
Feature selection using
support vector machines

J. Brank1, M. Grobelnik1, N. Milić-Frayling2 & D. Mladenić1
1 Jožef Stefan Institute, Ljubljana, Slovenia
2 Microsoft Research, Cambridge, UK

Abstract
Text categorization is the task of classifying natural language documents into a
set of predefined categories. Documents are typically represented by sparse
vectors under the vector space model, where each word in the vocabulary is
mapped to one coordinate axis and its occurrence in the document gives rise to
one nonzero component in the vector representing that document. When training
classifiers on large collections of documents, both the time and memory
requirements connected with processing of these vectors may be prohibitive.
This calls for using a feature selection method, not only to reduce the number of
features but also to increase the sparsity of document vectors. We propose a
feature selection method based on linear Support Vector Machines (SVMs).
First, we train the linear SVM on a subset of training data and retain only those
features that correspond to highly weighted components (in absolute value sense)
of the normal to the resulting hyperplane that separates positive and negative
examples. This reduced feature space is then used to train a classifier over a
larger training set because more documents now fit into the same amount of
memory. In our experiments we compare the effectiveness of the SVM-based
feature selection with that of more traditional feature selection methods, such as
odds ratio and information gain, in achieving the desired tradeoff between the
vector sparsity and the classification performance. Experimental results indicate
that, at the same level of vector sparsity, feature selection based on SVM normals
yields better classification performance than odds ratio- or information gain-
based feature selection when linear SVM classifiers are used.

1 Introduction

Trends towards personalizing information services and client-based applications

have increased the importance of effective and efficient document categorization
techniques. It is that aspect of text classification that led us to explore methods
for training classifiers that optimally use the computing memory and processing
cycles for the available training data. In particular, we consider tradeoffs
between the quality of document classification, as measured by commonly used
performance measures, and reductions of a feature set used to represent the data.

In this study we propose a method for feature selection based on Support
Vector Machines (SVM) [1] with linear kernels. We explore how this and other
feature selection methods can be used to make tradeoffs between the amount of
training data and the sparsity of the data representation when working with a
limited amount of system memory.

Our experimental results on a large collection of Reuters documents [2] show
that the SVM-based feature selection provides a suitable way of preserving the
classification performance while significantly reducing the size of the feature
space and increasing the sparsity of data.

In the following sections we first describe the proposed feature selection and
classifier training method pointing to relevant issues. We give a brief overview
of feature selection methods used in the past research, describe the experiments
in which we compare the effectiveness of these methods in the context of the
proposed training strategy, and present the experimental results. We conclude
with a brief summary and the outline of future research.

2 SVM for Feature Selection

In situations where there is an abundance of training data it is conceivable that
the training of classifiers cannot be performed over the full set of data due to
limited computing resources. Indeed, methods like Support Vector Machines, for
example, require practically the whole training data to be stored in the main
memory all the time. Thus it can become necessary to work with smaller subsets
of training data instead. The question then arises how the training of a given
classifier can still be performed so that the full training set is taken into account.
Here we present a simple procedure that has proven quite effective, as our
experimental results show (see Section 5).

Our strategy is first to train linear Support Vector Machines (SVM) on a
subset of training data to create initial classifiers. In this model each classifier is,
in fact, a hyperplane separating ‘positive’ and ‘negative’ examples for the class
(i.e., documents belonging to this class from those not belonging to it), and can
be represented by the normal (i.e., a vector perpendicular to it) and a constant.
(The size of the subset used in this step may depend on the available memory, or
on how much time one is willing to spend for this step.) The second step
involves eliminating features that have weights close to zero in this normal, in
order to achieve a specified level of data sparsity. Sparsity is here defined as the
average number of non-zero components in the vector representation of data or,
in other words, the average number of terms left in documents after some terms
have been discarded. Finally, using only features retained after the feature
selection step, we create a representation of the full training set of documents.

We retrain the linear SVM classifier in the reduced feature space and use the
final model to classify the test data.

This method is designed to take advantage of the memory freed as a result of
increased data sparsity and allow one to work with larger training sets while
keeping the memory consumption constant. We explored how SVM-based
feature selection compares with other feature selection methods when used in
conjunction with the proposed training strategy. When assessing feature
selection methods we look at both the final classification performance of the
resulting classifiers and the sparsity of training data representations. In the
following section we give a brief overview of the considered feature selection
methods and refer to research related to our work.

3 Related Work

3.1 Feature Selection Methods

In text categorization, feature selection (FS) is typically performed by assigning
a score or a weight to each term and keeping some number of terms with the
highest scores while discarding the rest. Experiments then typically evaluate the
effect that feature selection has on the classification performance.

Numerous feature scoring measures have been proposed, e.g., information
gain, odds ratio, χ2, term strength, document frequency, etc. In our experiments
we compared our SVM-based feature selection approach to two well-known
feature selection measures that have been reported as successful in text
categorization: information gain [3] and odds ratio [4, 5, 6].

3.1.1 Normal-based feature selection
In this study we use the Support Vector Machine with linear kernels. Training
examples are described by vectors xi = (xi1, . . . ,xid), where d represents the
dimensionality of the feature space, i.e., the number of distinct features in the
model. In general, the class predictor trained by SVM has the form prediction(x)
= sgn[b + ∑i αi K(x, xi)] but in the case of a linear kernel K(x, z) = xTz this can
be rewritten as sgn[b + wTx] for w = ∑i αi xi, where the vector of weights w =
(w1,...,wd) can be computed and accessed directly. Geometrically, the predictor
uses a hyperplane to separate the positive from the negative instances, and w is
the normal to this hyperplane.

The linear classifier categorizes new data instances by testing whether the
linear combination w1x1 + . . . + wdxd of the components of the vector x =
(x1,...,xd) is above or below some threshold –b (possibly 0). In our feature
selection approach we use the absolute value |wj| as the weight of a feature j; that
is, we consider a feature more likely to be useful for training and classification if
its coefficient wj has a large absolute value. This type of feature weighting seems
intuitively appealing because features with small values of |wj| do not have a
large influence on the predictions of the classifier based on w; this can be seen as
meaning that these features are not important for classification purposes, and that
consequently they could be dispensed with in the training phase as well. A

theoretical justification for retaining the highest weighted features in the normal
has been independently derived in a somewhat different context by Sindhwani et
al. [7].

In this study we also use the linear SVM classifier as the classification model
since it has been shown to outperform most of other classification methods on
text data [8, 9]. Interaction of the normal-based FS with other classification
methods will be subject of our future work.

4 Experiment Description

4.1 Experimental strategy – Rationale

Since our main consideration is the classification performance under the
constraint of limited computer resources we experiment with methods that vary
the size of the training data and the sparsity level of the data representation. We
compare the approach of using a smaller number of documents with a richer
feature set with the alternative of applying a feature selection method to increase
data sparsity and then using a larger number of training documents within the
selected feature space. Recall that the sparsity is here defined as the average
number of non-zero components in the vector representation of documents in the
given document set, in this case the data used for training.

Thus one set of our experiments explores the relationship between the
sparsity of data representation achieved by feature reduction and the performance
of the classifiers trained using such a reduced feature set. The second group of
experiments investigates the robustness of the classification method under a
limited memory constraint, exploring tradeoffs between discarding features and
discarding training documents.

In both of these experiments we use linear SVM as the learning algorithm
since it has been shown to outperform most of the other classification methods
on text data [8, 9]. We particularly focus on the influence that the normal-based
feature selection has on the linear SVM leaving the experiments with other
methods for future work.

4.2 Data Processing and Analysis

The dataset. For experimentation we used the Reuters-2000 collection [2], which
includes a total of 806,791 documents, with news stories covering the period
from 20 Aug 1996 through 19 Aug 1997. We divided this time interval into a
training period, which includes all the 504,468 documents dated 14 April 1997
or earlier, and the test period, consisting of the remaining 302,323 documents.

We used all the documents from the test period as test data but for training we
constructed a subset of data, here referred to as Train-1600, in the following
way: for each Reuters category that contains 1600 or more documents in the
training period (i.e., positive training examples), we randomly selected exactly
1600 documents. For categories with fewer than 1600 positive examples in the
training period we took all such documents. This way of sampling ensures that

smaller categories are still well represented (indeed the percentage of documents
belonging to most small categories is greater in Train-1600 than in the corpus at
large). Note that the original category membership information is preserved.
Thus a document that was selected as a representative of one category but also
belongs to several other categories will be used as a positive training example for
each of these categories. For the experimentation purposes we further selected
sub-samples of the Train-1600 set (of 118,924 documents) of size one half,
referred to as Train-1/2, one quarter (Train-1/4), one eighth (Train-1/8), and one
sixteenth (Train-1/16) of the full training set, respectively.

We represent documents using the bag-of-words approach, applying a stop-
word filter (from a standard set of 523 stop-words) and ignoring the case of the
word surface form. Features that occur less than 4 times in Train-1600 are
removed and the remaining features are weighted using the normalized TF-IDF
score so that each vector representing a document has unit length.

We used the SvmLight program (version 3.50) by Thorsten Joachims for
SVM training and classification [10]. The program is particularly appropriate for
our experiments because of its optimization for working with linear kernels. It
computes the normal vector w explicitly rather than working entirely with the
dual representation Σi αi yi xi as is necessary for other kernels.

Category selection. Training classifiers for all 103 Reuters categories over
relatively large sets would be a time consuming and process intensive task.
Therefore we restricted our study to a sample of 16 categories: godd, c313, gpol,
ghea, c15, e121, gobit, m14, m143, gspo, e132, e13, c183, e21, e142, and c13.
These categories were selected based on the results of a preliminary experiment
that involved training the SVM over a smaller training set for the complete set of
Reuters categories. In choosing the categories we tried to include categories of
various size and difficulty.

Comparing two classifiers. We have partitioned the test data set into ten
disjoint subsets and recorded performance measures of the classifiers, such as F1,
separately for each subset. Thus, to compare two classifiers, we can perform a
paired t-test on the corresponding two groups of ten F1 values. This can be done
both for micro- or macro-averaged F1 values.

Alternatively, for a given classifier one might compute, for each category, the
average F1 over the entire test set, thus obtaining a sequence of as many values
as there are categories. One can then compare two methods by taking a paired t-
test over the corresponding two sequences. This approach (referred to as a
“macro T-test” by Yang and Liu [11]) has been often used, although it has also
been criticized because it treats performance values on different categories as
random samples from a normal distribution [12].

In our experiments all types of tests tend to give similar results. However, the
category-paired t-test is slightly more conservative (i.e., less likely to declare
differences to be significant) than the t-test on macroaveraged F1-values, which,
on the other hand, is more conservative than the t-test on microaveraged F1-
values. For the remainder of this paper, we will report significance results from
the t-tests based on macroaveraged F1 values.

5 Experimental Results

5.1 Sparsity and the number of features

Most of the existing research has focused on the reduction of the number of
features (i.e., reduction of feature space dimensionality) rather than increasing
the sparsity of the resulting vectors (i.e., reduction of memory requirements for
vector storage). It is interesting to explore the relationship between these two
aspects of data representation.

It is expected that by reducing the number of features to a certain percentage
of the initial set one will increase the sparsity of vectors. However, for a fixed
percentage of features to be retained, various feature scoring methods yield
significantly different levels of vector sparsity.

Figure 1 shows a comparison of the levels of sparsity achieved by the odds
ratio (OR), information gain (IG), and normal-based feature selection for the
positive and negative documents in our training data, respectively. These and the
following figures show graphs that correspond to several variants of the normal-
based feature weighting, depending on how large a set of documents was used to
train the normal. If the full Train-1600 training set is used we call the resulting
feature weighting normal-1; if Train-1/k is used, the resulting weighting is
denoted by normal-1/k.

Of course, each category has its own feature weightings and the actual level
of sparsity attained if a fixed number of features is kept will vary from one
category to another. The values shown in these charts and discussed below are
averages across all categories.

Sparsity and number of features
(Full training set, positive documents only)

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000 100000

Number of features kept

A
vg

.
n

o
.

o
f

n
o

n
ze

ro
 c

o
m

p
o

n
en

ts

p
er

 t
ra

in
in

g
 v

ec
to

r
(a

cr
o

ss
 a

ll

ca
te

g
o

ri
es

)

odds ratio information gain nomal-1/16 normal-1/4 normal-1

Sparsity and number of features
(Full training set, negative documents only)

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000 100000

Number of features kept

A
vg

.
n

o
.

o
f

n
o

n
ze

ro
 c

o
m

p
o

n
en

ts

p
er

 t
ra

in
in

g
 v

ec
to

r
(a

cr
o

ss
 a

ll

ca
te

g
o

ri
es

)

odds ratio information gain normal-1/16 normal-1/4 normal-1

Figure 1. The graphs show how the average number of terms per document grows as
increasingly many of the best scoring terms, according to various feature weighting

methods, are included into the selected feature set.

These curves confirm that IG and OR behave as expected from their
definitions. Information gain ranks highly those relatively common features
whose presence or absence correlates well with the category membership. It
ranks low the features (including many common ones) that are equally common
to both members and non-members of a category. Odds ratio, as expected, shows
a great preference for features typical of positive documents, even if they are
very rare, and a great dislike for features typical of negative documents.

The charts also show the behavior of the normal-based feature weightings,
which cannot be easily inferred from their definition. It can be seen that these
weightings are less reluctant than information gain to assign high scores to less
common features but they are not nearly as favorable to rare features as the odds
ratio. In addition, normals trained on larger subsets of the training set are more
favorable to rare features than those trained on smaller subsets. A closer look at
the selected feature sets reveals that this is partly because some of the features
that are rare in the whole training corpus have not been present in the smaller
training subsets at all and partly because some were present there but were too
rare to be ranked highly.

5.2 Dimensionality reduction and classification performance

It is also interesting to relate the reduction in dimensionality to the reduction in
classification performance. From Figure 2 we see that OR needs to retain one or
two orders of magnitude more features to achieve a performance that is
comparable to the other FS methods when used with the linear SVM classifier.
This is not surprising in view of the observations made in the previous section.
Indeed, OR scores highly features that are characteristic of positive documents,
including those that are rather rare and thus do not necessarily make an impact
on the data representation and the SVM training process.

In many practical situations the management of computing resources is
important and thus the sparsity seems to be of high practical importance. On the
other hand, the number of features itself is not so important when SVM is used
for training, because the dual optimization problem on which SVM is based does
not explicitly mention the number of features. In the remainder of the study we
will focus on sparsity and use dimensionality reduction to meet the sparsity
requirements.

Macroaveraged F1, Full Training Set

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

10 100 1000 10000 100000

Number of features kept

A
ve

ra
g

e
F

1
o

ve
r

th
e

te
st

 s
et

odds ratio information gain normal-1/16 normal-1/8

normal-1/4 normal-1/2 normal-1

Figure 2. This chart shows the
macroaveraged F1 values achieved
by various feature rankings
depending on how many features are
retained before the final training
phase.

5.3 Experiments with the fixed memory constraint

Part of the motivation for using feature selection is to describe documents with
sparser vectors and thus process larger sets of documents with a given amount of
memory. However, we need to establish evidence that such an approach is

plausible and that it is possible to achieve an effective tradeoff between selecting
a subset of features (to make vectors sparser) and selecting a subset of
documents (to have fewer vectors). For example, if we have only a quarter of the
amount of memory required for storing full vectors of the complete set of
training data we could: (i) keep full vectors but only for 1/4 of the training
documents; or (ii) keep 1/2 of the documents, and use feature selection to make
the vectors twice as sparse; or (iii) keep all the documents, and use feature
selection to make the vectors four times sparser; etc.

In order to explore these possibilities we evaluate the classification
performance for the following type of scenarios. Let us assume that storing all N
documents from Train-1600 at S=80 (in fact full documents have approx. 88
terms on average) would require M units of memory (S ·N=M), and that we only
have M/2K units available for some integer K. We are seeking the values S'
(sparsity) and N' (number of documents) such that S' ·N'=M/2K and for which the
classification performance is not significantly degraded. For simplicity we
experiment with values S'=S/2k and N'=N/2K–k, for k=0, . . . ,K. Note that ideally
we would vary the values of S and N on a finer scale but the current approach is
already quite informative as the experiment results show (see Figure 2).

For a given K, we first obtain a ranking of features to be used as the basis for
feature selection. Since the SVM model on which this ranking will be based
needs to be trained over full vectors, it can use at most N/2K documents to respect
the memory constraint. Then, for a given higher sparsity level S/2k , k=0, . . . ,K,
we select as many top features from the ranking as are necessary to achieve that
sparsity, and then train a new model over the largest training set that can fit into
the available memory given the fact that vectors are now sparser (this is the set
containing N/2K–k documents). Thus, for a given K, the result at sparsity 80 is
based on a training set that is only half as large as the set used for the experiment
with sparsity 40, only one-quarter the size of the training set used for sparsity 20,
and so on.

Performance at fixed memory usage and different choices

regarding the sparsity vs. training set size tradeoff

0.55

0.57

0.59

0.61

0.63

0.65

0.67

0.69

0.71

0 10 20 30 40 50 60 70 80 90

Average number of nonzero components per training vector

M
ac

ro
av

er
ag

ed
 F

1

M/16 (K = 4) M/8 (K = 3) M/4 (K = 2) M/2 (K = 1) M (K = 0)

Figure 3. A comparison of
different options of
combining feature selection
and discarding training
documents if the amount of
memory available for
training is limited. The error
bars on the graph show
standard errors of F1 macro-
averages over the 10 subsets
of the test set.

The results confirm that for a fixed memory constraint (fixed K) one can

achieve a better performance by applying feature selection and using a larger set
of training documents than by using the full set of features but a smaller training

set. For example, it is beneficial to reduce the number of nonzero components by
50% and double the number of training documents if one is working under a
memory constraint (this always brought a statistically significant improvement in
performance in the above experiments). That is, in some sense, expected, based
on the evidence from related research that reducing the feature space typically
does not dramatically affects the classification performance.

More radical reduction of the feature space (i.e., using k>1) generally does
not bring additional improvements in performance, and eventually, when the size
of the training set requires vectors to be very sparse to fit in the available
memory, performance may deteriorate. This is not surprising since in this case
the original set of documents used to generate the initial normal may be too
small to provide useful terminology and statistics for effective feature ranking.
The small feature set is simply not rich enough to allow generalization of the
classifier to the test data.

5.4 Experiments at fixed sparsity and training set

In these experiments we use Train-1600 as the training set and different feature
scoring methods to achieve a desired level of sparsity, i.e., a desired average
number of nonzero components per training vector. In particular we look at spar-
sity of 2, 2.5, 5, 10, 20, 40, and 80 features per document as well as the full docu-
ment vectors which have about 88 nonzero components per document on average.

For feature scoring methods we use Odds Ratio (OR), Information Gain (IG),
and ranking based on SVM normals: normal-1, normal-1/2, normal-1/4, normal-1/8,
and normal-1/16. The methods normal-1/k use SVM normals obtained from the set
Train-1/k, containing 1/k as many documents as the full training set (Train-1600);
after feature selection, the final linear SVM model is trained on the full training
set but with the reduced set of features. This allows us to see how robust SVM
classifier is with respect to limited feature sets obtained from smaller amounts of
training data. Results of these experiments are shown on Figure 4.

Comparison of the normal-1 ranking with odds ratio and information gain. From
the perspective of F1 and BEP measures, SVM-based ranking of features is most
effective for the purpose of feature selection. The performance is dominated by
this method for all levels of sparsity, except when only a couple of features per
document are used, in which case OR seems to perform better. This is not
surprising since OR retains a much larger set of features than the normal to
achieve the same sparsity level (see Figure 1). Furthermore, it focuses on
features that are characteristic of positive examples, which in turn enables SVM
to capture the positive examples more easily. However, for the same reason, the
precision of classification based on OR selection suffers, as can be seen from the
precision graph. Information gain, on the other hand, ensures a consistently
better precision than normal-1 for all sparsity levels S >5 (these differences are
statistically significant at S =20 and 80).

Comparison of normal-1/k, k=1,2,4,8 ,16. SVM normals obtained from
larger data sets have a clear advantage on all performance measures except for
precision. Indeed they all seem to perform similarly according to that measure.
Thus, if one is concerned with precision only one need not hesitate to fix the
feature set to the one obtained from a smaller set of data and then retrain. Using
more data in the initial phase introduces features that definitely help recall but do
not affect precision. Normal-based selection seems to pick the features important
for precision even from smaller sets of data.

Comparison of odds ratio and information gain. Similar to our earlier
observations, the tendency of OR feature selection to prefer rare features present
in positive documents causes OR to perform better than IG on recall but
consistently worse according to the precision for all levels of sparsity. The trade-
off between recall and precision for both methods, as seen from F1 and BEP
measures, is such that IG outperform OR for sparsity levels above 20 features
per document on both of these measures.

5.5 Effectiveness

Although the above results show that feature selection generally does not
improve performance of the linear SVM classifier, we can see that the normal-

Macroaveraged F1, full training set

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 10 100

Average number of nonzero components per vector over the training set

A
ve

ra
g

e
F

1
o

ve
r

th
e

te
st

 s
et

odds ratio information gain normal-1/16 normal-1/8

normal-1/4 normal-1/2 normal-1

Macroaveraged break-even point, full training set

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 10 100

Axis Title

A
ve

ra
g

e
b

re
ak

-e
ve

n
 p

o
in

t o
v

er
 th

e
te

st
 s

et

odds ratio information gain normal-1/16 normal-1/8

normal-1/4 normal-1/2 normal-1

Macroaveraged precision, full training set

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

1 10 100

Axis Title

A
ve

ra
g

e
p

re
ci

si
o

n
 o

v
er

 th
e

te
st

 s
et

odds ratio information gain normal-1/16 normal-1/8

normal-1/4 normal-1/2 normal-1

Macroaveraged recall, full training set

0.48

0.53

0.58

0.63

0.68

1 10 100

Axis Title

A
ve

ra
g

e
re

ca
ll

o
ve

r
th

e
 te

st
 s

e
t

odds ratio information gain normal-1/16 normal-1/8

normal-1/4 normal-1/2 normal-1
Figure 4. A comparison of several feature selection methods at different levels of

sparsity. The full Train-1600 training set was used in all cases. The test set was
divided into 10 “folds”, macroaveraged performance measures were computed
for each fold and the averages over all 10 folds are given here.

based feature selection with sparsity S=80 (which means keeping from 60 to
75% of features) does produce a statistically significant improvement over the
performance of vectors with the complete feature set. In addition, S=40 with
normal-1/4 (keeping 5.6% of features) and normal-1/2, and S=20 with normal-1
(keeping 2.0% of features) achieves performance that is not significantly worse
than that of the full feature set.

6 Summary and future work

In this study we emphasized the concept of sparsity as a more appropriate
characteristic of the data representation than the number of features used,
particularly when a variety of feature selection procedures are considered.

We also proposed a feature ranking and feature selection method based on the
linear SVM that is then used in conjunction with the SVM classifier. However,
this method can be combined with other classification algorithms as well. An
interesting question then arises: is it still good to use feature selection based on
SVM, or is it better to devise a feature selection method based on the training
algorithm itself? In other words, can we say anything about the compatibility of
the feature selection method with the final classification algorithm when
applying the proposed iterative training strategy?

Furthermore, other linear classifiers could be similarly used to weight and
select features, including Perceptron [13], Winnow [14], Bayes Point Machine
[15], LLSF [16], Widrow-Hoff [17], exponentiated gradient [18, 17], and so on.
(Naive Bayes is also essentially a linear classifier if we work with logarithms of
probabilities. This has been exploited by e.g. Gärtner and Flach [19].) While
these methods are known to be more or less successful in classifying documents,
it would be interesting to see how they compare with the SVM-based feature
selection method in reducing the feature space.

Finally, it would be interesting to evaluate our approach on other data sets,
perhaps on domains outside text categorization.

References

[1] C. Cortes, V. Vapnik: Support-vector networks. Machine Learning, 20(3),
pp. 273–297, September 1995.

[2] Reuters Corpus, Volume 1, English Language, 1996-08-20 to 1997-08-19.
Available through http://about.reuters.com/researchandstandards/corpus/.
Released in November 2000.

[3] Y. Yang, J. O. Pedersen: A comparative study on feature selection in text
categorization. Proc. 14th ICML Conf., pp. 412–420, 1997.

[4] D. Mladenić, M. Grobelnik: Feature selection for unbalanced class
distribution and Naive Bayes. Proc. 15th ICML Conf., pp. 258–267, 1999.

[5] D. Mladenić: Feature subset selection in text-learning. Proc. 10th ECML
Conf. LNCS vol. 1398, pp. 95–100, 1998.

[6] D. Mladenić: Machine Learning on non-homogeneous, distributed text
data. Ph. D. thesis, University of Ljubljana, Slovenia, 1998.

[7] V. Sindhwani, P. Bhattacharyya, Subrata Rakshit: Information theoretic
feature crediting in multiclass support vector machines. First SIAM Int.
Conf. on Data Mining, 2001.

[8] S. Dumais, J. Platt, D. Heckerman, M. Sahami: Inductive learning
algorithms and representations for text categorization. Proc. 7th Int. Conf.
on Information and Knowledge Management, pp. 148–155, 1998.

[9] T. Joachims: Text categorization with support vector machines: learning
with many relevant features. Proc. 10th ECML. LNCS vol. 1398, pp. 137–
142, 1998.

[10] T. Joachims: Making large-scale support vector machine learning
practical. In: B. Schölkopf, C. J. C. Burges, A. J. Smola (Eds.): Advances
in kernel methods: Support vector learning, MIT Press, 1999, pp. 169–184.

[11] Y. Yang, X. Liu: A re-examination of text categorization methods. Proc. of
the 22nd ACM SIGIR Conf., pp. 42–49, 1999.

[12] D. D. Lewis: An evaluation of phrasal and clustered representations on a
text categorization task. Proc. 15th ACM SIGIR Conf., pp. 37–50, 1992.

[13] F. Rosenblatt: The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review 65(6), pp.
386-408. Reprinted in: J. A. D. Anderson, E. Rosenfeld (Eds.), Neurocom-
puting: Foundations of Research, MIT Press, 1998, pp. 89–114.

[14] N. Littlestone: Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2(4), pp. 285–318, 1988.

[15] R. Herbrich, T. Graepel, C. Campbell: Bayes point machines. Journal of
Machine Learning Research, 1(Aug), pp. 245–279, August 2001.

[16] Y. Yang, C. Chute: A linear least squares fit method for terminology
mapping. Proceedings of the 15th Int. Conf. on Computational Linguistics
(COLING 1992), II:447–53, 1992.

[17] D. D. Lewis, R. E. Schapire, J. P. Callan, R. Papka: Training algorithms for
linear text classifiers. Proc. 19th ACM SIGIR Conf., pp. 298–306, 1996.

[18] J. Kivinen, M. K. Warmuth: Exponentiated gradient versus gradient
descent for linear predictors. Tech. Report UCSC-CRL-94-16, Baskin
Center for Computer Engineering & Information Sciences, University of
California, USA, June 21, 1994 (revised December 7, 1995).

[19] T. Gärtner, P. A. Flach: WBCSVM: Weighted Bayesian classification based
on support vector machines. Proc. 18th ICML Conf., pp. 154–161, 2001.

