Routing and Multicast in Multihop, Mobile Wireless Networks *

Ching-Chuan Chiang and Mario Gerla
University of California, Los Angeles

Abstract

In this paper we present a multicast protocol which buildsupon
a cluster based wireless network infrastructure. First, we intro-
duce the network infrastructure which includes several innovative
features such as. minimum change cluster formation; dynamic
priority token access protocol, and; distributed hierarchical rout-
ing. Then, for thisinfrastructure we propose a multicast protocol
which isinspired by the Core Based Tree approach devel oped for
the internet. We show that the multicast protocol is robust to mo-
bility, has low bandwidth overhead and latency, scales well with
membership group size, and can be generalized to other wirel ess
infrastructure.

|. Introduction

Wireless networks provide maobile users with ubiquitous com-
municating capability and information access regardless of loca-
tion. Inthispaper weaddressaparticular type of wirelessnetworks
caled “multihop” networks. As a difference from “single hop”
(i.e. cdlular) networks[12] which requirefixed base stati onsinter-
connected by a wired backbone, multihop networks have no fixed
based stations nor wired backbone [10]. The main motivation for
mobile wireless multihopping is rapid deployment and dynamic
reconfiguration. When the wireline network is not available, asin
battl efiel d communi cations and search and rescue operations, mul -
tihop mobile wireless networks provide the only feasible means
for ground communications and information accesses. Examples
of multihop wireless networks are ad-hoc networks [13, 16] and
packet radio networks[5, 14]. Multihopping posesnew challenges
in wireless network protocol design. For example, routing proto-
cols devel oped for single-hop networks[12] cannot be applied to
multihop networks since there is no fixed home agent to maintain
routing information. Another chalenging problem is multi cast-
ing. Traditional multicast protocols[3, 6] are not suitable for this
environment. For example DVMRP [6] uses the reverse path for-
warding (RPF) protocol to deliver multicast packets. In reverse
path forwarding, a router forwards a broadcast packet origi nating
at source S if and only if it has arrived via the shortest path from
the router back to S. If the source S moves, the reverse path
algorithm will not forward packets correctly [1]. In general, the
following challenges are posed by wireless, mobile multicasting:
(8) multicast servers (the sources) move, making source-oriented
protocol sinefficient; (b) multicast group members move, thus pre-
cluding the use of a fixed multicast topology; (c) transient loops
may form during tree reconfiguration; (d) the tree reconfigur ation
scheme should be simple to keep channel overhead low.

To address these chalenges, we propose a modified version
of the Core Based Tree (CBT) multicast algorithm which was

*Thiswork was supported by the U.S. Department of Justice/Federal Bureau of
Investigation, ARPA/ITO under Contract J-FBI-93-112 Computer Aided Design
of High Performance Network Wireless Networked Systems, and by Intel under
project “QoS Wireless Networks”

recently developed for wired networks such as the Internet [3].
CBT multicast routing protocol uses a single-coretree to improve
scalability. CBT is more suitable than DVMRP for multihop
mobile networks. Yet, it too is sensitive to node mobility. For
example, the JOIN_ACK, which creates the tree branch, and the
JOIN_REQUEST may traverse different paths.

Referring to the wireless network protocol stack, the multi cast
protocol is on top of the routing protocol, which in turn sits on
top of the MAC protocol. Below the MAC protocol resides the
clustering protocol. The various layers are in principle modular
and independent of each other. Thus, acorrectly defined multicast
protocol shouldwork ontop of any routing protocol, MAC scheme
and clustering algorithm. The performance of the multicast pro-
tocol, however, is dependent on the implementation of the lower
layers. Sinceoneof our goasis multicast performance eval uation,
wewill definein thispaper the network infrastructureon whichthe
multicast protocol will betested. Themulticast protocol, however,
is generalizable to any wireless, multihop infrastructure.

The infrastructure itself is inspired by that of recent multihop,
mobile, network proposals, such as Cluster TDMA [10] and Clus-
ter Token [15]. It does, however, introduce many novel el ements
which improve performance. Thus a brief description of the in-
frastructureis provided prior to the introduction and eval uation of
the multicast algorithm.

Thepaper isorganized asfollows. Section 2 presentsthe Cluster
and MAC layers. Section 3 introduces the various multihop, mo-
bile routing algorithms. Section 4 compares their performance.
Section 5 describes the proposed multicast scheme. Section 6
evaluates multicast performance. Section 7 concludes the paper.

Il1. Cluster and token infrastructure

A. Clustering

In multihop, mobilewirel ess networks, the aggregation of nodes
into clusters controlled by a clusterhead provides a convenient
framework for the devel opment of important features such as code
separation (among clusters), channel access, routing, and band-
width alocation [10, 11]. Using a distributed clustering algo-
rithm, specific nodes are elected to be clusterheads. All nodes
within transmission range of a clusterhead belong to the same
cluster. That is, all nodes in a cluster can communicate with a
clusterhead and (possibly) with each other. The most important
criterionin cluster algorithm design is stability. Freguent cluster-
head changes adversely affect the performance of other protocols
such as scheduling and resource alocation which rely on it. We
proposed a novel clustering algorithm (Least Clusterhead Change
(LCC) clustering algorithm) [4], where only two conditions cause
the clusterhead to change: (&) two clusterheads come within range
of each other, and; (b) a node becomes disconnected from any
cluster. Thisis an improvement (in stability) over two previous
algorithms, lowest-1D algorithm [7] and highest-connectivity (de-
gree) [10], which redect the clusterhead every time the cluster
membership changes. The LCC agorithm uses either lowest-1D
or highest-connectivity for initialization and routine maintenance.
However, the key difference here is that when a non-clusterhead
node movesinto an aready established cluster, it cannot challenge

the current clusterhead. If, on the other hand, a clusterhead moves
into an existing cluster, then it may or may not prevail based on
ID, connectivity or some other well defined priority. More details
arereported in[9].

Figure 5 showsan example of clustering output using LCC with
lowest-id among 100 nodes. It should be pointed out that there
are many issues must be addressed in the design of a clustering
algorithm with code separation across clusters. For example, as
described in [10], acommon control code must be used for initial-
ization and for reconfiguration; orthogonal codes must be selected
in adjacent clusters, etc. Specific solutionsto these problems are
omitted here for brevity. The interested reader isreferred to[9].

B. MAC layer

Clustering provides an effective way to allocate wirel ess chan-
nels among different clusters. Across clusters, we enhance spa-
tial reuse by using different spreading codes (i.e. CDMA [11]).
Within a cluster, we use a clusterhead controlled token protocol
(i.e. polling)to alocate the channel among competing nodes. The
token approach allows us to give priority to clusterheads in away
which maximizes channel utilizationand minimizes delay.

Various token scheduling schemes can be used to improve rout-
ing efficiency. One way to do this is to give higher priority to
neighbors from which a packet was recently received. Hereis a
simple way to implement priority-token-scheduling (PTS).

o Initially every node in the cluster has the same priority to
receive the token from the clusterhead.

¢ When adata packet istransmitted by node, the clusterhead
increases the priority of node i.

¢ When thetoken returns from an empty queue at neighbor j,
the clusterhead decreases the priority of node ;.

More generally, priority token scheduling allows us to forward
high priority traffics with the least delay. Moreover, dynamic
scheduling permits us to reserve a portion of the channel by offer-
ing more transmission opportunities to real time and multimedia
SOUICES.

Previous cluster oriented schemes, such as cluster TDMA [10]
and cluster token[15], did not take full advantage of clusterheads.
In our clusterhead oriented token scheme, the clusterhead playsan
important role both in clustering and in dynamic channel schedul -
ing. As a result, LCC clustering is more stable than previous
clustering schemes, and token scheduling is more flexible.

C. Gateways

We define a node to be a gateway if it belongs to more than
one cluster. To communicate within a cluster, a gateway must
select the code used by that cluster. We assume that agateway can
change its code after it returns the permission token or it receives
a message. When a clusterhead issues the permission token to
a gateway which is tuned to a different code, the token will be
lost (i.e. a code conflict occurs). Clearly, code scheduling will
affect the message delivery performance. The simplest type of
scheduling is random code selection. However, smple heuris-
tics can considerably improve performance. One such heuristic,
denoted GCS (Gateway Code Scheduling), assumes that when a
gateway transmits a packet to the downstream clusterhead, there
will be soon another packet coming in from the upstream cluster-
head. Thus, the gateway, after the downstream transmission, goes
back to the upstream cluster code. Likewise, the gateway, after
receiving a packet from upstream, promptly returnsits receiver to
the downstream code, to receive the token and thus forward the
packet downstream as quickly as possible.

[11. Routing

Routing is a critical component in any multihop wireless net-
work. It is adso a key element of multicasting. Thus, particular

attention was given to routing in our research. One important re-
guirement in mobile networksis the avoidance of loopswhich are
caused by stale routing tables. Severa adaptive, loop free rout-
ing schemes have been recently proposed specifically for wireless,
mobile networks [16, 8]. In our proposed scheme we use as a
basis the Destination Sequenced Distance Vector (DSDV) rout-
ing scheme [16] which was recently implemented also in cluster
TDMA [10] and cluster token [15] schemes. DSDV stamps in-
creasing sequence numbers on routing updates relative to a given
destination. This way, stale updates can be easily detected and
loops avoided.

In our project, we modify the DSDV scheme by exploiting the
clusterheads. Namely, we use hierarchica routing to route pack-
ets. Each node maintainsacluster member tablewhich recordsthe
destination clusterhead for each node, and broadcasts it periodi-
caly. A nodewill updateitscluster member tablewhen it receives
a new one from its neighbor. Here again we use destination se-
guence numbers asin DSDV to avoid stale tables. There are two
tables for each node to route packets. One is the cluster member
table which is used to map destination address to the destination
clusterhead address, and the other is the routing table which is
used to select the next node to reach the destination cluster. We
cal thiscluster (hierarchica) routing scheme DSCR.

Therearewaystoimprovetheefficiency of DSCR by optimizing
the interaction between routing and MAC layer. The first strat-
egy we consider consists of routing packets aternatively through
clusterheads and gateways. That is, a packet will be routed via
C1, G1,C2,G2,C3,G3.., where C; are clusterheads and G; are gate-
ways. We cal thisrouting strategy Clusterhead-Gateway Switch
Routing (CGSR). Figure 1 shows routing examples for DSDV,
DSCR, and CGSR. Node 1 is the source and node 11 is the desti-
nation. The main difference with respect to the previous schemes
isthat the packet isforced to pass through the clusterhead, avoid-
ing gateway to getaway shortcuts as from node 5 to node 7 in
figure 1. At first glance, this may seem to be a drawback rather
than an advantage since it increases path length. However, re-
caling that clusterheads have more chances to transmit than other
nodes, and that a gateway-to-gateway transmission requires that
both gateways rendezvous on the same code, we redlize that the
presence of a clusterhead between two gatewaysiswell worth the
cost of the extra hop. Experiments verify this conjecture. We

Fig. 1. Routing examples(from node 1 to node 11)

can further reduce packet delay by combining CGSR with priority
token scheduling (CGSR+PTS), as discussed in section 2. We
can go one step further and also add gateway code scheduling
(CGSR+PTS+GCS). In the two latter cases, the delay improve-
ment isdueto MAC layer features, rather than routing features. In
both case, the improvement is obtained by exploiting the know!-
edge that steady traffic exists on certain pathsin the network, and
by assuming that this traffic will persist in the future. However,
in a mobile situation, the paths change continuously, nullifying
the advantage of traffic pattern driven schedules and priorities. To
keep thetraffic pattern more stable, we may attempt to reserve the
path for a connection (in avirtual circuit fashion) until it becomes
disconnected, instead of selecting the new shortest path after each
move. Once the first packet selects the path, al the subsequent
packets will follow this path until it breaks. We call this path

reservation scheme CGSR+PTS+GCS+PR.

V. MAC and Routing Experiments

The MAC and routing strategies described in the previous sec-
tion have been evaluated viasimulation. To thisend, a multihop,
mobilewirelessnetwork simulator wasdevel oped using an existing
process-oriented, parallel smulationlanguagecalled Maisie[2, 4].
The environment consists of 100 mobile hosts roaming uniformly
ina1000x1000feet square. Each nodemovesrandomly at apreset
average speed. Radio transmission range is 100 feet.Data rate is
2 Mb/s. Packet length is 10 kb for user data and most control
packets. It is 2.5 kb for token maintenance packets. Channel
overhead (e.g, code acquisition time, preamble etc) isfactored in
packet length. Thus, data packet transmissiontimeis5 ms.

The experiment consists of transmitting a file of 100 packets
from one source to one destination (using a free-wheeling pro-
tocol such as UDP), and measuring the effective throughput (i.e.
bits transmitted/total transfer time) for various routing and MAC
layer options, with mobility ranging from O to 20 m/s. Figure 2
reports the results. It is clear that the combination of cluster
(hierarchical) routing, clusterhead/gateway alternation, traffic pat-
tern driven token scheduling and gateway code scheduling (i.e.,
CGSR+PTS+GCYS) yidds a remarkabl e throughput improvement
(typicaly, between 3 and 4-fold) with respect to the“flat” routing
scheme (DSDV), for a broad range of node speeds. Path Reserva-
tion, on the other hand, does not appear to improve performance
in a consistent manner. Furthermore, path reservation is not easy
to implement, since it requires saving the “state” of each connec-
tion. For these reasons, in the sequel we use CGSR+PTS+GCS
(referred to as CGSR for brevity) as the basic routing a gori thm.
Figure 2 also permits us to assess the throughput degradation
caused by mobility. For zero maobility, the CGSR throughput is
450 kbps (i.e., less than one fourth of maximal channel speed, 2
Mbps). Here, the degradation is attributed to single tx/rcv radio
multihop, token overhead and code switching overhead. At 20
m/s, CGSR throughput has dropped to 60 kbps. At high mobil-
ity, additiona throughput loss is caused by delays and link level
retransmissions due to path changes. Average end to end de-
lays were also monitored. The delay results are correlated with
throughput results (high throughput — low delay). In particular,
for the CGSR+PTS+GCS case we observed 0.229 sdelay for zero
mobility. Sincethe average number of hopswas 13inthiscase, the
average delay per hop is 17.6 ms, which accountsfor transmission
delay, token latency and code switching. At 20 m/s, the average
end to end delay was 2.7 s. The main delay contribution in this
case islink retransmission del ay.

500 T T T T T T T T T

450 CGSR+PTS+GCS+PR <— -
CGSR+PTS+GCS —+--
200 R CGSR+PTS - |
CGSR X

DSDV 24—

Throughput (kbps)

8 10 12 14 16 18 20
Node Mobility (m/s)

Fig. 2. Throughput of CGSRx* and DSDV

V. Multicast Routing Protocol

Themulticast protocol isinspired by theCoreBased Tree (CBT)
scheme[3]. Each multicast group has auniquemulticast identifier
(Mid). Each multicast address identifies a host group, the group
of hosts that should receive a packet sent to that address. Each
multicast group isinitialized and maintained by a multicast server
(MS) which becomes the core of the CBT for thismulticast group.
Initially the multicast server broadcasts the Mid and its own node
id (MSid) using a flooding algorithm. When a node receives this
information, it records the pair Mid and MSid into its multicast
database which can beused tojoin or quit thismulticast group. Al-
ternatively to avoid flooding, the multicast server registersthe Mid
on a directory server. Any node which wantsto join a particul ar
multicast group can query the directory server.

A. Multicast Tree graft and prune

The construction and maintenance of the core-based tree is
receiver-oriented. When node ¢ wants to join a multicast group
G, it first gets the corresponding Mid and MSid either from
its database or from the directory server. Then, it sends a
JOIN_REQUEST to MSid. The JOIN_.REQUEST will be routed
to MSid (core) , using CGSR, until it reaches any node j which
is aready a member of the host group of G. Node j terminates
the JOIN process by sending a JOIN_ACK back to node :. A
node joinsthe multicast group and grafts a branch to the multicast
tree (core-based tree) upon being traversed by JOIN_ACK Since
CGSR routing is used, the internal nodes of the multicast tree are
all clusterheads and gateways. Regular nodes can be found only
at the leaves of thetree.

When internal node » (a clusterhead or gateway) is traversed
by JOIN_ACK, it records the upstream and downstream node of
JOIN_ACK. Thisinformation will be used to reconstruct the tree
when the links in the tree break due to mobility or crash. The
clusterhead of node ¢ will record node : as a member of G after it
forwards JOIN_ACK to node:.

When a leaf node wants to quit the group G, it sends a
QUIT_REQUEST to its clusterhead. The clusterhead will up-
date its membership information and then acknowledge this re-
quest withaQUIT_ACK. A leaf clusterhead leaves G and sends a
QUIT_REQUEST to its upstream member when al of its down-
stream members have quit G. A nonleaf node cannot quit until it
becomes a lesf.

The above scheme is somewhat different from the CBT scheme
proposed in [3], where JOIN_ACK must follow the same path as
JOIN_REQUEST. We alow JOIN_ACK to follow adifferent path
(from JOIN_REQUEST), if so provided by routing tables; and use
JOIN_ACK to graft linksinto the tree. The JOIN_ACK strategy
is more adaptive to a higher mobile situation where routes may
change between REQ and ACK. In this case, we want to choose
the most current route. Figure 3 compares the performance of the
two schemes. The tree created by ACK messages achieves higher
throughput performance (throughput: number of packets received
by members) under high mobility. The improvement isrelatively
small, however, since the mobility is not high enough to cause
significant route changes during the REQ-ACK round trip.

B. Multicast Tree reconfiguration

Thecore-based treeisnot static sincethe core and the host group
may move. The multicast treewill bereconfigured inthefollowing
cases: (1) The member of a host group moves and changes node
type. (2) Treelinksbreak and transient loops are created.

B.1. Member migration It is necessary to reconfigure the
multicast tree when its group members move or change node-ty pe.
A group member can detect the change of itsmulticast treeby mon-
itoring its connectivity to upstream and downstream members. A
member nodereconnectsto thetree by sending aJOIN_REQUEST
toitsmulticast server (core) when itsupstream member moves out

8000 —_— —_—

7500

7000

6500 ACK tree <©—

REQ tree —+--
6000 -

5500

throughput-duplicate

5000 -
4500 -

4000 A

3500 " P | " P |
0.1 10

1
Mobility (m/s)

Fig. 3. Performance comparison of ACK tree and REQ tree

of range or changes nodetype. For exampl e a clusterhead member
will send a JOIN_REQUEST to the MSid in order to reconstruct
the tree, if its upstream member (a gateway) changes to aregular
node, or becomes disconnected. When a regular node member
(a leaf) moves out of a cluster C; and enters into a cluster C},
the clusterhead of C; will drop it from its descendant list. The
regular node will send a JOIN_REQUEST to its new clusterhead
of C;. The clusterhead of C; will send a QUIT_REQUEST to its
upstream member if it has become itself aleaf.

B.2. Loops When anode: wantsto join a multicast tree G, it
sends a JOIN_REQUEST to the core. The JOIN_REQUEST will
be acknowledged by the first member in ¢, which sends back a
JOIN_ACK to node ¢. If node ¢ has moved in the interim, the
JOIN_ACK may trace a different path than the JOIN_REQUEST.
Thus aloop may be formed. Figure 4 shows an example of loop
caused by the move of node:. Node ¢, before the move, sends the
JOIN_REQUEST to the core on the path «, b, and ¢. Node ¢, the
first member in G on the path to the core , returnsthe JOIN_ACK
to node ;. However, since node i has moved, the new path m, &,
o, and p istraced, thusformingtheloop ¢, d, ¢, f, g, h, k, and m.
To avoid loops, it is required that an established group member,
upon receiving a JOIN_ACK, return a QUIT_REQUEST to the
node which sent this JOIN_ACK whileforwarding the JOIN_ACK
on the new path. In figure 4, for example, node £ will send a
QUIT_REQUEST to node m after it receives a JOIN_ACK. At
the same time node % will forward JOIN_ACK to node o on the
new path creating aloop-free branch to node i. We can generdize
this loop avoidance method as follows: a group member already
connected to the multicast tree will acknowledge a JOIN_ACK
with a QUIT_REQUEST, if this JOIN_ACK does not come from
itsupstream member. Since each group member in atree can only
have one upstream member, a necessary and sufficient condition
for loop avoidance isto allow only one upstream member.

VI. Multicast experiments

We have implemented the multicast protocol in our wireless
simulator in order to evaluate its performance in terms of : (@)
control packet overhead; (b) robustness to mobility; (c) scaling
properties with respect to multicast group membership, and; (d)
response time (i.e. JOIN latency). The environment consists of
100 mobile hosts roaming in a 1000x1000 ft square (as described
in Section 4). The wireless network operates using the LCC clus-
tering algorithm and the cluster token access protocol. As for
routing, CGSR is used, unless otherwise specified.

Figure5 showstheinitial multicast treelayout, with 7 members
plus core. The core is hand-picked. Based on CGSR and clus-
tering properties, the core isa clusterhead and never gives up this

— Multicast tree
........ JOIN_REQUEST
---- JOIN_ACK

Fig. 4. Loop example

role. That is, the core will not change to a non-clusterhead node.
Unless otherwise specified, we assume that membership is fixed.
As members move, they leave one branch of the multicast tree
and join another. Furthermore, as nodes move, the routes change,
thus causing a dynamic reconfiguration of the tree topology. Itis
thus important to measure the control packet overhead caused by
these reconfigurations as a function of node speed. In these exper-
iments, the main focus is on algorithm response time and control
packet overhead. Thus, the network does not carry any user traffic
(only control traffic) to avoid interference between user packets
and control packets.

Figure 6 showstotal number of tree reconfigurationsduring the
experiment lifetime as a function of node speed (up to 9 m/s). We
notethat the number of reconfigurations (i.e., changes in the tree)
grows about linearly with speed. In figure 6 we aso report the
number of JOIN, ACK and QUIT packets. While the first two
grow amost linearly with speed, the third is not very speed sensi-
tive. Also, the QUIT event ismuch less frequent than JOIN/ACK.
The reason is that QUIT isissued by a clusterhead or a gateway
only when it has no members below it.

Figure 7 shows the number of temporary loops detected and
removed. Thisnumber growswith speed, but in an erratic fashion
due to the very small sample size. In any event, loop detection
and recovery does not cause significant overhead. Figure 8 re-
ports the reconfiguration and control packet measurements as a
function of membership size. Node speed is assumed fixed at 5
m/s. Control traffic grows with membership size, as expected, but
less than linearly, since the tree route reconfiguration is i ndepen-
dent of membership size. Furthermore, the number of JOIN/ACK
packets generated when a member moves from one cluster to an-
other decreases when size increases since there are more members
in the tree and the JOIN packet must traverse fewer hops up the
tree. On the other hand, the number of moves from one cluster
to another increases linearly with the number of members. In
balance, we have dightly increasing control packet (ACK/JOIN)
traffic for membership ranging from 7 to 80. The number of QUIT
packets decreases with membership size, since, when amost al
nodes participate in the multicast, no clusterhead or gateway will
ever become childless and thus be forced to quit. In summary,
the control packet overhead required to maintain the multicast tree
does not increase significantly with member group size.

Figure 9 shows packets O/H growth with node speed. Packet
overhead iscomputed using theformula (7" x N P)/(ST x NC',
where N P = number of control packet transmission (ACK, JOIN,
QUIT); T" = control packet transmission time (5ms); NC = av-
erage number of clusters (~ 27), and; S'7" = total simulated time
(62.5s for our experiments). Thus, the overhead represents the
fraction of bandwidth used up by control packets. We note that
the growth islessthan linear, consistent with figure 6 results. Fur-
thermore, the overhead is only afew percent, even at top speed.

The responsiveness of a multicast scheme with dynamic join

can be measured by the latency of a JOIN operation, i.e. the time
between the issue of a JOIN request by a new member and the
receipt of an ACK. Intuition suggests that latency should increase
with speed. The results in figure 10, however, seem to indicate
that latency is rather insensitive to speed, at least for the range
of speeds considered in our study. For example, using the CGSR
routing scheme, JOIN latency is less than 600 ms for the entire
range of speeds. Figure 10 also reports latency under the conven-
tional DSDV routing scheme. It isinteresting to noticethat CGSR
performs considerably better than DSDV. The latency reductionin
CGSR can be attributed to the clever token and code scheduling
heuristics.

In summary, the result show that the proposed multicast scheme
meets the target performance goals. Namely, it is robust to mo-
bility (latency isinsensitiveto speed; overhead increases less than
linearly with speed); it has low overhead (less than a few percent
at top speed); it scales well with member group size, and; it has
very low latency (lessthan 1).

group members
core

*e@O

cluster heads
gateway nodes
regular nodes

Fig. 5. Initial multicast tree

VIl. Conclusion

The two principa contributionsof this paper are:(1) the multi-
cast protocol, and; (2) the wireless network infrastructure which
supportsit. The multicast strategy is inspired by the CBT (Core
Based Tree) Internet scheme. It is robust to maobility(low JOIN
latency upto 10 m/s); itintroducesextremely low control overhead
(typicaly, lessthan 1%); it scales well with number of nodes and
with multicast group size (up to the hundreds). By virtue of the
use of CBT, it can be easily interfaced with an Internet CBT.

Whilethe proposed multicast strategy isindependent of the par-
ticular wirelessinfrastructure(ie, routing, MAC and cluster layers)
in use, it has been developed on top of a novel wireless, multihop
infrastructure for the purpose of evaluating its performance. The
underlying infrastructure itself is innovative and in many aspects
improves upon existing architectures. In particular, the LLC clus-
tering agorithm was proven to be more robust to mobility than
existing schemes. The clusterhead controlled token MAC layer
allowsflexible prioritiesand powerful heuristics. The hierarchical
routing scheme provides a solution with low overhead and poten-
tial for scalability to very large networks.

Future research directions include: (1) the dynamic relocation
of the CORE;(2) the extension of the Internet (or ATM) multicast
tree solutionsto the wireless segments, and; (3) QoS multicasting.

References
[1] A.Acharya, A.Bakre, and B. R. Badrinath. Ip multicast extensions

for mobile internetworking. In INFOCOM. |EEE, 1996.

[2] R. Bagrodia and W. Liao. Maisie: A language for the design
of efficient discrete-event simulations. |EEE Trans. on Software
Engineering, Vol. 20, No. 4:225-238, 1994.

[3] T. Balardie, P. Francis, and J. Crowcroft. Core based trees (cht)
an architecture for scalable inter-domain multicast routin. In SG-
COMM, pages 85-95. ACM, 1993.

[4] C.-C.Chiang, H.-K.Wu, W. Liu, and M. Gerla. Routingin clustered
multihop, mobile wireless networks with fading channel. In The
|EEE Singaporelnter national Conferenceon Networks, pages197—
211. |IEEE, 1996.

[5] M. S. Corsonand A. Ephremides. A distributed routing algorithm
for mobile wireless networks. ACM Journal on Wreless Networks,
Vol. 1, No. 1, 1995.

[6] S. E. Deering and D. R. Cheriton. Multicast routing in datagram
internetworks and extended lans. ACM Transactions on Computer
Systems, pages 85-111, 1990.

[7] A. Ephremides, J. Wieselthier, and D. Baker. A design concept for
reliable mobile radio networks with frequency hopping signaling.
In Proc. |[EEE 75, pages 56—73. |[EEE, 1987.

[8] J.J. Garcia-Luna-Aceves. A unified approach to loop-free routing
using distance vectors or link states. In SGCOM, pages 212-223.
ACM, 1989.

[9] M. Gerlaand C.-C. Chiang. Multicast routing in multihop, mobile
wireless networks. Technical report, UCLA-CSD, Sept. 1996.

[10] M. Gerlaand J. T.-C. Tsai. Multicluster, mobile, multimedia radio
network. ACM Journal on Wreless Networks, Vol. 1, No. 3:255—
265, 1995.

[11] K. Gilhousen, I. M. Jacobs, and et al. On the capacity of acellular
cdma system. |EEE Trans. \eh. Tech., Vol. 40:303-312, 1991.

[12] J. loannidis, D. Duchamp, and G. Q. M. Jr. Ip-based protocols
for mobile internetworking. In SGCOMM, pages 235-243. ACM,
1991.

[13] D. B. Johnson. Routing in ad hoc networks of mobile hosts. In
Proc. of Workshop on Mobile Computing and Applications, 1994.

[14] J.JubinandJ. D. Tornow. Thedarpapacket radio network protocols.
Proc. of the IEEE, Vol. 75, No. 1, 1987.

[15] C.R.Linand M. Gerla. A distributed architecture for multimedia
in dynamic wireless networks. In IEEE International Conference
on Communications (ICC’95), pages 1468-1472. |[EEE, 1995.

[16] C. Perkinsand P. Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers. In SGCOMM,
pages 234-244. ACM, 1994.

of transient loop # of packets; # of reconfig.

of packets; # of reconfig.

2500 T T T T T T T
ACK pkts <—
JOIN pkts —+--
2000 feconfig. events -Gt - 7
quit pkts > A+
1500 Y -
1000 1
.-g
i o
500 1
2 =] MXevermenenne,
o B PR x X
0 1 2 3 4 5 6 7 8 9
Node Mobility (m/s)
Fig. 6. Reconfig. & control pktsvs group size
20 T T T T T T T T
15 [~ 1
10 - -
5 - —
0 e 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
Node Mobility (m/s)
Fig. 7. Total # of transient loops
3000 T T
ACK pkts -—
JON pkts —+--
reconfig. events -B
2500 quit pkts - 4
2000 -
1500 |- -
1000 -
SO0 | ganeee B [R ALEAR R g i
o x i i | X 1) X
0 10 20 30 40 50 60 70 80 920

Goup menber size

Fig. 8. Reconfig. & control pktsvs group size

Control packets overhead (%)

Average latency of JOIN (ms)

25

15

0.5

1100

1000

900

800

700

600

500

400

3 4 5 6
Node Mobility (m/s)

Fig. 9. Control packet O/H

Node Mobility (m/s)

Fig. 10. Average JOIN latency

P
B /#*/ \\\
/ e, P
L ¥ Tl
b+ T
1 | | | | |
0 1 2 3 4 5 6 8

