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ABSTRACT 
Musical signals are highly structured. Untrained listeners can 
capture some particular musical events from audio signals. 
Uncovering this structure and detecting musical events will 
benefit musical content analysis. This is known to be an 
unsolved problem. In this paper, an unsupervised learning 
approach is proposed to automatically infer some structure of 
music from the segments generated by beat and onset analysis. 
A top-down clustering procedure is applied to group these 
segments into musical events with the similar characteristics. 
A Bayesian information criterion is then used to regularize 
the complexity of the model structure. Experimental results 
show that this unsupervised learning approach can effectively 
group similar segments together and automatically determine 
the number of such musical events in a given music piece. 

1. INTRODUCTION 
Musical content analysis is an emerging research with many 
potential applications, such as music information retrieval, 
indexing and organization of digital audio library, and music 
summarization [2, 7, 12]. To effectively represent musical 
signals, we must exploit the underlying music structures. 
Even the untrained listeners can capture some of these 
structures and identify some musical events. However, the 
perceptual structures in music signals are not readily available. 
Automatically uncovering of these structures from only the 
acoustical signal is a non-trivial task without any expert 
knowledge of musicology. It is known that the spectrogram of 
a musical signal displays strong structures, which can often 
be characterized by a set of musical events. From our 
experience in spectrogram reading and speech analysis, such 
outstanding events (or landmarks) often occur at places with 
significant changes in spectral and temporal characteristics. It 
is therefore possible to find musical structures using the 
data-driven approaches. 

In music analysis, the signal is generally divided into a 
frame sequence with a fixed-length frame window (e.g. 
Hamming), from which spectral (e.g. mel-frequency cepstrum, 
pitch) and temporal (e.g. energy, zero-crossing) features are 
extracted. Various methods have been proposed to segment 
and group the audio frames into the segments [2, 3, 4, 7, 11, 
12]. These techniques map the feature sequence into its 
similarity representation by calculating the distance between 
any pair of the frames, and then locating the local segment 
boundary position using some heuristic methods [2, 4, 7, 12]. 
In [4], the segmentation is accomplished by calculating a 
diagonal band of a similarity matrix with a width of a 
checkerboard kernel. Dynamic programming (DP) algorithms 
can then be applied to segmentation with pre-defined costs of 
insertion and deletion [7, 12]. These frame-based methods 
need to compute the similarity of all frame pairs and it is not 
efficient for real-time analysis of music excerpts that could 
last for a few minutes. To address this problem, the fix-length 
window based similarity is used [2, 4, 12], where each 
window contains a few consecutive frames. The size of the 

window, which is often constant for a given piece of music, 
determines the granularity or scale of the analysis. To merge 
similar segments, unsupervised clustering methods, such as 
heuristic clustering [12], k-means clustering [2, 4], and hidden 
Markov models [2, 11], are used. 

In the above methods there are still some issues not 
handled satisfactorily. The frame-based segmentation is costly 
in computation and many pseudo spurs occur. To remove the 
effects of the pseudo spurs in segmentation, complex 
heuristics (e.g. threshold setting, rules) are used. But these 
algorithms strongly depend on the particular data and they are 
often not robust to diverse musical structures. Although the 
similarity matrix can be calculated on a block basis, its size 
cannot be determined flexibly according to the particular 
characteristics (e.g. tempo and genre) of a piece of music. For 
example, the window should be wide for slow tempo and 
rhythm while a narrow window may be better for music with 
fast tempo. Moreover, the analysis block is often subjectively 
determined without considering any musical knowledge. The 
number of clusters to group similar segments cannot be 
automatically determined according to the signal complexity. 

In this paper we propose an unsupervised, data-driven 
approach to musical event detection. Given an acoustical 
realization of a piece of music, the musical structure is 
uncovered in three steps, namely: (1) dividing a long music 
excerpt into smaller segments using beat and onset detection; 
(2) grouping segments with similar spectral and temporal 
characteristics into musical event clusters using an 
unsupervised top-down clustering technique; and (3) 
determining the number of musical events using model 
selection with a Bayesian information criterion. 

Our experimental analysis shows that the proposed 
unsupervised learning approach is effective and efficient in 
grouping similar segments together and automatically 
determining the number of such musical events in a given 
music piece. The proposed algorithm can also be used as a 
component of a music information retrieval system in which 
the events detected by the algorithm could form the basis for 
indexing and retrieving large collection of music documents. 

2. MUSICAL EVENT SEGMENTATION  
In music perception, a musical event is often defined by a set 
of coherent characteristics with some striking properties (e.g. 
the simultaneous roll of the drum, clash of the cymbal, and 
brief pulse of noise from the woodwinds) [1]. To segment the 
musical signal into these coherent events, we first apply beat 
and onset detection algorithms to infer some low-level music 
structures. For drum-less music we do not expect to 
accurately detect beat onset all the time, but try to detect the 
places with significant changes in the spectrum [6, 10]. Our 
experience in spectrogram reading tells us that the places of 
onset for drum music show obvious spectral differences when 
comparing with its previous and following contexts. For 
drum-less music we expect we can also do it. Using 
segmentation based on beat and onset detection, further 
clustering technique can be applied to infer more high-level 
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structure than the beat-based level. Figure 1 show an 
amplitude envelope and spectrogram of a piece of music. This 
music shows clear structure and two distinct musical events 
can be observed. 

  

Figure 1 The amplitude envelope and its corresponding 
spectrogram (music “Pop Superstition” [9,10]) 

Many algorithms on beat and onset detection have been 
proposed up to now. Here we adopt the maximum a posteriori 
(MAP) based adaptive learning approach [10]. There are 
many advantages. First, it can propagate the learned 
knowledge on the beat from the previous excerpt of music to 
the following ones. This property makes the estimated beat 
and onset more robust, more consistent and less variant. 
Second, it is a flexible statistical framework that can easily 
fuse different knowledge sources (e.g. temporal or spectral 
features) to improve beat and onset detection. Third, the 
estimated posterior probability of the tempo can serve as a 
confidence measure for further processing. 

2.1 Adaptive Beat Detection 
The beat of a piece of music is a sequence of equally spaced 
phenomenal impulses, which defines a tempo for the music [6, 
10]. Given a piece of music, a feature sequence can be 
extracted [6,10]. Let ( )Tt oooX vLvLv ,,,,1=  denote a 
sequence of D-dimension feature vectors, and T be its length. 
A temporal window is applied to analyze the beat. In general 
its size should cover a few periods of the slowest tempo of 
interest. Assume that the window (or block) size is L, and 
there are M blocks in the feature sequence, then X can be 
re-denoted as ( )Mt OOOX ,,,,1 LL= , where ( )t

L
tt

t oooO ,,, 21 L= . 
If only the tempos in a range of [ ]ba ττ ,  are considered, then 
tempo induction can be formulated as 
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tempo sequence, and ( )***
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* ,,,, Mt ττττ LL=  the optimal one. 
To simplify the optimization problem in Eq. (1), we 

assume that the optimal tempo *
tτ is estimated only from the 

block tO  but with a conditional probability, i.e. ( )
1−ttP ττ , 

which is derived from its previous block. With this 
assumptions, Eq. (1) can be simplified as 
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Here η  is a constant weight from prior knowledge. The first 
term in the right hand is the likelihood of the sub-sequence

tO . 
And the second is our model about the tempo for the 
block,

tO , given the known previous tempo. 
The first term can be easily estimated from the observed 

data if a linear regression model is assumed. Given a block of 
sub-sequence evidence,

tO , a linear regression model (e.g. 
[10]) is defined as 
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where ( )Tt
D

ttt θθθ ,,, 21 L=Θ is a prediction error vector, and 
tA  is a transformation matrix. Eq. (3) implies that the k-th 

observation is predicted by the ( )tk τ−  previous observations 

with a prediction error tΘ . In this paper, a diagonal 
transformation matrix is chosen, and the prediction error 
vector variable, tΘ , is assumed to be a multivariate Gaussian 
distribution with a zero mean and a diagonal covariance, tΣ .  

With the above assumptions, the probability distribution 
of the observed feature, t

kov , is also a Gaussian distribution 

with a mean equal to t
k

t
t

oA τ−⋅ v and a covariance, tΣ , i.e. 
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So the likelihood of the evidence,
tO , in Eq. (2) can be 

derived from Eq. (4) as  
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Because the likelihood defined in Eq. (5) is a function of a 
tempo, the second term in Eq.(2) can be approximated by a 
logistic function, i.e. given a block 1−tO , the conditional 

probability, ( )
1−ttP ττ , can be defined as 
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where λ is a scale coefficient and β is a bias. The 
normalization is performed to make ( )1 1

t
t tP

τ
τ τ − =∑ .  

With the above definitions, the optimal tempo, 
( )***

1
* ,,,, Mt ττττ LL= , can be estimated from the feature 

sequence according to Eq. (2) using the EM algorithm based 
on the MAP criterion. 

2.2 Beat Onset Decision 
After the tempo or beat period is determined with Eq.(2), the 
beat onset can be decided. Assume that the detected beat 
period is *

tτ for a sub-sequence ( )t
L

tt
t oooO ,,, 21 L= , and its 

corresponding energy envelope is ( )t
L
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the sub-sequence is equally divided by its beat period. 
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The beat onset is defined as the time with the maximal 
energy. To extract the beat onset in each beat period, the 
averaging beat onset, tno , is first calculated from the 
averaging energy envelope according to the following: 
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With the assumption that the onset in each beat period 
will have a bias (here maximum bias is set to 10% of the beat 
period) centered at the average onset, the real onset is 
obtained by searching the time with the maximal energy 
during the above constrained range. It is determined as 
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3.  MUSICAL EVENT DETECTION 
After a musical signal is segmented with the beat onset, its 
beat-level structure is obtained. This segmentation has some 
perceptual meaning, especially for percussion music. Each 
segment can be treated as an audio shot, just like the shot in 
video analysis, because the segment boundaries occur at 
places with significant spectral changes. Comparing to the 
fixed-length window block [2, 4, 7], its granularity is varying 
according to its tempo. Due to the highly structured nature of 
music, many repetitive measures are often observed. To group 
these segments into some meaningful musical events without 
using any knowledge, unsupervised clustering is applied.  

3.1 Top-down Clustering 
Assume that the detected onset boundaries divide the feature 
sequence, ( )ToooX vLvv ,,, 21= , into N segments. Denoted the 

onset sequence as ( )Ni ssssS ,,,,, 10 LL= , where is is the 
onset place measured as the number of frames, and the range 
of the i -th segment is denoted as [ ]ii ss ,1−

. Our task is to 
group the N segments into musical event clusters based on a 
statistical representation of each segment and a chosen 
similarity metric. 

For each segment, there are some frame-based features 
(e.g. MFCC, energy, etc.). To characterize each segment some 
frame-based low-level statistical features are extracted. In this 
paper the mean and covariance of the frame-based features 
are summarized for each segment. For the i -th segment its 
mean and covariance are denoted as im and iΣ , respectively. 
Of course, other temporal features (e.g. energy envelope) can 
also be used. Now a segment is described by its mean and 
covariance without concerning its frame-based features when 
computing the similarity between the segments. Furthermore, 
we assume that the frame-based features within a segment are 
characterized by a single Gaussian distribution. 

With the above representations, the similarity measure 
can be calculated between any pair of the segments. Here we 
use the popular Kullback-Leibler (KL) distance metric, to 
measure the distance between any two Gaussian distributions 
[4, 8]. The KL distance between the i -th segment and 
the j -th segment is defined as 
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To reduce computation in Eq. (9), a diagonal covariance 

matrix is adopted. Given the N segments and the chosen KL 
distance metric, a top-down k-means clustering procedure, 
described as follows, is used to group these segments: 

1. Initialization 
a) Calculate the global mean and covariance from the 

feature sequence ( )ToooX vLvv ,,, 21= .  
b) Set the total cluster number, numC=1. 
c) Set the split cluster index splitId=1. 

2. Set numC=numC+1. 
3. Split the cluster splitId into 2 clusters. 
4. Use k-means to estimate the mean and covariance of the 

numC clusters by minimizing the summarized 
intra-cluster similarities measured by the KL distance. 

5. Assign splitId to the cluster with maximal intra-cluster 
distance as the next to be split. If its sample size is less 
than a predefined threshold, then assign splitId to the 

cluster with the maximal sample size.  
6. Check if numC reaches the maximum number of 

clusters allowed. If so, then exit. Else, go to step 2.  

3.2 Model Selection 
Given any piece of music, it is not easy to know about how 
many musical events are sufficient to describe it. Significant 
differences of the musical structure are often observed in 
diverse music pieces. Some music excerpts are simple, which 
maybe played by a single instrument with repeats of a few 
similar events, while others are complex where many 
instruments play simultaneously with diverse chords and 
rhythms. This implies that the number of the musical events 
should partially depend on the complexity of music. For 
music with a simple structure, only a few clusters may be 
sufficient, while much more clusters are needed for modeling 
music with the complex structure.  

In general, increasing the number of clusters can improve 
the fit of the data in a piece of music. But the risk of 
over-fitting will also increase at the same time. To balance 
these two facets, we adopt a Bayesian information criterion 
(BIC) [8] to choose an optimal model from a set of models, 
each of which is obtained with the top-down clustering 
procedure introduced earlier. For any piece of music, we 
assume that at least minC clusters are needed to represent it 
and the maximal number of the clusters is set to maxC. The 
set of models, each corresponding to a cluster set, is 

( ) [ ]{ }CCnn max,min∈=Φ φ . And ( ) ( ) ( ) [ ]{ }niininn ,1,,, ∈Σ= µφ  

is a candidate model of n clusters with n means, ( )in,µ , and 
n covariance matrices, ( )in,Σ . BIC is used to score each of 
the models, ( )nφ , using a penalized function defined as: 

( ) ( ) )(
2
1

nQnLnBIC ⋅−−= κ  ,        (10) 

where the first term, ( )nL , in the right hand side of Eq. (10), 
is the summary of all intra-cluster similarities (here the goal 
in clustering is to minimize the similarity not to maximize the 
likelihood), κ is a penalty weight, and Q(n) is a measure of 
the complexity of the model. Because a diagonal covariance 
is used in our case, Q(n)=2n*D*log(N). The optimal 
model, ( )*nφ , is obtained by searching the set of all possible 
models, Φ , to find a model with the maximal BIC score, 

( )
( )

( )nBICn
n Φ∈

=
φ

φ max*   .      (11) 

4. EXPERIMENTAL ANALYSIS 
To analyze our proposed structure learning approach, a 
database with 807 pieces of music, with an average length 
240 seconds, is first built. All of them are with the different 
formats (e.g. MP3, RAM, RM, WMA, etc) and encoding rates, 
collected from the web. Many genres (e.g. western popular 
music, Chinese classical music, songs by various singers, etc) 
are covered. All pieces of music are converted to the standard 
wav format with a 16-bit resolution and 8-kHz sampling rate. 
The 12-dimension MFCC vector is first extracted from a 
32ms frame with 16ms overlap. Hamming window and 24 
Mel-filter banks are used [5]. Then the first and second order 
differences of MFCC are calculated to form a 36-dimension 
feature vector. The normalized energy is also calculated. 

In the beat and onset detection algorithm, η  is set to 0.5, 
the interested tempo is between 60bpm and 250bpm, and the 
length of the block to analyze the tempo is 5 seconds. In the 
top-down clustering algorithm, the desired number of the 



clusters ranges from 2 to 20. And the penalty weight in Eq. 
(10) is equal to 1.0. 

4.1 Musical Event Detection Analysis 
In our music dataset with 807 pieces of music, the proposed 
algorithm detected a total of 12164 musical events with an 
average of about 15 musical events and a variance of  about 
19 for a music piece. This implies that there is a great 
difference in music structure in the dataset. In this following 
we characterize the musical events detected. 

First the detected onsets and musical events are displayed 
in Figure 2 for a piece of music (~20 sec) [9] with a simple 
structure, together with its corresponding spectrogram. The 
vertical lines label the onset position and the characters (e.g. 
“A” or “B”) represent the distinctive musical events. This 
music has a Motown/Soul style, where the first 10-sec 
segment only has a drum and the next 10-sec segment has a 
drum and an electronic instrument with a pitch. The detected 
tempo is 98 bpm. And two musical events (“A” and “B”) are 
found and segmented using our proposed algorithms. It 
matches well with human perception. This figure indicates 
that our algorithms work well for this simple music structure. 
Its beats, onsets, and musical events are correctly detected. 

 

Figure 2 Musical events grouping of beat onset 
segments and the spectrogram of music “pop 
superstition” (Vertical line: onset position, “A” or “B”: 
musical event) 

Figure 3 shows another 10-sec excerpt from an ~280-sec 
music selected from our dataset. It is a Chinese classical piece 
played by the urheen, a Chinese instrument. Because it has no 
drum beat and its rhythm varies slowly, many onset insertions 
were observed. However, the detected musical events seem 
still well behaved. For this piece, 15 events, each with a 
similar spectrum, were detected. 

 

Figure 3 Musical events grouping of beat onset 
segments and the spectrogram of music “a Chinese 
classical piece” (Vertical line: onset position, “A”, “B”, ..., 
musical events) 

4.2 Model Selection Analysis 
Now we study the relation between the BIC score and the 
number of the clusters. The above two pieces of music are 
still chosen as the examples and the corresponding curves are 
depicted in Figure 4, in which the left figure is for the “pop 
superstition” piece, and the right for the Chinese classical 
music excerpt. In general, the likelihood in the right hand side 
of Eq. (10) monotonously increases with increasing number 
of clusters. This property is changed after the penalty is added. 
From the right curve it clearly shows that the maximal BIC 

score is observed with 15 musical event clusters. 
 

  

Figure 4 BIC score vs. the number of event clusters Left: 
pop superstition, Right: Chinese classical music; X-axis: 
the number of the clusters, Y-axis: BIC score) 

5. CONCLUSION 
We propose an unsupervised learning approach to detecting 
and segmenting musical events from beat structures in music. 
The proposed algorithm combines two data-driven techniques, 
top-down k-means clustering and BIC-based model selection, 
to automatically detect musical structures that can well 
characterize music signals. Our results show that the detected 
musical events have some perceptual meaning, and match 
well with our experience in spectrogram reading. These 
musical events are efficient and compact representation of the 
musical signals and can be used to index and organize a large 
collection of music documents. They can also be used in 
many musical content related applications, such as digital 
music library, music summarization, and music identification.  
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