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Abstract—The past decade has witnessed a phenomenal market
penetration of wireless communications and a steady increase
in the number of mobile users. Unlike wired networks where
communication links are inherently stable, in wireless networks
the lifetime of a link is a random variable whose probability
distribution depends on mobility, transmission range and various
impairments of radio communications. Because of the very
dynamic nature of VANET and of the short transmission range
mandated by the Federal Communications Commission (FCC),
individual communication links come into existence and vanish
unpredictably, making the task of establishing and maintaining
routing paths between fast-moving vehicles a very challenging
task. The main contribution of this work is to investigate the
probability distribution of the lifetime of individual links in
VANET under the combined assumptions of a realistic radio
transmission model and of a realistic probability distribution
model of inter-vehicle headway distance. Our analytical results
were validated and confirmed by extensive simulation.

Index Terms—Wireless communications, vehicular ad hoc
networks, path-loss model, headway distance, probability distri-
bution, log-normal distribution.

I. INTRODUCTION

In the past decade Vehicular Ad-hoc NETworks (VANET),
a noteworthy variant of Mobile Ad-hoc Networks (MANET)
specialized to Vehicle-to-Vehicle and Vehicle-to-Infrastructure
wireless communications, have been proposed to make driv-
ing a safer and more enjoyable experience. In turn, the
emergence of VANET as a credible partner and interlocutor
has accelerated the convergence of Intelligent Transportation
Systems (ITS) and wireless communications. This confluece
of technologies is poised to revolutionize the way we think
driving by creating a safe and secure environment that will
eventually pervade our highways and city streets.

Recently, the U.S. Federal Communications Commission
(FCC) has set aside a block of 75MHz of spectrum in the 5.850
GHz to 5.925 GHz band specifically dedicated to applications
intended to enhance the safety and efficiency of our highway
systems. Vehicular communications are governed by the stip-
ulations of Dedicated Short Range Communications (DSRC)
that restrict inter-vehicle radio communications to about 300
meters [1], [2]. As a result, individual communication links are
short-lived and multi-hop routing paths built on top of such
links are highly vulnerable to disconnection.

Most of the early applications of VANET were motivated by
traffic safety. However, it was recently noticed that the DSRC
spectrum set aside by the FCC, by far exceeds the needs of
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traffic-related safety applications. This observation has moti-
vated the emergence of a host of other applications that can
take advantage of the allocated spectrum. Not surprisingly, we
see more and more third-party providers offering non-safety-
related applications ranging from peer-to-peer applications, to
location-specific services, to multimedia content delivery and
various flavors of mobile entertainment.

The headway distance between two co-directional vehicles
is defined as the time (or, equivalently, distance) between two
vehicles passing the same point and traveling in the same
direction. The headway distance plays a fundamental role in
understanding traffic flow and in ensuring travel safety and
related issues. While there were several attempts at suggesting
a safe headway distance on roadways and streets, the task
of legislating what the best headway distance should be
is a complex problem fraught with technical, societal and
political issues. This explains why the task of determining
the probability distribution of headway distance is still an
open question that has received a great deal of attention in
the literature [3], [4], [5], [6].

Our main contribution is a probabilistic analysis of link du-
ration in VANET, based on a realistic distribution of headway
distance as well as on a realistic channel model. Since, as
already mentioned, there is no consensus in the literature on
the exact distribution of the headway distance, we begin by
an empirical validation of the log-normal headway distribution
assumption proposed by Greenberg [3]. Our empirical valida-
tion serves the dual purpose of anchoring our analytical work
in a realistic headway distance model and also to calibrate
our subsequent simulation environment. Next, assuming a log-
normal distribution of headway distance and a realistic channel
propagation model, we derive the probability distribution as
well as the expected duration of links in VANET. We assume
that while they have not reached the speed limit, or have not
stopped, vehicles have constant, non-empty, acceleration. Our
analytical results were confirmed by extensive simulation.

II. RELATED WORK

In spite of the fundamental importance of predicting the
duration of communication links in VANET, to the best of
our knowledge, up to this point there have been only empirical
studies or else papers reporting results built on top of simplistic
radio propagation models.

To make this paper as self-contained as possible, we now
provide a succinct survey of papers that have addressed similar
issues. Panichpapiboon et al. [7] studied links and routing



paths on the basis of signal strength. Kiese et al. [8] adapted
received power levels and improved antenna gains to find
better links. Yang et al. [9] and Kesting et al. [10] proposed
using statistical and real-time density data to select wireless
links in VANET. Bai et al. [11] proposed a model for path
duration distribution in MANET. Based on experiments with
Dynamic Source Routing (DSR), they proposed an approxi-
mate probability density function (exponential distribution) for
the path duration. However, the assumption of path duration
was not validated in [11].

Gruber and Hui [12] assumed link durations to be in-
dependent, exponentially distributed random variables; with
this assumption, they derived the probability distributions
of path duration which, not surprisingly, is exponential as
well.1 However, the details of the underlying mobility model
supporting such an assumption were not discussed in [12].

Pascoe et al. [13] derived the time duration of an n-node
path. However, their mobility model only includes velocity
without considering acceleration. Nekovee [14] proposed a
model to determine the probability of a link in VANET under
the assumptions that (1) the headway distance is constant, (2)
the radio propagation model only accounts for slow fading
and ignores path loss due to distance, and (3) vehicle mobility
patterns are ignored. Nekovee et al. [15] assumed that car
velocities are normally distributed. From this assumption, the
throughput is modeled by various formulas. The path-loss is
also formalized as an exponential function of velocity. This
formula is also the basis of Nekovee’s work [14].

Su et al. [16] proposed an analytical model for the prob-
ability density function (pdf) of link lifetime. Their model is
based on several assumptions, namely that nodes are equally
spaced, and that speed is normally distributed. Building on
these assumptions, Sun et al. [16] computed the probability of
link lifetime. However, their first assumption is not reasonable
since, as widely known, inter-vehicle distance is a random
variable and certainly not a constant.

III. A CLOSER LOOK AT THE HEADWAY DISTANCE

As already mentioned, the headway distance between con-
secutive cars on a roadway plays a fundamental role in under-
standing traffic flow and in ensuring travel safety and related
issues. Not surprisingly, many headway distance models have
been developed since the 1960s. As pointed out by Cowan [5],
typical representatives of such distribution models include the
exponential distribution, the normal distribution, the gamma
distribution and the log-normal distribution. For instance, the
log-normal distribution was proposed to model headways
under car-following situations [3]. A major assumption for the
log-normal headway model is that a vehicle maintains a safe
distance while following its leading vehicle closely at variable
speeds. This assumption makes sense and is apparent in real
traffic data [17], [18], [19]. For example, Krbálek and S̆eba
[19] studied the statistics of public transportation in and around
Mexico-City. Chen and Li employed a Markov model to study
the headway distance and confirmed that the headway distance

1Recall that the minimum of several independent exponential random
variables is also exponential.

is log-normally distributed [20]. Chowdhury et al. [17] pro-
posed a different distribution of headways, i.e. a function of
speed limit. The headways between two successive particles is
defined based on the number of empty boxes between them.
Panwai et al. [4] studied headway distance in microscopic
mobility simulators as a car following model. Some mixed
distribution models are proposed on the assumption that a
road consists of two components, tracking/following and free
components. For example, Cowan [5] proposed a mixed distri-
bution consisting of a constant distribution (tracking/following
component) and an exponential distribution (free component).
Griffiths and Hunt [18] proposed a mixed model called Double
Displaced Negative Exponential Distribution.

Given the large variety of opinions in the literature concern-
ing the probability distribution of the headway distance, we
decided to begin our investigations by validating these models
in relation to their suitability as basis for analytical studies of
link distribution in VANET. Towards this goal, we have carried
out experiments using the open source simulator written by
Treiber [21]. Specifically, we have recorded and plotted the
headway distance. It is important to note that Treiber [21]
does not assume a specific model for the headway distance
and, as a consequence, our empirical measurement were not
biased towards any distribution. Having plotted the resulting
headway distance, we then plotted, on the same graph, the
various candidate probability distributions just mentioned. A
detailed discussion can be found in the Appendix. As dis-
cussed below, and as illustrated in Figure 1, we found that
the best fit between a classic distribution function and the
simulation results is provided by the log-normal distribution.
It is interesting to mention that our conclusion agrees with a
similar an experiment conducted independently by Puan [6].
Given the good fit between our simulation results shown in
Figure 2, and Paun’s data collected using video cameras to
record traffic movement at four sites [6], we have adopted the
log-normal distribution of headway distance as the basis for
our analytical derivations.
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Fig. 1. The pdf of headway distance versus the normal, log-normal,
exponential and gamma distribution. The log-normal distribution best matches
our simulations.
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Fig. 2. Contrasting our headway simulation vs. Paun’s field data.

IV. THE PROBABILITY DISTRIBUTION OF A LINK

A. Path-Loss

The path-loss model [22] is a radio propagation model that
predicts the signal attenuation (in dB) at a distance X from
the transmitter. Visser et al. [23] used a patch antenna and
studied the path-loss of a DSRC link. The path-loss relevant
to inter-vehicle communication can be modeled by two-ray
model which takes the reflection signal from the road itself
into consideration. This suggests defining the path-loss in dB
as a random variable L(X) defined by writing:

L(X) = 40logX− (10logGt +10logGr +20loght +20loghr)
(1)

where2 Gt and Gr are the antenna gains of the transmitter
and the receiver, respectively; ht and hr are, respectively, the
heights of the transmitting and receiving antennas [24].

B. On the Link Distance

We are interested in the link distance X , the distance be-
tween a source vehicle and a destination vehicle (i.e., between
a sender and a receiver). Write X = ∑

m
i=1 Xi where the Xis are

independent log-normal random variables with a common dis-
tribution, specifically Xi ∈ logN(µi,σi). As illustrated in Figure
3, X represents the convolution of m independent headway
distances. As it turns out [25], [26], X is approximately log-
normal; the commonly-used Fenton-Wilkinson approximation
[27] of X is obtained by setting

σ
2
X = log

[
∑e2µi+σ2

i (eσ2
i +1)

(∑eµi+σ2
i /2)2

+1

]

µX = log(∑eσ2
i )− σ2

Z
2
.

To simplify the notation, we write σ = σX and µ = µX and

Fig. 3. Illustrating the convolution X = X1 +X2 + · · ·+Xm.

we use the notation X ∈ logN(µ,σ ).
2Here, and in the remainder of this paper, we use log to represent log10

and ln to represent the natural logarithm loge.

C. The Probability Distribution of Path-Loss

A quick look at (1) reveals that the path-loss L(X) is the
convolution of a random variable: Y = 40logX and a constant
value −(10logGt +10logGr +20loght +20loghr).

Lemma 1: Assuming that X ∈ logN(µ,σ), the random
variable L(X) = 40logX − (10logGt + 10logGr + 20loght +
20loghr) is normally distributed.

The proof of the lemma is routine and is, therefore, omitted;
we note that since L(X) is normally distributed, its probability
density function (pdf) reads l(z) ∈ 1

40 N
(

µ

40 +b,σ
)

where b =
−(10logGt +10logGr +20loght +20loghr). To simplify the
notation, we write L(X) = Z ∈ aN(µz,σ

2
z ), where a = 1

40 , µz =
aµ +b and σ2

z = σ2.

D. The Probability Distribution of the Existence of a Link

The existence of a communication link between a source
vehicle and a destination vehicle depends on the path-loss at
the receiver’s side. For a link between these vehicles, the path-
loss between them needs to be smaller than a given threshold
PLthr. Thus, the probability distribution F(z) of the existence
of a link between two vehicles separated by a distance of z:

F(z) = P{L(X)≤ z}

=
∫ z

−∞

a
σz
√

2π
exp
(
− (t−µz)

2

2σ2
z

)
dt

=
C1a

2

[
1+ er f

(
z−µz

σz
√

2

)]
(2)

where C1 is a normalization coefficient. Since limz→∞ F(z)= 1,
it follows that C1 =

1
a and, thus, we write

F(z) = 1
2 +

1
2 er f

(
z−µz
σz
√

2

)
. (3)

V. THE LINK DURATION MODEL

Referring to Figure 4, assume that at time t0 = 0 a link
is established i between co-directional vehicles i and j with
j ahead of i. Let the random variable X denote the distance
separating the two vehicles at link setup time. Mindful of the
300m DSRC transmission range constraint, we have

0≤ X < 300. (4)

i

j (vj,aj)

(vi,ai)

Fig. 4. Illustrating our basic scenario.

Recall that X is the convolution of m independent headway
distances with a common log-normal distribution and that X
is approximately log-normal with parameters µ and σ . We
assume that the speed limit on the roadway is vm and that no
vehicle will travel faster than vm. For t ≥ 0, we define a(t),
the acceleration of the vehicle at time t as follows:
• if a(0) = 0, then a(t) = 0 for all t ≥ 0;



• if a(0)> 0, then

a(t) =

{
a(0) for t ≤ vm−v(0)

a(0)
0 otherwise;

(5)

• if a(0)< 0, then

a(t) =

{
a(0) for t ≤ −v(0)

a(0)
0 otherwise.

(6)

In other words, (5) and (6) indicate that as long as the
vehicle has not reached the speed limit vm or has not stopped
(in case a(0) < 0), its acceleration remains a(0). However,
once the vehicle reaches the speed limit (or has stopped), its
acceleration becomes 0.

Given a generic vehicle with initial speed v(0), the instan-
taneous speed v(t) at time t is defined as

v(t) = v(0)+
∫ t

0
a(u)du, (7)

where for all u ∈ [0, t], a(u) is the instantaneous acceleration
at time u defined above.
Now, (5) and (6) and (7), combined imply that
• if a(0) = 0, then v(t) = v(0) for all t ≥ 0;
• if a(0)> 0, then

v(t) =

{
v(0)+a(0)t for t ≤ vm−v(0)

a(0)
vm otherwise;

(8)

• if a(0)< 0, then

v(t) =

{
v(0)+a(0)t for t ≤ −v(0)

a(0)
0 otherwise.

(9)

Similarly, with v(x) defined above, the distance that our
generic vehicle travels in the time interval [0, t] is defined as

S(t) =
∫ t

0
v(x)dx. (10)

We now return to our vehicles i and j. To simplify the
notation, we write vi = vi(0), ai = ai(0) and v j = v j(0), a j =
a j(0). The instantaneous speeds and accelerations vi(t) and
ai(t), respectively, v j(t) and a j(t) are obtained by suitably
instantiating (5), (6), (8), (9). Now, (10) guarantees that the
distances traversed in the time interval [0, t] by vehicles i and
j are, respectively,

Si(t) =
∫ t

0
vi(x)dx

and
S j(t) =

∫ t

0
v j(x)dx.

Assuming that at connection setup (i.e., at time 0) the
distance between the two vehicles was x, it follows that the
distance between i and j at time t can be written as

S j(t)−Si(t)+X . (11)

It is important to note that (11) defines a signed distance:
indeed, if at time t, S j(t)− Si(t)+X > 0, then vehicle j is
ahead of i; otherwise, vehicle i is ahead of j.

We find it convenient to define the indicator function I(i, j)

intended to capture information about which of the two
vehicles is ahead when the communication link between them
breaks

I(i, j) =
{

1 if S j(t)−Si(t)+X > 0
−1 otherwise

Given that DSRC links break at 300 meters, it follows that
when the link breaks the following relation holds:

S j(t)−Si(t)+X = 300 · I(i, j). (12)

We refer the reader to Figure 5 where the various possible
combinations of vi,v j,ai,a j are illustrated. The boxes next to
the speed axis indicate a possible combination of vi and v j.
The planar regions A′,A′′ and A′′′ are several sections of the
area formed by the speed lines. As shown in Figure 5, we
distinguish special time instances tα , tβ , tγ where

• tα is the time when two vehicles have same speed,
• tβ is the time when iexactly one vehicle has stopped,
• tγ is the time when both vehicles have stopped.

Due to the existence of a speed limit, we have tε and tζ as
special time moments where tε is the time when one vehicle
reaches the speed limit vm, tζ is the time when both vehicles
reach the speed limit. The reason for discussing these special
time instances is that they affect in a crucial way the link
duration. We now define a number of time instances that will
be used in our analysis:

• provided that v j−vi
a j−ai

> 0, we write

tα =
v j− vi

a j−ai
;

• define tβ as follows

tβ =


−vi
ai

if −vi
ai

> 0 and −v j
a j

< 0
−v j
a j

if f rac−v ja j > 0 and −vi
ai

< 0

min{−vi
ai
,
−v j
a j
} if −vi

ai
> 0 and −v j

a j
> 0

undefined otherwise.

• similarly, define tγ as follows

tγ =

{
max{−vi

ai
,
−v j
a j
} if −vi

ai
> 0 and −v j

a j
> 0

undefined otherwise.

• define tε as follows

tε =


vm−vi

ai
if −vi

ai
> 0 and vm−v j

a j
< 0

vm−v j
a j

if −v j
a j

> 0 and vm−vi
ai

< 0

min{ vm−vi
ai

,
vm−v j

a j
} if vm−vi

ai
> 0 and vm−v j

a j
> 0

undefined otherwise

• define tζ as follows

tζ =

{
max{ vm−vi

ai
,

vm−v j
a j
} if vm−vi

ai
> 0 and vm−v j

a j
> 0

undefined otherwise

It is important to note that {tα ≤ tβ ≤ tγ} and {tε , tζ} only
depend on the speeds and acceleration of the two vehicles at
connection setup time and on the value of the speed limit vm.
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Fig. 5. Illustrating possible combinations of vi,v j,ai,a j .

A. Deriving the Link Duration

Because of obvious similarities, we only discuss the sce-
nario illustrated in Figure 5(e) as an example of solving (12).
In this scenario, both vehicle move in the same direction and
have positive accelerations. Sooner or later they will reach the
speed limit and will, thereafter, cruise at the maximum speed.

1) 0 ≤ t ≤ tα : The time region where the link breaks is
A′ in Figure 5(e). Since i, j are in A′, when the link breaks,
vehicle j must be ahead of i and, thus, I(i, j) = 1. Recalling
that in DSRC the link breaks when the distance between i and
j is 300 meters, we can write (12) as

S j(t)−Si(t)+X = 300. (13)

On the other hand, by (10), S j(t)−Si(t)= 1
2 art2+vrt. where

ar = a j − ai, vr = v j − vi. All that remains, is to substitute
S j(t)−Si(t) in (13) and to solve for t. Since t < tα , we obtain

t =
−vr +

√
v2

r +2ar(300−X)

ar
.

2) tα < t ≤ tε : In this case, the time region where the link
breaks is A′′ in Figure 5(e). Since i, j are in A′′, when the link
breaks vehicle i must be ahead of vehicle j; thus I(i, j) =−1
and by (12) we can write

S j(t)−Si(t)+X =−300.

We know that S j(t)− Si(t) = 1
2 art2 + vrt. By substituting the

value of S j(t)−Si(t) in (V-A2) and by solving for t we obtain

t =
−vr−

√
v2

r −2ar(300+X)

ar
.

3) tε < t ≤ tζ : In this case, the time region where the link
breaks is denoted by A′′′ in Figure 5(e). Since i, j are in A′′′,
when the link breaks, vehicle i must be ahead of vehicle j and

so I(i, j) =−1. Thus, we can write

S j(t)−Si(t)+X =−300.

Observe that by (10), S j(t) = 1
2 a jt2 + v jt and Si(t) = vmt −

vm−vi
2 tε . After substituting the value of S j(t)−Si(t) in (V-A3)

and after solving for t we obtain

t =
−(v j− vm)−

√
(v j− vm)2−2a j(300+ x+ vm−vi

2 tε)

a j
.

4) tζ < t: In this case, the link will not break because the
two vehicles move at the same speed (alternatively, the link
breaks at +∞).

The scenario captured in Figure 5(e) shows that vehicle i
catches up with vehicle j, passes j and, finally, breaks the link
with vehicle j. Experience tells us that this is a very frequent
occurrence in highway traffic.

VI. THE DISTRIBUTION FUNCTION OF LINK DURATION

The duration of a link is the lifetime of an established
communication link between two vehicles. The main goal
of this section is to derive analytical expressions for the
probability distribution and density function of the duration
of a link.

With the preamble of the previous section out of the way,
we are now ready to state and prove the following important
result.

Lemma 2: Assuming X ∈ logN(µ,σ), the random variable
T =
√

aX +b+c is log-normally distributed, where a,b,c∈R,
a,b,c 6= 0 and aX +b≥ 0.

Proof: Let GT be the probability distribution function of
T . For every positive t, we write

GT (t) = Pr[{T ≤ t}]. (14)



Since T is obviously continuous, (14) allows us to write

GT (t) = Pr[{T ≤ t}]
= Pr[{

√
aX +b+ c≤ t}]

= Pr[{aX ≤ (t− c)2−b}]

=

 FX

(
(t−c)2−b

a

)
for a > 0

1−FX

(
(t−c)2−b

a

)
for a < 0

where FX is the probability distribution function of X . When
a > 0, it is clear that T is log-normally distributed.

Next, we propose to show that T is also log-normally
distributed when a < 0. For this purpose, letting z = (t−c)2−b

a
and using (3), we write

1−FX

(
(t− c)2−b

a

)
=

1
2
− 1

2
er f
(

lnz−µ(X)

σ(X)
√

2

)
= FY

(
a

(t− c)2−b

)
where Y is a log-normal random variable with parameters
−µ(X) and σ(X), z = (t−c)2−b

a . Note that we use the fact
−er f (x) = er f (−x). Thus, in all cases, T obeys a log-normal
distribution, completing the proof.

Lemma 3: Assuming that X is log-normal with parameters
µ and σ , the random variable T = aX + b is log-normally
distributed, where a,b,c ∈ R and a,b,c 6= 0.

Proof: This lemma can be easily proved using the argu-
ments employed in the proof of Lemma 2.

Lemma 4: Suppose that the communication link between
two vehicles i and j breaks at time t. The link duration time
is either a linear function of X or a square root function of X .

Proof: Recall that when the link breaks, t satisfies (12).
By the definition of Si(t), we know that Si(t) =

∫ t
0 vi(x)dx is a

linear function of t when the speed vi is constant, i.e., vi(t) =
vm. Let Si(t) = at +b. Similarly, S j(t) is a linear function of t
when v j is constant, i.e. v j(t) = vm. Let S j(t) = ct +d. When
both Si(t) and S j(t) are linear function of t, substituting the
corresponding values of S j(t) and Si(t) in (12), we obtain

(a− c)t +b−d +X = 300I(i, j)

t = 300
I(i, j)−X−b+d

a− c
.

Clearly, the link duration t is a linear function when both
vi(t) and v j(t) are constant. If any of vi(t) and v j(t) are not a
constant, the distance function will be a quadratic polynomial.
Without loss of generality, we let vi(t) = vi(0) + ait, by
definition, the distance function

Si(t) =
∫ t

0
vi(0)+aixdx

= vi(0)t +
1
2

ait2.

Therefore, S j(t)− Si(t) will be a quadratic polynomial. Sup-
pose S j(t)−Si(t) = at2 +bt + c and a 6= 0. Substitute S j(t)−
Si(t) in (12), to get the quadratic equation

at2 +bt + c+X−300I(i, j) = 0.

Clearly, t exists because the link breaks at time t. Therefore,

the solution must be a square root function of X . This
completes the proof.

Theorem 1: The duration T of the link between vehicles i
and j is log-normally distributed.

Proof: By Lemma 4, the link duration can be expressed
as either aX +b or

√
aX +b+c. By Lemma 2, the expression√

aX +b+c is log-normally distributed. By Lemma 3, aX +b
is log-normally distributed. Thus, in all cases, the duration
time of the link has a log-normal distribution. This completes
the proof of the theorem.

Let Φ be a set of all real combination of vi,v j,ai,a j on
roads and φ be the size of Φ. Let Pk be the probability of the
case k ∈Φ and Tk be the link duration time of case k. By the
law of total expectation, we can obtain the overall expected
duration of a link E[link],

E[link] =
φ

∑
k=1

PkTk. (15)

Theoretically, E[link] can be computed by (15). However, to
the best of our knowledge, there are no analytical results
or field-test data on Pk and Tk in literature. We will leave
the computation of the expected link duration for future
investigations.

VII. SIMULATION RESULTS

The main goal of this section is to discuss the details of
the simulation model that we used to validate the theoretical
results obtained in the previous sections.

A. Experimental Setup

The defining characteristic of VANET is their dynamic
topology and the often unpredictable mobility of individual
vehicles. State of the art VANET simulators involve two
components: a mobility simulator and a wireless network
simulator. These two components may be tightly integrated
(two components in one simulator) or else loosely integrated
(two components in two separate simulators connected by
trace files). In our simulator, we use loosely integrated entities.
Our mobility simulations were performed on the basis of
the open source code of IDM [21]. We recorded the trace
files of vehicle mobility and then imported them into NS-
2.30. In NS-2, each node represents one vehicles in the
mobility simulations, moving based on the represented vehicle
movement history in the trace file. Nodes in NS-2 are also
entities of wireless communication nodes integrating network
protocol stacks. The general parameters we used in simulations
are detailed in Table I. The total number of vehicles n is
varying because in our mobility simulation, vehicles may enter
and exit.

We distinguish the following cases in our simulation. In case
I, both vehicle i and j have positive speeds and accelerations.
Case I covers the scenarios 5(e) and (f). In case II, both
vehicle i and j have positive speeds but they have opposite
accelerations (for example, i has a positive acceleration and j
has a negative acceleration). Case II covers scenarios 5(a)-(d).

To begin, we were interested to discover the impact of
velocity on link duration. To this end, we investigated the



TABLE I
The environment configuration

Name Value
Total number of vehicles (n) 1000-2000

Application CBR
Network protocol IEEE 802.11

Network connections n/3
Simulation map Highway

Road length 10 miles
Traffic density 1500 vehicles/hour

relationship between speed and link duration in the two cases
discussed above. The purpose of this simulation was to confirm
the analytical expression of link duration, given the speed
and acceleration of vehicles i and j, as discussed in Section
V. The parameters used are shown in the Tables II and III.
The parameters µ and σ are from log-normal distribution of
headway distance. Given σ = 0.55, we assume that the mean
value of headway distance is 30 meters, i.e. eµ+σ2/2 = 30 from
which µ can be determined. The values of the parameters
of path loss model σ are taken from [28]. C1 and C2 are
normalizing coefficient in (2). The assumed speed limit vm was
33 m/s. We varied the speed (both vi and v j) in cases I and II

TABLE II
Parameters used in simulation

µ σ Gt Gr ht hr X
2.95 0.55 1 1 0.5m 0.5m 100m

TABLE III
Mobility parameters used in the speed simulation

case ai m/s2 a j m/s2 vi0 m/s v j0 m/s
I 0.1 1 15 15
II -1 1 20 10

and recorded the link duration. Figure 6 illustrated the results
we obtained. We assume that the link duration 100 seconds
represent infinite link duration. Figure 6(a) shows that larger
speed of vehicle i will cause longer link duration and larger
speed of vehicle j will cause shorter link duration because
both i and j are accelerating in case I. When vi increases,
it increases the likelihood of reaching vm. Therefore both i
and i reach the speed limit vm before the link breaks. Tus,
in this case, the link tends to be stable. As we expected,
the simulation results match well the theoretically-predicted
values, as shown in Figure 6(b). The higher speed of vehicle
j will cause a shorter link duration, and the higher speed of
vehicle i will cause a longer link duration. If vehicle j has
higher speed, the relative speed between j and i, i.e. v j− vi
will be higher. Therefore, the link duration will be shorter.
The previous simulation shows that link duration is affected
by speed. Since acceleration will affect the link duration as
well, we simulated the relationship between the link duration
and acceleration in cases I and II. The purpose of this set
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(b) Speed impact in case II.

Fig. 6. Speed has significant impact on link duration.

of simulation was to validate the discussion of Section V.
We only modified the mobility parameters comparing with the
previous simulations. The change of the mobility parameters
are shown in Table IV. Figure 7 was generated by varying

TABLE IV
Mobility parameters used in the acceleration simulation

case ai m/s2 a j m/s2 vi0 m/s v j0 m/s
I 0.2 1 30 1
II -1 1 20 10

acceleration and by recording the link duration. Figure 7(a)
shows that, as expected, the simulation results match the
analytical predictions. The increment of a j will cause the
decrement of link duration, and the increment of ai will cause
the increment of link duration in Case I. The increment of
ai will cause the speed vi to quickly reach the speed limit.
Therefore, both vehicles are moving at the same speed and
the link duration tends to be stable. Figure 7(b) shows that
the increment of ai will cause the increment of link duration
and the increment of a j will cause the decrement of link
duration in Case II. Figure 7(b) shows a symmetric situation.
This is because that the decrement of ai and the increment of



a j can explained as contributions to the increment of relative
acceleration which will cause the same effect: the decrement
of link duration.
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Fig. 7. Acceleration has significant impact on link duration.

We were also interested in the pdf of link duration. Since
our analytical derivation shows that the link duration has a
log-normal distribution, the purpose of this simulation was to
validate the pdf of link duration which is covered in Section
IV. For each cases I and II, we created 2000 links among
vehicles and recorded the durations of each link. As expected,
the pdf of link duration for each case has the shape of the log-
normal distribution, shown in figure 8. Case I has a flat curve
but case II has a relative sharp curve. This is because case II
tends to form a centralized relative speed and acceleration.
Therefore the link duration values tend to congregate in a
certain range.

VIII. CONCLUDING REMARKS AND DIRECTIONS FOR
FUTURE WORK

In this work we have studied link duration in VANET where
the individual nodes in the network are vehicles on roadways
and city streets and the mobility pattern is described in terms
of the instantaneous inter-car distance. Because of the very dy-
namic nature of VANET, and of the rather modest transmission
range mandated by the FCC, individual links come into exis-
tence and vanish unpredictably, making the task of establishing

and maintaining routing paths between fast-moving vehicles a
very challenging task. In order to help mitigate the problem,
we have undertaken a probabilistic analysis of the lifetime
of links in VANET under the assumption of a realistic radio
transmission model and of the fact that instantaneous inter-car
distance follows a log-normal distribution.

In addition to obtaining a probability distribution model
for the duration of links, we have also obtained the expected
duration of links. This result can be extrapolated to multi-hop
paths consisting of a number of individual links. Our analytical
results were validated and confirmed by extensive simulations.

The next obvious task is to extend our analytical derivations
to selecting and maintaining stable routing paths in VANET.
The basic idea is to predict the expected duration of links and
to select the link with the longest expected duration. For those
links which are about to break, local repair can be undertaken
by selecting other links with longer link duration. In the worst
case, another backup routing path can be set up before the
current routing path breaks. As a future work, the constant
acceleration in mobility model can be extended. For example,
acceleration can be a function of time. We are interested to
integrate the idea of link selection with existing protocols
to increase the stability of routing paths; similarly, we will
pursue the implementation of stable link selection in intelligent
transportation system addressed by Wang [29].
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APPENDIX

Fitting the pdf of headway distance: To fit the simulation
result and fit the pdf curve by log-normal distribution, we
define a general form of log-normal distribution.

f (x,µ,σ ,a,b,c) =
b

(cx−a)σ
√

2π
e−

(ln(cx−a)−µ)2

2σ2

where x > 0. Since we have five unknown parameters, we
establish five equations to solve them. The mean headway
distance can be written b

c2 eµ+σ2/2 + ab
c2 .

The parameters we applied to simulations are the following,
the traffic density: 2800 vehicle/hour, maximum speed: 60
km/h; Minimum speed: 20 km/h. The road is a straight line
with two lanes. Total 48257 headway distance readings are
collected. Table V shows part of the simulation results. We
have the mean value of headway distance and randomly select
other four (x, Pr) pairs, i.e. (x=8.0, Pr=0.0100), (x=19.0,
Pr=0.0442), (x=33.0, Pr=0.0241), (x=47.0,Pr=0.0098). There-
fore, five equations are created. With the aid of computer, we
can numerically solve the solution of µ = 2.95,σ = 0.55,a =
2.93,b = 1,c = 0.80. Therefore, the log-normal distribution of
headway distance is

f (x) =
1

(0.80x−2.93)0.55
√

2π
e−

(ln(0.80x−2.93)−2.95)2

2∗0.552

Similarly, a general form of normal distribution is defined
as

N(x,µ,σ ,a,b,c) =
b

σ
√

2π
e−

(cx−a−µ)2

2σ2

We obtained σ = 9.51,µ = 0.085,a = 8.55,b = 1.01,c = 0.53.
A general form of exponential distribution is defined as
Expo(x,λ ,a,b,c) = bλe−λ (cx−a). We obtained λ = 2.01,a =
1.05,b= 0.01,c= 0.03. A general form of gamma distribution
is defined as

Γ(x,θ ,k,a,b,c) = b(cx−a)k−1 e−(cx−a)/θ

θ kΓ(k)
.

We obtained θ = 4.01,k = 6.085,a = 1.05,b = 1.01,c = 1.03.
The comparison of these fitting curves is shown in Figure 1. It
is clear that log-normal distribution fits the simulation results
better than other distributions.

TABLE V
Simulation headway distance values (x) and frequencies (Pr)

H Pr H Pr H Pr
5.0 0.0010 6.0 0.0028 7.0 0.0059
11.0 0.0253 12.0 0.0296 13.0 0.0340
17.0 0.0432 18.0 0.0431 19.0 0.0442
23.0 0.0411 24.0 0.0399 25.0 0.0376
29.0 0.0312 30.0 0.0297 31.0 0.0275
35.0 0.0222 36.0 0.0201 37.0 0.0189
41.0 0.0145 42.0 0.0138 43.0 0.0130
47.0 0.0098 48.0 0.0091 49.0 0.0085
53.0 0.0066 54.0 0.0061 55.0 0.0057
59.0 0.0043 60.0 0.0041 61.0 0.0038


