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Glossary

Feedforward control. The block diagram of a feedforward control structure is shawFigure 1 [4]. The

behavior of procesB can be influenced by the control inputs. As a result the oatfraeasurements
or observations) show a given behavior. The contrdlledetermines the control inputs in order
to reach a given desired behavior of the outputs, taking acmount the disturbances that act on
the process. In the feedforward structure the contr@ldranslates the desired behavior and the
measured disturbances into control actions for the process

The term feedforward refers to the fact that the directiathefinformation flow in the system contains
no loops, i.e., it propagates only “forward”.

The main advantages of a feedforward controller are thatdhglete system is stable if the controller
and the process are stable, and that its design is in gelrages

Feedback control. In Figure 2 the feedback control structure is shown [4]. Intcast to the feedforward

control structure, here the behavior of the outputs is cliplack to the controller (hence the name
feedback). This structure is also often referred to as &ddsop” control.

The main advantages of a feedback controller over a feedfolraontroller are that (1) it may have a
quicker response (resulting in better performance), @&y correct undesired offsets in the output,
(3) it may suppress unmeasurable disturbances that arevabkethrough the output only, and (4) it

may stabilize an unstable system.
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Figure 1: The feedforward control structure.
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Figure 2: The feedback control structure.

Optimal control. Optimal control is a control methodology that formulate®ateol problem in terms of a

performance functioralso called ambjective functiori74]. This function expresses the performance
of the system over a given period of time, and the goal of thigrotler is to find the control signals
that result in optimal performance. Depending on the mattieal description of the control problem
there exist several methods for the optimization of ther@mput including analytic and numerical
approaches. Optimal control can be considered as a feegfdiwontrol approach.

Model Predictive Control. Model predictive control (MPC) is an extension of the opficantrol frame-

work [16, 80]. In Figure 3 the block diagram of MPC is shown.

In MPC, at each time stefpthe optimal control signal is computed (by numerical optiation) over

a prediction horizon ofV, steps. A control horizoV, (< N,) can be selected to reduce the number
of variables and to improve the stability of the system. Bel/the control horizon the control signal
is usually taken to be constant. From the resulting optiroatrol signal only the first sample of the
computed control signal is applied to the process. In thé tiee stepk + 1, a new optimization is
performed with a prediction horizon that is shifted one tstep ahead, and of the resulting control
signal again only the first sample is applied, and so on. Tttieme, called rolling horizon, allows
for updating the state from measurements, or even for upgltie model in every iteration step.

In other words, MPC is equivalent to optimal control exteshaéth feedback. The advantage of
updating the state through feedback is that this resultsdandroller that has a low sensitivity to
prediction errors. Regularly updating the prediction maesults in an adaptive control system,
which could be useful in situations where the model signifijechanges, such as in case of incidents
or changing weather conditions.

Acronyms and abbreviations

MPC Model Predictive Control

oD Origin-Destination

ADAS Advanced Driver Assistance Systems
AHS Automated Highway System

IVHS Intelligent Vehicle/Highway System



disturbances
traffic demand L roces —
road conditionsControl input: P system state

- ) speed, flow,
weather, etc. control measures rolling horizon p '
eachk) density

controllerC

expected disturbances prediction

L Ny L

control inputs | performance
measures | function

optimization

Figure 3: The model predictive control (MPC) structure.

Definition of the subject and its importance

The goal of this chapter is to provide an overview of dynamadfic control techniques described in the
literature and applied in practiceDynamic traffic controlis the term to indicate a collection of tools,
procedures, and methods that are used to intervene in frafiider to improve the traffic flow on the short
term, i.e., ranging from minutes to hours. The nature of thprovement may include increased safety,
higher traffic flows, shorter travel times, more stable tcafiibws, more reliable travel times, or reduced
emissions and noise production.

The tools used for this purpose are in general changealis itcluding traffic signals, dynamic speed
limit signs, and changeable message signs), radio broauhessages, or human traffic controllers at the
location of interest. Moreover, currently the possilektiof assisting, informing, and guiding drivers via
in-car systems are also being explored.

The termdynamic traffic managememcludes besides dynamic traffic control also the managémen
of emergency services and non-automated procedures (suttte amplementation of predefined traffic
control scenarios during special events), typically panfed in traffic control centers. However, in this
chapter the focus is on automatic control methods. Furtbesnthis chapter deals exclusively with dynamic
freeway traffic control techniques. Given the differencesaffic operation (e.g., higher speed limits) and
in traffic infrastructure (e.g., intersections versus amps and off-ramps), the control measures that can be
implemented for urban and for freeway traffic differ. Theeirgtsted reader is referred to [29, 36, 90] for an
overview of urban traffic control.

1 Introduction

The number of vehicles and the need for transportation israaously growing, and nowadays cities around
the world face serious traffic congestion problems: almestyeweekday morning and evening during rush
hours the capacity of many main roads is exceeded. Traffis domot only cause considerable costs due
to unproductive time losses; they also augment the prababflaccidents and have a negative impact on
the environment (air pollution, lost fuel) and on the quatif life (health problems, noise, stress).

One solution to the ever growing traffic congestion probletoiextend the road network. Extending the
freeway infrastructure is rather expensive, and in manyt@s this option is currently not considered to
be a viable solution. Moreover, in densely populated aradgibg new roads is sometimes even unfeasible
due to spacial limitations. Furthermore, there are often ather socio-economic objectives to be achieved,



such as environmental objectives, which are consideretgalde the objective of reducing congestion.
Dynamic traffic control is an alternative that aims at insieg the safety and efficiency of the existing
traffic networks without the necessity of adding new roadaistructure.

Since the 60s traffic control is applied on freeway systenwsvéver, during the last decades there have
been developments in traffic science, traffic technologgtrob theory, and in the typical traffic patterns
that all have consequences for the most appropriate traffit@ approach. These developments will be
discussed in the next sections.

1.1 The need for network-oriented automatic traffic control: developments

The increasing complexity of the congested traffic pattandsthe increasing availability of traffic control
measures motivate the increasing usage of automatic tecaffitol systems and the increasing interest in
network-oriented control over the last decades. The iatenenetwork-oriented control from the practi-
tioners’ point of view is also motivated from policies airgiat socio-economic goals, such as the efficient
transport over important network corridors.

The fact that the length, the duration, and the number did¢rjaims continues to grow has consequences
for traffic control. When there are more locations with cotiges the available control measures have to
solve more problems, which implies a higher complexity. c8imowadays the chances are higher that
a vehicle encounters more than one traffic jam during one thig traffic control measures influencing
a vehicle in one traffic jam will also influence the other japttsat the vehicle encounters. Therefore,
the spatial interrelations between traffic situations &edint locations in the network get stronger, and
consequently the interrelations between the traffic comasures at different locations in the network
also get stronger. These interrelations may differ peratitn (and depend on, e.g., network topology,
traffic demand, etc.) and the control measures may even e@wteach other. For the various traffic
management agencies or local governments that are rebjmfwi different parts of the traffic network
this means that there is a need for a stronger cooperatiormgmement on how the common network
goals should be achieved. Similarly, for the automatic mdmhethods, coordinated control strategies are
required in these cases, to ensure that all available dontasures serve the same objective, or at least that
they do not counteract each other.

Another development is that freeways are equipped with rancemore traffic control measures. The
increasing number of control measures augments the claftildl of the freeways. However, with this
development the number of possible combinations of contiedsures also increases drastically, which in
its turn increases the complexity of the dynamic traffic nggmaent problem.

On modern freeways often a large amount of data is availablene and off-line. This data can serve
as a basis for choices about appropriate control measwen thie actual and expected traffic situation.
However, the available data is currently not fully utilize€ither by traffic control center operators, whose
actions are typically based on heuristic reasoning, norutgraatic control measures, which mostly use
local data only. Traffic data may also contain informatiomaithe current disturbances of the network
(incidents, weather influences, unexpected demands) &raniation about the traffic system at a network
level (about route choice and origin-destination relattops). The origin-destination (OD) matrix describes
the traffic demand (vehicles per hour) appearing at eacinarig traffic network towards each destination
in the network. An OD matrix may be time-varying, and can blewdated at different levels of temporal
aggregation, e.qg., hourly, peak or interpeak, 24 hourMé&thods have been developed to estimate such OD
relationships from traffic measurements, and to estimater#ific state (e.g., speeds, flows and densities)
in networks that are incompletely equipped with detectdds 124]. The methods can be used to supply a
traffic control system with more accurate data, leading ttebeontrol actions.

These developments motivate the application of automaintrol systems that can handle complex
traffic scenarios, multiple control measures, and a largeusnof data, and that can benefit from the
network-oriented information by selecting appropriatatcal measures for given OD patterns and distur-
bances.
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Figure 4: Congestion caused by high on-ramp demand coutdrefailt in the blocking of an upstream
off-ramp.

Regardless of these developments the three effects thee taeimajority of suboptimal traffic network
performances — in terms of travel time — have remained theesarherefore, the primary goal of traffic
control was and is to resolve the following effects/issues:

e Bottlenecks. Typical bottlenecks are freeway sections with an on-rammjglges, tunnels, curves,
grades, and merge and diverge areas. The performance dégnatypically originates from the
phenomenon that the maximum achievable outflow from a trgificcreated at a bottleneck is often
lower than the capacity of the road. This phenomenon is afflad the capacity drop. A special case
of a bottleneck is an upstream propagating jam that is grgairthe tail by the incoming vehicles
and resolving at the head by the leaving vehicles. A moving ¢an be a serious bottleneck as it
could reduce the maximum outflow to 70 % of the capacity [60jilevthe capacities of the other
bottlenecks are in the range of 85-100 % [38, 60]. Dynamiffitraontrol measures may help to
prevent a traffic breakdown at a bottleneck, or to improveflthve when a breakdown has occurred.

e Suboptimal route choice.In a dynamically changing network with jams, incidents, aoad works
the driver may not always be informed sufficiently well to ragke optimal route choice. Further-
more, even if each individual driver has found the quickestirf general: least costly) route to his
or her destination, it may not lead to optimal performancthatnetwork level, as known from the
famous example of Braess [12]. Systems that influence therdriroute choice may contribute to a
better performance for the users, the network, or even both.

e Blocking. The tail of a traffic jam on a freeway may propagate so far epstrthat it blocks traffic
on a route that is not leading over the bottleneck that haseththe jam. A typical case is when a
traffic jam created on the freeway at an on-ramp propagatdstban upstream off-ramp and blocks
the traffic that wants to leave via the off-ramp. Figure 4sitates a situation where off-ramp traffic
is blocked by a jam originating from the downstream on-ramjb.control measures that can limit
the length of a traffic jam may in principle be applied to praMalocking.

Automatic traffic control strategies try to optimize traffietwork performance. A simplified, idealized
description of the operation of traffic in the network linlsdiven by what is known in traffic theory
as the fundamental diagram [82]. The fundamental diagrasorites steady-state traffic operation on a
homogeneous freeway (i.e., the spatial gradients of sfie@dand density are equal to zero) as illustrated
in Figure 5. For low traffic densities, the relation betwesffic density and traffic flow is nearly linear.
For traffic densities smaller than the critical density;;, the traffic flow on the freeway increases with
increasing traffic density (Figure 5), despite the fact thataverage speed decreases with increasing traffic
density. Traffic operation is in a stable regime for traffinsiées lower than the critical density. The
maximal flow that can be achieved on the freeway, the capagity is reached for a traffic density equal to
the critical density and the resulting average speed of ¢hécles is called the critical speed. If the critical
density is exceeded, the average speed continues to deeredshe traffic flow decreases with increasing
density. For traffic densities higher than the critical dgnsongestion sets in and an unstable traffic regime
results. Typical values qf..i; andq..,, for a three-lane highway are 33.5 vehicles per kilometer @erd
lane and 6000 vehicles per hour respectively [92].
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Figure 5: A flow-density fundamental diagram for a three leeway. As long as the traffic density on the

freeway is smaller than the critical denspiy.;;, the traffic flow on the freeway increases with increasing
traffic density. If the traffic density reaches the criticahdity, the flow is maximal and equal to the freeway
capacityq..p. If the traffic density further increases, the traffic flow tue freeway starts to decrease with

increasing traffic density until the traffic stalls at the jeemsitypjam.

Based on the discussion of the fundamental diagram prasehtese, it can be observed that automatic
control strategies can try to prevent or to reduce congestjcsteering the state of traffic operation towards
the stable region of operation. Here the fundamental diagsamerely presented as a seminal approach
to traffic state analysis. However, in the literature alttisre approaches to traffic state analysis have been
reported. E.g., Kerner [61] has proposed the three phaseythiatroducing the concepts “wide moving
jams” and “synchronized traffic”. The work by Treibetral.[117] and Leeet al.[71] has added additional
traffic states to the analysis such as “oscillating congetsédfic” and “homogeneous congested traffic”.

1.2 Automatic traffic control

Dynamic traffic management systems typically operate aiogrto the feedback control concept known
from control systems theory, as shown in Figure 6. The traéfitsors provide information about the current
traffic state, such as speed, flow, density, or occupancy. cbh&oller determines appropriate control
signals that are sent to the actuators (depending on thensytsie changes in the control signal may be
implemented instantly or may need to be phased in). Theiogaet the traffic system is measured by the
sensors again, which closes the control loop. If the new oreagents show a deviation from the desired
behavior (caused, e.g., by unforeseen disturbances)etheontrol signals are adapted accordingly. Note
that there also exist traffic control systems that have déeedrd structure, e.g., the demand-capacity ramp
metering approach that will be discussed in Section 4.1.

We define an “appropriate control” signal in terms of a cdmbtgective. From the network operator’s
point of view typical objectives are:

o Efficiency. Efficiency is often expressed in terms of throughput or tréivee. This objective is
shared by the network operators and the individual driveszertheless, situations may arise when
the network operator and the individual driver have cornfigtinterests, e.g., minimizing the total
travel time in a network (network optimum) may be conflictwigh individually minimizing the
travel times (user optimum). This will be discussed in magtad in Section 4.3.
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Figure 6: Schematic representation of the dynamic trafficagament control loop. Based on the measure-
ments provided by the sensors the controller determinesahtol signals sent to the actuators. Since the
control loop is closed, the deviations from the desireditrafystem behavior are observed and appropriate
control actions are taken.

e Safety. In traffic control, safety may be a direct goal of the contrat onay be a constraint (boundary
condition) that should be satisfied. For example, dynaméedpimits or variable message signs may
reduce the speed limit or give a warning under adverse weatheitions or poor visibility conditions
in order to improve safety. Other systems may have othergmirgoals, such as improving the flow,
and in these cases the control systems are often still edtjtorbe safety-neutral compared with the
situation without control. There may also be an interactetween safety and efficiency, which
has to be taken into account in the design of the control sysféhis interaction may be related to
the following three processes. First, a safer traffic sydtegeneral results in fewer accidents and
therefore more often higher flows may occur. Second, if cetige is prevented by an appropriate
control method safety may be increased due to the more hameogs flows. Third, lower speeds and
densities in general positively influence safety. More #jpadly, Brownfieldet al.[14] observed that
for freeway sites, the accident rate in congested conditieas nearly twice the rate in uncongested
conditions. However, the proportion of accidents that wengous or fatal was lower in congested
conditions than in uncongested conditions. Hence, depgrati the network operator’s definition of
safety, safety and efficiency may be conflicting or non-cotifig objectives.

o Network reliability. Even if not every traffic jam can be prevented, it is valuabledrivers when
the travel time to their destinations is predictable, sigoed arrival time estimations make departure
time choices easier. Therefore, improving the networlabdlity/predictability serves the economic
efficiency of the network and improves driver comfort. Traffontrol in general can improve reliabil-
ity (predictability) by aiming at the realization of pretkd travel times, or the reverse, by predicting
realizable travel times, or both. Furthermore, networlatslity can be improved by measures that
aim at synchronization of the traffic demand and the capacipply of the network, and at a better
distribution traffic of flows over the network. For a more eledte discussion on network reliability
we refer the interested reader to [6,22,79,114,115].

e Low fuel consumption, low air and noise pollution. In general, congestion contributes to less
smooth journeys (more deceleration-acceleration movishemhich increases emissions. In or near
urban areas the environmental effects of traffic may be densd more important than, e.g., effi-
ciency, which can result in a different trade-off betweea tivo objectives. An example of such a
trade-off is between travel speed and air pollution [3]. Ty@cal measure for these purposes is
speed limitation.

Another important aspect of a traffic control system are tvestraints due to physical, technical, or policy-
based limitations. Such constraints may include minimuch maximum ramp metering rates, maximum



on-ramp queue length, minimum and maximum dynamic speeitl Vimues, etc. The automatic traffic
controller is required to cope with these constraints.

1.3 Chapter overview

In the remainder of this chapter is organized as follows. Weuss the sensor technologies used in the
context of freeway traffic control in Section 2. In Section 8 address traffic flow models, which play an
important role in the design and evaluation of traffic cohgtoategies. Next, the most frequently used free-
way control measures are discussed in Section 4. While inddettthe focus is on the individual control
measures, in Section 5 we discuss the approaches to conmulrie entegrate several control measures for
network-oriented control. We conclude in Section 6 by cdesihg the new developments that are expected
to play a role in future freeway traffic control systems.

2 Sensor technologies

In order to implement traffic responsive freeway contr@ffic measurements need to be collected at dif-
ferent locations throughout the freeway network. Thisisecfirst deals with the most common traffic
variables and traffic sensors to collect them. Next, the feetlaffic demand and traffic routing data, and
the way these data can be obtained using common traffic meaeuts, is briefly addressed. New data
collection technologies, that will play an important ratefuture freeway control systems are discussed in
Section 6.

2.1 Measurements

Traditionally the following traffic variables are measutedietermine the traffic state on a freeway [82]: the
traffic flow or the traffic intensity on the freeway, the avesagpeed of the vehicles, the traffic density, the
occupancy level of the freeway, the time headways, and irestases the distance headways and the speed
variance. Note that occupancy is defined as the relative(fi@eentage) that the traffic sensor is occupied
by a vehicle. In practice, it is often used as a surrogate unedsr traffic density since it is directly related
to density (as long as the average vehicle length is constadtcan be measured more easily than density.

Depending on the application and on the traffic measuremesérm, several levels of detail can be
distinguished. The traffic variables can either be meastoedvery freeway lane separately or a value
averaged over all lanes of the freeway can be obtained. Serasurement systems allow for a classification
of the vehicles in categories based on their size (e.g.k$ruersus cars) and provide the traffic variables
per category. Furthermore, instantaneous values of theuregtraffic variables can be provided or values
averaged over a time period. The period over which the measents are averaged can range from seconds
over minutes to hours. As a rule of thumb, one can assumehbdtigher the level of detail of the data
collected, the higher the cost of the measurement systeotvi.

In real-life situations, the measurements that are pravigethe traffic sensors will contain measure-
ment errors. These errors include incidental missing w&lueidental faulty measurements, biased mea-
surements, and missing values over a period of time. Givelintportance of the traffic measurements in
the dynamic traffic management control loop (Figure 6), éhexsors need to be detected. Depending on
the application, the controller may or may not be able to détl erroneous or missing values. Techniques
to estimate missing values that have been reported in #ratitre include reference days [25], multiple
imputation [78], time series analysis [25], and Kalman aadtiple filtering [44, 124].

For the purpose of freeway traffic control the most commongasured traffic variables are the traffic
flow, the speed, and the occupancy of the freeway traffic. Tioéce of these variables is influenced by
their importance in traffic theory as well as by the ease byctviiey can be measured with most common
traffic detector technologies.



There exists a wide variety of technologies [59] to measaféi¢ variables such as, e.g., pneumatic sen-
sors, inductive loops, cameras, ultrasonic sensors, mé&® sensors, active and passive infrared sensors,
passive acoustic arrays, and magnetometers.

Inductive loops are the most widespread detection systemiate and were introduced as traffic detec-
tion systems in the 60s [86]. The main advantages of indeittieps are their wide application range, the
flexible design, and the availability of the common trafficiahles. The main disadvantages of inductive
loop technology are the sensitivity to wear and tear due isiphl stress on the loops induced by traf-
fic, the susceptibility of the loops to damage by road maiwers works, and the special installation and
maintenance requirements (e.g., lane closure during ar@nte) [59].

Traffic detection using video cameras emerged during thea@@sis a non-intrusive technology that
is becoming more and more popular [86]. A fixed camera is nemlabove the freeway and its images
are sent to a video processing unit that extracts the degieables using image processing algorithms.
Camera traffic detection technology can provide the commalffid variables, is less prone to wear and
tear by traffic, and generally requires less lane closuresnfintenance and reconfiguration. The main
disadvantages of traffic cameras are the higher upfrontofdke installation compared to inductive loops
and the dependence on visibility conditions (e.g., fogyiiesmow, sunlight shining directly into the camera
could heavily impair the quality of the images taken by tladfic cameras). Other factors that adversely
affect the detection accuracy are vibrations caused by amaktraffic, lack of contrast between vehicle and
road color, and varying lighting conditions (e.g., duringsd and dawn) [30, 64, 65].

In addition to the registration of the traditional trafficriables, video camera technology is also applied
to register travel times on corridors or to obtain inforroatregarding the routes followed throughout the
network. This information can be obtained by tracking thhisles at strategic locations (e.g., at large
junctions or at the entrances and the exits of the area umhsideration) using, e.g., automated license
plate recognition algorithms. These systems consist afovichage processing units connected to video
cameras monitoring the traffic. Often, these systems arkeimgnted at sites where the hardware to register
the vehicles is already available (e.g., automated tolths)d20, 112].

2.2 Estimation

In order to coordinate or to integrate traffic control measuthe spatial aspect of the traffic network need
to be taken into account such that the impact of control nreason distant parts of the traffic network
can be accounted for. However, the traffic sensors discudseek are traffic sensors that are localized in
space, and, as a consequence, they only yield informatitimeoevolution of the traffic state on the freeway
through time and at the sensor locations. Implementinficr@détectors very densely on the freeway in order
to register the traffic states for every freeway section wdgl inconvenient and costly. However, data fusion
techniques (such as extended Kalman filtering or partiderifilg) allow to combine traffic measurements
scattered over the traffic network in order to obtain netwosKic state estimation [44,124,126]. Traffic
state estimation and prediction can be currently being stk implementation of control measures as is
illustrated by simulation in [9].

The similarities between traffic flows and flows of comprelesilnids have since long been documented
in the literature [76, 103] (see also Section 3 below). H®vewhen it comes to routing of traffic flows in
networks, a major difference emerges; while the particiesfiuid have no predetermined destination, the
vehicles traveling through a traffic network are travelingni a particular origin to a particular destination.
Hence, the destination of the vehicles constrains therditise routes that can be chosen. It is clear that
route guidance control measures have an impact on the goptotess. However, since travel times are
typically an important factor in the routing process of wiaflormed travelers, other traffic measures, in
combination with the traffic demands, influence the routiabdvior as well. In order to assess the impact
of traffic measures on the traffic states in the traffic netwénk traffic demands (OD matrices) and the
routing process need to be modeled. As the traffic demandotdenmeasured directly, it needs to be
estimated using the traffic measurements in the traffic mtw®everal techniques to estimate the traffic



demands (OD matrices) that correspond to the measured tssffies in the traffic network have been
developed. For an overview of the literature, the intetseader is referred to [77]. The route choice
process, which influences the impact of control measuresigfir rerouting effects, is also the subject of
research [58].

3 Traffic flow modeling

Traffic flow models can be classified according to variougddtsuch aarea of applicationlevel of detai
deterministic versus stochas{®0].

An example of the application of traffic flow models for the idaesof traffic control measures is model
predictive control, which makes use of an internal predittnodel in order to find the best traffic control
measures to be applied to the real traffic process. Since thedels are operated in real-time, and are often
used to evaluate several control scenarios, they showld &ir fast execution on a computer.

For the assessment of traffic control strategies often alatinn model is used instead of (or before) a
real-world test. Simulation has several advantages. Abdlysimulation is cheaper and faster, and it does
not require real human drivers as test subjects. It alsoiggevan environment where the unpredictable
disturbances of a field test, such as weather influencefictdgfmand variations, and incidents, can be
excluded, or if necessary simulations can be repeated emxdetly the same disturbance scenario.

Since none of the available traffic models perfectly dessrthe real traffic behavior, one has to keep in
mind the intended application, when making the choice betwitbe available traffic flow models. As Pa-
pageorgiou [91] argues for macroscopic traffic flow modelggvortant criterion is that the model should
have sufficient descriptive power to reproduce all impdrfdrenomena for the intended application. Simi-
lar arguments are also used by Kerner [61] but for differdr@rmmena.

Traffic models can also be classified according to the levdetdil with which they describe the traffic
process:

e Microscopic models describe the behavior of individual vehicles. Intquaraspects of microscopic
models are the so-callezér followingandlane changindehavior. Car following and lane changing
behavior is generally described as a function of the digtéamand (relative) speed of the surrounding
vehicles, and the desired speed. Since the vehicles areledaddividually in microscopic traffic
models, it is easy to assign different characteristics tthaeehicle. These characteristics can be
related to the driving style of the driver (aggressive, g, vehicle type (car, truck), its destination,
and route choice.

A special type of microscopic traffic models are ttedlular-automatormodels [61,81,130] in which
the freeway is discretized into cells of about 7.5 m lengthctEecell can contain only one vehicle
and the traffic dynamics is described by a probabilistic mhotithe hopping behavior of the vehicles
through the cells.

In general, it is difficult to calibrate microscopic modelgwreal traffic data, due to the large number
of parameters in this type of models and the poor availgolfitappropriate traffic data.

We refer the interested reader to [2] for an extensive coisganf commercial microscopic simula-
tion models and to [50] for a more theoretical overview.

e Mesoscopianodels do not track individual vehicles, but describe theavéor of individual vehicles
in probabilistic terms. Examples of mesoscopic models hexdway distribution models [13] and
gas-kinetic models [49]. Typically, these models are netlusr traffic control.

e Macroscopic models use a high level of aggregation without distinguighietween individual ve-
hicle behavior. Instead, traffic is described in aggregatams as average speed, average flow, and
average density.
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Macroscopic traffic flow modeling started when Lighthill a¢hitham [76] presented in 1955 a
model based on the analogy between traffic flows and flows éngiMndependently of Lighthill and
Whitham one year later Richards [103] published a similar @hod@herefore, this model is usually
referred to as the Lighthill-Whitham-Richards (LWR) model.

Since 1955 a large variety of macroscopic traffic flow modasdvolved from the LWR model, with
differences in the order of the model, the phenomena that (tle¢produce (such as capacity drop,
stop-and-go waves, and other congestion phenomena orrgitand the effects of heterogeneous
traffic (cars and trucks), etc. [27, 45, 49, 100].

Another approach has been followed by Kerner [61] who deedaa qualitative traffic flow theory
based on empirical observation. This theory distinguighese so-called traffic phases: free-flow,
synchronized flow, and jammed traffic, and describes thsitian between these phases qualitatively
in probabilistic terms.

A last classification that is relevant in the context of taffontrol is whether the model is deterministic
or stochastic. Deterministic models define a relationskigvben model inputs, variables, and outputs that
typically describes the average behavior of traffic. Stetihanodels describe traffic behavior in terms of
relationships between random variables, e.g., randontioeatme of drivers, randomness in equilibrium
speed-density (or car following) relationships, routeicbpetc. These stochastic effects can reproduce
phenomena such as the creation of traffic jams by random &tions in traffic flows [110], and can be
used for the stochastic evaluation of traffic control apphes. Another application of stochastic traffic
flow models is in the area of state estimation, which is anrggdepart of control approaches such as
optimal control or model predictive control [44, 124].

4 Freeway traffic control measures

In this section we give an overview of control measures thatuged or could be used to improve traffic
performance. We focus on control measures that are cyrepfllied, or could be applied in the near
future, such as ramp metering, speed limits, and route goalaFor each control measure we present the
principle of operation including the control approachex] the existing field tests and simulation results.
At the end of this section some other traffic control measarepresented that may also be used to improve
the performance of traffic systems.

4.1 Ramp metering
Principle of operation

Ramp metering is one of the most investigated and applieziverg traffic control measures. A ramp
metering set-up is implemented as a traffic signal that isgalaat the on-ramp of a freeway as shown
in Figure 7. The required metering rate is implemented by@muately choosing the phase lengths of
the traffic signal. Several ramp metering implementatiarstoe distinguished [21], e.g., single-lane with
one vehicle per green ramp metering, single-lane with mleltvehicles per green ramp metering (bulk
metering), and dual-lane ramp metering.

Ramp metering can be used in two modes:tth#fic spreading modand thetraffic restricting mode
In the traffic spreading mode ramp metering smoothens thgingeprocess of on-ramp traffic by breaking
the platoons and by spreading the on-ramp traffic demand tower as observed by Elefteriadou [34].
This mitigates the shock waves that can occur under higficiddnsity conditions. In this application the
metering rate equals the average arrival rate of the vehicle

Restrictive ramp metering can be used for three differerpqees:
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Figure 7: Ramp metering at the freeway A13 in Delft, The Nd#rels. One car may pass per green phase.
To prevent red-light running the control is enforced.

e Prevention of breakdowns. When traffic is dense, ramp metering can prevent a traffic bi@ak
on the freeway by adjusting the metering rate such that theityeon the freeway remains below the
critical value. Preventing a traffic breakdown has not ohly &dvantage that it results in a higher
flow, but also that it prevents the creation of a jam that cdudetk the off-ramp upstream the on-
ramp (as shown in Figure 4). These effects are studied il gtRapageorgiou and Kotsialos [97].
Daganzo [28] has quantified the role of ramp metering in augithe activation of freeway gridlocks.

¢ Influencing route choice. Ramp metering can be implemented to influence the traffic ddraad
traffic routing. The impact of ramp metering on the traffidstand on the travel times is taken into
account by the drivers in their routing behavior [132]. Bauj%] has described a theory to apply
ramp metering to influence traffic routing to avoid freewaytleoecks. Based on a similar idea
Middelham [84] has performed a synthetic study on the rohteoe effects of ramp metering.

e Localization of traffic jams. According to Kerner [61] ramp metering can prevent the bembaga-
tion of traffic jams and shock waves occurring at on-rampss Tauld be beneficial on the network
level since it could localize the traffic jam, and it couldaal® beneficial to the traffic throughput.

The control strategies that have been developed for réggri@mp metering can be classified as static
or dynamic, fixed-time or traffic-responsive, and local corchnated.

Fixed-timestrategies use (time-dependent) fixed metering rates thadetermined off-line based on
historical demands. This approach was first suggested yewatth [127], and was extended to a dynamic
traffic model by Papageorgiou [88]. The disadvantage of fikee strategies is that they do not take into
account the day-to-day variations in the traffic demand erviriations in the demand during a period
with a constant metering rate, which may result in undematilon of the freeway or inability to prevent
congestion.
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Traffic-responsivetrategies solve these issues by adjusting on-line theimgtate as a function of the
prevailing traffic conditions. These strategies also airthatsame objectives as the fixed-time strategies,
but use direct traffic measurements instead of historidal eprevent or to reduce congestion. One of the
best known strategies is tllemand-capacitgtrategy [96]:

Qcap — Qin(k - 1) |f Omeas(k - 1) S Ocr
qramp(k) - P .
Gr min otherwise

With gramp (k) the admitted ramp flow at time stép ¢.., the downstream freeway capacity, (k) the
freeway flow measured upstream of the on-ramp at time step .,;» the minimal on-ramp flow during
congestionpneas (k) the occupancy downstream the on-ramp at time steando,, is the critical occu-
pancy (at which the flow is maximal). Since the traffic statettoenfreeway cannot be determined based
on the measurement of the traffic flow alone, the downstreampamncy is measured in order to determine
whether congestion is present,t.s(k — 1) > o) or not.

A similar strategy is occupancy-based ramp metering, whezeupstream traffic flow measurement
from demand-capacity ramp metering is replaced by an ocaypaeasurement. The measured occupan-
cies are related to traffic flows based on historical measemésn Next, the demand-capacity approach
described above can be applied [19]. A common disadvantifetb demand-capacity formulations is
that they have an (open-loop) feedforward structure, wigcknown to perform poorly under unknown
disturbances and cannot guarantee a zero offset in thetautgar steady-state conditions.

A better approach is to use a (closed-loop) feedback streyddecause it allows for controller formula-
tions that can reject disturbances and have zero steattyestar. ALINEA [94] is such a ramp metering
strategy and its control law is defined as follows:

qramp(k) = qramp(k - 1) + K(é - Omeas(k))a

whereg.amp (k) is the metered on-ramp flow at time stepK is a positive constang is a set-point for
the occupancy, and,..s(k) is the measured occupancy on the freeway downstream of thenom at time
stepk. ALINEA tries to maintain the occupancy on the freeway edaa set-point, which is chosen in
the region of stable operation. Given the probabilistiauraiof traffic operation, the set-pointis often

chosen somewhat smaller than the critical occupancy irr dodguarantee free-flow traffic operation.

More advanced ramp metering strategies are the traffiorsége coordinated strategies such as MET-
ALINE [93], FLOW [56], or methods that use optimal controB6or model predictive control [7].

The ramp metering strategies discussed above attemptse@itree-flow traffic on the freeway. How-
ever, given the probabilistic nature of traffic operatiomgestion can set in at lower or higher densities than
the critical density. Based on these insights, Kerner [BlLdéfined acongested-pattern control approach
to ramp metering called ANCONA. The basic idea of ANCONA isattow congestion to set in, but to
keep congested traffic conditions to the minimum level gissiOnce congestion sets in, ANCONA tries
to reestablish free-flow conditions on the freeway by redgithe on-ramp metering rate. Kerner claims
that, by allowing congestion to set in, ANCONA utilizes thedable freeway capacity better. The control
rule of ANCONA is given by [61]:

q if VUde k < Ucon
Qramp(k) = ! . t< ) &
q2 if Udet(k) > Ucong

whereg,.mp (k) is the on-ramp flow at time stefp ¢; andg. are heuristically determined constant flows
with ¢1 < g2, vaet (k) is the traffic speed on the freeway just upstream of the ompraintime stepk, and
veong 1S the speed threshold that separates the free and the eyirdd (locally congested) traffic flow
phases.
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Figure 8: A variable speed limit gantry on the A13 freewayrm@aerschie, The Netherlands. In this
particular case the maximum speed limit is 80 km/h due torenwmental reasons, and the limit may drop
to 70 km/h or 50 km/h in case of a downstream jam.

Field tests and simulation studies

Several field tests and simulation studies have shown teetainess of ramp metering. In Paris on the
Boulevard Rriphérique and in Amsterdam several ramp metering strategies been tested [95]. The
demand-capacity, occupancy, and ALINEA strategies weperpin the field tests at a single ramp in Paris.
It was found that ALINEA was clearly superior to the other tinall the performance measures (total time
spent, total traveled distance, mean speed, mean conyestiation). At the Boulevard&iphérique in
Paris the multi-variable (coordinated) feedback strafdyTALINE was also applied and was compared
with the local feedback strategy ALINEA. Both strategiesuleed in approximately the same performance
improvement [93]. One of the largest field tests was conduitehe Twin Cities metropolitan area of
Minnesota. In this area 430 operational ramp meters weredsiwn to evaluate their effectiveness. The
results of this test show that ramp metering not only setveptirposes of improving traffic flow and traffic
safety, but also improves travel time reliability [17, 73].

A number of studies have simulated ramp metering for diffeteansportation networks and traffic
scenarios, with different control approaches, and withuge of microscopic and macroscopic traffic flow
models [40, 46, 68, 92,94, 113]. Generally the total netwailel time is considered as the performance
measure and is improved by about 0.39 %—30 % when using rargyine

The validation of ANCONA versus ALINEA is performed by sinatibn by Kerner [62], who found that
ANCONA in some cases can lead to higher flows. Also note thaéthas criticized modeling approaches
to simulations of freeway traffic control strategies in [§8¢e also [99] for some comments).

4.2 Dynamic speed limits

Dynamic speed limits are used to reduce the maximum speagendys according to given performance,
safety, or environmental criteria. An example of a dynarpiees! limit gantry is shown in Figure 8.
Principle of operation

The working principle of speed limit systems can be categaorbased on their intended effects: improving
safety, improving traffic flow, or their environmental effecsuch as reducing noise or air pollution.
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Itis generally accepted that speed reduction on freewags|t® improved safety [11,107,128]. Lower
speeds in general are associated with lower crash rates itima Yower impact in case of a collision. If
the environmental conditions or traffic conditions are sttt the posted maximum speeds are considered
to be unsafe, the speed limit can be lowered to match the giwaditions. Dynamic speed limits may
function as a warning that an incident or jam is present ahead

In the literature, basically two approaches to dynamic dpieeit control can be found for flow im-
provement. The first emphasizes the homogenization effe¢89[70,110,122], whereas the second is more
focused on preventing traffic breakdown by reducing the flgpunieans of speed limits [24,43, 72].

e The basic idea of homogenization is that speed limits canaedhe speed (and/or density) dif-
ferences, by which a more stable (and safer) flow can be ahie¥he homogenizing approach
typically uses speed limits that are above the critical dpge., the speed that corresponds to the
maximal flow). So, these speed limits do not limit the traffam] but only slightly reduce the av-
erage speed (and slightly increase the density). In thdusyapproach can increase the time to
breakdown slightly [110], but it cannot suppress or resslveck waves. An extended overview of
speed limit systems that aim at reducing speed differeniadiven by Wilkie [128].

e The traffic breakdown prevention approach focuses more evepting too high densities, and also
allows speed limits that are lower than the critical speeatdter to limit the inflow to these areas. By
resolving the high-density areas (bottlenecks) higher ttaw be achieved in contrast to the homog-
enization approach [43].

Currently, the main purpose of most of the existing prattigaamic speed limit systems is to increase
safety by lowering the speed limits in potentially dangersituations, such as upstream of congested areas
or during adverse weather conditions [11, 107, 128]. Altfiothese systems primarily aim at safety, in
general they also have a positive effect on the flow, due tdabiethat preventing accidents results in a
higher flow. There are also some examples of practical systeat are designed with the purpose of flow
improvement [102, 105] — with varying success. These praksiystems in general use a switching scheme
based on traffic conditions, weather conditions, visipitibnditions, or pavement conditions [101, 129].

Several control methodologies are used in the literatufntba control law for speed control, such
as multi-layer control [75], sliding-mode control [72], cdwoptimal control [1]. In [32] optimal control
is approximated by a neural network in a rolling horizon feavork. Other authors use (or simplify their
control law to) a control logic where the switching betweles $peed limit values is based on traffic volume,
speed, or density [39,70,72,110,122]. We refer the intedaeader for further reading about the various
control methodologies to the references at the end of ttdptein.

Some authors recognize the importance of anticipationarsgieed control scheme. A pseudo-antici-
pative scheme is used in [72] by switching between speedslibdised on the density of the neighboring
downstream segment. Explicit predictions are used in [[LlaB# this is the only approach that results in a
significant flow improvement. The heuristic algorithm preed in [128] also contains anticipation to shock
waves being formed.

Another concept of dynamic speed limits is their use in coration with ramp metering to prevent a
breakdown on the freeway at the on-ramp and to prevent thp tpraue to propagate back to the urban
network [42] by taking over the flow limitation function frothe ramp metering when the ramp queue has
reached its limit.

Field tests and simulation studies

Field data evaluations show that in general homogenizagisults in a more stable and safer traffic flow, but
no significant improvement of traffic volume is expected na&asured [105,122]. Since the introduction
of speed control on the M25 in the United Kingdom an increddlow of 1.5 % per year is reported for the
morning peaks, but no improvement is found in the afternaeakp [102].
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Figure 9: A route guidance system in The Netherlands shotwiffic jams lengths on alternative routes to
Schiphol Airport. (Photo courtesy of Peek Traffic B.V.)

The effect of dynamic speed limits on traffic behavior stigrdgpends on whether the speed limits
are enforced or not, and on whether the speed limits are@gvis mandatory, which also determines the
suitability for a certain application. Most applicatioriented studies [111, 122, 128] enforce speed limits,
except for [70]. Enforcement is usually accepted by theedsf the speed limit system leads to a more
stable traffic flow.

4.3 Route guidance
Principle of operation

Route guidance systems assist drivers in choosing thetie lien alternative routes exist to their destina-
tion. The systems typically display traffic information bBuas congestion length, the delay on the alternative
routes, or the travel time to the next common point on theradtive routes (an example is given in Fig-
ure 9). Recently, in-car navigation system manufacturex® lshown interest in providing route advice
taking the traffic jams and travel times on the alternativeées into account.

In route guidance the notiolsystem optimuranduser equilibrium(or user optimumplay an important
role. The system optimum is achieved when the vehicles adedwsuch that the total costs of all drivers
(typically the total travel time) is minimized. HowevergtBystem optimum does not necessarily minimize
the travel time (or some generalized cost measure) for ewmtividual driver. So, some drivers may select
another route that has a shorter individual travel time @lowost). The traffic network is in user equilibrium
when on each utilized route the cost are equal, and on rchdésate not utilized the cost is higher than that
on the utilized routes. This means that no driver has theilpitigsto find another route that reduces his or
her individual cost.

The cost function is typically defined as the travel timeheitas thepredicted travel timeor as the
instantaneous travel timeThe predicted travel time is the time that the driver wilpekence when he or
she drives along the given route, while the instantaneawglttime is the travel time determined based on
the current speeds on the route. In a dynamic setting thalspeé¢he network may change during a trip,
and consequently the instantaneous travel time may beetifférom the predicted travel time.

Papageorgiou and Messmer [98] have developed a theoritoadwork for route guidance in traffic
networks. Three different traffic control problems are fatated: an optimal control problem to achieve
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the system optimum (minimize the total time that is spenhmnetwork), an optimal control problem to
achieve a user optimum (equalize travel times), and a feddizantrol problem to achieve a user optimum
(equalize travel times). The resulting control strategiesdemonstrated on a test network with six pairs of
alternative routes. The feedback control strategy is desith instantaneous travel times and results in a
user equilibrium for most alternative routes, and the tesyitotal time spent by the vehicles in the network
is very close to the system optimum.

Wanget al. [125] combine the advantages of a feedback approach (elagimple, robust, fast) and
predicted travel times. The resultipgedictive feedbackontroller is compared with optimal control and
with a feedback controller based on instantaneous traredsti When the disturbances are known the
simulation results show that the predictive feedback tesalnearly optimal splitting rates, and is clearly
superior to the feedback based on instantaneous travet.tibe robustness of the feedback approach
is shown for several cases: incorrectly predicted demanduapredictable) incident, and an incorrect
compliance rate.

Field tests and simulation studies

In several studies it is assumed that the turning rates caliréetly manipulated by route guidance mes-
sages [98, 125]. In the case of in-car systems it is plautfilaieby giving direct route advice to individual
drivers the splitting rates can be influenced sufficientlgwidver, in the case of route guidance by variable
message signs the displayed messages do not directly dstettme splitting rates: the drivers make their
own decisions. Therefore, empirical studies about theti@aof drivers to dynamic route information
messages, and the effectiveness of route guidance camenoseful information.

Kraanet al.[69] present an extensive evaluation of the impact on nétywerformance of variable mes-
sage signs on the freeway network around Amsterdam, TheeNathls. Several performance indicators
are compared before and after the installation of 14 nevallgimessage signs (of which 7 are used as inci-
dent management signs and 7 as dynamic route informatios)silhe performance indicators, such as the
total traveled distance, the total congestion length amdtan, and the instantaneous travel time delay are
compared for alternative routes and for most locations dldmuastatistically significant improvement is
found. The day-to-day standard deviation of these indisalecreased after the installation of the variable
message signs, which indicates that the travel times haantemore reliable.

Another field test is reported by Diaka&t al. [33] in which a combination of route guidance, ramp
metering, and urban traffic control is applied to the M8 awrinetwork in Glasgow, UK. The applied
control methodology resulted in an increased network tijinput and in a reduced average travel time.

4.4 Other control measures

Besides ramp metering, dynamic speed limits, and routeagaig, there are also other dynamic traffic
control measures that can potentially improve the traffiiqgpenance. In this section we describe a selection
of such measures, and describe in which situations theysafealycf. [85]).

e Peak lanes.During peak hours the hard shoulder lane of a freeway (whsictormally used only by
vehicles in emergency) is opened for traffic. Whether the isrmpened or closed is communicated
by variable message signs showing a green arrow or a red €dasgo the extra lane the capacity of
the road is increased, which could prevent congestion. aeldantage of using the emergency lane
as a normal lane is that the safety may be reduced. For ttésmeaften extra conditions ensuring
safety are required, such as the creation of emergencyagfadjacent to the hard shoulder lane, or
the requirement that emergency services should be ableg¢ssithe incident location over or through
the guard rail. Furthermore, there may be CCTV surveillaorceehicle patrols to detect incidents
early. This traffic control measure is useful where the aolti#l capacity prevents congestion and the
downstream infrastructure can accommodate the increesiid flow.
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e Dedicated lanes.During congestion the shoulder lane may be opened for dediceehicles, such
as public transport, freight transport, or high occuparelyicles (with, i.e., more than 2 passengers).
This reduces the hindrance that congestion causes to tebgdes. Furthermore, public transport
can be made more reliable and thus more attractive by thisunea A dedicated freight transport
lane increases the stability and homogeneity of the trafie. fl

o Tidal flow. Tidal flow allows to use a freeway lane in the one or the othexation. Depending on
the direction of the highest traffic demand the directiongdration is determined. This direction is
communicated by a variable message sign showing a red ar@sgreen arrow. This traffic control
measure is useful when the traffic demand is typically nat mgooth directions simultaneously.

e The “keep your lane” directive. When the “keep your lane” directive is displayed, the drivemes
not allowed (not recommended) to change lanes. This resuless disturbances in the freeway
traffic flow, which may prevent congestion. This traffic cahtmeasure is useful when the traffic
flow is nearly unstable (close to the critical density) and/ina a good alternative to homogenizing
speed limits.

5 Network-oriented traffic control systems

The integration of traffic control measures in freeway neksds essential in order to ensure that the
control actions taken at different locations in the netwainforce rather than counteract or even cancel
each other. While in the previous section individual traffinirol measures were discussed along with the
most prevalent local control strategies, this sectionieiyl considers the integration of several control
measures in a freeway network context.

Although the focus in this chapter is on automatic contretesns, it must be noted that in practice in
traffic control centers there is also often a human contraliéh “oversight” of the system as a safeguard
against problems with the system and in view of the compjeithe control problem.

In network-oriented traffic control two ingredients playiaerportant role:coordinationandprediction.
Since in a dense network the effect of a local control measargd also influence the traffic flows in
more distant parts of the network the control measures dhimutoordinated such that they serve the same
objectives. Taking into account the effects of control nuees on distant parts of the network often also
involves prediction, due to the fact that the effect of a oanheasure has a delay that is at least the travel
time between the two control measures in the downstreamstitire and at least the propagation time of
shock waves in the upstream direction. An advantage of absiystems that use explicit predictions is that
by anticipating on predictable future events the contrstem can als@reventproblems instead of only
reactingto them. However, it must be noted that while all networlented control approaches apply some
form of coordination, many approaches do not explicitly make of predictions.

Network-oriented traffic control has several advantagespared to local control since it ensures that
local traffic problems are solved with the aim of achievingraprovement on the network level. E.g., solv-
ing a local traffic jam only can have as consequence that thieles run faster into another (downstream)
jam, whereas still the same amount of vehicles have to pasiotiunstream bottleneck (with a given capac-
ity). In such a case, the average travel time on the netwoek {eill still be the same, regardless of whether
or not the jam is solved. However, a global approach would tato account both jams and, if possible,
solve both of them.

Furthermore, network-oriented control approaches cdizeithetwork-related historical information.
For example, if dynamic OD data is available, control on teémork level can take advantage of the
predictions of the flows in the network. Local controllers apt able to optimize the network performance
even if the dynamic OD data is available, because the effagbieccontrol actions on downstream areas is
not taken into account.

In the literature basically three approaches exist for dimating traffic control measures: model-based
optimal control methods, knowledge-based methods, antlodstthat use simple feedback or switching

18



logic, for which the parameters are optimized. In some aggites different methods are combined in a
hierarchical control structure. We discuss these appesaichthe following subsections.

5.1 Model-based control methods

Model-based traffic control techniques use a traffic flow nhdolepredicting the future behavior of the
traffic system based on

o the current traffic state,

o the expected traffic demand on the network level, possitldipding OD relationships, and external
influences, such as weather conditions,

o the planned traffic control measures.

Since the first two items cannot be influenced (except for dssipility that based on real-time congestion
information people cancel their planned trip, change thgadere time, or travel via another modality),
the future performance of the traffic system is optimizedddgcting an appropriate scenario for the traffic
control measures. Methods that ug#imal controlor model predictive contragxplicitly take the complex
nonlinear nature of traffic into account. E.g., they take mtcount the fact that the effect of ramp metering
on distant on-ramps will be delayed by the (time-varyingy#l time between the two on-ramps. In general,
the other existing methods (such as knowledge-based n&thodontrol parameter optimization) do not
explicitly take this kind of delay into account. Furtherrapother advantages of the model-based methods
are that traffic demand predictions can be utilized, comggan the ramp metering rate and the ramp
gueues can be included easily, and a user-supplied olgduatiction can be optimized.

Optimal control has been successfully applied in simutasitudies to integrated control of ramp me-
tering and freeway-to-freeway control [68], to route guida [48] and to integration of ramp metering and
route guidance [67,68]. In [67,68] the integrated contmofierformed better than route guidance or ramp
metering alone.

The model predictive control (MPC) approach is an extensibthe optimal control, which uses a
rolling horizon framework. This results in a closed-loopdgfiback) controller, which has the advantage that
it can handle demand prediction errors and disturbances @siincidents). MPC is computationally more
efficient than optimal control due to the shorter predicton control horizons, and it can be made adaptive
by updating the prediction model on-line.

MPC-based control has been applied in simulations to coatdd ramp metering [8], to integrated
control of ramp metering and dynamic speed limits [42], anthtegrated control of ramp metering and
route guidance [58,121]. An illustration of the ability ofC-based traffic control to deal with a model
mismatch was given in [9]. In [7], it was illustrated by siratibn of a simple proof-of-concept network
that MPC can be implemented to account for the rerouting\ehaf vehicles due to changing travel times
caused by applying ramp metering.

5.2 Knowledge-based methods

Knowledge-based traffic control methods typically desethe knowledge about the traffic system in com-
bination with the control system in terms that are comprshe® for humans. Given the current traffic
situation the knowledge-based system generates a so{atatrol measure) via reasoning mechanisms. A
typical motivation for these systems is to help traffic cohttienter operators to find good (not necessarily
the best) combinations of control measures. The operatians suffer from cognitive overload by the large
number of possible actions (control measures) or by timssore in case of incidents. The possibility for
the operators to track the reasoning path of the knowledgedsystem makes these systems attractive and
more convincing.
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An example of a knowledge-based system is the TRYS syste{267], which uses knowledge about
the physical structure of the network, the typical traffiofdems, and about effects of the available control
measures. The TRYS system has been installed in trafficadar@nters in Madrid and Barcelona, Spain.

Another knowledge-based system is the freeway incidentgement system [37] developed in Mas-
sachusetts, which assists in the management of non-ratumegestion. The system contains a knowledge
base and a reasoning mechanism to guide the traffic opethtotgyh the appropriate questions to manage
incidents. Besides incident detection and verificatiorsifstem assists in notifying the necessary agencies
(e.g., ambulance, clean-up forces, towing company) angjatyang the appropriate diversion measures.
The potential benefits (reduced travel times by appropdatersion) are illustrated by a case study on
the Massachusetts Turnpike. The knowledge-based expstemsycalled freeway real-time expert-system
demonstration [104, 131] has similar functionalities asdllustrated by applying it to a section of the
Riverside Freeway (SR-91) in Orange County, California.

5.3 Control parameter optimization methods

Allessandri and Di Febbraro [1] follow another approachelatively simple control law is used for speed
limit control and ramp metering, and the parameters of theroblaw are found by simulating a large
number of scenarios and optimizing the average performahtdl] a dynamic speed limit switching
scheme is developed. The speed limits switch between ajppatedy 70 km/h and 90 km/h, and the
switching is based on the density of the segment to be cdéedrahd two thresholds (to switch up and to
switch down). The switching scheme uses a hysteresis loppeteent too frequent switching. Optimizing
the thresholds for several objectives resulted in a sligtiteiase of the average throughput, a decrease of
sum of squared densities — which can be considered as a mazEsohomogeneity (since a non-uniform
distribution of vehicles over a freeway stretch results mgher sum of squared densities), — and a small
decrease of the total time spent by the vehicles in the n&twor

5.4 Hierarchical control

The increasing number of traffic control measures that nede tcontrolled in a network-control context,
as well as their interactions, drastically increases theprdational complexity of computing the optimal
control signals. Hierarchical control was introduced bynscauthors in order to tackle this problem [23,
66, 89]. In hierarchical control the controlled processastifioned in several subprocesses, and the control
task is performed by a high-level controller and several-level controllers. The high-level controller
determines centrally the set-points or trajectories gréng the desired behavior of the subprocesses. The
low-level controllers are used to steer the subprocessesding to the set-points or trajectories supplied
by the high-level controller. Usually, the high-level caniter operates at a slower time scale than the low-
level controllers. Hierarchical systems do not only enalglerdination of control for large networks, but
they also provide high reliability and robustness [51].

6 Future directions

Although there is a large interest in developing freewaffitra&ontrol systems, there is by ho means a
consensus about the most suitable approaches or methodsof@me reasons is that traffic phenomena
such as traffic breakdown and jam resolution are not peyfecitierstood [61] and different views lead to
different approaches. In addition, technological develepts such as advanced sensor technologies and
intelligent vehicles open new possibilities that enablesguire new control approaches.
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6.1 Advanced sensor technologies

Given the complexity of traffic state estimation, traffic dexd estimation, and the collection of routing
information based on conventional traffic measurement, d&ta data collection methods are being inves-
tigated.

Instead of registering vehicles at certain locations ubagiware on the freeway network, floating car
data can be collected. The collection of floating car data&re/individual vehicles are tracked during their
journey through the network, provides valuable route ohaicd traffic demand information. The evolution
in mobile computing and in mobile communication has enathedncorporation of these technologies in
the field of traffic data collection, allowing more detailewianore cost-effective data collection. In contrast
to the traditional data collection methods that were disedsn Section 2.1, this section deals with two data
collection methodologies that are enabled by mobile comguwnd communication.

Cell phone service providers collect data regarding the b&ation each cell phone connects to and the
time instant the connection is initiated. Since cell phaegsilarly connect to their current base station and
since the location of these base stations is known, infoaomatbout the journey of the cell phone can be
extracted from the service provider's database. By manigoa large number of cell phones, and more in
particular their hand-off processes when hopping from caeelstation to the next, an impression of the
traffic speeds and the travel times can be obtained [109].

The global positioning system (GPS) is well-suited forkiag probe vehicles through space and time in
order to obtain route information and travel times [15, 1Mjth the further miniaturization of electronics,
the processing power available in mainstream navigatiots @md mobile data communication facilities
(e.g., GPRS) the cost of instrumenting fleets of probe vehidecreases. E.g., fleets of taxis, buses, and
trucks can be used as probe vehicles as they are often reagilgped with GPS and data communication
technology. When dealing with probe vehicles, care must kentéao ensure that the number of probe
vehicles is large enough in order to be able to accuratebraene the traffic state [57].

Although the technologies presented above are readilyadlaiand have been used in the past, their
structural deployment as a source for traffic measurementdyhamic traffic control systems still needs
to break through. Some issues that may determine whethéinfiozar data becomes a viable option for
large-scale data collection are the accuracy of the datardat, privacy concerns related to registering the
whereabouts of individuals, operational communicatioth@mputation costs, and standardized mobile or
in-vehicle availability of communication and GPS functdity.

6.2 Intelligent vehicles and traffic control

We now discuss recent and future developments in connewtitbnintelligent vehicles that can further
improve the performance of traffic management and contistesys by offering better and more accurate
ways to collect traffic data and to apply traffic control measu

Advanced Driver Assistance Systems

The increasing demand for safer passenger cars has stadiet development of advanced driver assis-
tance systems (ADAS). An ADAS is a control system that uses@mment sensors to improve comfort and
traffic safety by assisting the driver. Some examples of ARA&Scruise control, forward collision warning,
lane departure warning, parking systems, and pre-cras@rsggor belt-pretensioning [10]. Although traf-
fic management is not the primary goal of ADAS, they can cbuts to a better traffic performance [120],
either in a more passive way by avoiding incidents and byignog smoother traffic flows, or in an active
way by coordination and communication with neighboringiekts and roadside infrastructure.

The increasing market penetration and use of ADAS and of athear navigation, telecommunication,
and information systems offer an excellent opportunitynplement a next level of traffic control and
management, which shifts away from the road-side trafficagament toward a vehicle-oriented traffic
management. In this context both inter-vehicle managem@hroad-side/vehicle traffic management and
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interaction can be considered. The goal is to use the addltimeasures and control handles offered
by intelligent vehicles and to develop control and managemmeethods to substantially improve traffic
performance in terms of safety, throughput, reliabilityyieonment, and robustness.

Some examples of new traffic control measures that are magihpe by intelligent vehicles are coop-
erative adaptive cruise control [119] (allowing to contirtiervehicle distances), intelligent speed adapta-
tion [18] (allowing to better and more dynamically contrehicle speeds), and route guidance [83] (where
the traffic control centers could on the one hand get datatgidanned routes and destinations, and on the
other hand also send real-time information and control tiathe on-board route planners, e.g., to warn
about current and predicted congestion and possibly alspread the traffic flows more evenly over the
network).

These individual ADAS-based traffic control measures ctnaldntegrated with roadside traffic control
measures such as ramp metering, traffic signals, lanesrelgsshoulder lane openings, etc. The actual
control strategy could then also make use of a model-basgdotapproach such as MPC.

Cooperative vehicle-infrastructure systems

The new intelligent-vehicle technologies allow commuti@maand coordination between vehicles and the
roadside infrastructure and among vehicles themselveis réhults in cooperative vehicle-infrastructure
systems, which can also be seen as a first step towards futlynated highway systems, which will be
discussed below. CVIS (Cooperative Vehicle-InfrastrietBystems) [53] is a European research project
that aims to design, develop, and test technologies thaw albmmunication between the cars and with
the roadside infrastructure, which improves road safetyefficiency, and reduces environmental impact.
This project allows drivers to influence the traffic contrggtem directly and also to get information about
the quickest route to their destination, speed limits onrttagl, as well as warning messages via wireless
technologies.

Automated Highway Systems

ADAS and cooperative vehicle-infrastructure systems camde extended several steps further towards
complete automation. Indeed, one approach to augment tbegput on highways is to implement a
fully automated system called Automated Highway System$brr Intelligent Vehicle/Highway System
(IVHS) [41,123], in which cars travel on the highway in plats with small distances (e.g., 2 m) between
vehicles within the platoon, and much larger distances,(8@-60 m) between different platoons. Due
to the very short intra-platoon distances this approachireg automated distance keeping since human
drivers cannot react fast enough to guarantee adequatg. satein AHS every vehicle contains an auto-
mated system that can take over the driver’s responsasiliti steering, braking, and throttle control. Due
to the short spacing between the vehicles within the platotire throughput of the highway can increase,
allowing it to carry as much as twice or three times as manyclehas in the present situation. The other
major advantages of the platooning system are increasety safd fuel efficiency. Safety is increased by
the automation and close coordination between the vehiales is enhanced by the small relative speed
between the cars in the platoon. Because the cars in theoplatavel together at the same speed, a small
distance apart, even high accelerations and decelerationst cause a severe collision between the cars
(due to the small relative speeds). The short spacing betiteevehicles also produces a significant re-
duction in aerodynamic drag for the vehicles, which leadefarovements in fuel economy and emissions
reductions.

Automated platooning has been investigated very thorgugtihin the PATH program [55, 106]. Re-
lated programs are the Japanese Dolphin framework [118itenéduto21 Collaborative Driving System
framework [52, 54].

Although certain authors argue that only full automation aahieve significant capacity increases on
highways and thus reduce the occurrences of traffic cormgekitP3], AHS do not appear to be feasible on
the short term. The AHS approach requires major investrteriie made by both the traffic authority and
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the constructors and owners of the vehicles. Since few idesisre left to the driver and since the AHS
assumes almost complete control over the vehicles, whigk dt high speeds and at short distances from
each other, a strong psychological resistance to thisdredfingestion policy is to be expected. Another
important question is how the transition of the current high system to an AHS-based system should
occur, and — once it has been installed — what has to be dohevefiticles that are not yet equipped for
AHS. So before such systems can be implemented, many fihdegialative, political and organizational
issues still have to be resolved [35].

7 Conclusion

In this chapter we have presented an overview of freewafidredntrol theory and practice. In this con-
text we have discussed traffic measurements and estimaiidimidual traffic control measures, and the
approaches behind them that relate the control signalsetgitien traffic situation. The trend of the ever-
increasing traffic demands and the appearance of new cdetiiohologies have led to the new field of
network-oriented traffic control systems. Although theagdbeen many interesting publications about the
theory and practice of integrated traffic control, sevehallenges remain, such as the integration of traffic
state estimation and dynamic OD information in the contpgraaches.

The lively research in freeway traffic control shows thas field is still practically relevant and theoreti-
cally challenging. Facing these challenges can be expéxtedd to new freeway traffic control approaches
in theory and practice resulting in higher freeway perfang@in terms of efficiency, reliability, safety and
environmental effects. Furthermore, in the future the tigraents in the field of in-car systems and ad-
vanced sensor technologies are expected to enable new treffiagement approaches that may measure
and control traffic in more detail and with higher performanc
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Further reading

We refer the interested reader to the following referenndké various fields that have been discussed in
this chapter:

e Control: general introduction [4], optimal control [74], model pigtile control [16, 80], nonlinear
control [108],

o Traffic flow modeling: general overviews [49, 50], cell transmission model [27grier’s three-
phase theory [61], microscopic simulation models [2],wall automata [81],

e Ramp metering: overviews of ramp metering strategies [19, 96], field test aimulation stud-
ies [40],

e Speed limit systems:overviews of practical speed limit systems [107, 128],
¢ Intelligent vehicles: overview [10],

e Sensor technologiesoverviews [30, 31, 64, 65].
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