
Routing and Multicast in Multihop, Mobile Wireless Networks �
Ching-Chuan Chiang and Mario Gerla
University of California, Los Angeles

Abstract

In this paper we present a multicast protocol which builds upon
a cluster based wireless network infrastructure. First, we intro-
duce the network infrastructure which includes several innovative
features such as: minimum change cluster formation; dynamic
priority token access protocol, and; distributed hierarchical rout-
ing. Then, for this infrastructure we propose a multicast protocol
which is inspired by the Core Based Tree approach developed for
the internet. We show that the multicast protocol is robust to mo-
bility, has low bandwidth overhead and latency, scales well with
membership group size, and can be generalized to other wireless
infrastructure.

I. Introduction
Wireless networks provide mobile users with ubiquitous com-

municating capability and information access regardless of loca-
tion. In this paper we address a particular type of wireless networks
called “multihop” networks. As a difference from “single hop”
(i.e. cellular) networks [12] which require fixed base stations inter-
connected by a wired backbone, multihop networks have no fixed
based stations nor wired backbone [10]. The main motivation for
mobile wireless multihopping is rapid deployment and dynamic
reconfiguration. When the wireline network is not available, as in
battlefield communications and search and rescue operations, mul-
tihop mobile wireless networks provide the only feasible means
for ground communications and information accesses. Examples
of multihop wireless networks are ad-hoc networks [13, 16] and
packet radio networks [5, 14]. Multihoppingposes new challenges
in wireless network protocol design. For example, routing proto-
cols developed for single-hop networks [12] cannot be applied to
multihop networks since there is no fixed home agent to maintain
routing information. Another challenging problem is multicast-
ing. Traditional multicast protocols [3, 6] are not suitable for this
environment. For example DVMRP [6] uses the reverse path for-
warding (RPF) protocol to deliver multicast packets. In reverse
path forwarding, a router forwards a broadcast packet originating
at source S if and only if it has arrived via the shortest path from
the router back to S. If the source S moves, the reverse path
algorithm will not forward packets correctly [1]. In general, the
following challenges are posed by wireless, mobile multicasting:
(a) multicast servers (the sources) move, making source-oriented
protocols inefficient; (b) multicast group members move, thus pre-
cluding the use of a fixed multicast topology; (c) transient loops
may form during tree reconfiguration; (d) the tree reconfiguration
scheme should be simple to keep channel overhead low.

To address these challenges, we propose a modified version
of the Core Based Tree (CBT) multicast algorithm which was�This work was supported by the U.S. Department of Justice/Federal Bureau of
Investigation, ARPA/ITO under Contract J-FBI-93-112 Computer Aided Design
of High Performance Network Wireless Networked Systems, and by Intel under
project “QoS Wireless Networks”

recently developed for wired networks such as the Internet [3].
CBT multicast routing protocol uses a single-core tree to improve
scalability. CBT is more suitable than DVMRP for multihop
mobile networks. Yet, it too is sensitive to node mobility. For
example, the JOIN ACK, which creates the tree branch, and the
JOIN REQUEST may traverse different paths.

Referring to the wireless network protocol stack, the multicast
protocol is on top of the routing protocol, which in turn sits on
top of the MAC protocol. Below the MAC protocol resides the
clustering protocol. The various layers are in principle modular
and independent of each other. Thus, a correctly defined multicast
protocol should work on top of any routing protocol, MAC scheme
and clustering algorithm. The performance of the multicast pro-
tocol, however, is dependent on the implementation of the lower
layers. Since one of our goals is multicast performance evaluation,
we will define in this paper the network infrastructure on which the
multicast protocol will be tested. The multicast protocol, however,
is generalizable to any wireless, multihop infrastructure.

The infrastructure itself is inspired by that of recent multihop,
mobile, network proposals, such as Cluster TDMA [10] and Clus-
ter Token [15]. It does, however, introduce many novel elements
which improve performance. Thus a brief description of the in-
frastructure is provided prior to the introduction and evaluation of
the multicast algorithm.

The paper is organized as follows. Section 2 presents the Cluster
and MAC layers. Section 3 introduces the various multihop, mo-
bile routing algorithms. Section 4 compares their performance.
Section 5 describes the proposed multicast scheme. Section 6
evaluates multicast performance. Section 7 concludes the paper.

II. Cluster and token infrastructure
A. Clustering

In multihop, mobile wireless networks, the aggregation of nodes
into clusters controlled by a clusterhead provides a convenient
framework for the development of important features such as code
separation (among clusters), channel access, routing, and band-
width allocation [10, 11]. Using a distributed clustering algo-
rithm, specific nodes are elected to be clusterheads. All nodes
within transmission range of a clusterhead belong to the same
cluster. That is, all nodes in a cluster can communicate with a
clusterhead and (possibly) with each other. The most important
criterion in cluster algorithm design is stability. Frequent cluster-
head changes adversely affect the performance of other protocols
such as scheduling and resource allocation which rely on it. We
proposed a novel clustering algorithm (Least Clusterhead Change
(LCC) clustering algorithm) [4], where only two conditions cause
the clusterhead to change: (a) two clusterheads come within range
of each other, and; (b) a node becomes disconnected from any
cluster. This is an improvement (in stability) over two previous
algorithms, lowest-ID algorithm [7] and highest-connectivity (de-
gree) [10], which reelect the clusterhead every time the cluster
membership changes. The LCC algorithm uses either lowest-ID
or highest-connectivity for initialization and routine maintenance.
However, the key difference here is that when a non-clusterhead
node moves into an already established cluster, it cannot challenge

the current clusterhead. If, on the other hand, a clusterhead moves
into an existing cluster, then it may or may not prevail based on
ID, connectivity or some other well defined priority. More details
are reported in [9].

Figure 5 shows an example of clustering output using LCC with
lowest-id among 100 nodes. It should be pointed out that there
are many issues must be addressed in the design of a clustering
algorithm with code separation across clusters. For example, as
described in [10], a common control code must be used for initial-
ization and for reconfiguration; orthogonal codes must be selected
in adjacent clusters, etc. Specific solutions to these problems are
omitted here for brevity. The interested reader is referred to [9].

B. MAC layer
Clustering provides an effective way to allocate wireless chan-

nels among different clusters. Across clusters, we enhance spa-
tial reuse by using different spreading codes (i.e. CDMA [11]).
Within a cluster, we use a clusterhead controlled token protocol
(i.e. polling) to allocate the channel among competing nodes. The
token approach allows us to give priority to clusterheads in a way
which maximizes channel utilization and minimizes delay.

Various token scheduling schemes can be used to improve rout-
ing efficiency. One way to do this is to give higher priority to
neighbors from which a packet was recently received. Here is a
simple way to implement priority-token-scheduling (PTS).� Initially every node in the cluster has the same priority to

receive the token from the clusterhead.� When a data packet is transmitted by node i, the clusterhead
increases the priority of node i.� When the token returns from an empty queue at neighbor j,
the clusterhead decreases the priority of node j.

More generally, priority token scheduling allows us to forward
high priority traffics with the least delay. Moreover, dynamic
scheduling permits us to reserve a portion of the channel by offer-
ing more transmission opportunities to real time and multimedia
sources.

Previous cluster oriented schemes, such as cluster TDMA [10]
and cluster token [15], did not take full advantage of clusterheads.
In our clusterhead oriented token scheme, the clusterhead plays an
important role both in clustering and in dynamic channel schedul-
ing. As a result, LCC clustering is more stable than previous
clustering schemes, and token scheduling is more flexible.

C. Gateways
We define a node to be a gateway if it belongs to more than

one cluster. To communicate within a cluster, a gateway must
select the code used by that cluster. We assume that a gateway can
change its code after it returns the permission token or it receives
a message. When a clusterhead issues the permission token to
a gateway which is tuned to a different code, the token will be
lost (i.e. a code conflict occurs). Clearly, code scheduling will
affect the message delivery performance. The simplest type of
scheduling is random code selection. However, simple heuris-
tics can considerably improve performance. One such heuristic,
denoted GCS (Gateway Code Scheduling), assumes that when a
gateway transmits a packet to the downstream clusterhead, there
will be soon another packet coming in from the upstream cluster-
head. Thus, the gateway, after the downstream transmission, goes
back to the upstream cluster code. Likewise, the gateway, after
receiving a packet from upstream, promptly returns its receiver to
the downstream code, to receive the token and thus forward the
packet downstream as quickly as possible.

III. Routing
Routing is a critical component in any multihop wireless net-

work. It is also a key element of multicasting. Thus, particular

attention was given to routing in our research. One important re-
quirement in mobile networks is the avoidance of loops which are
caused by stale routing tables. Several adaptive, loop free rout-
ing schemes have been recently proposed specifically for wireless,
mobile networks [16, 8]. In our proposed scheme we use as a
basis the Destination Sequenced Distance Vector (DSDV) rout-
ing scheme [16] which was recently implemented also in cluster
TDMA [10] and cluster token [15] schemes. DSDV stamps in-
creasing sequence numbers on routing updates relative to a given
destination. This way, stale updates can be easily detected and
loops avoided.

In our project, we modify the DSDV scheme by exploiting the
clusterheads. Namely, we use hierarchical routing to route pack-
ets. Each node maintains a cluster member table which records the
destination clusterhead for each node, and broadcasts it periodi-
cally. A node will update its cluster member table when it receives
a new one from its neighbor. Here again we use destination se-
quence numbers as in DSDV to avoid stale tables. There are two
tables for each node to route packets. One is the cluster member
table which is used to map destination address to the destination
clusterhead address, and the other is the routing table which is
used to select the next node to reach the destination cluster. We
call this cluster (hierarchical) routing scheme DSCR.

There are ways to improve the efficiency of DSCR by optimizing
the interaction between routing and MAC layer. The first strat-
egy we consider consists of routing packets alternatively through
clusterheads and gateways. That is, a packet will be routed viaC1, G1,C2,G2,C3,G3.., where Ci are clusterheads and Gi are gate-
ways. We call this routing strategy Clusterhead-Gateway Switch
Routing (CGSR). Figure 1 shows routing examples for DSDV,
DSCR, and CGSR. Node 1 is the source and node 11 is the desti-
nation. The main difference with respect to the previous schemes
is that the packet is forced to pass through the clusterhead, avoid-
ing gateway to getaway shortcuts as from node 5 to node 7 in
figure 1. At first glance, this may seem to be a drawback rather
than an advantage since it increases path length. However, re-
calling that clusterheads have more chances to transmit than other
nodes, and that a gateway-to-gateway transmission requires that
both gateways rendezvous on the same code, we realize that the
presence of a clusterhead between two gateways is well worth the
cost of the extra hop. Experiments verify this conjecture. We

11

21

(1)

(2)

(3)
DSCR

CGSR

DSDV

1

6 10

14

183 4

5

7

8

9

12

15

19
22

23

2

13

16

17

20
24

(1)

(2)

(3)

Fig. 1. Routing examples (from node 1 to node 11)

can further reduce packet delay by combining CGSR with priority
token scheduling (CGSR+PTS), as discussed in section 2. We
can go one step further and also add gateway code scheduling
(CGSR+PTS+GCS). In the two latter cases, the delay improve-
ment is due to MAC layer features, rather than routing features. In
both case, the improvement is obtained by exploiting the knowl-
edge that steady traffic exists on certain paths in the network, and
by assuming that this traffic will persist in the future. However,
in a mobile situation, the paths change continuously, nullifying
the advantage of traffic pattern driven schedules and priorities. To
keep the traffic pattern more stable, we may attempt to reserve the
path for a connection (in a virtual circuit fashion) until it becomes
disconnected, instead of selecting the new shortest path after each
move. Once the first packet selects the path, all the subsequent
packets will follow this path until it breaks. We call this path

reservation scheme CGSR+PTS+GCS+PR.

IV. MAC and Routing Experiments
The MAC and routing strategies described in the previous sec-

tion have been evaluated via simulation. To this end, a multihop,
mobile wireless network simulator was developed using an existing
process-oriented, parallel simulation language called Maisie [2, 4].
The environment consists of 100 mobile hosts roaming uniformly
in a 1000x1000 feet square. Each node moves randomly at a preset
average speed. Radio transmission range is 100 feet.Data rate is
2 Mb/s. Packet length is 10 kb for user data and most control
packets. It is 2.5 kb for token maintenance packets. Channel
overhead (e.g, code acquisition time, preamble etc) is factored in
packet length. Thus, data packet transmission time is 5 ms.

The experiment consists of transmitting a file of 100 packets
from one source to one destination (using a free-wheeling pro-
tocol such as UDP), and measuring the effective throughput (i.e.
bits transmitted/total transfer time) for various routing and MAC
layer options, with mobility ranging from 0 to 20 m/s. Figure 2
reports the results. It is clear that the combination of cluster
(hierarchical) routing, clusterhead/gateway alternation, traffic pat-
tern driven token scheduling and gateway code scheduling (i.e.,
CGSR+PTS+GCS) yields a remarkable throughput improvement
(typically, between 3 and 4-fold) with respect to the “flat” routing
scheme (DSDV), for a broad range of node speeds. Path Reserva-
tion, on the other hand, does not appear to improve performance
in a consistent manner. Furthermore, path reservation is not easy
to implement, since it requires saving the “state” of each connec-
tion. For these reasons, in the sequel we use CGSR+PTS+GCS
(referred to as CGSR for brevity) as the basic routing algorithm.
Figure 2 also permits us to assess the throughput degradation
caused by mobility. For zero mobility, the CGSR throughput is
450 kbps (i.e., less than one fourth of maximal channel speed, 2
Mbps). Here, the degradation is attributed to single tx/rcv radio
multihop, token overhead and code switching overhead. At 20
m/s, CGSR throughput has dropped to 60 kbps. At high mobil-
ity, additional throughput loss is caused by delays and link level
retransmissions due to path changes. Average end to end de-
lays were also monitored. The delay results are correlated with
throughput results (high throughput ! low delay). In particular,
for the CGSR+PTS+GCS case we observed 0.229 s delay for zero
mobility. Since the average number of hops was 13 in this case, the
average delay per hop is 17.6 ms, which accounts for transmission
delay, token latency and code switching. At 20 m/s, the average
end to end delay was 2.7 s. The main delay contribution in this
case is link retransmission delay.

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

kb
ps

)

Node Mobility (m/s)

CGSR+PTS+GCS+PR
CGSR+PTS+GCS

CGSR+PTS
CGSR
DSDV

Fig. 2. Throughput of CGSR� and DSDV

V. Multicast Routing Protocol
The multicast protocol is inspired by the Core Based Tree (CBT)

scheme [3]. Each multicast group has a unique multicast identifier
(Mid). Each multicast address identifies a host group, the group
of hosts that should receive a packet sent to that address. Each
multicast group is initialized and maintained by a multicast server
(MS) which becomes the core of the CBT for this multicast group.
Initially the multicast server broadcasts the Mid and its own node
id (MSid) using a flooding algorithm. When a node receives this
information, it records the pair Mid and MSid into its multicast
database which can be used to join or quit this multicast group. Al-
ternatively to avoid flooding, the multicast server registers the Mid
on a directory server. Any node which wants to join a particular
multicast group can query the directory server.

A. Multicast Tree graft and prune
The construction and maintenance of the core-based tree is

receiver-oriented. When node i wants to join a multicast groupG, it first gets the corresponding Mid and MSid either from
its database or from the directory server. Then, it sends a
JOIN REQUEST to MSid. The JOIN REQUEST will be routed
to MSid (core) , using CGSR, until it reaches any node j which
is already a member of the host group of G. Node j terminates
the JOIN process by sending a JOIN ACK back to node i. A
node joins the multicast group and grafts a branch to the multicast
tree (core-based tree) upon being traversed by JOIN ACK Since
CGSR routing is used, the internal nodes of the multicast tree are
all clusterheads and gateways. Regular nodes can be found only
at the leaves of the tree.

When internal node n (a clusterhead or gateway) is traversed
by JOIN ACK, it records the upstream and downstream node of
JOIN ACK. This information will be used to reconstruct the tree
when the links in the tree break due to mobility or crash. The
clusterhead of node i will record node i as a member of G after it
forwards JOIN ACK to node i.

When a leaf node wants to quit the group G, it sends a
QUIT REQUEST to its clusterhead. The clusterhead will up-
date its membership information and then acknowledge this re-
quest with a QUIT ACK. A leaf clusterhead leaves G and sends a
QUIT REQUEST to its upstream member when all of its down-
stream members have quit G. A nonleaf node cannot quit until it
becomes a leaf.

The above scheme is somewhat different from the CBT scheme
proposed in [3], where JOIN ACK must follow the same path as
JOIN REQUEST. We allow JOIN ACK to follow a different path
(from JOIN REQUEST), if so provided by routing tables; and use
JOIN ACK to graft links into the tree. The JOIN ACK strategy
is more adaptive to a higher mobile situation where routes may
change between REQ and ACK. In this case, we want to choose
the most current route. Figure 3 compares the performance of the
two schemes. The tree created by ACK messages achieves higher
throughput performance (throughput: number of packets received
by members) under high mobility. The improvement is relatively
small, however, since the mobility is not high enough to cause
significant route changes during the REQ-ACK round trip.

B. Multicast Tree reconfiguration
The core-based tree is not static since the core and the host group

may move. The multicast tree will be reconfigured in the following
cases: (1) The member of a host group moves and changes node
type. (2) Tree links break and transient loops are created.

B.1. Member migration It is necessary to reconfigure the
multicast tree when its group members move or change node-type.
A group member can detect the change of its multicast tree by mon-
itoring its connectivity to upstream and downstream members. A
member node reconnects to the tree by sending a JOIN REQUEST
to its multicast server (core) when its upstream member moves out

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

0.1 1 10

th
ro

ug
hp

ut
-d

up
lic

at
e

Mobility (m/s)

ACK tree
REQ tree

Fig. 3. Performance comparison of ACK tree and REQ tree

of range or changes node type. For example a clusterhead member
will send a JOIN REQUEST to the MSid in order to reconstruct
the tree, if its upstream member (a gateway) changes to a regular
node, or becomes disconnected. When a regular node member
(a leaf) moves out of a cluster Ci and enters into a cluster Cj,
the clusterhead of Ci will drop it from its descendant list. The
regular node will send a JOIN REQUEST to its new clusterhead
of Cj. The clusterhead of Ci will send a QUIT REQUEST to its
upstream member if it has become itself a leaf.

B.2. Loops When a node i wants to join a multicast tree G, it
sends a JOIN REQUEST to the core. The JOIN REQUEST will
be acknowledged by the first member in G, which sends back a
JOIN ACK to node i. If node i has moved in the interim, the
JOIN ACK may trace a different path than the JOIN REQUEST.
Thus a loop may be formed. Figure 4 shows an example of loop
caused by the move of node i. Node i, before the move, sends the
JOIN REQUEST to the core on the path a, b, and c. Node c, the
first member in G on the path to the core , returns the JOIN ACK
to node i. However, since node i has moved, the new path m, k,o, and p is traced, thus forming the loop c, d, e, f , g, h, k, and m.
To avoid loops, it is required that an established group member,
upon receiving a JOIN ACK, return a QUIT REQUEST to the
node which sent this JOIN ACK while forwarding the JOIN ACK
on the new path. In figure 4, for example, node k will send a
QUIT REQUEST to node m after it receives a JOIN ACK. At
the same time node k will forward JOIN ACK to node o on the
new path creating a loop-free branch to node i. We can generalize
this loop avoidance method as follows: a group member already
connected to the multicast tree will acknowledge a JOIN ACK
with a QUIT REQUEST, if this JOIN ACK does not come from
its upstream member. Since each group member in a tree can only
have one upstream member, a necessary and sufficient condition
for loop avoidance is to allow only one upstream member.

VI. Multicast experiments
We have implemented the multicast protocol in our wireless

simulator in order to evaluate its performance in terms of : (a)
control packet overhead; (b) robustness to mobility; (c) scaling
properties with respect to multicast group membership, and; (d)
response time (i.e. JOIN latency). The environment consists of
100 mobile hosts roaming in a 1000x1000 ft square (as described
in Section 4). The wireless network operates using the LCC clus-
tering algorithm and the cluster token access protocol. As for
routing, CGSR is used, unless otherwise specified.

Figure 5 shows the initial multicast tree layout, with 7 members
plus core. The core is hand-picked. Based on CGSR and clus-
tering properties, the core is a clusterhead and never gives up this

JOIN_REQUEST

JOIN_ACK
i

i

k

i move

m

Multicast tree

a

c

o b

p

core

d

f

h

eg

Fig. 4. Loop example

role. That is, the core will not change to a non-clusterhead node.
Unless otherwise specified, we assume that membership is fixed.
As members move, they leave one branch of the multicast tree
and join another. Furthermore, as nodes move, the routes change,
thus causing a dynamic reconfiguration of the tree topology. It is
thus important to measure the control packet overhead caused by
these reconfigurations as a function of node speed. In these exper-
iments, the main focus is on algorithm response time and control
packet overhead. Thus, the network does not carry any user traffic
(only control traffic) to avoid interference between user packets
and control packets.

Figure 6 shows total number of tree reconfigurations during the
experiment lifetime as a function of node speed (up to 9 m/s). We
note that the number of reconfigurations (i.e., changes in the tree)
grows about linearly with speed. In figure 6 we also report the
number of JOIN, ACK and QUIT packets. While the first two
grow almost linearly with speed, the third is not very speed sensi-
tive. Also, the QUIT event is much less frequent than JOIN/ACK.
The reason is that QUIT is issued by a clusterhead or a gateway
only when it has no members below it.

Figure 7 shows the number of temporary loops detected and
removed. This number grows with speed, but in an erratic fashion
due to the very small sample size. In any event, loop detection
and recovery does not cause significant overhead. Figure 8 re-
ports the reconfiguration and control packet measurements as a
function of membership size. Node speed is assumed fixed at 5
m/s. Control traffic grows with membership size, as expected, but
less than linearly, since the tree route reconfiguration is indepen-
dent of membership size. Furthermore, the number of JOIN/ACK
packets generated when a member moves from one cluster to an-
other decreases when size increases since there are more members
in the tree and the JOIN packet must traverse fewer hops up the
tree. On the other hand, the number of moves from one cluster
to another increases linearly with the number of members. In
balance, we have slightly increasing control packet (ACK/JOIN)
traffic for membership ranging from 7 to 80. The number of QUIT
packets decreases with membership size, since, when almost all
nodes participate in the multicast, no clusterhead or gateway will
ever become childless and thus be forced to quit. In summary,
the control packet overhead required to maintain the multicast tree
does not increase significantly with member group size.

Figure 9 shows packets O/H growth with node speed. Packet
overhead is computed using the formula (T �NP)=(ST �NC),
whereNP = number of control packet transmission (ACK, JOIN,
QUIT); T = control packet transmission time (5ms); NC = av-
erage number of clusters (' 27), and; ST = total simulated time
(62:5s for our experiments). Thus, the overhead represents the
fraction of bandwidth used up by control packets. We note that
the growth is less than linear, consistent with figure 6 results. Fur-
thermore, the overhead is only a few percent, even at top speed.

The responsiveness of a multicast scheme with dynamic join

can be measured by the latency of a JOIN operation, i.e. the time
between the issue of a JOIN request by a new member and the
receipt of an ACK. Intuition suggests that latency should increase
with speed. The results in figure 10, however, seem to indicate
that latency is rather insensitive to speed, at least for the range
of speeds considered in our study. For example, using the CGSR
routing scheme, JOIN latency is less than 600 ms for the entire
range of speeds. Figure 10 also reports latency under the conven-
tional DSDV routing scheme. It is interesting to notice that CGSR
performs considerably better than DSDV. The latency reduction in
CGSR can be attributed to the clever token and code scheduling
heuristics.

In summary, the result show that the proposed multicast scheme
meets the target performance goals. Namely, it is robust to mo-
bility (latency is insensitive to speed; overhead increases less than
linearly with speed); it has low overhead (less than a few percent
at top speed); it scales well with member group size, and; it has
very low latency (less than 1 s).

regular nodes

gateway nodes

cluster heads

core

group members

Fig. 5. Initial multicast tree

VII. Conclusion
The two principal contributions of this paper are:(1) the multi-

cast protocol, and; (2) the wireless network infrastructure which
supports it. The multicast strategy is inspired by the CBT (Core
Based Tree) Internet scheme. It is robust to mobility(low JOIN
latency up to 10 m/s); it introduces extremely low control overhead
(typically, less than 1%); it scales well with number of nodes and
with multicast group size (up to the hundreds). By virtue of the
use of CBT, it can be easily interfaced with an Internet CBT.

While the proposed multicast strategy is independent of the par-
ticular wireless infrastructure (ie, routing, MAC and cluster layers)
in use, it has been developed on top of a novel wireless, multihop
infrastructure for the purpose of evaluating its performance. The
underlying infrastructure itself is innovative and in many aspects
improves upon existing architectures. In particular, the LLC clus-
tering algorithm was proven to be more robust to mobility than
existing schemes. The clusterhead controlled token MAC layer
allows flexible priorities and powerful heuristics. The hierarchical
routing scheme provides a solution with low overhead and poten-
tial for scalability to very large networks.

Future research directions include: (1) the dynamic relocation
of the CORE;(2) the extension of the Internet (or ATM) multicast
tree solutions to the wireless segments, and; (3) QoS multicasting.

References
[1] A. Acharya, A. Bakre, and B. R. Badrinath. Ip multicast extensions

for mobile internetworking. In INFOCOM. IEEE, 1996.
[2] R. Bagrodia and W. Liao. Maisie: A language for the design

of efficient discrete-event simulations. IEEE Trans. on Software
Engineering, Vol. 20, No. 4:225–238, 1994.

[3] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (cbt)
an architecture for scalable inter-domain multicast routin. In SIG-
COMM, pages 85–95. ACM, 1993.

[4] C.-C. Chiang, H.-K. Wu, W. Liu, and M. Gerla. Routing in clustered
multihop, mobile wireless networks with fading channel. In The
IEEE SingaporeInternational Conferenceon Networks, pages 197–
211. IEEE, 1996.

[5] M. S. Corson and A. Ephremides. A distributed routing algorithm
for mobile wireless networks. ACM Journal on Wireless Networks,
Vol. 1, No. 1, 1995.

[6] S. E. Deering and D. R. Cheriton. Multicast routing in datagram
internetworks and extended lans. ACM Transactions on Computer
Systems, pages 85–111, 1990.

[7] A. Ephremides, J. Wieselthier, and D. Baker. A design concept for
reliable mobile radio networks with frequency hopping signaling.
In Proc. IEEE 75, pages 56–73. IEEE, 1987.

[8] J. J. Garcia-Luna-Aceves. A unified approach to loop-free routing
using distance vectors or link states. In SIGCOM, pages 212–223.
ACM, 1989.

[9] M. Gerla and C.-C. Chiang. Multicast routing in multihop, mobile
wireless networks. Technical report, UCLA-CSD, Sept. 1996.

[10] M. Gerla and J. T.-C. Tsai. Multicluster, mobile, multimedia radio
network. ACM Journal on Wireless Networks, Vol. 1, No. 3:255–
265, 1995.

[11] K. Gilhousen, I. M. Jacobs, and et al. On the capacity of a cellular
cdma system. IEEE Trans. Veh. Tech., Vol. 40:303–312, 1991.

[12] J. Ioannidis, D. Duchamp, and G. Q. M. Jr. Ip-based protocols
for mobile internetworking. In SIGCOMM, pages 235–243. ACM,
1991.

[13] D. B. Johnson. Routing in ad hoc networks of mobile hosts. In
Proc. of Workshop on Mobile Computing and Applications, 1994.

[14] J. Jubin and J. D. Tornow. The darpa packetradio network protocols.
Proc. of the IEEE, Vol. 75, No. 1, 1987.

[15] C. R. Lin and M. Gerla. A distributed architecture for multimedia
in dynamic wireless networks. In IEEE International Conference
on Communications (ICC’95), pages 1468–1472. IEEE, 1995.

[16] C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers. In SIGCOMM,
pages 234–244. ACM, 1994.

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9

of

 p
ac

ke
ts

; #
 o

f r
ec

on
fig

.

Node Mobility (m/s)

ACK pkts
JOIN pkts

reconfig. events
quit pkts

Fig. 6. Reconfig. & control pkts vs group size

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9

of

 tr
an

si
en

t l
oo

p

Node Mobility (m/s)

Fig. 7. Total # of transient loops

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90

#

o
f

p
a
c
k
e
t
s
;

#

o
f

r
e
c
o
n
f
i
g
.

Group member size

ACK pkts
JOIN pkts

reconfig. events
quit pkts

Fig. 8. Reconfig. & control pkts vs group size

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9

C
on

tr
ol

 p
ac

ke
ts

 o
ve

rh
ea

d
(%

)

Node Mobility (m/s)

Fig. 9. Control packet O/H

400

500

600

700

800

900

1000

1100

0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 la
te

nc
y

of
 J

O
IN

 (
m

s)

Node Mobility (m/s)

DSDV
CGSR

Fig. 10. Average JOIN latency

