; �) dH�i;cj (�)P (ci 6= cj for all j 6= i j c�i; yi) = b �n�1+� Z F (yi; �) dG0(�) (4)4



where c�i represents the cj for j 6= i, n�i;c is the number of cj for j 6= i that are equal to c, n isthe number of observations, H�i;c is the posterior distribution of � based on the prior G0 and alldata observations yj for which j 6= i and cj = c, F (yi; �) is the likelihood, and b is the appropriatenormalizing constant so that the probabilities sum to one. When G0 is a conjugate prior for F , theintegrals RF (yi; �) dG0(�) and RF (yi; �) dH�i;c(�) may be analytically computed.MacEachern (1994) demonstrated the application of this Gibbs sampling algorithm for a conju-gate normal mixture model with �xed variance. In this case, F is the normal distributionN(�i; �2),and G0 is the normal distribution N(�; �2) which is conjugate to F . Similarly, Neal (1992) illus-trated that this algorithm could be applied to categorical data. In his example, the data observa-tions are dichotomous, so F is a product of independent Bernoulli distributions, and G0 is a productof independent Beta prior distributions. In Section 4, we consider a similar categorical data exampleto establish that the algorithm we present below is an improvement over Gibbs sampling.3 A split-merge Metropolis-Hastings algorithm for the conjugateDirichlet process mixture modelWhen two or more mixture components have similar parameters, Gibbs sampling can be ine�cient.The Markov chain can become trapped in a local mode, in which two distinct mixture componentsare merged and assigned parameters which are a compromise between the two separate components.Because the Gibbs sampler incrementally updates each observation, the Markov chain must passthrough a low-probability intermediate state in order to split such a component. This leads toslow convergence to the true posterior distribution. Here, we introduce a nonincremental Markovchain sampling method based on the Metropolis-Hastings algorithm that avoids this problem. Ouralgorithm is able to split or merge groups of data points, avoiding the need to pass through alow-probability intermediate state in order to make major changes.We begin by reviewing Metropolis-Hastings updates. We then discuss two possible proposaldistributions for Metropolis-Hastings updates for the Dirichlet process mixture model, based on asimple random split and on a more complex restricted Gibbs sampling scan. Even though thesealgorithms are ergodic, performance may be further improved by combining the split-merge updateswith a regular Gibbs sampling scan.3.1 Metropolis-Hastings updatesOur algorithm, in which we propose split and merge moves that nonincrementally update groups ofobservations, is a form of the Metropolis-Hastings algorithm (Metropolis et al 1953, Hastings 1970).The Metropolis-Hastings algorithm samples from a distribution with density �(x) by �rst drawinga candidate state, x�, according to a proposal density q(x�jx). This proposed state, x�, is evaluated
5



by the Metropolis-Hastings acceptance probability which is calculated as follows:a(x�; x) = min�1; q(xjx�)q(x�jx) �(x�)�(x) � (5)The next state will be set to this candidate state with probability a(x�; x). Otherwise, the new stateremains as the current state, x. These Metropolis-Hastings updates leave the posterior distribution,�, invariant and produce a valid Markov chain Monte Carlo sampling scheme provided the chainis ergodic.As discussed by Tierney (1994), when constructing Markov chains, it is acceptable to select atransition probability at random from a set of appropriate transition probabilities. In particular,we may randomly choose amongst valid Metropolis-Hastings algorithms by randomly selecting aproposal distribution, q(x�jx). Note that when calculating the Metropolis-Hastings acceptanceprobability, the ratio, q(xjx�)q(x�jx) , may be calculated for the particular proposal distribution that waschosen rather than computing the ratio by summing over all possible proposal distributions. Bothlead to valid Metropolis-Hastings updates, but the latter calculation may be computationally in-feasible.3.2 Random split-merge proposalsFirst, we introduce the split-merge algorithm when the proposal distribution is based on a simplerandom split of the subset of observations associated with one mixture component into two separatecomponents, without reference to the properties of the observed data. This is the simplest versionof the split-merge algorithm, which we do not expect to work well, but which illustrates the basicconstruction. A more elaborate version of this procedure, based on a restricted Gibbs samplingproposal, produces more sensible splits and is discussed in Section 3.3.This split-merge approach will be applied to the conjugate Dirichlet process mixture model, inwhich the random distribution, G, and the model parameters, �ci , are integrated away. The stateof the Markov chain consists only of the mixture component indicators, ci. The Markov chain isinitialized by assigning each observation to a mixture component. Typical initial states we haveused are placing all the data in the same component and assigning each observation to a di�erentcomponent. Below, we outline the steps for the simple random split-merge procedure.3.2.1 Algorithm 1: Simple random split-merge procedure1. Select two distinct observations, i and j, at random uniformly. The random selection of thesetwo items will decide the particular Metropolis-Hastings proposal distribution considered.2. Let S denote the set of observations, k 2 f1; : : : ; ng, for which k 6= i and k 6= j, and ck = cior ck = cj .3. If items i and j belong to the same mixture component, i.e. ci = cj , then:6



(a) Propose a new assignment of data items to mixture components, denoted as csplit, inwhich component ci = cj is split into two separate components, cspliti and csplitj . Wede�ne each element of the proposal vector, csplit, as follows:� Let cspliti be a new component such that cspliti =2 fc1; : : : ; cng� Let csplitj = cj� For every observation k 2 S, let csplitk be randomly set, independently with equalprobability, to either component cspliti or csplitj� For observations k =2 S [ fi; jg, let csplitk = ck(b) Evaluate the proposal in (a) by the Metropolis-Hastings acceptance probability a(csplit; c)discussed below. If the proposal is accepted, csplit becomes the next state in the Markovchain. If the proposal is rejected, the original vector, c, remains as the next state.4. Otherwise, if i and j belong to di�erent mixture components, i.e. ci 6= cj , then:(a) Propose a new assignment of data items to mixture components, denoted as cmerge, inwhich components, ci and cj , are combined into a single component. Each element ofthe proposal vector, cmerge, is assigned as follows:� Let cmergei = cj� Let cmergej = cj� For every observation k 2 S, let cmergek = cj� For observations k =2 S [ fi; jg, let cmergek = ck(b) Evaluate the proposal in (a) by the Metropolis-Hastings acceptance probability a(cmerge; c).If the proposal is accepted, cmerge becomes the next state. If the merge proposal is re-jected, the original con�guration, c, remains as the next state.5. Repeat steps 1-4 for T iterations.Note that because the numerical values of the ck are irrelevant, it does not matter in steps3(a) and 4(a) which item, i or j, remains �xed at its original mixture component. The labels aresigni�cant only in that they distinguish which items are grouped in the same mixture component.Also note that the vectors csplit, cmerge, and c designate which mixture component is assigned toeach observation in the data | not just to observations that are involved in the split or mergesteps. However, items not associated with i, j, or set S remain unchanged and una�ected duringthe Metropolis-Hastings update.3.2.2 Metropolis-Hastings acceptance probability for the simple random split algo-rithmWhen updating the vector c associating observations with mixture components, the Metropolis-Hastings acceptance probability of equation (5) takes the following form:a(c�; c) = min �1; q(cjc�)q(c�jc) P (c�)P (c) L(c�jy)L(cjy) � (6)7



where c� is either the vector csplit or cmerge depending on the type of proposal. The posteriordistribution, �(c), in equation (5) has been expanded into a product of its factors: the prior, P (c),and the likelihood, L(cjy), where y = (y1; : : : ; yn) is the vector of observations. Note that factorsnot involving c may be ignored.The prior distribution, P (c), for the entire vector c will be a product over distinct c 2 fc1; : : : ; cngof factors presented in equation (3). This product yields the following prior distribution:P (c) = �D Qc2fc1;:::;cng(nc�1)!Qnk=1(�+k�1) (7)where D is the number of distinct mixture components contained in vector c and nc is the countof items belonging to mixture component c in c.Notice that the ratio of the prior distributions in equation (6) simpli�es considerably becausethe denominator in equation (7) will cancel, as well as factors in equation (7) associated withcomponents that are not directly involved in the Metropolis-Hastings update. For the split proposal,the prior distribution ratio reduces to the following:P (csplit)P (c) = � (ncspliti �1)! (ncsplitj �1)!(nci�1)! (8)where c represents the original state in which i and j belong to the same mixture component.Here, ncspliti and ncsplitj represent the number of observations that belong to the two split mixturecomponents. The factor of � in the numerator arises from D being one greater in csplit than in c.Similarly, for the merge proposal, the prior ratio simpli�es to:P (cmerge)P (c) = 1� (ncmergei �1)!(nci�1)! (ncj�1)! (9)where c represents the original state in which items i and j belong to separate components.The likelihood for the vector of component indicators will be a product over the n observations:L(cjy) = nYk=1 Z F (yk; �) dHk;ck(�) (10)where Hk;ck is the posterior distribution of � based on the prior G0 and all observations yl forwhich l < k and cl = ck. We assume that the integral RF (yk; �) dHk;ck(�) is analytically tractable,which is the case if G0 is a conjugate prior. Note that when k is the �rst item observed from aparticular component, then Hk;c will be the prior distribution, G0, since no data from that mixturecomponent precedes item k.Alternatively, L(cjy) may be expressed as a double product over components, c, and items,k 2 f1; : : : ; ng, associated with each component:L(cjy) = DYc=1 Yk : ck=c Z F (yk; �) dHk;c(�) (11)8



where D is the number of distinct components.Since factors involving items associated with components not directly involved in the split pro-posal will cancel, the ratio of likelihoods in equation (6) reduces to the following:L(csplitjy)L(cjy) = Yk : csplitk =cspliti Z F (yk; �) dHk;cspliti (�) Yk : csplitk =csplitj Z F (yk; �) dHk;csplitj (�)Yk : ck=ci Z F (yk; �) dHk;ci(�) (12)Similarly, for the merge proposal, the ratio of likelihoods is:L(cmergejy)L(cjy) = Yk : cmergek =cmergei Z F (yk; �) dHk;cmergei (�)Yk : ck=ci Z F (yk; �) dHk;ci(�) Yk : ck=cj Z F (yk; �) dHk;cj (�) (13)
The random split proposal distribution is the simplest version of this algorithm. The selection ofobservations, i and j, decides which Metropolis-Hastings proposal will be used. As a result, whencalculating the acceptance probability, i and j are �xed. The probability of proposing a particularsplit of the items in set S from the merged state is:q(csplitjc) = �12�ncspliti +ncsplitj �2 (14)Notice that q(csplitjc) is equivalent to q(cjcmerge).The probability of proposing a merge move for the items in S from a split state is:q(cmergejc) = 1 (15)since there is only one way to assign all items in S to the same component. Note that q(cmergejc)is equivalent to q(cjcsplit).It follows from equations (14) and (15) that the appropriate ratio of transition probabilities forthe split proposal is: q(cjcsplit)q(csplitjc) = 1�12�ncspliti +ncsplitj �2 (16)Similarly, the appropriate ratio of transition probabilities for the merge proposal is:q(cjcmerge)q(cmergejc) = �12�nci+ncj�2 (17)9



Therefore, the resulting acceptance probability (6) for a split proposal is based on the productof equations (8), (12), and (16). Likewise, the acceptance probability for a merge proposal is basedon the product of equations (9), (13), and (17). By employing the Hastings (1970) version of theMetropolis (1953) algorithm when calculating the acceptance probability, we correct for the factthat the probability of proposing a particular split is smaller than the probability of proposing tomerge the two resulting components.This basic form of our procedure illustrates how we may nonincrementally update groups ofobservations. If a proposed split is appropriate for the data, it will likely be accepted, sinceneighbouring observations will lend support for the creation of a new component, bypassing theproblem of being trapped in a local mode. Unfortunately, as stated earlier, we do not expect thesimple random split version of this algorithm to perform well. Since components are split withoutreference to the observed data, the split proposals are unlikely to be appropriate, and hence areunlikely to be accepted.3.3 Restricted Gibbs sampling split-merge proposalsNext, we describe a proposal distribution in which properties of the observed data are used to decidehow to split mixture components via a restricted Gibbs sampling scan. This yields a method inwhich reasonable splits of components are more frequently proposed. First, as a way to validate themain algorithm, we introduce the Gibbs sampling split-merge proposal when the state prior to theGibbs sampling scan is �xed. This pre-Gibbs state will be referred to as a launch state. We thenpresent a generalized version in which the launch state is itself randomly selected; in particular, wecan select the launch state by conducting several \intermediate" restricted Gibbs sampling scans.3.3.1 Restricted Gibbs sampling proposals from a �xed launch stateHere, we replace the simple random split step in Algorithm 1 (Section 3.2) by a restricted Gibbssampling scan on the component indicators, ck, starting from a predetermined �xed launch state.The �xed state version of this algorithm is not expected to be of any particular use, except asa method to prove the validity of the subsequent random launch state algorithm. The restrictedGibbs sampling proposal distribution is more elaborate than typical Metropolis-Hastings proposals.However, by �xing the state prior to the scan, the proposal probabilities may be explicitly computed,and this yields a valid Metropolis-Hastings update. Each �xed launch state for the Gibbs samplingscan de�nes one particular Metropolis-Hastings algorithm. All �xed launch states will produce validproposal distributions since they satisfy the usual requirements, such as independence of proposalsfrom past states.For the split proposal, once observations i and j have been assigned to di�erent components,other observations (i.e. those in S) that belong to the merged component will �rst be assigned toone of these two split components in some predetermined manner. Once this launch state, claunch,is determined, one restricted Gibbs sampling scan is conducted to decide how the items in S will10



be allocated between the two split components. The Gibbs sampling scan is restricted in that itis only performed on a subset of the data (set S) and can assign these items to only two of themixture components. To update a ck in S via restricted Gibbs sampling, a new value of ck is drawnfrom its (restricted) conditional distribution as follows:P (ck j c�k; yk) = n�k;ck Z F (yk; �) dH�k;ck(�)n�k;ci Z F (yk; �) dH�k;ci(�) + n�k;cj Z F (yk; �) dH�k;cj (�) (18)To simplify notation, we refer to component indicators for the launch state as ck in equation(18). However, throughout the Gibbs sampling scan, these values (as well as the values for theother terms) are continually modi�ed as the ck are incrementally updated and used for the nextcomputation leading to csplit. Here, c�k represents the cl for l 6=k in S [fi; jg, n�k;c is the numberof cl for l 6=k in S [ fi; jg that are equal to c, F (yk; �) is the likelihood, and H�k;c is the posteriordistribution of � based on the prior G0 and data observations yl such that cl = c where l 2 S[fi; jg,for which l 6=k. Again, when G0 is a conjugate prior for F , the above integrals may be analyticallycomputed.In general, the transition probability for a full sequential Gibbs sampling scan is a product ofthe conditional probabilities of each individual update. The restricted Gibbs sampling transitionprobability from state claunch to csplit is the product of the probabilities of assigning each observationk 2 S to a particular split mixture component via Gibbs sampling from the �xed launch stateas given by equation (18). In our algorithm, this product is the Metropolis-Hastings proposalprobability, q(csplitjc).For the merge proposal, as in the simple random split-merge procedure, there is still only oneway to merge items in two components to one component, so q(cmergejc) = 1. However, to obtainthe corresponding probability, q(cjcmerge), we need to calculate the probability of generating theoriginal split state from the �xed launch state in one Gibbs sampling scan. This is done in thesame way as for the split proposal, except that no actual sampling is performed since the \split"state is already known.As in the simple random split case, to obtain the Metropolis-Hastings acceptance probability, theappropriate split or merge proposal distribution ratio (now based on restricted Gibbs sampling) issubstituted into equation (6). The prior and likelihood ratios in equation (6) remain as shown inSection 3.2.Since only one scan of Gibbs sampling is conducted, we do not expect that the allocation of itemsbetween the two components has reached equilibrium. Because the Metropolis-Hastings proposaldistribution can take any form and still produce a valid algorithm, lack of convergence will notinvalidate this algorithm. However, it is quite likely that the proposed splits using a single iterationof Gibbs sampling may not be that sensible. That is, we would still like to improve the proposalsso that the splits proposed are appropriate for the data.
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3.3.2 Restricted Gibbs sampling proposals from a random launch stateEvery �xed launch state for the algorithm of the previous section produces a valid Metropolis-Hastings update. As was discussed in Section 3.1, we may select a Markov chain transition atrandom from the set of valid transitions (Tierney 1994). Therefore, a launch state for the restrictedGibbs sampling scan may be chosen at random from the set of all �xed states. However, if only asingle scan of Gibbs sampling is done from a launch state chosen uniformly at random, it may stilllead to an unreasonable assignment of observations to the two mixture components.To achieve more reasonable splits, several intermediate restricted Gibbs sampling scans are per-formed before the �nal scan. When calculating the split proposal probability, the result of the lastintermediate Gibbs sampling scan is considered the random launch state, from which the restrictedGibbs sampling transition probability is explicitly calculated. We would prefer to incorporate all ofthe intermediate Gibbs sampling scans in the proposal distribution, but summing probabilities overall of these intermediate states is computationally infeasible. Although equilibrium will probablynot be reached after only a few restricted Gibbs sampling scans, the clustering of observationsbetween the two mixture components will probably be a better reection of the actual attributesof the data (compared to just a single scan of Gibbs sampling). This version of the algorithmshows much improvement over the traditional Gibbs sampling method and previous versions of thisalgorithm (simple random split and Gibbs sampling proposals from a single �xed state). Increasingthe number of intermediate Gibbs sampling scans leads to further improvement in convergencemeasured in iterations, but at the cost of computational time per iteration. In Section 4, the e�ectof varying this tuning parameter is examined.Split proposal probabilities are calculated in the same way as for the �xed launch state Gibbssampling proposals (equation 18). For the merge proposal, to obtain q(cjcmerge), the same interme-diate Gibbs sampling operations that are performed when proposing a split must be conducted hereto arrive at a launch state, even though no actual split is performed. The Gibbs sampling transi-tion probability is calculated from the launch state (which is the last intermediate Gibbs samplingstate) to the original split state. These operations are necessary in order to produce the correctproposal ratios. Below, the procedure for the restricted Gibbs sampling split-merge procedure witha random launch state is summarized.3.3.3 Algorithm 2: Restricted Gibbs sampling split-merge procedure1. Select two distinct observations, i and j, at random uniformly.2. Let S denote the set of observations, k 2 f1; : : : ; ng, for which k 6= i and k 6= j, and ck = cior ck = cj .3. De�ne the launch state, claunch, that will be used to compute Gibbs sampling probabilities.If ci = cj, then let claunchi be set to a new component such that claunchi =2 fc1; : : : ; cng and letclaunchj = cj . Otherwise, if ci 6= cj, then let claunchi = ci and claunchj = cj . For every k 2 S, setclaunchk to either of the distinct components, claunchi or claunchj , as follows:12



� Select an initial state by randomly setting, independently with equal probability, claunchkto either claunchi or claunchj .� Modify claunch by performing t intermediate restricted Gibbs sampling scans.4. If items i and j are in the same mixture component, i.e. ci = cj , then:(a) Propose a new assignment of data items to mixture components, denoted as csplit, inwhich component ci = cj is split into two separate components, cspliti and csplitj . De�neeach element of the proposal vector, csplit, as follows:� Let cspliti = claunchi (note that claunchi =2 fc1; : : : ; cng)� Let csplitj = claunchj (which is the same as cj)� For every observation k 2 S, let csplitk be set to either component cspliti or csplitj byconducting one �nal Gibbs sampling scan from the launch state, claunch� For observations k =2 S [ fi; jg, let csplitk = ck(b) Calculate the proposal probability, q(csplitjc), by computing the Gibbs sampling transi-tion probability from the launch state, claunch, to the �nal proposed state, csplit. TheGibbs sampling transition probability is the product, over k 2 S, of the probabilities ofsetting each csplitk to its �nal value in the �nal Gibbs sampling scan.(c) Evaluate the proposal by the Metropolis-Hastings acceptance probability a(csplit; c). Ifthe proposal is accepted, csplit becomes the next state in the Markov chain. If theproposal is rejected, the original vector, c, remains as the next state.5. Otherwise, if i and j are in di�erent mixture components, i.e. ci 6= cj , then:(a) Propose a new assignment of data items to mixture components, denoted as cmerge, inwhich components, ci and cj , are combined into a single component. Assign each elementof the proposal vector, cmerge, as follows:� Let cmergei = cj� Let cmergej = cj� For every observation k 2 S, let cmergek = cj� For observations k =2 S [ fi; jg, let cmergek = ck(b) Calculate the proposal probability, q(cjcmerge), by computing the Gibbs sampling transi-tion probability from the launch state, claunch, to the original split con�guration, c. TheGibbs sampling transition probability is the product, over k 2 S, of the probabilities ofsetting each ck in the original split state to its original value in a (hypothetical) Gibbssampling scan from the launch state.(c) Evaluate the proposal by the Metropolis-Hastings acceptance probability a(cmerge; c).If the proposal is accepted, cmerge becomes the next state. If the merge proposal isrejected, the original con�guration, c, remains as the next state.6. Repeat steps 1-5 for T iterations.
13



3.3.4 Computational issuesWhen calculating the prior ratios in equations (8) and (9), counts of observations associated witheach mixture component are required. Similar counts are needed when performing Gibbs sampling,as seen in equations (4) and (18). To improve e�ciency, it is useful to maintain these countsincrementally in an array, by decrementing and incrementing appropriate counts when observationsare moved between components. Depending on the statistical model, an incremental update of therelevant su�cient statistics may also be advantageous for use in likelihood calculations.Another way of reducing the computational cost is to minimize the time spent searching the arraysfor mixture components that are in use. Since the numerical value of a component indicator is onlyrelevant in that it distinguishes components from one another, when creating new components,previous labels that are currently not being utilized may be recycled. This will reduce the timerequired to search through the count arrays.As a �nal consideration, when calculating the ratios for the Metropolis-Hastings acceptanceprobability of equation (6), to avoid numerical overow problems, the priors, likelihoods, andproposal probabilities should be calculated in terms of logarithms.3.4 Cycling Metropolis-Hastings and Gibbs sampling updatesThe split-merge Metropolis-Hastings algorithm produces a Markov chain that leaves the posteriordistribution invariant. The Markov chain is also irreducible, since for any statistical model in whichthe data have non-zero prior probability, there is a non-zero probability that the chain started fromany initial state will assign every observation to a separate mixture component as a result of aseries of split moves. Further, except for some extremely degenerate models, the Markov chain isaperiodic, since there is a non-zero probability that the chain will remain in its current state (i.e.that at least some split or merge proposals have a non-zero probability of being rejected). Thesplit-merge algorithm is therefore ergodic.Even though Algorithm 2 is ergodic and produces nonincremental splits or merges of components,further improvements in convergence may be obtained by combining this algorithm with traditionalGibbs sampling. Algorithm 2 addresses the problem of making major changes in the allocation ofitems by moving observations as a cluster during a single iteration. However, it may take longerto move a single observation between components. In this situation, a \�ne tuning" approach isrequired, which the regular Gibbs sampling scan can provide. Consequently, we propose combiningthese two algorithms by alternately performing a Metropolis-Hastings update and a full scan ofGibbs sampling. By doing this, we exploit the nonincremental (major) changes from the Metropolis-Hastings step, and the incremental (minor) re�nement from the Gibbs sampling step.Tierney (Section 2.4, 1994) notes that if Markov chain transition kernels are applied in cycles, andone of the kernels is ergodic, then the cycle kernel is not guaranteed to be ergodic. However, in ourcase, since both the Metropolis-Hastings and Gibbs sampling steps have a non-zero probability of14



leaving the state unchanged, applying each transition in turn will produce an ergodic Markov chain.We can tune this algorithm by modifying the number of Metropolis-Hastings updates and thenumber of �nal Gibbs sampling scans in each full iteration. As expected, by increasing the values forboth of these tuning parameters, convergence (measured in full iterations) is improved, but at thecost of computation time per iteration. In Section 4, we illustrate the e�ects of these modi�cationsand provide guidelines for setting these tuning parameters.4 Example: Bernoulli data with a conjugate Beta priorIn this section, we empirically compare the split-merge procedure (and its variants) to Gibbs sam-pling. We consider a categorical mixture model, in which the data, y = (y1; : : : ; yn), are inde-pendent and identically distributed, such that each observation, yi, has m Bernoulli attributes,(yi1; : : : ; yim). Given the class, ci, that observation i belongs to, the item's attributes are indepen-dent of each other. This type of model is common in latent class analysis (see, for example, Everitt1984), in which the mixture components are considered latent classes that represent heterogeneousmechanisms which underly or produce the observed data. Neal (1992) considered a similar modelwhen examining the performance of the Gibbs sampling procedure discussed in Section 2. Forsimplicity of exposition, we consider only dichotomous attributes, but the model and algorithmseasily generalize to categorical attributes with more than two values.4.1 The statistical modelIn the Bayesian framework, the Bernoulli data can be modelled as a Dirichlet process mixture model.The observations, yi = (yi1; : : : ; yim), are multivariate Bernoulli, such that each yihj�i � Bernoulli(�ih),and the likelihood is as follows:F (yi; �i) = mYh=1 �yihih (1� �ih)1�yih (19)The parameters of a component, �, give the probabilities of each attribute having the value one.Each such probability is given a Beta distribution prior with parameters (�1, �0). Under G0, whichis the prior over the vector � = (�1; : : : ; �m), the �h are independent. (Note that here we usesubscripts to denote di�erent attributes rather than di�erent observations.) The density for G0 is:P (�) = mYh=1  �(�1;h + �0;h)�(�1;h) �(�0;h) ��1;h�1h (1� �h)�0;h�1! (20)where �0;h and �1;h are greater than zero.Because this is a conjugate prior for F (yi; �i), the model parameters may be integrated away.To update ci via Gibbs sampling, a new value of ci is drawn from its conditional distribution15



(equation 4), which for this model is the following, when the Beta prior and Bernoulli likelihoodare substituted:P (ci = cj for some j 6= i j c�i; yi) = b n�i;cjn�1+� mYh=1 Pk 6=i �(ck; cj)�(ykh; yih) + �yih;hn�i;cj + �0;h + �1;hP (ci 6= cj for all j 6= i j c�i; yi) = b �n�1+� mYh=1 �yih;h�0;h + �1;h (21)The delta function �(x; y) is equal to one if x = y and zero otherwise. The termPk 6=i �(ck; cj)�(ykh; yih)counts the number of observations associated with component cj that match yi with respect to at-tribute h. The second formula gives the probability for setting ci to a new mixture componentthat is currently not assigned to any other observation. In both equations, b is the factor thatnormalizes the distribution to sum to one.For the Metropolis-Hastings acceptance probability in equation (6), the prior is calculated asshown in equation (7). The appropriate ratio of the transition probabilities based on restrictedGibbs sampling is obtained by using the �rst formula in equation (21). The likelihood (equation 11)based on the Bernoulli-Beta model is as follows:L(cjy) = DYc=1 Yk : ck=c mYh=1 Pi<k �(ci; c)�(yih; ykh) + �ykh;hnk;c + �0;h + �1;h (22)If we interchange the products over k and h, equation (22) simpli�es and can be computed asfollows:L(cjy)= DYc=1 mYh=1 [� (Pk�(ck ; c)�(ykh; 0) + �0;h)=�(�0;h)] [�(Pk �(ck; c)�(ykh; 1) + �1;h)=�(�1;h)]�(nc + �0;h + �1;h)=�(�0;h + �1;h) (23)As mentioned in Section 3.3.4, it is useful to incrementally update the su�cients statistics for themodel. Here, e�ciency is improved by maintaining a count of items associated with each mixturecomponent having particular values for each attribute. This array of counts can be used for Gibbssampling (equation 21) and in the likelihood calculation above (equation 23).4.2 The simulated data setsAlthough Dirichlet process mixture models consider the number of mixture components to be count-ably in�nite, the model can nevertheless be applied to �nite mixtures. The prior chosen ensuresthat some of the in�nite number of components are given signi�cant probability, so over�tting doesnot occur. The model will assign a small probability to observations being from one of the in�nitenumber of additional components, but this does not cause serious problems. For simplicity, we willtherefore test the algorithms on simulated data from a �nite mixture.Our primary goal is to partition observations into appropriate latent classes using the Bernoulli-Beta Dirichlet process mixture model. Computationally, this classi�cation problem becomes more16



di�cult as the dimensionality increases and as the sets of attributes that distinguish the variouscomponents become more similar in structure. We illustrate this di�culty by considering threesimulated data sets, in which the number of attributes is increased so that the di�erent componentsappear more alike as the dimensionality increases.The data are composed of �ve equally-probable mixture components, in which each componentproduces a distribution over m dichotomous attributes. To maintain uniformity amongst the ex-amples, n = 100 observations were produced for each example, and 20 observations were generatedfrom each of the �ve mixture components.Data for the three simulated examples were randomly generated from the mixture distributionsshown in Tables 1-3. The mixture components are distinguished by the �rst four attributes, whichfor consistency, have been kept constant throughout all three examples. The examples di�er in thenumber of additional attributes. Dimensionality is increased by simply replicating the distributionfor the last attribute, which makes the components more similar, and thereby, more di�cult todistinguish. Note the intentional asymmetry in the construction of the mixture components, inwhich the �rst three components are more similar than the last two components. This is intendedto test whether the split-merge algorithms can handle \three-way" splits.For the following demonstrations of the algorithms, the Dirichlet process parameter, �, is set toone. A small value of � implies that the number of mixture components present in the data setis likely to be small. The �0h and �1h parameters for the Beta prior distribution have also beenset to one. These priors may not be realistic, but for consistency, these values are �xed at oneduring the simulations. In actual problems, � and the �'s would be set by prior knowledge or givenhigher-level priors. Table 1: True mixture distribution for Example 1.c P (ci = c) P (yih = 1jci = c); h = 1; : : : ; 61 0.2 .95 .95 .95 .95 .95 .952 0.2 .05 .05 .05 .05 .95 .953 0.2 .95 .05 .05 .95 .95 .954 0.2 .05 .05 .05 .05 .05 .055 0.2 .95 .95 .95 .95 .05 .05Table 2: True mixture distribution for Example 2.c P (ci = c) P (yih = 1jci = c); h = 1; : : : ; 151 0.2 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .952 0.2 .05 .05 .05 .05 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .953 0.2 .95 .05 .05 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .954 0.2 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .055 0.2 .95 .95 .95 .95 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .0517



Table 3: True mixture distribution for Example 3.c P (ci = c) P (yih = 1jci = c); h = 1; : : : ; 181 0.2 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .952 0.2 .05 .05 .05 .05 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .953 0.2 .95 .05 .05 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .954 0.2 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .055 0.2 .95 .95 .95 .95 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .054.3 Performance of the algorithmsFor each example, the Gibbs sampling algorithm was compared to �ve versions of the split-mergealgorithm: Simple Random Split, Split-Merge (0,1,0), Split-Merge (0,1,1), Split-Merge (5,1,0), andSplit-Merge (5,1,1). The �rst number in parentheses is the number of intermediate Gibbs samplingscans to reach the launch state, the second is the number of Metropolis-Hastings updates in a singleiteration, and the third is the number of complete Gibbs sampling scans after the �nal Metropolis-Hastings update. For each algorithm, all observations were assigned to the same mixture componentfor the initial state, and each algorithm was run for 2000 iterations. All simulations were performedin Matlab, Version 5.3, on a SGI system with a 200 MHz MIPS processor.The performance of each algorithm was evaluated by examining trace plots (Figures 1-3) andthe computation time per iteration (Table 4). In each trace plot, the �ve values plotted are thefraction of observations associated with the most common, two most common, three most common,four most common, and �ve most common mixture components. Since each of the �ve componentsappear equally in the samples, if the true situation were captured exactly, the �ve traces wouldoccur at values of 0.2, 0.4, 0.6, 0.8, and 1.0.Table 4: Time per iteration in seconds for algorithms tested.Algorithm Example 1 Example 2 Example 3Gibbs Sampling 1.1 1.5 1.6Simple Random Split 0.2 0.4 0.5Split-Merge (0,1,0) 0.3 0.7 0.9Split-Merge (0,1,1) 1.1 1.9 2.2Split-Merge (5,1,0) 0.9 1.9 2.5Split-Merge (5,1,1) 1.6 3.2 4.04.3.1 Example 1The �rst example is the simplest. It is relatively low-dimensional (six attributes) and has �vewell-separated mixture components. From the trace plots (Figure 1), it appears that all of thealgorithms except for the Simple Random Split have appropriately separated the data into the �ve18
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Figure 1: Trace plots of the six algorithms in Example 1.19
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Figure 2: Trace plots of the six algorithms in Example 2.20
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Figure 3: Trace plots of the six algorithms in Example 3.21



mixture components. As discussed earlier, the Simple Random Split is not expected to convergerapidly, even in simple situations, because the split proposals are usually nonsensical.By inspection, Gibbs sampling, Split-Merge (0,1,1) and (5,1,1) seem to have short burn-in timesand mix about equally well. To further examine the performances of these three algorithms, theautocorrelation times were computed for the �rst trace on the plots (corresponding to the fractionof items associated with the most common mixture component) and for the indicator variable,called I13;42, which codes if observations 13 and 42 are assigned to the same mixture component.Items 13 and 42 were generated from components 3 and 2, respectively. However, due to randomnoise, item 42 di�ers in one of the four distinguishing attributes from its true distribution (given inTable 2), which makes it as likely to have come from component 3 as from its actual component, 2.Consequently, the mean of this indicator function is approximately 0.5 (i.e. these two items shouldbe grouped together half of the time).The autocorrelation time is de�ned as one plus twice the sum of the autocorrelations for aquantity at lags one up to in�nity. This is the factor by which the sample size is e�ectivelyreduced when estimating the expectation of that quantity, when compared to an estimate basedon independent draws from the posterior distribution (Ripley 1987, Section 6.3). Autocorrelationtime was estimated by one plus the sum of the estimated autocorrelations up to the lag where theautocorrelations are approximately zero. The results are presented in Table 5.Table 5: Autocorrelation times for algorithms that converged in Example 1.Algorithm Trace 1 Indicator I13;42Gibbs Sampling 2.0 0.9Split-Merge (0,1,1) 2.1 0.7Split-Merge (5,1,1) 4.0 0.7Gibbs sampling, Split-Merge (0,1,1), and Split-Merge (5,1,1) have approximately equal autocor-relation times. Note that the slightly higher trace 1 autocorrelation time for Split-Merge (5,1,1)is not statistically signi�cant, but is due to the chance distribution of the occasional sharp peaksvisible in the trace plot (Figure 1). In this simple problem, Gibbs sampling is successful in correctlysplitting the items amongst the �ve components, so the split-merge algorithms are not necessary.Comparing Split-Merge (0,1,1) and (5,1,1), we see that the addition of several intermediate Gibbssampling scans does not improve autocorrelation times and are not worth the extra computationtime. Split-Merge (0,1,0) and (5,1,0), which do not include the �nal complete Gibbs sampling scan,also separate the data into �ve components. However, from the trace plots, it is clear that mixingis much slower than when intermediate Gibbs sampling scans are included.4.3.2 Example 2Example 2 is a higher dimensional problem (�fteen attributes), in which the posterior distribution,given the priors assigned, gives substantial probability to con�gurations with four or �ve main22



components. From the trace plots (Figure 2), we see that Gibbs sampling is extremely slow toseparate the data into four or �ve components, and remains stuck in a particular con�guration fora long time. When Gibbs sampling is initialized to all observations in a di�erent mixture component(plot not shown), the observations are quickly split into �ve components, but then stays in thatcon�guration for a very long time, thereby failing to explore the true posterior distribution. Split-Merge (5,1,1), on the other hand, mixes rapidly between the four and �ve component con�gurations.There is a drawback in that Split-Merge (5,1,1) takes double the time per iteration comparedto Gibbs sampling. However, since Gibbs sampling fails to mix adequately over the posteriordistribution and Split-Merge (5,1,1) reaches equilibrium almost immediately, the extra time periteration is clearly well spent.Split-Merge (5,1,0) seems to do reasonably well in moving between four and �ve components,but minor changes (moving one or two observations between components) are still a problem. Thesplit-merge algorithms without any intermediate Gibbs sampling scans are slow in mixing betweenfour and �ve components; however, Split-Merge (0,1,1) seems to mix better than Gibbs sampling.Again, the Simple Random Split is unable to separate the data adequately and performs the worst.4.3.3 Example 3Example 3 is the highest dimensional example (eighteen attributes) considered. The posteriordistribution, again given the prior distribution we have used, is a mixture of (mainly) four and�ve component con�gurations. The trace plots (Figure 3) show that Gibbs sampling remains in anincorrect split that is not typical of the true posterior distribution for the entire 2000 iteration run.The mixture components are now quite similar, so an incremental creation of a new component viaGibbs sampling is quite rare. If each item is initially assigned to a di�erent mixture component (plotnot shown), Gibbs sampling splits the data into �ve components immediately, but takes roughly1000 iterations to move to the four-component con�guration, showing that it mixes poorly betweenthe four and �ve component con�gurations.Split-Merge (5,1,1) separates the observations into the proper con�guration immediately andmixes well between the four and �ve components. Split-Merge (5,1,0) also mixes between four and�ve components, but the minor adjustments are slow. The two split-merge algorithms without anyintermediate Gibbs sampling scans �nd the four and �ve component con�gurations, but are stuckin the four-component split for a long time. This is a result of non-optimal Metropolis-Hastingssplit proposals. Again, the Simple Random Split performs extremely poorly.4.3.4 Summary of resultsBoth the Gibbs sampling and split-merge methods seem to work reasonably well in low-dimensionalcases. However, as the classi�cation task becomes increasingly di�cult, Gibbs sampling mixesexceedingly poorly. The cycled split-merge version that includes both intermediate Gibbs samplingscans and a full overall Gibbs sampling scan is the most successful split-merge variation. Its split23



proposals are more appropriate, yielding better mixing between di�erent major con�gurations,while the �nal Gibbs sampling scan handles the necessary minor adjustments. The split-mergealgorithms that include intermediate Gibbs sampling scans are successful in handling three-waysplits, even though this must be done by two two-way splits. Computation time per iteration isgreater than for Gibbs sampling, but in situations where Gibbs sampling is unable to arrive at thecorrect stationary distribution in any reasonable length of time, this burden is clearly acceptable.4.4 Tuning parametersIn this section, we examine the role that the tuning parameters play in our split-merge algorithm.There are three adjustable parameters: the number of intermediate Gibbs sampling scans, thenumber of Metropolis-Hastings updates conducted in a single iteration, and the number of completeGibbs sampling scans conducted after the Metropolis-Hastings updates. We reconsider the datafrom Example 2, and examine the e�ect of varying each tuning parameter holding the other twoparameters constant. Table 6 displays the computational time per iteration and autocorrelationtimes for trace 1 and indicator I13;42 for various settings of this algorithm. Trace plots are shownin Figures 4-6. Table 6: E�ects of the tuning parameters.Time per iteration Autocorrelation AutocorrelationAlgorithm in seconds time for Trace 1 time for Indicator I13;42Split-Merge (1,1,1) 2.2 57.4 1.5Split-Merge (3,1,1) 2.7 40.5 1.5Split-Merge (5,1,1) 3.2 31.9 1.6Split-Merge (10,1,1) 4.6 26.7 1.6Split-Merge (20,1,1) 7.0 24.2 1.6Split-Merge (100,1,1) 28.8 18.4 1.4Split-Merge (1,1,1) 2.2 57.4 1.5Split-Merge (1,2,1) 3.1 48.0 2.0Split-Merge (1,3,1) 4.1 19.5 1.8Split-Merge (1,4,1) 5.1 19.2 1.8Split-Merge (1,5,1) 6.2 17.6 1.9Split-Merge (1,1,0) 1.0 165.8 41.7Split-Merge (1,1,1) 2.2 57.4 1.5Split-Merge (1,1,2) 3.3 63.5 1.7Split-Merge (1,1,3) 4.5 35.9 1.0Split-Merge (1,1,5) 6.7 35.3 1.0
24
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Figure 4: Trace plots examining the e�ect of varying the number of intermediate Gibbs samplingscans. 25
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Figure 5: Trace plots examining the e�ect of varying the number of Metropolis-Hastings updatesin a single iteration.
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Figure 6: Trace plots examining the e�ect of varying the number of �nal complete Gibbs samplingscans.
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4.4.1 Varying the number of intermediate Gibbs sampling scansBetter splits are expected when more intermediate Gibbs sampling scans are performed, sincethe proposed splits will be closer to the restricted equilibrium distribution. From Figure 4, weobserve improved mixing when the number of intermediate Gibbs sampling scans used to arriveat the launch state is increased. The autocorrelation times for trace 1 are lower (compare �vevs. one-hundred intermediate scans), but there is an increased cost of computational time periteration (3.2 vs. 28.8 seconds). However, after �ve intermediate scans, the improvement is fairlyminimal. In Table 7, the acceptance rates for the Metropolis-Hastings updates are given. Thereis only minor improvement in the acceptance rate after �ve scans. When these simulations wererepeated with di�erent pseudo-random seeds, we found that, on occasion, �ve intermediate Gibbssampling scans would appear as good as 20 or 100 intermediate scans (in terms of rejection rate andautocorrelation times). Therefore, it seems that improvements level o� after only a few intermediateGibbs sampling scans, and additional scans are not worth the increased computational time.Table 7: Acceptance rate for di�erent numbers of intermediate Gibbs sampling scans.Algorithm Acceptance rate in percentSplit-Merge (1,1,1) 1.5Split-Merge (3,1,1) 3.1Split-Merge (5,1,1) 3.3Split-Merge (10,1,1) 4.1Split-Merge (20,1,1) 3.7Split-Merge (100,1,1) 4.34.4.2 Varying the number of Metropolis-Hastings updates per iterationAutocorrelation times decrease and mixing between four and �ve components improves when thenumber of Metropolis-Hastings updates is increased. However, these improvements seem to tapero� after three Metropolis-Hastings updates, while the computational cost continues to increase.Three updates per iteration seem to be the best number in this particular example. This suggeststhat a full Gibbs sampling scan is not imperative after each Metropolis-Hastings update and maybe a waste of computational time.4.4.3 Varying the number of �nal complete Gibbs sampling scansFrom Figure 6, we observe that the Metropolis-Hastings updates need to be supplemented by somecomplete Gibbs sampling scans in order to make minor clustering changes. This is also evidentfrom the autocorrelation times for I13;42, which drop from 41.7 to 1.5 when a full scan of Gibbssampling is included. Splitting or merging these two particular observations is most easily done bya small-scale incremental update. 28



The autocorrelation time for trace 1 also decreases as the number of �nal scans is increased.However, from the trace plots, it appears that di�erences in mixing are minimal. The time periteration grows when the number of �nal Gibbs sampling scans is increased, and beyond one Gibbssampling scan per iteration, it does not appear that the improvements in autocorrelation timeso�set this.4.4.4 Guidelines for selecting tuning parametersThe most critical tuning parameter is the number of intermediate Gibbs sampling scans, sincethis controls the quality of the Metropolis-Hastings split proposals. For this problem (and othersimilar problems that we have examined), a small number of scans (say, 4 to 6) is the best com-promise between computation time and autocorrelation time. For data sets in which the numberof observations per mixture component is large, more intermediate Gibbs sampling scans may berequired.Two or three Metropolis-Hastings updates per iteration appear to provide a good balance betweencomputation time and autocorrelation time. Because �nal Gibbs sampling scans take a long timeto compute, it is better to perform them after multiple Metropolis-Hastings updates, which arerelatively faster.Conducting a �nal Gibbs sampling scan after Metropolis-Hastings updates has been shown tobe a necessity. However, since these �nal Gibbs sampling scans are computationally expensive,performing more than one scan seems undesirable.5 DiscussionThe split-merge Metropolis-Hastings procedure has been shown to be an improvement over tra-ditional Gibbs sampling in high-dimensional problems in which mixture components are similar.The nonincremental clustering changes of our method avoid the problem of being trapped in localmodes, and the posterior distribution is fully explored. Implementing this method is relativelysimple and does not become more di�cult in higher dimensions. It should be straightforward toapply this method to any conjugate model, including normal mixture models for real-valued datawith the conjugate normal-inverse gamma priors for the mean and variance. The quality of theproposals can be controlled by varying the number of intermediate Gibbs sampling scans.One ine�ciency of this procedure that we are currently investigating is the random selection andtreatment of the observations, i and j, that de�ne the split or merge operation. If i and j areinitially in the same component (hence, a split is proposed), the probability that the \correct" splitcon�guration will be proposed can be as low as 25%, even when the split should be into componentsof equal size. After i and j are set to di�erent mixture components, their component labels cannotchange. Two types of problems may arise from this restriction. First, if i and j actually belongto the same mixture component, then these two items have unnecessarily been separated. If this29



problem does not occur (so i and j should be separated), a labelling problem is still possible. Theinitial random split of the other items in the merged component could assign labels biased towardsa split that is opposite to the �xed labels of i and j. The intermediate Gibbs sampling scansmay not overcome this initial bias, and are not expected to, since the component labels of i andj are not involved in these intermediate scans. Therefore, i and j end up in the \wrong" mixturecomponents. This could be �xed by allowing the labels of i and j to adapt during the intermediateGibbs sampling, but this would then need to be accounted for in the Metropolis-Hastings acceptanceprobability.Our algorithm could also be easily modi�ed by replacing the intermediate restricted Gibbs sam-pling scans by Markov chain updates of some other type. However, replacing the �nal Gibbs sam-pling scan (from the launch state) with some other update would be possible only if the transitionprobability for this update could be calculated.When the data is very high dimensional, or there are very many observations, it is possible thatour algorithm may only rarely accept the splits and merges that are proposed, even if they areappropriate. This potential problem is most easily seen for merge proposals, which will have a highprobability of being accepted only if the current split con�guration has a high probability of beingproduced from the launch state in a single Gibbs sampling scan. For di�cult problems, however,the distance that can be traversed in one Gibbs sampling scan may be small compared to theextent of posterior variation. Determining whether a split or merge proposal should be acceptedis analogous to the problem of Bayesian model choice, for which the introduction of intermediatemodels has been found to be useful (see Gelman and Meng 1998). Some analogous technique maybe useful if a low acceptance rate for split and merge proposals proves to be a problem in practice.Our main priority for future research is extending the algorithm to handle non-conjugate models,in which the model parameters cannot be analytically integrated away. We believe that this shouldbe possible, but how well the resulting algorithm will work remains to be seen.Finally, the technique we use of producing Metropolis-Hastings proposals using restricted Gibbssampling scans may be applicable in other contexts as well. Simple Gibbs sampling often fails towork well when dependencies between variables prevent one of them from changing much (or atall) when the others are �xed. This can be overcome by performing Gibbs sampling on blocksof several variables, provided that the conditional distribution for all variables in a block can besampled from. When sampling for all variables in a block is infeasible, one might propose to changeall the variables in a block simultaneously using a Metropolis-Hastings update, but �nding a suitablemulti-dimensional proposal distribution can be di�cult. An alternative that seems worth exploringis to initially propose a change to only one (or a few) of the variables in the block, and to �ndappropriate proposed values for the other variables in the block using restricted Gibbs samplingupdates, from some randomly chosen initial state. It should be possible to compute a suitableacceptance probability to make this a valid Markov chain update, as in the algorithms we havepresented in this article.
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