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Action Recognition from One Example
Hae Jong Seo, Student Member, IEEE, and Peyman Milanfar, Fellow, IEEE

Abstract—We present a novel action recognition method based
on space-time locally adaptive regression kernels and the matrix
cosine similarity measure. The proposed method uses a single ex-
ample of an action as a query to find similar matches. It does not
require prior knowledge about actions; foreground/background
segmentation, or any motion estimation or tracking. Our method
is based on the computation of novel space-time descriptors from
the query video, which measure the likeness of a voxel to its
surroundings. Salient features are extracted from said descrip-
tors and compared against analogous features from the target
video. This comparison is done using a matrix generalization
of the cosine similarity measure. The algorithm yields a scalar
resemblance volume, with each voxel indicating the likelihood of
similarity between the query video and all cubes in the target
video. Using nonparametric significance tests by controlling the
false discovery rate, we detect the presence and location of actions
similar to the query video. High performance is demonstrated
on challenging sets of action data containing fast motions, varied
contexts, and complicated background. Further experiments on
the Weizmann and KTH datasets demonstrate state-of-the-art
performance in action categorization.

Index Terms—Action Recognition, Space-time descriptor, cor-
relation and regression analysis

I. INTRODUCTION

A huge number of videos (e.g., BBC1,Youtube2) are avail-

able online today and the number is rapidly growing. Human

actions constitute one of the most important parts in movies,

TV shows, and consumer-generated videos. Analysis of human

actions in videos is considered a very important problem

in computer vision because of such applications as human-

computer interaction, content-based video retrieval, visual

surveillance, analysis of sports events and more. The term

“action” refers to a simple motion pattern as performed by

a single subject, and in general lasts only for a short period of

time, namely just a few seconds. Action is often distinguished

from activity in the sense that action is an individual atomic

unit of activity. In particular, human action refers to physical

body motion. Recognizing human actions from video is a

very challenging problem due to the fact that physical body

motion can look very different depending on the context: for

instance, similar actions with different clothes, or in different

illumination and background can result in a large appearance

variation; or, the same action performed by two different

people may look quite dissimilar in many ways.

A. Problem Specification

We present a novel approach to the problem of human

action recognition as a video-to-video matching problem.

Here, recognition is generally divided into two parts: category

1http://www.bbcmotiongallery.com
2http://www.youtube.com

classification and detection/ localization. The goal of action

classification is to classify a given action query into one of

several pre-specified categories (for instance, 6 categories from

KTH action dataset [1]: boxing, hand clapping, hand waving,

jogging, running, and walking). Meanwhile, action detection

is meant to separate an action of interest from the background

in a target video (for instance, spatiotemporal localization of a

walking person). This paper tackles both action detection and

category classification problems simultaneously by searching

for an action of interest within other “target” videos with only

a single “query” video. We focus on a sophisticated feature

representation with an efficient and reliable similarity measure

which also allows us to avoid the difficult problem of explicit

motion estimation.
In general, the target video may contain actions similar to

the query, but these will typically appear in completely differ-

ent context (See Fig. 1 left.) Examples of such differences can

range from rather simple optical or geometric differences (such

as different clothes, lighting, action speed, scale, and view

changes); to more complex inherent structural differences such

as for instance a hand-drawn action video clip (e.g., animation)

rather than a real human action.

B. Related work
Over the last two decades, many studies have attempted to

tackle this problem and made impressive progress. Approaches

can be categorized on the basis of action representation;

namely, appearance-based representation [2], [3], [4], [5],

shape-based representation [6], [7], [8], [9], optical-flow-based

representation [10], [11], [12], [13], interest-point-based rep-

resentation [1], [14], [15], [16], [17], [18], and volume-based

representation [19], [20], [21], [22], [23], [24], [25]. We refer

the interested reader to [26], [27], [28] and references therein

for a good summary.
As examples of the interest-point-based approach which has

gained a lot of interest, Niebles et al. [15], [14] considered

videos as spatiotemporal bag-of-words by extracting space-

time interest points and clustering the features, and then used

a probabilistic Latent Semantic Analysis (pLSA) model to lo-

calize and categorize human actions. Yuan et al. [29] also used

spatiotemporal features as proposed by [16]. They extended

the naive Bayes nearest neighbor classifier [30], which was

developed for object recognition, to action recognition. By

modifying the efficient searching method based on branch-

and-bound [31] for the 3-D case, they provided a very fast

action detection method. However, the performance of these

methods can degrade due to 1) the lack of enough training

samples; 2) misdetections and occlusions of the interest points

since they ignore global space-time information.
Shechtman and Irani [22] employed a three dimensional

correlation scheme for action detection. They focused on
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Fig. 1. Left: A hand-waving action and possibly similar actions, Right: Action detection problem (a) Given a query video Q, we wish to detect/localize
actions of interest in a target video T . T is divided into a set of overlapping cubes (b) space-time local steering kernels (3-D LSKs) capture the space-time
geometric structure of underlying data.

subvolume matching in order to find similar motion between

the two space-time volumes, which can be computationally

heavy. Ke et al. [23] presented an approach which uses

boosting on 3-D Haar-type features inspired by similar features

in 2-D object detection [32]. While these features are very

efficient to compute, many examples are required to train an

action detector in order to achieve good performance. They

further proposed a part-based shape and flow matching frame-

work [33] and showed good action detection performance

in crowded videos. Recently, Kim et al. [24] generalized

canonical correlation analysis to tensors and showed very good

accuracy on the KTH action dataset, but their method requires

a manual alignment process for camera motion compensation.

Ning et al. [25] proposed a system to search for human actions

using a coarse-to-fine approach with a five-layer hierarchical

space-time model. These volumetric methods do not require

background subtraction, motion estimation, or complex models

of body configuration and kinematics. They tolerate variations

in appearance, scale, rotation, and movement to some extent.

As opposed to 2-D object recognition which has recently

proven capable of learning a respectably large number of

categories (a couple of hundred), action recognition is still only

limited to about a dozen categories at best (6 for the KTH, 10

for the Weizmann, and 12 for the Hollywood2 action dataset).

Even though learning-based action recognition methods appear

to be practical in a small number of categories, they have not

yet proven to be scalable with a larger number of categories3.

Thanks to the advent of large database-driven nonparametric

approaches [34], [35], [36], instead of training sophisticated

parametric models, we can reduce the inference problem to

matching a query to an existing set of annotated databases,

posing a video-to-video matching problem. As a successful

example, Boiman et al. [30] showed that a rather simple

nearest-neighbor (NN) based image classifier in the space of

the local image descriptors is efficient and even outperforms

3The heavy computational complexity of action recognition methods com-
pared to object recognition is a possible reason, but the lack of large action
recognition datasets covering many categories is the major impediment.

the leading learning-based image classifiers such as SVM-

KNN [37] and pyramid match kernel [38].

Methods such as those in [33], [22], [25], [39], [40] which

aim at recognizing actions based solely on one query are very

useful for applications such as video retrieval from the web

(e.g., viewdle4 and videosurf5). In these methods, a single

query video is provided by users and every gallery video in

the database is compared with the given query.

C. Overview of the Proposed Approach

In this paper, our contributions to the action recognition

task are mainly two-fold. First, we propose a novel feature

representation that is derived from space-time local (steering)

regression kernels (3-D LSKs) which capture the underlying

structure of the data quite well, even in the presence of

significant distortions and data uncertainty. In fact, 3-D LSKs

measure the likeness of a voxel to its surroundings based on

computation of a distance between points measured (along

the shortest path) on a manifold6 defined by the embedding

of the video data in 4-D as [x1, x2, t, z(x1, x2, t)]. Second,

we generalize a training-free nonparametric detection scheme

to 3-D, which we developed earlier for 2-D object detection

[41]. We report state-of-the art performance on action category

classification by using the resulting nearest neighbor classifier.

In order to achieve better classification performance, we apply

space-time saliency detection [42] to larger videos in order to

automatically crop to a short action clip.

We propose to use 3-D LSKs for the problems of detec-

tion/localization of actions of interest between a query video

and a target video as nicely formulated in [22] and also

addressed in [40]. The key idea behind 3-D LSKs is to robustly

obtain local space-time geometric structures by analyzing

the radiometric (voxel value) differences based on estimated

space-time gradients, and use this structure information to

4http://www.viewdle.com
5http://www.videosurf.com
6See section II-A2 for details.
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determine the shape and size of a canonical kernel (descriptor).

The motivation to use these 3-D LSKs is the earlier successful

work on adaptive kernel regression for image denoising,

interpolation [43], deblurring [44], and superresolution [45].

The 3-D LSKs implicitly contain information about the local

motion of the voxels across time, thus requiring no explicit

motion estimation.

Referring to Fig. 2, by denoting the target video (T ),

and the query video (Q), we compute a dense set of 3-D

LSKs from each. These densely computed descriptors are

highly informative, but taken together tend to be over-complete

(redundant). Therefore, we derive features by applying dimen-

sionality reduction (namely PCA) to these resulting arrays,

in order to retain the most salient characteristics of the 3-D

LSKs. The feature collections from Q and Ti (a chunk of the

target which is the same size as the query; See Fig. 1 right)

form feature volumes FQ and FTi . We compare the feature

volumes FTi and FQ from the ith cube of T and Q to look

for matches. Inspired in part by many studies [46], [47], [48],

[49], [50] which took advantage of cosine similarity over the

conventional Euclidean distance, we employ Matrix Cosine
Similarity (MCS) as a similarity measure which generalizes

the notion of cosine similarity between two vectors [51], [52],

[53]. The optimality properties of this approach are described

in [41] within a naive Bayes framework.

In general, it is assumed that the query video is smaller

than target video. However, this is not true in practice and

a query video may indeed include a complex background

which deteriorates recognition accuracy. In order to deal with

this problem, it is necessary to have a procedure which

automatically segments from the query video a small cube

that only contains a valid human action. For this, we employ

space-time saliency detection [42]. This idea not only allows

us to extend the proposed detection framework to action

category classification, but also improve both detection and

classification accuracy by automatically removing irrelevant

background from the query video. Fig. 2 shows an overview

of our proposed framework for action detection.

[54] introduced a space-time local self-similarity descriptor

for action detection and showed performance improvement

over related earlier previous approach as [22]. It is worth men-

tioning that this (independently derived) local space-time self-

similarity descriptor is a special case of 3-D LSK and is also

related to a number of other local data adaptive metrics such as

Optimal Space-Time Adaptation (OSTA) [55] and Non-Local

Means (NLM) [56] which have been used very successfully

for video restoration in the image processing community. A

related, but different temporal self-similarity based descriptor

[57] from [54] has been proposed for view-independent action

recognition which shows good performance on action datasets

such as the Weizmann [9] and the IXMAS [58], but they were

not developed for action localization task.

As a related action representation, Ali and Shah [12] very

recently proposed kinematic features (divergence, vorticity,

symmetric and anti-symmetric optical flow and so forth) based

on optical flows. By applying PCA to these features, they ex-

tracted dominant kinematic features and used them for action

recognition along with the multiple instance learning approach

Fig. 2. System overview of action detection framework (There are broadly
three stages.)

[59]. Our action representation is somewhat similar to theirs in

the sense that we both use PCA to extract feature sets, but their

method depends strongly on the number of (both positive and

negative) training examples and explicitly estimates motion

flows while our method uses a single query (positive example)

for localization and our descriptors implicitly contain both

shape and flow information at the same time. Very recently,

[40] also made use of motion descriptors based on optical

flows and focused on learning a distance function which is

transferable to unseen action classes.

The proposed action detection method is distinguished from

our earlier 2-D work in [41] proposed for object detection,

in the following respects; 1) action detection addressed in

this paper is considered to be more challenging than static

(2-D) object detection due to additional problems such as

variations in individual motion and camera motion, 2) we use

space-time local steering kernels which capture both spatial
and temporal geometric structure, 3) while [41] assumed that

a query image is always smaller than a target and only

contains an object of interest, we relax this assumption to

deal with more realistic scenarios by incorporating space-time

saliency detection [42], and 4) while [41] focused on detection

tasks, in this paper, we further achieved state-of-the art action

classification performance as well as high detection accuracy.

A preliminary version of this paper appeared in the IEEE

International Conference on Computer Vision (ICCV ’09)

[60]. This paper is different from [60] in the following

respects: 1) we provide more detailed description about what

the proposed descriptors capture from video data, 2) we show

that 3-D LSKs outperform simple linear 3-D Gabor filters and

a state-of-the art 3-D descriptor called “HOG3D [61]” in our

action detection framework by providing both quantitative and

qualitative comparison results in Section III-A1, 3) a multi-

scale approach is implemented to deal with large variations

in scale of actions and is shown to outperform single-scale

version in Section III-A1a, and 4) we test our method on

more complicated and challenging dataset [62] for action

localization.
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Fig. 3. Graphical description of how LSK values centered at pixel of interest
x13 are computed in an edge region. Note that each pixel location has its own
Cl ∈ R

2×2 computed from gradient vector field within a local window Ωl

(See green and red boxes). In K values, red means higher values (higher
similarity).

Fig. 4. LSK (right) captures distance between points measured along the
shortest path on the image manifold whereas Bilateral kernel [63], Non-Local
Means kernel [56], and Self-similarity kernel [54] (See left) are based on
simple Euclidean distance.

II. TECHNICAL DETAILS

As outlined in the previous section, our approach to detect

actions consists broadly of three stages (see Fig 2.) Below,

we describe each of these steps in detail. In order to make the

concepts more clear, we first briefly describe the local steering

kernels in 2-D. For extensive detail on this subject, we refer

the reader to [43], [41].

A. Local Steering Kernel as a Descriptor

1) Local Steering Kernel in 2-D (LSK): The key idea

behind LSK is to robustly obtain the local structure of images

by analyzing the radiometric (pixel value) differences based

on estimated gradients, and to use this structure information

to determine the shape and size of a canonical kernel. The

local steering kernel is defined as follows:

K(xl−xi)=
√
det(Cl) exp

{
(xl − xi)

TCl(xl − xi)

−2h2

}
, (1)

where xi = [x1, x2]
T
i is a pixel of interest, l = 1, · · · , P ,

xl = [x1, x2]
T
l are a local neighboring pixels, h is a global

smoothing parameter, P is the total number of samples in a

local analysis window around a sample position at xi, and

the matrix Cl ∈ R
(2×2) is a covariance matrix estimated

from a collection of first derivatives along spatial axes. More

specifically, the covariance matrix Cl can be first naively

estimated as JT
l Jl with

Jl =

⎡
⎢⎢⎣

...
...

zx1(xk), zx2(xk)
...

...

⎤
⎥⎥⎦ , k ∈ Ωl, (2)

where zx1(·) and zx2(·) are the first derivatives along x1−, and

x2− axes and Ωl is a local analysis window centered at xl.

Fig. 3 illustrates how the covariance matrices and respective

LSK values are computed.

At this point, it is useful to provide the reader with an

interpretation of the information captured and represented by

the LSK descriptors. Specifically, in order to measure the

similarity of two pixels, in general, we can naturally consider

both the spatial distance and the gray level distance (See Fig.

4). An effective way to combine these distances is to define a

“signal-induced” distance or “Riemannian metric” [64] which

basically stands for a distance between the points measure

along the shortest path on the signal manifold. We can rewrite

the matrix Cl as follows:

Cl =
∑
k∈Ωl

[
z2x1

(xk) zx1(xk)zx2(xk)
zx1(xk)zx2(xk) z2x2

(xk)

]
. (3)

Then the term (xl − xi)
TCl(xl − xi) in (1) is closely related

to the Riemannian metric as:

(xl −xi)
TCl(xl −xi) + (dx1)

2
l + (dx2)

2
l =∑

k∈Ωl

z2x1
(xk)(dx1)

2
l +2zx1(xk)zx2(xk)(dx1)l(dx2)l+

z2x2
(xk)(dx2)

2
l + (dx1)

2
l + (dx2)

2
l , (4)

where (dx1)l = (x1)l− (x1)l and (dx2)l = (x2)l− (x2)l. See

Appendix for details.

For the sake of robustness, we compute a more stable

estimate of Cl by invoking the singular value decomposition

(SVD) of Jl with regularization as [43], [41]

Cl = γ
2∑

q=1

a2qvqv
T
q ∈ R

(2×2), (5)

with

a1 =
s1 + λ′

s2 + λ′ , a2 =
s2 + λ′

s1 + λ′ , γ =
(s1s2 + λ′′

P

)α
, (6)

where λ′ and λ′′ are parameters7 that dampen the noise effect

and keep the denominators of aq’s from being zero, and α
is a parameter 8 that restricts γ. The singular values (s1, s2)

and the singular vectors (v1,v2) are given by the compact

SVD of Jl = UlSlV
T
l = Uldiag[s1, s2]l[v1,v2, ]

T
l . Note

that
√
det(Cl) in (1) plays a role as a general edge or corner

indicator, thus giving higher weight to corresponding pixels.

Since we use a robust estimate of Cl, the LSKs reliably

capture local geometry of the data manifold even in the

presence of noise. The shape of the LSK’s is not simply

a Gaussian, despite the simple definition in (1) above. It is

important to note that this is because for each pixel xl in

the vicinity of xi, a different matrix Cl is used, therefore

leading to a far more complex and rich set of possible shapes

for the resulting LSKs. Therefore, the LSKs can capture more

sophisticated local geometry than histogram of gradients based

descriptors such as SIFT and HOG which use locally quantized

gradients information. The key idea explained above is equally

valid in 3-D as well, as we describe below.

7λ′ and λ′′ are set to 1 and 10−8 respectively, and they are fixed for all
experiments.

8α is set to 0.29 and fixed for all experiments.
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Fig. 5. Graphical description of how 3-D LSK values centered at voxel of
interest x38 are computed in a space-time edge region. Note that each voxel
location has its own Cl ∈ R

3×3 computed from space-time gradient vector
field within a local space-time window.

2) Space-Time Local Steering Kernel (3-D LSK): Now,

we introduce the time axis to the data model so that xl =
[x1, x2, t]

T
l : x1 and x2 are the spatial coordinates, and t is the

temporal coordinate. Similar to the 2-D case, the covariance

matrix Cl can be naively estimated as JT
l Jl with

Jl =

⎡
⎢⎢⎣

...
...

...

zx1(xk), zx2(xk), zt(xk)
...

...
...

⎤
⎥⎥⎦ , k ∈ Ωl (7)

where zx1(·), zx2(·), and zt(·) are the first derivatives along

x1−, x2−, and t− axes, and Ωl is a space-time local analysis

window (or cube) around a sample position at xl.

As explained in the 2-D LSK case, the term (xl −
xi)

TCl(xl − xi) in (1) now captures distance between the

voxels measured along the shortest path on the embedded

manifold of the video data. Fig. 5 illustrates how 3-D LSKs

are computed in a space-time region. Again, Cl is estimated

by invoking the singular value decomposition (SVD) of Jl

with regularization as [45]:

Cl = γ
3∑

q=1

a2qvqv
T
q ∈ R

(3×3), (8)

with

a1 =
s1 + λ′

√
s2s3 + λ′ , a2 =

s2 + λ′
√
s1s3 + λ′ , a3 =

s3 + λ′
√
s1s2 + λ′ , γ =

( s1s2s3 + λ′′

P

)α
,

(9)

where λ′ and λ′′ are parameters9 that dampen the noise effect

and restrict γ and the denominators of aq’s from being zero.

As mentioned earlier, the singular values (s1, s2, and s3) and

the singular vectors (v1,v2, and v3) are given by the compact

SVD of Jl = UlSlV
T
l = Uldiag[s1, s2, s3]l[v1,v2,v3]

T
l .

In the 3-D case, orientation information captured in 3-D

LSK contains the motion information implicitly [45]. It is

worth noting that a significant strength of using this implicit

framework (as opposed to the direct use of estimated motion

9λ′, λ′′, and α are set to the same values as 2-D LSKs and fixed for all
experiments.

Fig. 6. Examples of 3-D LSKs capturing 3-D local underlying geometric
structure in various regions. In order to compute 3-D LSKs, 5 frames (frame
13 to frame 17) were used. 3-D LSKs are shown upsampled for illustration
only.

vectors) is the flexibility it provides in terms of smoothly

and adaptively changing descriptors. This flexibility allows the

accommodation of even complex motions, so long as their

magnitudes are not excessively large10.

Fig. 6 shows examples of 3-D local steering kernels captur-

ing 3-D local underlying geometric structure in various space-

time regions. As can be seen in (1), the values of the kernel

K are based on the covariance matrices Cl along with their

space-time locations xl. Intuitively, Cl’s computed from the

local analysis window Ωl are similar to one another in the

motion-free region (see Fig. 6 [1]). On the other hand, in the

region where motion exists (see Fig. 6 [2,3,4,5]), the kernel

size and shape depend on both Cl and its space-time location

xl in the local space-time window. Thus, if the pixel of interest

(center pixel of kernel) is located in space-time edge region,

high values in the kernel are yielded along the space-time edge

region whereas the rest of kernel values are near zero.

In what follows, at a position xi, we will essentially be

using (a normalized version of) the function. K(xl − xi) as

descriptors, representing a video’s inherent local space-time

geometry. To be more specific, the 3-D LSK function K(xl−
xi) is densely calculated and normalized as follows

W i
I=

K(xl − xi)∑P
l=1 K(xl − xi)

, (10)

where I can be Q or T for query or target, respectively11.

Normalization of this kernel function yields invariance to

brightness change and robustness to contrast change (as was

similarly shown for 2-D LSKs in [41].)

Fig 7 shows that 3-D LSKs are effective at capturing

local space-time geometry individually, and global space-time

geometry collectively. It is interesting to note that 3-D LSKs12

seem related to “HOG3D” introduced in [61]. However, our

method is quite different in that our descriptors capture voxel

relationships based on the locally measured distance between

voxels using a natural signal induced metric, whereas HOG3D

10When the magnitude of the motions is large (relative to the support of
the local steering kernels, specifically,) a basic form of coarse but explicit
motion compensation will become necessary. We refer the reader to [45] for
more detail.

11Note that videos here are gray scale. The case of color is worth treating
independently and is discussed in [41]

12HoG [65] and HoF [66] are also related to our 2-D LSKs (x1−x2 axes)
and 2-D LSKs (either x1 − t axes or x2 − t axes).
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Fig. 8. Examples of top 4 principal components in AQ for actions such as surfing and diving. Note that these eigenvectors reveal geometric characteristic
of queries in both space and time domain, and thus they are totally different from linear 3-D Gabor filters. Eigenvectors AQ were up-scaled for illustration
purposes.

Fig. 7. 3D-LSKs computed from a hand-waving action are shown. For
graphical description, we only computed 3-D LSKs at non-overlapping 5 ×
5× 5 cubes, even though we compute 3-D LSKs densely in practice.

mostly makes use of the histogram of quantized local space-

time gradients. Furthermore, we extract salient characteris-

tics of 3-D LSKs by further applying Principal Component

Analysis (PCA) as described in the following section. We

believe that quantization of oriented gradients, while useful in

reducing computational complexity, can lead to a significant

degradation in discriminative power of descriptors. This effect

is particularly severe in the case where there is only a single

positive example available without any prior information,

which we will explain in Section II.C. Superior performance

of 3-D LSKs over HOG3D is demonstrated in Section III.A.

B. Feature representation

It has been shown in [41] that the normalized LSKs in 2-

D follow a power-law (i.e., a long-tail) distribution. That is

to say, the features are scattered out in a high dimensional

feature space, and thus there basically exists no dense cluster

in the descriptor space. The same principle applies to 3-D

LSK. In order to illustrate and verify that the normalized 3-

D LSKs also satisfy this property, we computed an empirical

bin density (100 bins) of the normalized 3-D LSKs (using

a total of 50, 000 3-D LSKs) computed from 90 videos of

the Weizmann action dataset [9] using the K-means clustering

method. The utility of this observation becomes clear in the

next paragraphs.

In the previous section, we computed a dense set of 3-D

LSKs from Q and T . These densely computed descriptors

are highly informative, but taken together tend to be over-

complete (redundant). Therefore, we derive features by apply-

ing dimensionality reduction (namely PCA) to these resulting

arrays, in order to retain only the salient characteristics of

the 3-D LSKs. As also observed in [67], [30], an ensemble

of local features with even little discriminative power can

together offer significant discriminative power. However, both

quantization and informative feature selection on a long-tail

distribution can lead to a precipitous drop in performance.

Therefore, instead of any quantization and informative feature

selection, we focus on reducing the dimension of 3-D LSKs

using PCA13.

This idea results in a new feature representation with a mod-

erate dimension which inherits the desirable discriminative

attributes of 3-D LSK. The distribution of the resulting features

sitting on the low dimensional manifold also tends to follow

a power-law distribution and this allows us to the use Matrix
Cosine Similarity (MCS) measure which will be illustrated in

Section II-C. The optimality property and justification of MCS

can be found in [41].

In order to organize WQ and WT , which are densely com-

puted from Q and T , let WQ,WT be matrices whose columns

are vectors wQ,wT , which are column-stacked (rasterized)

versions of WQ,WT respectively:

WQ = [w1
Q, · · · ,wn

Q] ∈ R
P×n,

WT = [w1
T , · · · ,wnT

T ] ∈ R
P×nT , (11)

where n and nT are the number of cubes where 3-D LSKs

are computed in the query Q and the target T respectively.

As described in Fig. 2, the next step is to apply PCA to

13Ali and Shah [12] also pointed out that interest point descriptor-based
action recognition methods have a limitation in that useful pieces of global
information may be lost.
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Fig. 9. AQ is learned from a collection of 3-D LSKs WQ, and Feature
row vectors of FQ and FT are computed from query Q and target video
T respectively. Eigenvectors and feature vectors were transformed to volume
and up-scaled for illustration purposes.

WQ and retain the first (largest) d principal components14

which form the columns of a matrix AQ ∈ R
P×d. Next, the

lower dimensional features are computed by projecting WQ

and WT onto AQ:

FQ = [f1Q, · · · , fnQ] = AT
QWQ ∈ R

d×n,

FT = [f1T , · · · , fnT

T ] = AT
QWT ∈ R

d×nT . (12)

Fig. 8 illustrate that the principal components AQ learned

from different actions such as surfing and diving actions are

quite distinct from each other. Fig. 9 shows what the features

FQ,FT look like for a walking action. In order to show

where actions appear, we drew red ovals around each action

in the target video. These examples illustrate (as quantified

later in the paper) that the derived feature volumes have a

good discriminative power even though we do not involve any

learning over a set of training examples.

It is worth noting that features derived from 3-D LSKs are

not similar to 3-D Gabor filter responses. In fact, 3-D LSKs are

highly non-linear but stable in the presence of uncertainty in

the data while Gabor filters are linear and provide a fixed basis

no matter what the given query. The Gabor representation may

work reasonably well with supervised learning methods, but

this does not necessarily mean that it is appropriate for the

single-query framework of interest to us which we describe

in the next section. We justify this points by showing both

quantitative and qualitative comparison between 3-D LSK and

3-D Gabor filter responses in Section III-A1.

A similar approach was also taken by [68] where PCA

was applied to interest point descriptors such as SIFT, leading

to enhanced performance. Very recently, [12] proposed a set

of kinematic features that extract different aspects of motion

dynamics present in the optical flow. They obtained bags of

kinematic modes for action recognition by applying PCA to

a set of kinematic features. We differentiate our proposed

method from [12] in the sense that 1) motion information is

implicitly contained in 3-D LSK while [12] explicitly compute

optical flow, 2) background subtraction was used as a pre-

processing step, while our method is fully automatic, 3) [12]

employed multiple instance learning for action classification

14Typically, d is selected to be a small integer such as 3 or 4 so that 80 to

90% of the information in the LSKs would be retained. (i.e.,
∑d

i=1 λi∑P
i=1 λi

≥ 0.8

(to 0.9) where λi are the eigenvalues.)

while our proposed method deals with both action detection

and classification from a single example.

C. Detecting Similar Actions using the Matrix Cosine Mea-
sure

1) Matrix Cosine Similarity: The next step in the proposed

framework is a decision rule based on the measurement of a

distance between the computed feature volumes FQ,FTi . We

were motivated by earlier works such as [50], [46], [47], that

have shown the effectiveness of correlation-based similarity.

The Matrix Cosine Similarity (MCS) between two feature

matrices FQ,FTi which consist of a set of feature vectors

can be defined as the Frobenius inner product between two

normalized matrices as follows:

ρ(FQ,FTi
) =<FQ,FTi

>F=trace(
FT

QFTi

‖FQ‖F ‖FTi‖F
) ∈ [−1, 1], (13)

where, FQ =
FQ

‖FQ‖F
= 1

‖FQ‖F
[f1Q, · · · , fnQ] and FTi =

FTi

‖FTi
‖F

= 1
‖FTi

‖F
[f1Ti

, · · · , fnTi
]. Equation (13) can be rewrit-

ten as a weighted sum of the vector cosine similarities

ρ(fQ, fTi) =
fTQ fTi

||fQ||||fTi
|| ([50], [46], [47]) between each pair

of corresponding feature vectors (i.e., columns) in FQ,FTi as

follows:

ρ(FQ,FTi)=
n∑

�=1

f �Q
T
f �Ti

‖FQ‖F ‖FTi‖F
=

n∑
�=1

ρ(f �Q, f
�
Ti
)
‖f �Q‖‖f �Ti

‖
‖FQ‖F ‖FTi‖F

. (14)

The weights are represented as the product of
‖f�Q‖

‖FQ‖F
and

‖f�Ti
‖

‖FTi
‖F

which indicate the relative importance of each feature

in the feature sets FQ,FTi . We see here an advantage of

the MCS in that it takes account of the strength and angle

similarity of vectors at the same time. Hence, this measure

not only generalizes the cosine similarity naturally, but also

overcomes the disadvantages of the conventional Euclidean

distance which is sensitive to outliers15.

It is worth noting that [22] proposed 3-D volume cor-

relation score (global consistency measure between query

and target cube) by computing a weighted average of local

consistency measures. The difficulty with that method is that

local consistency values should be explicitly computed from

each corresponding subvolume of the query and target video.

Furthermore, the weights to calculate a global consistency

measure are based on a sigmoid function, which is somewhat

ad-hoc. Here, we claim that our MCS measure is better moti-

vated, more general, and effective than their global consistency

measure for action detection as we also allude to in section

III-A1.

15We compute ρ(FQ,FTi
) over M (a possibly large number of) target

cubes and this can be efficiently implemented by column-stacking the matrices
FQ,FTi

and simply computing the (vector) cosine similarity between two
long column vectors as follows:

ρi ≡ ρ(FQ,FTi
) =

n∑

�=1

f �Q
T
f �Ti

‖FQ‖F ‖FTi
‖F

= ρ(colstack(FQ), colstack(FTi
)) ∈ [−1, 1],

where colstack(·) means an operator which column-stacks (rasterizes) a
matrix.
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The next step is to generate a so-called resemblance volume

(RV), which will be a volume of voxels, each indicating the

likelihood of similarity between the Q and Ti. As for the final

test statistic comprising the values in the resemblance volume

(as also described in [41]), we use the proportion of shared

variance (ρ2i ) to that of the “residual” variance (1−ρ2i ). More

specifically, RV is computed as follows16:

RV : f(ρi) =
ρ2i

1− ρ2i
. (15)

The resemblance volume generated from f(ρi) provides better

contrast and dynamic range in the result (f(ρi) ∈ [0,∞]).
More importantly, from a quantitative point of view, we note

that f(ρi) is essentially the Lawley-Hotelling trace statistic

[70], [71], which is used as an efficient test statistic for

detecting correlation between two data sets. Furthermore,

historically, this statistic has been suggested in the pattern

recognition literature as an effective means of measuring the

separability of two data clusters (e.g. [67].)

2) Significance Testing by Controlling the False Discovery
Rate (FDR) [72]: If the task is to find the most similar cube

(Ti) to the query (Q) in the target video, one can choose

the cube which results in the largest value in the RV (i.e.,

max f(ρi)) among all the cubes, no matter how large or small

the value is in the range of [0,∞]. This, however, is unwise

because there may be no instances of the action of interest, or

perhaps multiple actions of interest. Therefore, more generally,

we are interested in multiple simultaneous hypotheses. We

associate each voxel (f(ρi)) of the resemblance volume (RV)

with a null hypothesis up to M hypotheses (H0, · · · ,HM−1)

as:
H0: T0 is not similar to the given query Q ⇔ f(ρ0) < τ ,
H1: T1 is not similar to the given query Q ⇔ f(ρ1) < τ ,

.

.

.
.
.
.

.

.

.
HM−1: TM−1 is not similar to the given query Q ⇔ f(ρM−1) < τ .

where τ is a threshold for detection. Suppose that there are

m0 true null hypotheses among the M test hypotheses. Let

R denote the number of hypotheses rejected. This observable

random variable R can be decomposed as V +S, where V is

the number of incorrectly rejected null hypotheses and S is the

number of correctly rejected null hypotheses. The proportion

of errors committed by falsely rejecting null hypotheses can

be viewed through V
R . Let U be the unobservable random

quotient,

U =
{ V

R if R > 0
0 otherwise.

(16)

The false discovery rate (FDR) is defined as E(U),
the expected error rate. The Benjamini-Hochberg proce-

dure proposed in [72] controls the FDR at a desired

level α, while maximizing E(R). Let {p0, p1, · · · , pM−1}
16While the transformation is a monotonic function of the ρ statistic, its

effect is not superfluous. Clearly, the distribution of f(ρ) is different than that
of ρ. Indeed, it is known that this transformation yields a new random variable
which asymptotically approaches a fixed density: namely a squared Student-
t variable, regardless of the density of the the input data [69]. Practically
speaking, the usefulness of this transformation is in the fact that it normalizes
the chosen threshold.

Fig. 10. Examples of general action dataset [22]: 1) a turning query and
ballet video, a walking query and beach scene video, and a diving query and
Olympic swim relay video.

denote the p-values corresponding to the test statistics

{f(ρ0), f(ρ1), · · · , f(ρM−1)} and p(0) ≤ p(1) ≤ · · · ≤
p(M−1) denote the ordered p-values corresponding to the

hypotheses {H(0),H(1), · · · ,H(M−1)}. By definition, pi =
1−PHi where PHi is the cumulative distribution function of

resemblance volume under the null hypothesis Hi. The FDR-

controlling procedure is easily implemented. For the M voxels

being tested, the general procedure is as follows:

1. Select a desired FDR bound α between 0 and 1. This

is the maximum FDR that we are willing to tolerate on

average.

2. Order the p values from the smallest to largest:

p(0) ≤ p(1) ≤ · · · ≤ p(M−1)

Let f(ρ(i)) be the voxel corresponding to p(i).
3. Let γ be the largest i for which

p(i) ≤ i
M α

4. Identify the threshold τ corresponding to p(γ) and declare

that the voxels of RV which is above τ contain similar

actions to the given query Q.

After the significance testing with τ is performed, we

employ the idea of non-maxima suppression [73] for the final

detection. Namely, we take the volume region with the highest

f(ρi) score and eliminate the possibility that any other action

is detected within some radius17 of the center of that volume

again. This enables us to avoid multiple false detections of

nearby actions already detected. Then we iterate this process

until the local maximum value falls below the threshold τ .

III. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the

proposed method with comprehensive experiments on four

datasets: namely, the general action dataset [22], the drinking

dataset, [62], the Weizmann action dataset [9], and the KTH

action dataset [1]. The general action dataset and the drinking

dataset are used to evaluate detection performance of the

proposed method, while the Weizmann action dataset and the

KTH action dataset are employed for action categorization.

Comparison is made with state-of-the-art methods that have

reported their results on these datasets.

17The size of this exclusion region will depend on the application at hand
and the characteristics of the query video.
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Fig. 11. Comparison of resemblance volumes (RV) among 3-D LSK,
HOG3D, and 3-D Gabor for three pairs of videos (Ballet with a turning
query, Beach with a walking query, and Swim with a diving query). HOG3D
was computed densely for a fair comparison. Note that colors in the ground
truth volume are used to distinguish individual actions from each other. This
figure is better viewed in color.

A. Action Detection

In this section, we show several experimental results on

searching with a short query video against a (typically longer

and larger) target video. Our method detects the presence

and location of actions similar to the given query and pro-

vides a series of bounding cubes with resemblance vol-

ume embedded around detected actions. Note again that no

background/foreground segmentation and no explicit motion

estimation are required in the proposed method. Our proposed

method can also handle modest variations in rotation (up to

±15 degree), and spatial and temporal scale change (up to

±20%). For larger variations in scale, we use a multi-scale

approach as similarly done in [41] and show in the following

section that this results in improvement over the single-scale

implementation.

Given Q and T , we spatially blur and downsample both Q
and T by a factor of 3 in order to reduce the time-complexity.

We then compute 3-D LSK of size 3 × 3 (space) ×7 (time)

as descriptors so that every space-time location in Q and

T yields a 63-dimensional local descriptor WQ and WT

respectively. The reason why we choose a lager time axis size

than space axis of the cube is that we focus on detecting similar

actions regardless of different appearances. Thus we give a

higher priority to temporal evolution information than spatial

appearance. We end up with FQ and FT by further reducing

the dimension of descriptors18 to d using PCA. Finally, we

obtain RV by computing the MCS measure between FQ and

FT . After significance testing by controlling the FDR with

a specified α value19 and non-maxima suppression explained

in Section II-C2, the proposed method localizes actions of

interest20.

18Note that d = 4 for the walking query whereas d = 7 for the ballet
turning and diving queries.

19In our experiments, α = 0.01 works well.
20The localization is considered to be correct when detected region is 50%

overlapped with the ground truth.

Fig. 12. Left: Comparison of Precision-Recall curves between 3-D LSK and
HOG3D for three different actions (walking, ballet turning, and diving) in
single-scale implementation Right: multi-scale comparision. Note that other
state-of-the art action detection methods in [22], [54], [25] did not provide
any quantitative performance on these examples. This figure is better viewed
in color.

1) The General Action Dataset [54]: This dataset contains

three pairs of action query and target videos. Note that the

in all casses, the query video is not from the target video

sequence.

a. The query video contains a single turn of a male dancer

(13 frames of 90×110 pixels) while the target video (766

frames of 144× 192 pixels) includes ballet actions from

a male and a female dancers.

b. The query video contains a very short walking action

moving to the left (14 frames of 60 × 70 pixels) with a

stationary stone wall in the background while the target

video has walking people in a beach scene (456 frames of

180×360 pixels) with crashing waves in the background.

c. The query video contains a swimmer’s dive into a pool

(16 frames of 70 × 140 pixels) while the target is an

Olympic relay-match video (757 frames of 240 × 360
pixels) which was severely MPEG compressed.

As we alluded to in Section I-C, we compare our 3-D LSK

with 3-D Gabor filter response [74] and HOG3D [61] both

qualitatively and quantitatively21. Fig. 11 shows a comparison

of resemblance volumes with 3-D LSK, HOG3D, and 3-

D Gabor filter for three datasets. Note that we plugged in

HOG3D and 3-D Gabor instead of 3-D LSK while the rest

of the process in the proposed action detection framework

remains exactly same. Red value in RVs signifies higher

resemblance to the given query actions while blue means lower

21We set parameters for HOG3D and 3-D Gabor filters as follows:

1 HOG3D [61]: A 3-D patch of interest is divided into 3x3x2 space-time
cells. The corresponding descriptor concatenates oriented gradient (10
orientations) histograms of all cells and is then normalized. With dense
sampling (x1x2-stride: 6 pixels apart and t-stride:1 pixel apart), the
resulting descriptors have 180 dimensions at every sampled position.
We use the executable binary from the authors’ website (downloadable
from http://lear.inrialpes.fr/people/klaser/software 3d video descriptor.
We set the parameters for this method to achieve its best performance.
These parameters were not the same as those setting recommended at
the website. This is because the recommended settings were not best
suited for the general action dataset. )

2 3-D Gabor [74]: We used 16 of 3-D Gabor filter responses (0, π/4,
π/2, 3π/4: preferred direction of motion) and (1,2,3,4: preferred
speed of the filter (in pixels per frame)). We use a matlab code
from the website (downloadable from http://www.cs.rug.nl/∼imaging/
spatiotemporal Gabor function/GaborApp.html.)
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Fig. 13. Comparison of equal error rates between 3-D LSK, HOG3D, and 3-
D Gabor filter for three different actions (walking, ballet turning, and diving).

Fig. 14. Equal error rates with respect to different parameter settings on
three datasets where equal error rate means a recall rate when a recall rate is
the same as the precision rate.

resemblance. 3-D LSKs provide the most consistent results

with the ground truth. We observe that RVs with 3-D LSKs

reveal most relevant actions with a few false positives whereas

HOG3D results in many false positives and 3-D Gabor filter

misses most actions. It is worth noting that actions in target

videos vary in scale. This can be better dealt with multi-scale

approach as described below.

a) Multiscale Action Detection: We construct a multi-

scale pyramid of the target feature volume FT . We resize

the target feature volume size by steps of 10 %, so that a

relatively fine quantization of spatial scales are taken into

account. By using 5 scale factors from 0.9 ∼ 1.3, we ob-

tain five resemblance volumes. These resemblance volumes

represent the likelihood functions p(f(ρi)|Si) where Si is the

scale at xi. However the sizes of the respective resemblance

volumes are naturally different. Therefore, we simply rescale

all the resemblance volumes by voxel replication so that they

match the dimensions of the original target volume. Next, the

maximum likelihood estimate of the scale at each position is

arrived at by comparing the rescaled resemblance volumes as

follows22:

Ŝi = argmax
Si

p(RV|Si). (17)

It is worth noting here that action detection methods [22], [54],

[25] which also tested on this dataset only presented qualitative

results with either empirically chosen threshold values or no

description about how the threshold values are determined.

On the other hand, the threshold values are automatically

chosen in our algorithm by controlling the FDR with respect

to the specified α. Unlike [22], [54], [25], we provide the

precision-recall curves in Fig. 12 for quantitative evaluation.

For these experiments, we used the entire frames while [22],

[54], [25] used a part of video frames. The detection result

22By RV we mean a collection of RV indexed by i at each position.

Fig. 15. The drinking dataset [62]: Left: a query video chosen from the
episode “No problem”. Right: Some target video samples from the episode
“Cousin?” and “Delirium”.

of the proposed method on this video outperforms those in

[22], [25] and compares favorably to that in [54] in terms

of visual detection accuracy. As shown in Figs. 12, 13 and

expected from qualitative comparison in Fig. 11, 3-D LSK

clearly outperforms HOG3D and 3-D Gabor.

b) Effect of Parameters: We examined how the perfor-

mance of the proposed method is affected by the choice of

parameters P (the size of 3-D LSK) and h (the smoothing

parameter). Fig. 14 illustrates equal error rates for 3-D LSKs in

single-scale implementation. As shown in Fig. 14, the overall

performance of the proposed method changes gracefully with

the particular choice of parameter h and P . It appears that

best performance can be achieved with the fixed choice of

P = 3× 3× 7 and h = 2.3 across three video dataset.

2) The Drinking Action Dataset [62]: In this section, we

further evaluate our method on more challenging scenarios

such as real movie scenes. The drinking action dataset com-

prises a total of 36,000 frames from two episodes of the movie

“Coffee and Cigarette”. The dataset includes 37 drinking

actions from the episodes “Cousins?” and “Delirium”. Fig.

15 (right) illustrates how drinking actions in target video

samples largely vary in scales and view-points as well as

the background clutter. Furthermore, there are abrupt scene

changes, and the size and appearance of cups also vary. We

chose one drinking action (55 frames of 107 × 101 pixels)

as a query (see Fig. 15 (left)) from the episode called “No

problem”. Thus, there is no overlap between the query and

the target videos. We take the multiscale approach in temporal

axis as well as in spatial axis because temporal extents of

drinking actions in the test set vary from 30 to 200 frames

with the mean length of 70 frames. More specifically, we

used 9 spatial scales from 0.7 ∼ 1.5 and 6 temporal scales

from 0.8 ∼ 1.3. As explained in Section III-A1a, we take

a maximum value across all scales at each voxel and end

up with one RV. In order to deal with variations in view

points, we used mirror-reflected version of the query as well.

By voting the higher score among values from two RVs at

every space-time location, we arrive at one RV which includes

correct locations of drinking action. The performance of our

method on this testset in comparison to Laptev’s methods [62]

is illustrated in Fig. 16 in terms of precision-recall curves

and average precision (AP) values. Note that Laptev 1, 2,

and 3 are based on discrete AdaBoost using 106 positive

examples for training. As discussed in [62], Laptev 1 uses

HOF with additional keyframe priming while Laptev 2 and

3 use HOG3D. Even though we use a single frontal view

query, the proposed method performs favorably with Laptev 1

and 2. Twenty strongest detections (sorted in decreasing order

of resemblance volume score) with the proposed method are
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Fig. 16. Precision-Recall curves comparison between the proposed method
and three action detection methods by [62]. The proposed method performs
favorably with Laptev 1 and 2 even though there is a single query video used.
The average precision (ap) means an average precision over the entire range
of recall. This figure is better viewed in color.

Fig. 17. Detection of drinking actions (yellow: true positives, red: false
positives) sorted in the decreasing confidence order by the proposed method.
This figure is better viewed in color.

illustrated in Fig. 17. In spite of a substantial variation in

subject appearance, motion, surrounding scenes, view points

and scales, and also abrupt scene change in the video, the

proposed method retrieved most of actions at the correct

locations. We expect that our method might also benefit from

keyframe priming as discussed in [62].

B. Action Category Classification

As opposed to action detection, action category classifi-

cation aims to classify a given action query into one of

several pre-specified categories. In earlier discussion on action

detection, we assumed that in general the query video is

smaller than the target video. Now we relax this assumption,

and thus we need a preprocessing step which selects a valid

human action from the query video. This idea allows us not

only to extend the proposed detection framework to action

category classification, but also improves both detection and

classification accuracy by removing unnecessary background

from the query video.

Once the query video is cropped to a short action clip, the

cropped query is searched against each labeled video in the

database, and the value of the resemblance volume (RV) is

viewed as the likelihood of similarity between the query and

each labeled video. Then we classify a given query video

Fig. 18. Found space-time proto-objects from the KTH dataset [1]

as one of the predefined action categories using a nearest

neighbor (NN) classifier.

1) Action Cropping in Videos: In this section, we introduce

a procedure which automatically extracts from the query video

a small cube that only contains a valid action. Space-time

saliency detection [42] can provide such a mechanism. We

downsample each frame of query video Q to a coarse spatial

scale (64 × 64) in order to reduce the time-complexity23.

We then compute 3-D LSK of size 3 × 3 × 3 as features

and generate feature matrices Fi in a (3 × 3 × 7) local

space-time neighborhood. We generated space-time saliency

maps S by computing self-resemblance measure as shown

in Fig. 18. Then, we use again the idea of non-parametric

significance testing to detect space-time proto-objects. Namely,

we compute an empirical PDF from all the saliency values

and set a threshold by controlling FDR24 with α = 0.05 in

deciding whether the given saliency values are in the extreme

(right) tails of the empirical PDF. The approach is based on

the assumption that in the video, a salient action is a relatively

rare event and thus results in values which are in the tails

of the distribution of saliency map values. After making a

binary map by thresholding the space-time saliency map, a

morphological filter is applied. More specifically, we dilate the

binary object map with a disk shape of size 5×5. Proto-objects

are extracted from corresponding locations of the original

video. Fig. 18 shows that the space-time saliency detection

method25 successfully detects only salient human actions in

the KTH dataset [1]. Next, we crop the valid human action

region by fitting a 3-D rectangular box to space-time proto-

objects.

2) The Weizmann Action Dataset [9]: The Weizmann ac-

tion dataset contains 10 actions (bend, jumping jack, jump

forward, jump in place, jump sideways, skip, run, walk, wave

with two hands, and wave with one hand) performed by 9

different subjects. This dataset contains videos with static

cameras and simple background, but it provides a good testing

environment to evaluate the performance of the algorithm

when the number of categories are large compared to the KTH

dataset (a total of 6 categories). We conducted experiments

on the Weizmann dataset under various data split setups. For

example, the videos of m subjects are randomly drawn for

23We do not downsample the video in the time domain.
24We select a somewhat loose α level here since we do not wish to miss

the relevant action in the query.
25We refer the reader to Fig. 19 in [42] for more challenging cases where

background is very cluttered and moving as well.
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Fig. 19. Left: Confusion matrix on the Weizmann dataset for the leave-one-
out setting, Right: Average recognition rate according to various data split
setups. (Weizmann dataset)

testing (query) and the videos of the remaining 9−m subject

are labeled for each run where m ∈ [1, · · · , 8]. We applied the

automatic action cropping method introduced in the previous

section to the query video. Then the resulting short action

clip is matched against the remaining labeled videos using the

proposed method. We classify each testing video as one of the

10 action types by 3-NN (nearest neighbor) as similarly done

in [25]. The results are reported as the average of 100 runs.

To begin, we achieved a recognition rate of 97.5% for all ten

actions in the leave-one-out setting (m = 1). The recognition

rate comparison is provided in Table I as well. The proposed

method performs favorably against state-of-the-art methods

[14], [57], [20], [75], [12], [76], [77], [61]. We observe that

these results also compare favorably to several state-of-the-art

methods even though our method involves no training phase,

and requires no background/foreground segmentation. As an

added bonus, our method provides localization of actions as a

side benefit. Fig. 19 (left) shows the confusion matrix for our

method.

TABLE I
COMPARISON OF AVERAGE RECOGNITION RATE ON THE WEIZMANN

DATASET [9]

Our approach 3-NN 2-NN 1-NN

Recognition rate 97.5% 92.5% 84.7%
Method Junejo et al. Liu et al. Klaser et al. Schindler

[57] [20] [61] and van Gool [78]

Recog. rate 95.33% 90% 84.3% 100%
Method Niebles et al. Ali et al. Sun et al. Fathi and Mori

[14] [12] [79] [80]

Recog. rate 90% 95.75% 97.8% 100%
Method Jhuang et al. Batra et al. Bregonzio et al. Zhang et al.

[75] [76] [81] [77]

Recog. rate 98.8% 92% 96.6% 92.89%

Next, we provide further results using 1-NN and 2-NN in

comparison to 3-NN in Fig. 19 (right) with respect to various

split setups. It is worth noting that the recognition rates are

quite stable regardless of the split used.

3) The KTH Action Dataset [1]: In order to further quan-

tify the performance of our algorithm, we also conducted

experiments on the KTH dataset. The KTH action dataset

contains six types of human actions (boxing, hand waving,

hand clapping, walking, jogging, and running), performed

repeatedly by 25 subjects in 4 different scenarios: outdoors

(c1), outdoors with camera zoom (c2), outdoors with different

clothes (c3), and indoors (c4). This dataset seems more chal-

Fig. 20. Left: Confusion matrix on the KTH dataset for the 8 training/ 9
testing setup, Right: Average recognition rate according to different data split
setup. (KTH dataset)

lenging than the Weizmann dataset because there are large

variations in human body shape, view angles, scales, and

appearance. We also evaluate our method on the KTH dataset

under various split setups. First, we use the same setup as

in [1], i.e., 8 people for training26 and 9 for testing for each

run. The recognition rates are reported as the average of 100

runs for this setup. We were able to achieve a recognition

rate of 95.1% on these six actions. Fig. 20 (left) shows the

average confusion matrix across all scenarios for this setup.

The recognition rate comparison with competing methods is

provided in Table II as well. It is worth noting that our method

outperforms all the other state-of-the-art methods and is fully

automatic. We further tried other data-split setups as similarly

done in the previous section. The videos of m subjects are

randomly drawn for testing (query) and the videos of the

remaining subject 25 − m are labeled for each run, where

m ∈ [1, · · · , 24]. As shown in Fig. 20 (right), it is consistent

with the results on the Weizmann dataset that the recognition

rates are quite stable regardless of the split used as similarly

stated in [82].

TABLE II
COMPARISON OF AVERAGE RECOGNITION RATE ON THE KTH DATASET

Our approach 3-NN 2-NN 1-NN

Recognition rate 95.1% 91% 82.7%
Method Kim et al. Ning et al. Klaser et al. Schindler [78]

[24] [25] [61] and van Gool [78]

Recog. rate 95.33% 92.31% (3-NN) 91.4% 92.7%
Method Ali et al. Niebles et al. Liu and Shah Sun et al.

[12] [14] [82] [79]

Recog. rate 87.7% 81.5% 94.2% 94%
Method Dollar et al. Wong et al. Rapantzikos et al. Laptev et al.

[83] [84] [85] [66]

Recog. rate 81.17% 84% 88.3% 91.8%

4) Discussion: It is important to note that our features

computed using the PCA process are a function of the input

query video, and therefore are adapted to each changing query.

As such, one would expect them to serve better in identifying

actions that are similar to the given query in a way that

is more accurate than would a generic basis. Indeed, the

tradeoff between having a fixed basis for all input queries

and a basis that is extracted from each query manifests itself

as a tradeoff between stability and specificity. Despite the

higher computational cost we pay, our process for extraction of

26We use the term “training” here to be consistent with notation used in
the literature even though our method does not require training mechanisms.
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features appear to be stable, yet showing rather high specificity

at the same time, resulting in overall very good performance.

Our system is designed with recognition accuracy as a

high priority. A typical run of the action detection system

implemented in Matlab takes a little over 1 minute on a target

video T (50 frames of 144 × 192 pixels, Intel Pentium CPU

2.66 Ghz machine) using a query Q (13 frames of 90× 110).

Most of the run-time is taken up by the computation of MCS

(about 9 seconds, and 16.5 seconds for the computation of 3-D

LSKs from Q and T respectively, which needs to be computed

only once.) There are many factors that affect the precise

timing of the calculations, such as query size, complexity

of the video, and 3-D LSK size. By applying coarse-to-fine

search [86] or branch and bound [31] can be applied to speed

up the method. As another way of reducing time-complexity,

we could use look-up table instead of computing the local

covariance matrix C at every pixel. Even though our method

is stable in the presence of moderate amount of camera motion,

our system can benefit from camera stabilization methods as

done in [87], [88] in case of large camera movements.

In the Weizmann dataset and the KTH dataset, target videos

contain only one type of action. However, target video may

contain multiple actions in practice. In this case, simple nearest

neighbor classifiers can possibly fail. Therefore, we might

benefit from contextual information to increase accuracy of

action recognition systems as similarly done in [89]. In fact,

there is a broad agreement in the computer vision community

about the valuable role that context plays in any image

understanding task [90], [91].

IV. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have proposed a novel action recognition

algorithm by employing space-time local steering kernels
which robustly capture underlying space-time data structure;

and by using a training-free nonparametric detection scheme

based on Matrix Cosine Similarity. The proposed method

can automatically detect in the target video the presence, the

number, as well as location of actions similar to the given

query video by controlling the false discovery rate (FDR).

Multi-scale implementation dealt with large variations in scale

of actions and outperformed the single scale version. In order

to increase the detection accuracy and further deal with action

classification, we employed action cropping method based on

space-time saliency detection. Challenging sets of real-world

human action experiments demonstrated that the proposed

approach achieves a high recognition accuracy and improves

upon other state-of-the-art methods. Unlike most state-of-

the-art methods that involve training, background/foreground

segmentation, and manual aligning of actions, the proposed

method operates using a single example of an action of interest

to find similar matches; does not require any prior knowledge

(learning) about actions being sought; and does not require

any segmentation or pre-processing step of the target video.

The usefulness of 3-D LSK descriptors was justified for

both action detection and recognition tasks in the example-

based, single query detection scenario in Section III. It would

be interesting to see how the proposed descriptors perform

in comparison to state-of-the art 3-D descriptors such as

HOG/HOF, HOG3, and etc; (see [92] and references therein)

in other state-of-the art action recognition frameworks based

on learning mechanisms [14], [12]. In case where a collection

of negative action examples are available, we may be able to

boost the action detection performance using “one-shot simi-

larity (OSS) [93], [94]” kernel which was recently developed

for face recognition task. Extending the proposed detection

framework to joint learning from multiple queries would be

an excellent direction which we intend to pursue in our future

research. Since the proposed method is designed with detection

accuracy as a high priority, extension of the method to a

large-scale dataset requires a significant improvement of the

computational complexity of the proposed method. Toward

this end, we could benefit from an efficient searching method

(coarse-to-fine search) and/or a fast nearest neighbor search

method 27 (e.g., vantage point tree [97] and kernelized locality-

sensitive hashing [98].)

Since local regression kernels in 2-D and in 3-D were

originally designed for image (video) restoration, the proposed

framework should become useful in jointly addressing the

problems of enhancement and recognition where there might

be a degraded query 1 target. By computing local regression

kernels from images (video) at once, we may be able to not

only detect objects (actions) of interest, but enhance images

(videos) at the same time. These aspects of the work are the

subject of ongoing research.

V. APPENDIX

Consider the parameterized surface S(x1, x2) =
{x1, x2, z(x1, x2)}, embedded in the Euclidean space R

3. The

arclength on the surface is given by ds2 = dx2
1 + dx2

2 + dz2.

Applying the chain rule, we have

dz(x1, x2) =
∂z

∂x1
dx1 +

∂z

∂x2
dx2 = zx1dx1 + zx2dx2. (18)

Plugging dz(x1, x2) into the arclength definition, we have

ds2 = dx2
1 + dx2

2 + dz2

= dx2
1 + dx2

2 + (zx1dx1 + zx2dx2)
2

=(1 + z2x1
)dx2

1 + 2zx1zx2dx1dx2 + (1 + z2x2
)dx2

2.(19)

from which we can extract the metric coefficients(
1 + z2x1

zx1zx2

zx1zx2 1 + z2x2

)
=C+ I, (20)

where C is the same covariance matrix in (3) and I is an

identity matrix. In practice, the identity matrix here is absorbed

in our calculation of C in the sense that we find a regularized

estimate of C.
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