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Abstract

Algorithms that encode images using a sparse set of basis functions have previously been shown to explain
aspects of the physiology of primary visual cortex (V1), and have been used for applications such as image
compression, restoration, and classification. Here, a sparse coding algorithm, that has previously been used
to account of the response properties of orientation tuned cells in primary visual cortex, is applied to the task
of perceptually salient boundary detection. The proposed algorithm is currently limited to using only intensity
information at a single scale. However, it is shown to out-perform the current state-of-the-art image segmentation
method (Pb) when this method is also restricted to using the same information.
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1 Introduction
Discontinuities in image intensity (or in other image features such as colour or texture), often correspond to impor-
tant changes in the properties of the world, such as changes in material or the boundaries of surfaces or of objects.
Finding discontinuities that correspond to boundaries is thus the aim of a large class of image segmentation meth-
ods (Zhanga et al., 2008), which in turn underlie many algorithms for high-level vision, such as those used for
object detection, tracking, recognition and classification. Given the fundamental importance of image segmen-
tation for much of computer vision, boundary detection has been an active area of research for many decades.
Despite these extensive efforts, current boundary detection methods fall short of human-level performance.

Many boundary detection methods employ linear filtering as an initial step to locate image discontinuities.
Many different types of filter have been developed for this purpose. For example, the Sobel filter, the Roberts
filter, the Prewitt filter, the Difference of Gaussian (DoG) filter, the Laplacian of Gaussian (LoG) filter (as used
by the Marr-Hildreth algorithm (Marr and Hildreth, 1980)), the first derivative of Gaussian filter (as used by the
Canny edge detector (Canny, 1986)), higher-order Gaussian derivative filters, and Gabor filters. Many of these
filtering methods are analogous to, or have been directly inspired by, early stages of visual processing performed
in the brain. For example, DoG or LoG filtering is similar to the processing performed by cells with circular-
symmetric centre-surround receptive fields (RFs) in retina and lateral geniculate nucleus (LGN) (Derrington and
Lennie, 1984; Marr and Hildreth, 1980; Rodieck, 1965), while derivative of Gaussian filters and Gabor filters have
similar shapes to the RFs of orientation-tuned cells in primary visual cortex (V1) (Daugman, 1980; Jones and
Palmer, 1987; Marcelja, 1980; Young and Lesperance, 2001).

When a filter is applied to an image, the output shows a response at every location where there is a partial
match, or partial overlap, between the filter and an image feature that the filter “detects”. This results in a dense
representation, in which the same image feature is represented by multiple, redundant, filter responses. For ex-
ample, consider using a Gabor filter bank to locate edges in a simple, artificial, image which contains a single
non-zero pixel, as shown in the first column of the top-row of Fig. 11. The maximum response across all filters at
each pixel location is shown in the second column of Fig. 1. This is just the point-spread function of the filters.
Active filters have a range of orientation preferences, centred at a range of different locations around the location
of the non-zero pixel in the original image. The full range of responses can be visualised by using the filter outputs
to reconstruct the edges they represent, i.e., the strength of each filter response at each location is used to deter-
mine the strength with which a short oriented line segment is added to the reconstructed image. This is shown in
the third column of Fig. 1. Similar results for a range of different, artificial, images and for a patch taken from a
natural image are shown in rows 2 to 5 of Fig. 1. In each case linear filtering generates a large range of redundant
responses.

Most boundary detection algorithms employ post-processing techniques to 1) remove the unwanted, redundant,
responses generated by linear filtering, and 2) enhance weak, but wanted, responses. An example of a method from

1Results are produced here using quadrature-pairs of Gabor filters at eight, equally spaced, orientations, with the output of the quadrature-
pair combined using the standard energy-model (Adelson and Bergen, 1985; Morrone and Burr, 1988). However, the same arguments apply
to any shape of filter.
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Figure 1: Comparison of linear filtering with the proposed method when applied to edge detection.
Column 1 shows the original image, the first four rows use simple artificial images, while the last row
shows a patch taken from a natural, greyscale, image (the full image appears in Fig. 5). Column 2
shows the maximum output at each pixel location of a Gabor filter bank. Column 3 shows the edge
reconstruction generated from all the Gabor filter responses. Column 4 is that same as column 2 but
with non-maximum suppression applied to the filter outputs. Column 5 shows the edge reconstruction
generated by taking only the maximum Gabor filter responses at each pixel. Column 6 is the maximum
output at each pixel location of the proposed method. Column 7 shows the edge reconstruction generated
from all responses of the proposed method.

the first category is non-maximum suppression (as used in the Canny edge detector (Canny, 1986)). This technique
thins edges by removing responses at locations perpendicular to the dominant edge orientation that are less than
the local maximum response. The effects of non-maximum suppression are shown in the fourth column of Fig. 1.
Steerable filters provide an efficient method of calculating the response of a filter at an arbitary orientation and
phase (Freeman and Adelson, 1991). This is often used to find the single orientation with the maximum response
at each image location, and hence, to implicitly ignore weaker responses at all other orientations at that location.
The effect on the reconstructed image of using only the orientation with the strongest response at each location is
shown in the fifth column of Fig. 1. An example of a post-processing method in the second category is hysteresis
thresholding or edge linking (as used in the Canny edge detector (Canny, 1986)). This technique allows a filter that
is weakly activated by the image content, but which is neighboured by a strongly activated filter, to be labelled as
an edge. Other methods include edge relaxation (Geman and Geman, 1984; Hancock and Kittler, 1990; Parent and
Zucker, 1989; Rosenfeld et al., 1976) and the “curvilinear continuity” extension to the Probability of Boundary
(Pb) algorithm (Ren et al., 2008). In both of these methods, the probability of a location being classified as an edge
is increased if it is consistent with a continuous boundary linking it to other edge locations in the neighbourhood.

The human visual system is far superior at performing boundary detection than any current machine vision
system. For this reason, numerous neural network approaches have been proposed that are inspired by the phys-
iology of the primary visual cortex (Ben-Shahar and Zucker, 2004; Grigorescu et al., 2003, 2004; Hansen and
Neumann, 2008; Huang et al., 2009; Li, 1998; Mundhenk and Itti, 2005; Papari et al., 2007; Papari and Petkov,
2011; Petkov and Westenberg, 2003; Tang et al., 2007a,b; Ursino and La Cara, 2004; Vonikakis et al., 2006; Zeng
et al., 2011a,b). A neuron in such a model has a classical receptive field (cRF), often defined using a Gabor
function, that receives input from the image. The weights of the cRF are multiplied by the corresponding pixel
values such that the initial response of the neuron is identical to the output of a linear filter. However, this response
is subsequently modified by inputs to the non-classical receptive field (ncRF) which originate from neighbour-
ing neurons. Typically ncRF connections are excitatory from neurons in the local neighbourhood which have a
location and an orientation preference that is consistent with a smooth contour linking the two neuron’s cRFs,
and ncRF connections are inhibitory from neurons in the local neighbourhood which are not consistent with such
smooth contours. The inhibitory and excitatory ncRF connections thus perform operations analogous to the two
types of post-processing typically applied to linear filtering methods (as discussed above): suppressing unwanted,
redundant, responses, while enhancing weak, but wanted, responses by interpolating between edge elements to
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find extended contours. Current biologically-inspired edge-detection methods are therefore not radically different
from traditional image processing techniques which employ linear filtering followed by post-processing opera-
tions.

These post-processing methods (whether biologically-inspired or not) are only partially successful in suppress-
ing unwanted filter responses while retaining filter responses that correspond to true boundaries. Hence, rather
than attempting to tidy up the output of a linear filtering process, many recent boundary-based image segmen-
tation algorithms have abandoned such filtering entirely (e.g., Arbelaez et al., 2011; Dollar et al., 2006; Maire
et al., 2008; Martin et al., 2004; Ren, 2008; Ruzon and Tomasi, 2001; Smith and Brady, 1995). These methods
typically extract a range of image features from the local patch of image on each side of a potential boundary,
and make a decision as to whether or not there is a boundary at that location and orientation by comparing the
distributions of those image features. The current work takes a similar stance in proposing that boundary-detection
methods based on linear filtering (whether biologically-inspired or not) have short-comings. However, the current
work takes an alternative approach in overcoming these limitations: it proposes replacing the linear filtering stage,
which produces a dense, redundant, representation of the image with an algorithm that produces a sparse, efficient,
representation.

The proposed algorithm is an extension to the predictive coding/biased competition (PC/BC) model of V1.
This model has been shown to explain a very wide range of V1 response properties (Spratling, 2010, 2011,
2012a,b). Indeed, despite the simplicity of the PC/BC model compared to many other models of V1 physiology,
it is the most comprehensive model of V1 response properties so far developed. The success of the PC/BC model
of V1 in explaining cortical function is due to the responses of neurons not being independent of the responses of
other neurons. Instead, these neurons interact in a mutually suppressive and nonlinear manner to determine the
most efficient, sparse, representation of the input image (see Section 2). The method used to determine the sparse
subset of neurons that best explain the underlying causes of the sensory input is a form of perceptual inference
called predictive coding. The model proposes that the diverse range of response properties observed in V1 are a
consequence of this particular perceptual inference process (Lochmann et al., 2012; Spratling, 2010).

For easy comparison with the linear filtering results, the output of the PC/BC model is illustrated in the
rightmost two columns of Fig. 1. When the orientation of the input is ambiguous (top-row) multiple neurons
representing the range of possible orientations are active, but each is only weakly active. As the orientation of
the input becomes less ambiguous (second row), or when contextual information makes certain orientations more
probable (third row), so the range of active neurons reduces. When the orientation of the input is not ambiguous
(fourth row), neurons representing a single orientation are strongly active. Responses are sparser than with linear
filtering and the edge is much better localised in orientation and space. Specifically, using Hoyer’s measure of
sparsity (Hoyer, 2004, see Section 2), the sparsity of the response of the linear filters is between 0.83 and 0.88 for
the artificial images in Fig. 1, and 0.51 for the natural image. In comparison, the sparsity of the response of the
proposed method is between 0.98 and 0.99 for the artificial images and 0.92 for the natural image. Two extensions
to the PC/BC algorithm are proposed (see Section 2), which are analogous to the post-processing methods used
in many previous edge-detection algorithms. However, here they are used to influence the on-going, iterative,
process that determines the activity of each neuron that is required to explain the underlying causes of the sensory
input. The BSDS300 benchmark (Martin et al., 2001) is used to assess the performance of the extended algorithm
(see Section 3).

2 Methods

2.1 The LGN Model
The input to the PC/BC model of V1, described below, is an input image (I) pre-processed by convolution with a
Laplacian-of-Gaussian (LoG) filter (l) with standard deviation equal to σLGN pixels. The output from this filter is
subject to a multiplicative gain (the strength of which is determined by parameter κLGN ) followed by a saturating
non-linearity, such that:

X = tanh {κLGN (I ∗ l)}

The positive and rectified negative responses are separated into two images XON and XOFF simulating the
outputs of cells in retina and LGN with circular-symmetric on-centre/off-surround and off-centre/on-surround
RFs respectively. This pre-processing is illustrated on the left of Figure 2. To avoid strong edges being detected
along the border of the input image, the XON and XOFF values within a distance 2.5σLGN pixels from the border
were set to zero.
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Figure 2: The PC/BC model of V1. Neural populations are represented by the white rectangles, and
interconnection are shown using arrows. Open arrows signify excitatory connections, filled arrows in-
dicate inhibitory connections, crossed connections signify a many-to-many connectivity pattern between
the neurons in two populations, parallel connections indicate a one-to-one mapping between the neurons
in two populations. The boxes adjacent to the connections illustrate the type of weight kernels used
(circular-symmetric LoG kernels in the LGN model, and first and second derivatives of Gaussians in the
V1 model). Feedforward and feedback connections have the same weights, but may be scaled differently.

2.2 The V1 Model
The PC/BC model of V1 is illustrated on the right of Figure 2 and described by the following equations:

Eo = G (Xo)�

(
ε2 +

p∑
k=1

(vok ∗Yk)

)
(1)

Yk ← (ε1 +Yk)⊗
∑
o

(wok ?Eo) (2)

Where o ∈ {ON,OFF}; Xo is a 2-dimensional array, equal in size to the input image, that represents the input to
the model of V1; Eo is a 2-dimensional array, equal in size to the input image, that represents the error-detecting
neuron responses; Yk is a 2-dimensional array, equal in size to the input image, that represent the prediction
neuron responses; wok is a 2-dimensional kernel representing the synaptic weights for a particular class (k) of
neuron normalised so that sum of all the weights is equal to one; vok is a 2-dimensional kernel representing the
same synaptic weights as wok but normalised so that the maximum weight is equal to one; p is the total number
of kernels; ε1 and ε2 are parameters; � and ⊗ indicate element-wise division and multiplication respectively
(addition and subtraction operations involving scalars and matrices/vectors are also performed element-wise);
? represents cross-correlation (which is equivalent to convolution without the kernel being rotated 180o); and ∗
represents convolution (which is equivalent to cross-correlation with a kernel rotated by 180o). Convolution is used
in equation 1 while cross-correlation is used in equation 2 to ensure that the feedback weights between a prediction
neuron and an error-detecting neuron correspond to the feedforward weights between the same two neurons, i.e.,
this arrangement results in the feedforward weight between two neurons being identical to the feedback weight
between the same two neurons (up to the different scaling applied to wok and vok). G is a function that clips
values at 1 (i.e., G(x) = x ∀x ≤ 1;G(x) = 1 ∀x > 1). This is used to prevent runaway increases in the Y values
caused by positive feedback effects in a reciprocally connected network.

Initially the values of Y are all set to zero, although random initialisation of the prediction node activations
can also be used with little influence on the results. Equations 1 and 2 are then updated for a number of iterations
with the new values of Y calculated by equation 2 substituted into equations 1 and 2 to recursively calculate
the changing neural activations at each iteration. Equation 2 describes the updating of the prediction neuron
activations. The response of each prediction neuron is a function of its activation at the previous iteration and
a weighted sum of afferent inputs from the error-detecting neurons. Equation 1 describes the calculation of the
neural activity for each population of error-detecting neurons. These values are a function of the activity of the
input to V1 divisively modulated by a weighted sum of the outputs of the prediction neurons in V1. The values of
Y represent predictions of the causes underlying the inputs to the V1 model. The values of E represent the residual
error between the input reconstructed from these predictions and the actual input to PC/BC. The iterative process
described above changes the values of Y so as to minimise the error between actual inputs and the predicted inputs.
This is achieved because if an element of E is greater than one (respectively less than one) prediction neurons that
receive input from that error-detecting neuron will increase (decrease) their response (via equation 2). The output
of the prediction neurons will then more strongly (weakly) represent the predicted causes of the input, which will
in turn reduce (increase) the residual error encoded by that element of E (via equation 1).

The weights, wok and vok, are defined using the first and second derivatives of a Gaussian. These functions
were used as they closely match the pattern of response generated by the LoG filters (as used in the model of LGN)
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when applied to idealised step and ridge edges. The first and second derivatives of a Gaussian also resemble the
RFs of a simple cells in primary visual cortex (Young and Lesperance, 2001). The weights used were the first
derivative of a Gaussian at orientations in the range [0o, 360o) in steps of σC , and the positive and negative of
the second derivative of a Gaussian at orientations in the range [0o, 180o) in steps of σC . Typically, a value of
σC = 22.5o was used resulting in a family of 32 weight kernels (in which case k ranged from 1 to 32).

The Gaussian used to define the derivative of Gaussian filters had a length (the extent perpendicular to the
axis along which the derivative was taken) defined by σV 1 and a width in the perpendicular direction defined by
σLGN . The positive and rectified negative values of the Gaussian derivatives were separated and used to define the
weights to the ON and OFF channels of the input. The cross-correlation and convolution performed in Equations 1
and 2 mean that neurons with these RFs are reproduced at every pixel location in the image, and consequently, that
the size of the population of V1 cells simulated varies with image size. Specifically, for σC = 22.5o the number
of prediction neurons will be 32× the number of image pixels.

The PC/BC algorithm is closely related to a number of other methods and can be interpreted in many different
ways (Spratling, 2012b). The most useful interpretations in the context of the current work are as follows.

• A generative model. The weights of all the prediction neurons constitute an overcomplete dictionary of
non-negative “basis vectors”, “codebook vectors”, or “elementary components”. The activation dynamics
determine a non-negative feature vector, Y, that defines a linear combination of non-negative basis func-
tions that most accurately represent the sensory-driven input (Achler and Bettencourt, 2011; Solbakken and
Junge, 2011; Spratling et al., 2009).

• A method of probabilistic inference. The prediction neuron activations, Y, represent hypotheses about the
underlying causes of the sensory-driven evidence X. In ambiguous situations, where multiple hypotheses
can explain the evidence, multiple prediction nodes representing those hypotheses are concurrently active.
However, in unambiguous situations the activation dynamics choose the most likely hypothesis, and the
evidence is ‘explained away’ (Kersten et al., 2004; Lochmann and Deneve, 2011) suppressing the responses
of prediction neurons representing competing hypotheses. This suppression of alternative explanations leads
to a sparse response.

When the PC/BC model is used to process an image, a sparse subset of the prediction neurons whose RFs
best explain the underlying causes of the sensory input are selected, via the activation dynamics, to be active. The
strength of activation reflects the strength with which each image component is required to be present in order
to accurately reconstruct the input. This strength of response also reflects the probability with which that image
component is believed to be present, taking into account the evidence provided by the image and the full range
of alternative explanations encoded in the RFs of the neurons. Given that the RFs in the current model have been
chosen to represent intensity discontinuities, we can interpret the prediction neuron responses as representing the
location and orientation of edges, and hence, use the responses of the prediction neurons to linearly reconstruct
the edges that have been detected in the image, such that:

pb =

p∑
k=1

(rok ∗Yk)

where rok are kernels representing straight edge elements. Such edge reconstructions using the basic PC/BC
model described above are shown in the last column of Fig. 1 and the second column of Fig. 5.

Although the PC/BC algorithm does not explicitly minimise the reconstruction error using a global objective
function, the activity of the prediction neurons can be used to reconstruct the input with high fidelity (Spratling,
2012b; Spratling et al., 2009), images are thus represented accurately. Furthermore, although PC/BC does not
explicitly enforce sparseness, the activity of the prediction neurons in response to natural image patches is highly
sparse and statistically independent (Spratling, 2010, 2012b), images are therefore represented efficiently. In order
to demonstrate that PC/BC generates sparse codes in the current application, the sparsity of the response to each
image was measured using the metric proposed by Hoyer (2004):

SIH =

√
n− ‖Y‖1‖Y‖2√
n− 1

where n is the total number of coefficients (i.e., the size of Y). SIH ranges from 0 to 1, with higher values
corresponding to sparser distributions.

2.3 Recurrent Lateral Excitation
The standard PC/BC model of V1 described above does a reasonably good job of locating intensity discontinuities
in images without the redundant responses generated by linear filtering. However, in some cases weak intensity

5



discontinuities are not represented. To solve this problem an extension of the PC/BC model of V1 is proposed
that employs lateral excitatory connections. These connections take a similar form as those proposed in many
previous biologically-inspired models. Specifically, neurons are linked by lateral excitatory connections if they
represent edge elements that have locations and orientations consistent with a smooth, co-circular, contour. Such
connections are consistent with natural image statistics (Geisler et al., 2001; Sigman et al., 2001) and are believed
to be encoded by long-range horizontal connections in V1 (Field et al., 1993; Fitzpatrick, 2000; Hess et al., 2003;
Hunt et al., 2011).

Excitatory lateral connectivity has been used in many previous algorithms for boundary detection with limited
success. However, these previous algorithms employed linear filtering. The redundant responses are then just
as likely to be enhanced by lateral excitation as are the true responses. In contrast, PC/BC produces a sparse
representation which enables lateral excitation to be much more selective in enhancing the responses to those
edges that are most probable.

The method of implementing lateral excitatory connections in the PC/BC model is illustrated in Fig. 3. Recur-
rent connections are used to take the outputs of the prediction neurons and use them as additional inputs to the V1
model, i.e.,:

Xk = Yk

Where Xk is the a 2-dimensional array, equal in size to the input image, which is substituted into equation 1.
When lateral connections are present, the subscripts for X in equation 1 thus range over {ON,OFF} and [1, p]
(where p is the total number of receptive field types, see equation 1). Xk has been omitted from Fig. 3 as these
values do not need to be represented in a separate neural population. Using recurrent inputs to implement lateral
connectivity is, from an implementational perspective, very elegant as it does not require the introduction of any
new mechanisms into the model. As with the feedforward weights, the lateral input to each prediction neuron is
calculated by convolving the recurrent inputs with weight kernels. The convolution process effectively reproduces
the same pattern of lateral connectivity between prediction neurons with equivalent RFs at all locations in the
model. The strength of the connection between prediction neuron a of type i and prediction neuron b of type j is
given by:

wab
ij = S exp

{
− (d− 2σD)2

2σ2
D

− θ2

2σ2
C

− ψ2

2σ2
A

}
(3)

where d is the euclidean distance between the coordinates of points a and b; θ is the difference in angle between
the orientation of filters of type i and j and the tangent to a circle passing through points a and b; ψ is the curvature
of the circle passing through points a and b; the σ values are parameters that control the extent and specificity of
the lateral connections, and S controls the strength of the lateral connections. This leads to strong connections
between prediction neurons the have roughly co-circular RFs. No lateral connections are defined between first
and second derivative filters. The lateral weights between the first-derivative filters are illustrated on the top-left
of Fig. 4. The feedback weights (vij) are defined to be identical to the lateral weights, but are normalised so that
the maximum weight is equal to one.

Another advantage of implementing lateral connectivity as recurrent inputs to the model can be seen if we
consider another interpretation of the operation of the PC/BC model. Each input can be interpreted as providing a
fixed amount for activation which is distributed among the active prediction neurons to which it connects (Achler
and Amir, 2008; Reggia, 1985). Hence, if an input connects to many active prediction neurons it will cause very
little additional activation in those neurons. However, if the number of active predictions neurons is small, the
input is distributed less thinly, and has a greater effect. In the limit, if there is only one active prediction node
this will receive all the input, and hence, its response can be strongly influenced. Hence, the lateral connections
have very little effect when there are many possible contours as the recurrent input gets distributed among all
the possible contours. However, when there are few possible contours linking the active prediction neurons in the
local neighbourhood, the lateral inputs can noticeably enhance these responses. When this occurs, the lateral input
is “explained away” and does not produce redundant responses from other prediction neurons that lie on other,
less probable, contours.

The effects of the lateral connections can be seen by comparing the third column with the second column of
Fig. 5. Lateral connections serve to enhance the representation of extended contours. However, in areas of the
image where there are lots of edges generated by texture, coincidental alignments of different texture elements are
also enhanced by the lateral connections.

2.4 Suppressing Texture
For most edge detection tasks, where the aim is to locate the boundaries of surfaces and objects, the edges of
texture elements are unwanted. The PC/BC algorithm attempts to generate an accurate reconstruction of the input.
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Figure 3: The PC/BC model of V1 with recurrent inputs providing lateral connectivity between the
prediction neurons. The format of the diagram is identical to, and described in the caption of, Fig. 2.

It is therefore not possible to simply suppress the response of prediction neurons that are responding to texture.
However, it is possible to ignore texture by introducing another set of prediction neurons that will represent the
edges of the texture elements. The prediction neurons representing texture edges are defined to have feedforward
weights to the ON and OFF channels of the input that are identical to the feedforward weights of the prediction
neurons representing boundary edges. To reduce the computational complexity of the model, only first derivative
of a Gaussian are used to define these RFs: second derivative kernels are no longer used. This also means that the
total number of prediction neurons in the model remains the same.

For each pair of prediction neurons with identical RFs, one neuron will be used to respond to texture edges
the other to non-texture edges. Given that the RFs are the same, it is purely differences in the lateral connectivity
that differentiates prediction neurons that operate as texture edge detectors from those that act as boundary edge
detectors. This is similar to some models of cortical area V2 which employ neurons representing boundaries that
come in pairs to represent different configurations of border-ownership (Craft et al., 2007; Vecera and O’Reilly,
1998; Zhaoping, 2005). There is no empirical evidence that V1 contains separate sub-populations of neurons
responding to texture edges and boundary edges. However, if such neurons did exist they would have similar RFs,
and hence, similar response properties and would be unlikely to be classified separately unless such distinctions
were being actively sought.

In this extension to the PC/BC model of V1, there are four possible types of lateral connections: those in which
the pre- and post-synaptic prediction neurons both represent boundaries; those in which the pre- and post-synaptic
prediction neurons both represent texture; those in which the pre-synapic prediction neurons represent boundaries
and the post-synapic connections represent texture; and those in which the pre-synapic prediction neurons repre-
sent texture and the post-synaptic connections represent boundaries. The boundary-to-boundary connections are
as described in the previous section and are defined using equation 3. Texture-to-boundary connections are also
definined using equation 3, but with θ off-set by 90o, and the resulting filter rotated by 90o, so that prediction neu-
rons selective for boundary edges are excited by texture elements that are roughly perpendicular. Also, the values
of θ are calculated modulo 180o, rather than 360o as the “phase” of the perpendicular texture is not relevant. S
is also halved for texture-to-boundary connections compared to boundary-to-boundary connections, to give more
weight to connections between prediction neurons representing the same class of feature.

Lateral connections to prediction neurons representing texture edges are definined using the following equa-
tion:

wab
ij = S exp

{
− (d− 2σD)2

2σ2
D

− φ2

2σ2
C

− ω2

2σ2
A

}
(4)

Where d is the euclidean distance between the coordinates of points a and b; φ is the difference in angle between
the line subtended by points a and b and a line perpendicular to the post-synaptic filter; ω is the difference in angle
between the orientation of filters of type i and filters of type j; the σ values are parameters that control the extent
and specificity of the lateral connections, and S controls the strength of the lateral connections. For texture-to-
texture connections this leads to strong connections between prediction neurons the have roughly parallel RFs.
For boundary-to-texture connections ω is off-set by 90o, and the resulting filter rotated by 90o, so that prediction
neurons selective for texture edges are excited by boundary elements that are roughly perpendicular. Also, the
values of ψ are calculated modulo 180o, rather than 360o as the “phase” of the perpendicular boundary is not
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Figure 4: Weights of the lateral connections. In each of the four sub-figures, the left hand column shows
the RF (feedforward weights) of the post-synaptic neuron and the top row shows the RF of the pre-
synaptic neurons (light pixels indicate strong weights to the OFF channel of the input from the LGN, and
dark pixels indicate strong weights to the ON channel). Each other element within the four sub-figures
shows the spatial distribution of lateral weights between the corresponding pre-synaptic and post-synaptic
neuron. (a) Shows synaptic weights between prediction neurons that represent boundary edges. These
connections link neurons with co-circular RFs. (b) Shows synaptic weights from prediction neurons that
represent texture edges to prediction neurons that represent boundary edges. These connections prefer-
entially link neurons with perpendicular RFs. (c) Shows synaptic weights from prediction neurons that
represent boundary edges to prediction neurons that represent texture edges. These connections preferen-
tially link neurons with perpendicular RFs. (d) Shows synaptic weights between prediction neurons that
represent texture edges. These connections preferentially link neurons with parallel RFs. The RFs of the
feedforward and lateral weights are shown at different spatial scales, with each feedforward RF covering
21× 21 pixels while the lateral weights have an extent of 55× 55 pixels.
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Figure 5: Results for three images from the RuG dataset (Grigorescu et al., 2004).

relevant. S is also halved for boundary-to-texture connections compared to texture-to-texture connections, to give
more weight to connections between prediction neurons representing the same class of feature.

While the lateral connections between prediction neurons representing boundaries are consistent with co-
circularity, the lateral weights to and from prediction neurons representing texture elements are anti-correlated
with co-circularity, both these types of connections are seen in cortex (Hunt et al., 2011). All four types of lateral
connection are illustrated in Fig. 4. In all four cases the corresponding feedback weights (vij) are defined to be
identical to the lateral weights, but are normalised so that the maximum weight for all the feedback weights for
each prediction neuron is equal to one.

The right-hand column of Fig. 5 shows the results of reconstructing edges using only the responses of the
boundary selective prediction neurons. It can be seen that the algorithm is very effective at finding the boundaries
of objects and surfaces while disregarding texture. The parameter values used to generate the results shown in
Fig. 5, and reported in the next section, were: κLGN = 2π, σLGN = 2, σV 1 = 3, σC = 22.5, σD = 6, σA = 60,
S = 0.5, ε1 = 1× 10−5, ε2 = 1× 10−3, and 30 iterations of the PC/BC algorithm were preformed. Clearly, the
optimal parameters may differ between images, and even between different parts of the same image. However,
these parameters prove to be suitable for all the test images the algorithm has been applied to (see section 3).

2.5 Code
Software, written in MATLAB, which implements the algorithm described in the preceding sections is available
at http://www.corinet.org/mike/Code/edge_detection.zip.

3 Results
The results shown in Fig. 5 use three images from the RuG dataset (Grigorescu et al., 2003). This dataset includes
a total of 40 512-by-512 pixel images of animals and man-made objects in natural scenes. It has been used
extensively for testing other biologically-inspired boundary detection algorithms, and the results shown in the last
column of Fig. 5 can be compared directly to: Fig.15a in Papari and Petkov (2008); Fig.8 in Papari and Petkov
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Input Image Human Segmentation gPb Multiscale Pb

Proposed method
(PC/BC-

V1+lateral+texture)

Figure 6: Results for three images from the BSDS300 dataset (Martin et al., 2001).

(2011); Fig.5 in Zeng et al. (2011b); Fig.2 in Zeng et al. (2011a); Fig.7 in Grigorescu et al. (2003); and Fig.9
in Tang et al. (2007b). The sparsity of the representations found by PC/BC are not strongly influenced by the
proposed extensions to this algorithm: the inclusion lateral connections, and subsequently the inclusion of two
sets of prediction neurons to represent boundary edges and texture edges. For each of the three images in Fig. 5,
the sparsity of the PC/BC prediction neuron population was measured using Hoyer’s sparsity index (Hoyer, 2004,
see section 2.2), for all three variations of the model. For the PC/BC model of V1 without lateral connections,
the sparsity varied between 0.91 and 0.93. For the PC/BC model of V1 with lateral connections, the sparsity also
varied between 0.91 and 0.93. For the model with lateral connections and texture selective prediction neurons, the
sparsity varied between 0.89 and 0.93.

The results shown in Fig. 6 are for three images taken from the BSDS300 dataset (Martin et al., 2001). This
dataset contains a test set of 100 481-by-321 pixel images of animals, people, buildings, man-made objects,
and natural scenes. It has also been used extensively for testing various image segmentation algorithms. Two
algorithms that have produced the best results on greyscale images from this dataset are Global Probability of
Boundary (gPb) (Maire et al., 2008) and Multi-scale Pb (Ren, 2008). Results for these two algorithms are shown
in the second and third columns of Fig. 6 for easy comparison.

In addition to qualitative comparisons of results, the BSDS300 dataset also provides a method to quantitatively
compare the performance of image segmentation algorithms against segmentations performed by humans (Martin
et al., 2001). Performance is measured using the F score which compares the boundaries found by the algorithm
with those identified by human subjects. In practice, for grayscale images F varies from 0.41 (which is the
performance of an algorithm that assigns each pixel a probability of being a boundary at random) to 0.79 (which is
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Algorithm F-score

Multi-feature/scale algorithms: gPb-owt-ucm (Arbelaez et al., 2011) 0.71 (Arbelaez et al., 2011)
gPb (Maire et al., 2008) 0.68 (Maire et al., 2008)
Multi-scale Pb (Ren, 2008) 0.66 (Ren, 2008)
BEL (Dollar et al., 2006) 0.64 (Maire et al., 2008)
Pb (brighness+texture) (Martin et al., 2004) 0.63 (Martin et al., 2004)

Single-feature/scale algorithms: PC/BC-V1+lateral+texture 0.61
Pb (brighness) (Martin et al., 2004) 0.60 (Martin et al., 2004)
Canny (Canny, 1986) 0.58 (Maire et al., 2008)

Table 1: Quantitative comparison of algorithms on the BSDS300 benchmark (Martin et al., 2001) with
greyscale images.
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Figure 7: Sparsity of the response of the proposed algorithm PC/BC-V1+lateral+texture. The distribu-
tion of Hoyer’s sparsity index for all of the 100 test images in the BSDS300 dataset.

the performance of a human observer when compared to other human observers2). On this benchmark the PC/BC
algorithm, with both proposed extensions, scores 0.61. This score is below that of the state-of-the-art (see Table 1).
However, gPb, Multi-scale Pb, Boosted Edge Learning (BEL), and Pb all employ multiple image features and/or
image scales. In contrast, PC/BC uses only image intensity at a single scale. The performance of PC/BC is an
improvement on that of other algorithms that also only use intensity information (see Table 1).

For each of the 100 images in the BSDS300 test set the sparsity of the representation formed by the PC/BC
algorithm, with both proposed extensions, was measured using Hoyer’s sparsity index (Hoyer, 2004, see sec-
tion 2.2). As can be seen from the distribution of sparsity indices plotted in Fig. 7, for every image the neural code
is highly sparse, and the sparsity index is never less than 0.88. Although the PC/BC algorithm does not explicitly
control the sparsity of the prediction neuron responses, the competition between different prediction neurons to
most accurately represent the image elements results in responses to natural images that are highly sparse.

To obtain an estimate of the parameter sensitivity of the proposed algorithm, benchmarking with the BSDS300
dataset was repeated with different parameter settings. In each case one parameter was altered at a time while all
other parameters were kept fixed at their default values. The results are shown in Table 2. It can be seen that out
of the 20 parameter combinations tested, 12 produced F-scores greater than or equal to 60, the F-score achieved
by Pb (brighness). Segmentation performance is little affected by significant changes in several parameter values,
i.e., κLGN , σV 1, σC , ε2. However, changing other parameter values does have a significant affect on the results.
Example results for the parameter settings that achieve the poorest performance are provided in Fig. 8. These
results can be compared directly to the last row of Fig. 6.

Increasing σLGN causes small scale intensity discontinuities to be smoothed out of the input to the PC/BC
algorithm. Changing the value of σD changes the range of the lateral connectivity in the model. For low values
of σD, lateral connections are short, and hence, only very local contextual information is taken into account by
the model. There is therefore little enhancement of co-circular elements forming boundaries, and insufficient
information for boundary edges and texture edges to be reliably distinguished. On the other hand, increasing
σD results in a very large region of contextual influence, resulting in only large-scale boundaries being detected.
The results are also sensitive to changes in the values of σA. Reducing σA causes the lateral connections to be
more selective for straighter boundary edges and perpendicular texture edges. However, a side-effect of changing
this parameter is to change the relative overall strength of the lateral connections targeting boundary selective

2this is less than one as human observers are not consistent in their decisions about what is and is not a true boundary.
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Parameter Description Standard Value New Value F-score

κLGN LGN response gain 2π π 0.61
4π 0.61

σLGN LGN RF size 2 1 0.60
4 0.55

σV 1 V1 RF length 3 1.5 0.60
6 0.61

σC Step between RF orientations, and lateral
connections degree of preference for co-
circular/perpendicular pre-synaptic RFs

22.5 15 0.61
30 0.61

σD Spatial extent of lateral connections 6 3 0.57
12 0.55

σA Lateral connections degree of preference for
co-linear/parallel pre-synaptic RFs

60 30 0.58
90 0.57

S Strength of lateral connections 0.5 0.25 0.60
0.75 0.53

ε1 Controls the baseline response and rate of in-
crease in the response of prediction neurons

1× 10−5 1× 10−6 0.61
1× 10−4 0.57

ε2 Prevents division by zero errors and deter-
mines minimum significant input activity

1× 10−3 1× 10−4 0.60
1× 10−2 0.61

iterations Number of iterations of the PC/BC algorithm 30 15 0.59
60 0.61

Table 2: Evaluation of the sensitivity of the proposed algorithm PC/BC-V1+lateral+texture to the param-
eter values. Performance was evaluated using BSDS300 benchmark (Martin et al., 2001) with greyscale
images for a variety of parameter values.

prediction neurons and texture selective prediction neurons. Reducing σA increases the relative strength of the
lateral connections to boundary selective prediction neurons, resulting in more intensity discontinuities being
classified as boundary edges. Increasing σA has the opposite effect, resulting in boundary edges being mis-
classified as texture edges. The overall strength of the lateral weights is also important. When S is high lateral
influences become more dominant, resulting in very strong responses to the most salient boundaries, but relatively
weak responses to less salient boundaries. The number of iterations performed by the PC/BC algorithm also
affects performance. When few iterations are performed, the model does not have time to converge to a steady-
state response. The response is also much less sparse: at 15 iterations Hoyer’s sparsity index across all 100 images
is in the range [0.69, 0.93], compared to [0.88, 0.96] at 30 iterations. However, it can also be seen that once
sufficient iterations have been performed to reach a steady-state, that the representation produced by the model is
stable, and the F-score remains constant.

Intensity discontinuities occur at different scales depending on the physical characteristics of the edge, and
the extrinsic and intrinsic parameters of the imaging system. In order to detect image features across multiple
scales the traditional approach is to employ a multiscale image pyramid (Adelson et al., 1984). Feature detection
is then performed at multiple scales and the outputs are combined to provide scale-invariant results. However, this
method is biologically-implausible. It is well known that RF size, in retina and V1, increases with eccentricity
from the fovea. However, at any particular location V1 RFs have a small range of spatial frequency preferences
(Foster et al., 1985; Gattass and Rosa, 1987; Van Essen et al., 1984), and hence, at each image location processing
occurs at a small range of scales. A biologically-plausible multiscale extension to the PC/BC model of V1 is
left for future work. However, to allow comparison of the current model with multiscale methods, the PC/BC
algorithm, with both proposed extensions, was applied to the original image and four down-sampled images,
forming a five-level image pyramid. The boundaries detected at each scale were resized to the size of the original
image and added together. This produced an F-score of 62 on the BSDS300 benchmark. While there may be
scope for improving this result by using more sophisticated methods of combining results across scales (Papari
et al., 2007; Ren, 2008) this results suggest that the proposed algorithm is not limited significantly by sensitivity
to scale, and that incorporating other cues to segmentation, such as texture and colour, may be more effective at
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Figure 8: Worst results for one images from the BSDS300 dataset (Martin et al., 2001) with varying
parameter values. Results were obtained using the default parameter setting for the proposed algorithm
PC/BC-V1+lateral+texture, except (a) σLGN = 4, (b) σD = 3, (c) σD = 12, (d) σA = 30, (e) σA = 90,
(f) S = 0.75, (g) ε1 = 1e− 4, (h) iterations=15.

improving performance of the model.

4 Discussion
It is widely believed that primary visual cortex is involved in edge detection (Lee, 2003; Ng et al., 2007). It is
also widely believed that V1 encodes images using a sparse set of basis vectors selected from an over-complete
dictionary (Field, 1994; Olshausen and Field, 1997). When the PC/BC algorithm (with appropriate learning rules)
is trained on natural images, it learns a dictionary of basis vectors (i.e., synaptic weights) that resemble the RFs
of V1 cells (Spratling, 2012b). Many other algorithms, when trained on natural images, have also been shown
to be able to learn basis sets that resemble the RFs of cells in primary visual cortex (e.g., Bell and Sejnowski,
1997; Falconbridge et al., 2006; Hamker and Wiltschut, 2007; Harpur, 1997; Hoyer, 2003, 2004; Hoyer and
Hyvärinen, 2000; Jehee and Ballard, 2009; Lücke, 2009; Olshausen and Field, 1996; Perrinet, 2010; Ranzato
et al., 2007; Rehn and Sommer, 2007; Van Hateren and van der Schaaf, 1998; Weber and Triesch, 2008; Wiltschut
and Hamker, 2009). A common feature of all these algorithms is that the learnt representation is sparse. Sparsity
is either imposed by explicitly limiting or penalising the number of basis vectors that can be used to encode an
image or is the implicit outcome of a form of competition between different basis vectors (or specifically nodes in a
neural network with synaptic weights representing those basis vectors) for the right to be involved in representing
an image. While many boundary detection algorithms have employed filters that are inspired by, or analogous
to, the shapes of V1 RFs, these filters have been applied in very different way than seems to be the case in V1.
Specifically, in traditional approaches to boundary detection, filters have been applied using linear filtering to
generate dense, redundant, representations. Other work has demonstrated that sparse coding can be beneficial for
image compression (e.g., Fischer et al., 2006, 2007; Murray and Kreutz-Delgado, 2006; Pece and Petkov, 2000),
image restoration (e.g., Elad and Aharon, 2006; Hyvarinen et al., 1998; Mairal et al., 2009), and classification
(e.g., Bociu and Pitas, 2004; Mairal et al., 2008; Ramirez et al., 2010; Wright et al., 2009). Here, it has been
shown that sparse coding can also be used for boundary detection.

The PC/BC model of V1 has previously been shown to provide a comprehensive account of neurophysiological
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data recorded in primary visual cortex (Spratling, 2010, 2011, 2012a,b). Here, two extensions are proposed to
enable this model of biological vision to be applied to the real-world task of image segmentation. The first
extension adds recurrent lateral connections to the model, such that the responses of prediction neurons can provide
input to, and hence influence the response of, neighbouring prediction neurons. The second extension proposes
that prediction neurons come in pairs with identical RFs but different lateral connectivity patterns, so that one
prediction neuron will represent boundaries while the other responds to texture. These two extensions perform
operations analogous to the post-processing techniques employed by many existing boundary detection algorithms
and by many previous biologically-inspired neural approaches to boundary detection. The main innovation in the
current algorithm is therefore the use of the PC/BC algorithm in place of linear filtering. While linear filtering
produces a dense, redundant, representation of the discontinuities in an image, PC/BC produces a sparse, efficient,
representation where the strength of response also reflects the probability with which that edge element is believed
to be present, taking into account the evidence provided by the image and the full range of alternative explanations
encoded in the RFs of the neurons (both those in the local neighbourhood with overlapping feedforward RFs, and
due to long-rang recurrent connections those at greater distances). By using a sparse representation, the current
model has been shown to produce good image segmentation performance on the BSDS300 benchmark (Martin
et al., 2001), out-performing the current state-of-the-art image segmentation method, Pb (Arbelaez et al., 2011;
Maire et al., 2008; Martin et al., 2004), when that algorithm is also restricted to using only intensity information
at a single scale, as is the case for the PC/BC algorithm.

Obvious extensions to the current work would expand the model to make use of the same range of information
sources as are used in the full version of the Pb algorithm, gPb (Arbelaez et al., 2011; Maire et al., 2008). Colour
could be incorporated by modifying the LGN stage to include colour-opponent centre-surround neurons, and
including prediction neurons in the V1 model with RFs selective for these additional stimulus properties. Texture
could be incorporated by using, rather than ignoring, the outputs of the texture selective prediction neurons in
order to locate borders between textured and non-textured regions, or between regions in which there is orientation
contrast between textures. Incorporating information across multiple spatial scales could be achieved by providing
additional channels of input to V1 (extracted in the model of LGN using LoG filters with multiple scales) and
equipping V1 prediction neurons with RFs that take information from these multiple LGN channels and/or by
using lateral connections with a range of spatial extents.
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