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Abstract—In this work, an efficient way of implementing a
constrained min-max predictive controller is presented. The
new approach modifies the objective function in such a way
that the resulting min-max problem can be solved in poly-
nomial time. Different modifications are proposed. The main
contribution of the paper is to provide a robust constrained
min-max predictive controller that can be implemented in
real time. The new controller stabilizes the uncertain system.
Key words: Predictive control of linear systems, Robust
control, Optimization algorithms, min-max.

. INTRODUCTION
Predictive control is a popular strategy and algorithms

that handle constraints and guarantee closed loop stability

are given [6], [10]. In this paper, the min-max predictive
control is addressed. This formulation takes into account
the disturbances, optimizing a control profile over all
possible disturbances.

In general, solving a min-max problem subject to con-
straints and disturbances is computationally too demanding
for practical implementation. The complexity of min-max
MPC can be addressed by the use of multi-parametric
programming [3], [7], [12]. The number of regions needed
to characterize the solution to the problem may grow in an
exponential way with the prediction horizon. Fortunately,
the computation of the explicit solution is made off-line
and the evaluation of the controller can be made by means
of a binary tree.

Due to the fact that the computation of the explicit
solution can be realized off-line it it possible to manage a In
this paper, an efficient way of implementing a constrained
guadratic min-max predictive controller is presented. The
new approach relies on a slight modification of the objec-
tive function. This modification allows us to compute the
max function in polynomial time.

The implementation of the proposed controller is based
on a cutting plane scheme, in which it is necessary to
compute the max function at each step of the algorithm.
Taking into account that the number of steps is polynomial
on the number of decision variables and that the maximum
of the modified objective can be obtained in polynomial
time, we conclude that the proposed min-max problem
can be solved in polynomial time. The proposed controller
inherits the stability and robustness of the standard min
max controller. The system state is ultimately bounded
under the new controller.
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The paper is organized as follows: In section 2 the min-
max problem for bounded uncertainties is stated. The com-
putational complexity of the standard min max controller is
analyzed in section 3. In section 4 we show that there are
instances in which solving the max problem can be made
in polynomial time. A slight modification of the functional
is proposed in section 5. This modification allows us to
compute the control action corresponding to the min-max
problem in polynomial time. The stability of the proposed
controller is addressed in section 6. The paper draws to a
close with a section of conclusions.

II. MIN-MAX MPC WITH GLOBAL UNCERTAINTIES

Consider the discrete-time linear system with bounded
uncertainties:

1)

wherex, € IR™ is the stateu, € IR™ is the control input,
and wx € W is the uncertainty, that is supposed to be
bounded by a hypercube, thatW,= {we IRY : ||w||e <

€}
In the following, it will be assumed that the control
input is given by ux = Kxk + v, where K is chosen

in order to achieve some desired property for the non
constrained problem. In this way, and without increasing
the complexity of the problem, some amount of feedback
is provided to the predictions [8], [9]. The MPC controller
will compute the sequence of correction control signals
along the control horizo{vy,...,VNc-1}. Defining Ax =
(A+BK), the dynamics of the system can be rewritten as

Xir1 = AXc+ Buk + Dwi

X1 = Ak Xk + B + Dwic
In what follows, Wy will denote the set of possible distur-
bance sequences of lendgth The objective function is:

N-1
Vi (X, V, W) = Z}[XJ-TQXJ- +u] Ruj] + X4 Pxy
]:

wherev = {vg,v1,...,Vn.—1} represents the sequenceNyf
correction control inputs,

w = {Wo, Wy, ...,Wn_1} € Wy

represents a possible sequence of input disturbances to the
system. On the other hanxj, andu; are the predicted state
and control input respectively for a giveme Wy :



. i i
xj = Alx+ _ZlAk‘lej,i - ‘ZAlK_lDWi*i
i= i=
uj = KXj +V;
Vj = 07 J Z NC

We consider linear constraints in state and inpute X,
ux € U. In order to achieve stability, a polytopic terminal
region constraintfy € Q) will also be added [10]. Terminal
region Q should be chosen to be a robust admissible
invariant set for the system. That i€ C X must satisfy
the following constraints:

o« CL If xe Q thenAxx+Dw e Q, for everywe W.

« C2: If xe Q thenKxeU.

In order to achieve convergence to a bounded set con-
taining the origin, the terminal cost Px will be assumed
to satisfy:

« C3: P-APA>Q+K'RK

It is important to note that the stability &« = A+ BK
guarantees the existence of a finite maRigatisfying C3.

In this way, the min-max constrained predictive con-
troller results in the solution of the following min-max
optimization problem (denotell (x)):

% R
‘]N (X) - nvnvl;gev?\‘(VN (X1V7W)

XjeX, WweWy, j=0,...,.N-1
st. XN EQ, YweWy
ujeU, vweWy, j=0,...,N-1

This optimization problem is solved at each sample
instant. An optimal vector of control correction signals
is obtained and the control inpup = Kx+ v = Kmpc(X)
is applied.

IIl. COMPUTATIONAL COMPLEXITY OF THE STANDARD
MIN-MAX CONTROLLER

Under the proposed assumptions, it is possible to obtain
a set of linear constraints that do not depend on the uncer-
tainty vectorw and that guarantee the robust fulfillment of
the constraints.

The objective functiotvy(x, v, w) is a quadratic function
of x, v andw. That is, matriceslx, Hy, andH,, can be found
in such a way thaiy (x,v,w) = ||Hxx+ Hy + Hew||3. We
conclude that the min-max probleRy(x) can be rewritten
as the following:

J (%) = min max ||Hex+ Hyv 4 Hew||3
Vo weWy
s.t. Gyxx+Gyw <d
Denote the max-functioly(x,v) as:
VR (%, V) = maxWn(x,v,w
N( ) ) WeWy N( s V) )

Taking into account the convex nature &f(x,v,w),
V;i(x,v) can be obtained evaluating(x,v,w) at the 2N
vertices of the hypercub#&y. This implies a computational
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time that grows exponentially withN, rending the compu-
tation of the optimal control sequengé a very hard task
that extremely complicates the implementation of the min-
max constrained predictive control in a real application.

IV. APPROXIMATING THE MAX FUNCTION

Givenx andv, (X, v,w) can be rewritten as a quadratic
function onw. That is:

VN (X V, W) = [[Hyx+ H 4 Hew |3 =
=w'Mw +q(x,v) "W+ Wy (x,v,0)

whereM = H/ Hy and q(x,v) = 2H,} (Hxx+Hyv). There-

fore, the computation d¥;(x,v) belongs to the following
class of maximization problem:

*

W= max w' Mw+q'w

[wllw<e
In principle, computingy* is a NP-problem. However,
there are some instances in whigh can be calculated
in polynomial time. The complexity of the computation
can be dramatically reduced if matrtd € IR™", where
n= Ngq, belongs to one of the following categories:

1) M is a positive definite diagonal matrix In this
case, ' = €2 tr M +¢||ql|l; and the maximum is
attained atwv* = € sign (q).

2) M is semidefinite negativeIn this case,

*

u=— min (w'(-M)w—q'w)

[[wlle<e
It results that—M is semidefinite positive. Therefore
U can be computed solving a quadratic convex
problem. This can be accomplished in polynomial
time.
3) Allthe elements ofM are non negative In this case,
it is well known (see [11], [2]) that the maximization
problem can be posed as a min cut graph problem.
This graph problem can be solved in polynomial time
o(nd).
M is a positive definite band matrix We say that
M is a L-band matrix if|i — j| > L, implies Mij =
0. It has been recently shown (see [1]) that under
the assumption of band structure, the maximization
problem can be solved in polynomial time r@gb).

The next figure compares the computational burden of
the standard max problem (denoted full matrix in the fig-
ure) with the computational burden required when matrix
M belongs to one of the four categories considered in this
section. (Note that the figure is in a logarithmic scale).

4)

V. MODIFICATION OF THE FUNCTIONAL

In this section, we propose a modification of the func-
tional that allows us to solve the min max problem in
polynomial time while preserving the stability and ro-
bustness properties of the standard approach. The new
functional is an upper bound of the original one and will be
denotedVy (x,v,w). The proposed functional differs only
in a quadratic term omv and a constant:
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Fig. 1. Computational burden of the max problem

VN (X, V, W) = Vi (X, V,W) +W ' Fw + ce? =
=w' (M+F)w+q(x,v)"w+VWy(x,V,0) + ce?
The modified max function will be denoted:

V(% v) = max Vi (X, V, W)
W]l <g

Choosing convenientlfF and c the following assumption
will be satisfied:
o C4 V(% V) S V(% V) < V(X V) + 0g?

Note thatoe? bounds the difference between the modified
functional and the original one. We will show how to

computeF andc in such a way that C4 is satisfied aod

minimized. For that purpose, it is important to introduce

the following lemma:
Lemma 1:Let us suppose thal > 0 is a diagonal

matrix and that at least one of the following hypotheses

is satisfied:

1) 0<F T andc=0.

2) 0>F>-Tandc= trT.
Then makingo = tr T, C4 is satisfied.

Proof:

Let us suppose that hypothesis (1) holds. Then fFom
0 it is inferred thatw'Fw > 0 and thereforevy(x,v) <
V{i(x,v). FromF < T and the diagonal nature df it is
inferred that

wiFw<w'Tw < (tr T)e?

Thus, Vi (x,V) < V(% V) + ( tr T)e.
Let us now suppose that hypothesis (2) holds:

wFw > —w'Tw > —( tr T)e?

From this inequality and the fact that= tr T it is inferred
that w' Fw + ce2 > 0. Thus, Vyj(x,v) < V5i(x,v). On the
other hand0 > F implies thatw'Fw < 0 and therefore:
V(6 V) SVE(GV) 4 (tr T)e2. m
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In what follows, and using previous lemma, we will

show how to choosE andc in such a way thal = M +F
belongs to one of the categories for which the max problem
can be solved in polynomial time.

1) M =M +F is positive definite and diagonal:
Let us suppose tha and T are diagonal matrices
that minimize the following LMI problem:

min tr T
sit. 0<S—-M<LT

Then, makingF =S—M, c=0ando= trT it
results thatM = M +F =T is a positive definite
diagonal matrix andC4 is satisfied.

2) M =M+F is semidefinite negative:
Obtain matrixF and a diagonal matriX such that
the following LMI problem is solved:

min tr T

ot JOZF=-T
M+F <0

Then, makingg=0 = tr T it results thaM = M +F
is semidefinite negative and C4 holds.

3) M =M+F has non negative elements
Note that there are systems for whiéh has non
negative elements (see [2]). In this case no approxi-
mation is required anéF =0, c=0=0. If M does
have negative elements, compute and diagonal
matrix T that solve the following LMI problem:

min tr T

o JOSF<T
Mij+F,;j>0 ViVj

Then makingc=0ando = tr T it results thatvi =
M +F has nonnegative elements and C4 holds.

4) M =M+F is a semipositive definite Band matrix:
Let us suppose that and the diagonal matrix
solve the following LMI problem:

min tr T

st O<F<LT
' |V|i7j—|—|:|7j:O V|i—”2L

Then makingc=0 ando = tr T it results thatvi =

M +F is a positive definite L-band matrix and C4
holds.

Note that the control input to the systam= Kxk +

Vi is chosen in such a way th#« = A+ BK is
stable. This implies that the elemer; of matrix

M vanish with the absolute value ¢f— j|. Thus,
the original matrixM can be approximated by an L-
band and therefore the value of that measures the
difference betwee;(x,v) andVj(x,v), decreases
in an exponential way with the width of the band
matrix.



VI. PROPOSED MINMAX PREDICTIVE CONTROL:

STABILITY

The new min-max problem (that will be denot&q(x)
) is stated as

Fix) = minVi (x.v)
s.t. Gx+Gyw<d

where Vy (x,v) denotes one of the approximations of the

max function proposed in the last section. Note that the
feasibility region ofPy(x) equals the one of the standard

min-max problem.

This optimization problem can be solved using the
ellipsoid method or any other cutting plane algorithm [4].
The number of evaluations &k;(x,v) needed to obtain a
solution to the problem with a given accuracy is a poly-
nomial on the number of decision variablds:if,). Thus,
taking into account that the number of operations needed to
computé?,ij (x,v) is a polynomial on the prediction horizon,
the overall complexity of the modified min max problem
is polynomial on the number of decision variables and the
prediction horizon.

The following property, which is proved in appendix A,
plays an important role when analyzing the stability of the
proposed controllers.

Property 1. Denote

[ (x,w) = [[X]|3 — [|Akx+Dw][2 —x' Q*x+ ye?

where Q* = Q+ KTRK. If the systemx.1 = AxX¢ is
asymptotically stable then there exists a positive definite
matrix P and a positive scalay such thatC3 is satisfied
and

r(x,w)>0, v¥xe R", ywe W @)

Moreover, givery > 0, the problem of determining if there
existsP > 0 such that equation (2) holds can be formulated
as a LMI problem.

As it is stated in the following theorem, the new min-

max controller guarantees that the uncertain system evolves

to a bounded set that contains the origin. The size of this
set depends on the size of the uncertainty.

Theorem 1:Let us suppose that

1) Assumptions C1, C2, C3 and C4 are satisfied.

2) v ={V,Vi,...,V,_1} is the optimal solution to

problemPy(X).
Then the min-max controlleigpc(x) = Kx+ Vj) guaran-
tees that the state system is ultimately bounded and:

1) vs = {\/’{,~v§,...,v’,§c:l,0} is a feasible solution to

problem Py (Ax+ BKupc(X) + Dw), Yw e W.
2) Ji(%) — I (Ax+ BKyipc(x) + Dw) > x'Qx— (Y +
0)e?, Yw e W.

This theorem is proved in appendix B. It is important
to note thaty and o do not depend on the size of the
uncertainty. We conclude that the proposed modification
of the functional allows us to implement the min-max
controller in polynomial time while preserving the stability
of the standard min max MPC controller.
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VIl. CONCLUSIONS

In this paper we presented a new formulation of the min-
max predictive control. The new controller is based on a
modification of the functional that allows us to compute
the max function in polynomial time. This allows us the
implementation of the min-max predictive control in real
applications. It has been shown that the proposed controller
guarantees the robust satisfaction of the constraints and the
convergence to a bounded set that contains the origin.

The complexity of the new approach depends on the
prediction horizon and the class of modified functional
obtained. The next figure shows the dramatic reduction in
complexity for each of the proposed modifications (note
that the figure is in a logarithmic scale).

- Min max problem

10 Full matrix

Semidefinite negative matrix

Band matrix

10" b
Non negative matrix

Diagonal matrix

6 . . ,
5 10 15 20
Prediction horizon N

10

Fig. 2. Complexity of the proposed min-max controllers
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Proof of property 1

[6]

[9]

[10]

[11]

[12]

DenoteS= P — A{PA« — Q* and
[ (%,W) = X" Px— || Axx+ Dw||3 —x" Q"X+ ye* =
=x"Sx—2x" AL PDW—w' D' PDw-+ ye?

From the hypothesis C3, it is clear ttits definite positive.
Therefore,I' (x,w) is a convex function ox. As a matter
of fact, it can be easily shown that the minimumrdk, w)
is attained ak* = S~1A;PDw. Thus,

F(x,w) > —w' D' (PAS *A{ P+ P)Dw+ ye?

Taking into account that the term on the right is a concave
function onw, it is concluded thaf (x,w) > 0, if and only
if
ye?> max w'D'(PAS IALP+P)DwW
wevert{W}
wherevert{W} denotes the vertexes ¥. Note thatS is
definite positive. This implies that there is a finite value of
y that satisfies previous inequality. Dividing last inequality
by €2, the following equivalent inequality is obtained:
y> max 9'D'(PAKSIA{P+P)DS
devert{B]}
wherevert{B]} denotes the vertexes of the unit hypercube
in IRY. Using Schur's complement [5], this is satisfied if
and only if for every® € vert{B{}:

y—9TDTPDS  9TD'PA

APDY  P—APA-Q | 7

®)
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Stability of the proposed min-max controller

1)

)

Let us suppose that givexx, v = {Vo,v1,...,Un.—1}
satisfies the constraints of probleﬁw(xk). In what
follows, it will be shown that/s = {v1,V2,...,VN.—1,0}
satisfies the constraints of the problem at sample time
k4 1. Note that,1 = Ax Xk + Bvo + Dwy, wherewy €

W. This means that giver.,1 andw, € Wy, there is

wp € Wy such that for ever < j <N -—1:

(4)
®)

Thus, it only remains to show thak(Xk;1,Vs,W) €

Q, Yw € Wy. Note that using the previous equalities,
it can be affirmed thaky_1(X1,Vs,W) € Q, Yw €
Wy. Taking into account the assumptions @n it is
inferred thaty (Xk+1,Vs, W) will also be contained in
Q in spite of the uncertainty.

From equations (4) and (5) it is inferred that given
Xk+1 andwg, it is always possible to obtaiwy, such
that

Xj (Xk+l7V57Wa) = XjJrl(Xka V,Wb) ex

Uj (Xk+17VSaWa) = Uj+1(Xk,V,Wb) eu

VN (X1, Vs, Wa) — Vi (Xk, V, Wp) =
= HXN71(><|<+1,Vs,Wa)||(23*Jr
-+ X (441, Vs, Wa) |3
—% Q¥ — U Ru—
—[IXn—1 (X1, Vs, Wa) [
It is clear that there isV € W such that
XN (Xk+1, Vs, Wa) =
AcXN-1(Xk11, Vs, Wa) + DW

Thus, applying property 2, it is readily obtained that

VN (X1, Vs, Wa) — VN (Xk, V, Wp) <

—X¢ QX + Ve?
From this inequality it is easily inferred that
VR (1, Vs) = VR (0, V) < =X Qi+ Ve?
Taking into account thavs is a feasible solution to
problemPy (Axx+ Bv;+ Dw):
I O1) < V01, Vs) < VR (X1, Vs) + 082
< VR (%, V) =X QX+ (Y + 0)€?
<V (%, V) =X QX+ (Y +0)e? =
= R (%) —x¢ Q+ (y+0)€

Define

®. = {xe IR" : Py(x) is feasible

andx' Qx< (y+0)&?}

Then, the system evolves to s@; = { x€ IR" :
Ji(X) < a(e) } where a(e) = maxJy;(X) + (y+ 0)e?
XED,

SUS
| |
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