
392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

Reliability Analysis of Logic Circuits
Mihir R. Choudhury, Student Member, IEEE, and Kartik Mohanram, Member, IEEE

Abstract—Reliability of logic circuits is emerging as an impor-
tant concern in scaled electronic technologies. Reliability analysis
of logic circuits is computationally complex because of the expo-
nential number of inputs, combinations, and correlations in gate
failures. This paper presents three accurate and scalable algo-
rithms for reliability analysis of logic circuits. The first algorithm,
called observability-based reliability analysis, provides a closed-
form expression for reliability and is accurate when single gate
failures are dominant in a logic circuit. The second algorithm,
called single-pass reliability analysis, computes reliability in a
single topological walk through the logic circuit. It computes the
exact reliability for circuits without reconvergent fan-out, even
in the presence of multiple gate failures. The algorithm can also
handle circuits with reconvergent fan-out with high accuracy using
correlation coefficients as described in this paper. The third algo-
rithm, called maximum-k gate failure reliability analysis, allows
a constraint on the maximum number (k) of gates that can fail
simultaneously in a logic circuit. Simulation results for several
benchmark circuits demonstrate the accuracy, performance, and
potential applications of the proposed algorithms.

Index Terms—Gate failures, logic circuits, reliability analysis.

I. INTRODUCTION

I T IS WIDELY acknowledged that there will be a sharp
increase in manufacturing defect levels and transient fault

rates in future electronic technologies, e.g., [1]–[5]. Defects
and faults impact performance and limit the reliability of elec-
tronic systems. This has led to considerable interest in practical
techniques for reliability analysis that are accurate, robust, and
scalable with design complexity. Reliability analysis of logic
circuits refers to the problem of evaluating the effects of errors
due to noise at individual transistors, gates, or logic blocks on
the outputs of the circuit. The models for noise range from
highly specific decomposition of the sources, e.g., single-event
upsets, to highly abstract models that combine the effects of
different failure mechanisms.

Reliability analysis of logic circuits is computationally com-
plex because of the exponential number of inputs, combina-
tions, and correlations in gate failures. Standard techniques
for reliability analysis use fault injection and simulation in
a Monte Carlo framework. Although parallelizable, they are
still not efficient for use on large circuits. Analytical methods

Manuscript received April 10, 2008; revised July 23, 2008. Current version
published February 19, 2009. This research was supported in part by CAREER
Award CCF-0746850 from the National Science Foundation and in part by the
A. Richard Newton Graduate Scholarship. This paper was recommended by
Associate Editor N. K. Jha.

The authors are with the Department of Electrical and Computer Engi-
neering, Rice University, Houston, TX 77005 USA (e-mail: mihir@rice.edu;
kmram@rice.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2012530

for reliability analysis are applicable to very simple structures
such as two-input and three-input gates, and regular fabrics [6],
[7]. Although they can be applied to large multilevel circuits
with simplifying assumptions and compositional rules, there is
a significant loss in accuracy. Recent advances in reliability
analysis are based on probabilistic transfer matrices (PTMs)
[8], Bayesian networks [9], and Markov random fields [10],
[11]. However, all approaches require significant runtimes for
small benchmark circuits. In the PTM approach, this can be
attributed to the storage and manipulation of large algebraic
decision diagrams (ADDs) used to represent the probabilistic
behavior of the circuit. In the Bayesian network approach, the
large runtimes arise from large conditional probability tables
that support Bayesian network operations. The use of Markov
random fields becomes computationally intensive for arbitrary
multilevel logic circuits because it involves minimization of a
complex Gibbs distribution function with a large number of
variables. Many reliability analysis techniques have been pro-
posed in the context of soft errors [12], [13]. These techniques
predict soft error rate in circuits, accounting for electrical
masking, and latching-window masking in addition to logical
masking. Since these techniques are specific to soft errors, they
focus mainly on predicting single gate failure effects.

This paper presents three accurate and scalable algorithms
for reliability analysis of logic circuits. The first algorithm,
called observability-based reliability analysis, uses observabil-
ity metrics to quantify the impact of a gate failure on the output
of the circuit. The observability-based approach provides a
closed-form expression for circuit reliability as a function of
the failure probabilities and observabilities of the gates. The
closed-form expression is accurate when the probability of a
single gate failure is significantly higher than the probability of
multiple gate failures.

The second algorithm, called single-pass reliability analysis,
leverages insights into the effects of multiple gate failures
derived from observability-based reliability analysis. In this al-
gorithm, gates are topologically sorted and processed in a single
pass from the inputs to the outputs. Topological sorting ensures
that before a gate is processed, the effects of multiple gate fail-
ures in the transitive fan-in cone of the gate are computed and
stored at the inputs of the gate. Using the joint signal prob-
ability distribution of the gate’s inputs, the propagated error
probabilities from its transitive fan-in stored at its inputs, and
the failure probability of the gate, the cumulative effect of
failures are computed at the output of the gate. The single-
pass reliability analysis algorithm is provably exact for circuits
without reconvergent fan-out. Reconvergent fan-out introduces
correlations when error probabilities are combined at the point
of reconvergence, which is handled using correlation coeffi-
cients. The accuracy of the algorithm can be improved by using

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

CHOUDHURY AND MOHANRAM: RELIABILITY ANALYSIS OF LOGIC CIRCUITS 393

higher order correlation coefficients to capture the correlation
effects. However, the computational complexity increases as
the number of correlation coefficients increases. This paper
explores the tradeoff between accuracy and computational com-
plexity for 0, 4, and 16 correlation coefficients.

The above algorithms for reliability analysis use an indepen-
dent gate failure model, in which there is a nonzero probability
of a large number of gates failing simultaneously. However, in
practice, it is reasonable to expect an upper bound, k, on the
maximum number of gates that can fail simultaneously in the
logic circuit. Termed the maximum-k gate failure model,
the gate failures remain independent although the global con-
straint due to the upper bound k introduces correlation among
gate failures. The third algorithm, called maximum-k gate fail-
ure reliability analysis, is based on a technique that generates
a set of gate failures (of cardinality ≤ k) according to the
independent gate failure model. Given this set of gate failures,
single-pass reliability analysis is used to evaluate their effect
on the output(s) of the circuit. For a logic circuit with N gates,
generating samples of failed gates is challenging because the
size of the sample space is O(Nk) and all brute-force solutions
are computationally intensive. The sampling algorithm pro-
posed in this paper has a computational complexity of O(Nk2).
Simulation results for several benchmark circuits demonstrate
the accuracy, performance, and potential applications of the
proposed analysis algorithms to guide logic design for both
redundancy-free and redundancy-based reliability enhancement
in logic circuits [14]–[16].

This paper is an extended version of [17] and is organized as
follows. Section II provides a background in reliability analysis.
Section III describes the observability-based algorithm for reli-
ability analysis. Section IV describes the single-pass algorithm
for reliability analysis. Section V describes the maximum-k
gate failure model and an efficient algorithm for reliability
analysis. Section VI presents simulation results. Section VII is
a conclusion.

II. BACKGROUND

The classical model for errors due to noise in a logic circuit
was introduced by von Neumann in 1956 [6]. Noise at a gate is
modeled as a binary symmetric channel (BSC), with a crossover
probability ε. In other words, following the computation at the
gate, the BSC can cause the gate output to toggle symmetrically
(from 0 → 1 or 1 → 0) with the same probability of error, ε.
Each gate has an ε ∈ [0, 0.5] associated with it, where ε equals
zero for an error-free gate, and ε equals 0.5 for a perfectly
noisy gate (a gate with random output). It is unrealistic for a
gate to have ε > 0.5 because it would mean that the output
of the gate is more likely to be faulty than correct. In such a
case, adding a NOT gate at the output of the gate would make
the combination of the two gates more reliable. For example,
if an AND gate in a circuit has a failure probability 0.7, then
adding a NOT gate with a failure probability x at the output of
the AND gate means that the failure probability of the combi-
nation is ε′ = 0.7x + 0.3(1 − x). For any value of x in [0,1],
ε′ ≤ 0.7. Hence, in this paper, we only consider gate failure
probability in [0, 0.5]. Note that gates are assumed to fail in-

dependently of each other. Although this may not be a realistic
assumption, since effects of noise are potentially localized and
correlated, it helps to simplify reliability analysis while still
providing valuable insights into circuit reliability. In this paper,
the phrases “gate is in error,” “erroneous gate,” and “gate has
failed” are used to mean that a particular gate is known to
produce an incorrect output.

The BSC model allows the effects of different sources of
noise such as crosstalk, terrestrial cosmic radiation, electro-
magnetic interference, etc., to be combined into the failure
probability ε. At the electrical level, the effects of noise can
usually be modeled by a probability distribution about the
nominal voltage, instead of a single number. Traditionally, a
Gaussian distribution has been shown to be a good approxima-
tion for this distribution. Reliability analysis is a problem in the
discrete domain (involving Boolean logic) and the noise at the
gates, modeled by a Gaussian distribution, is in the continuous
domain. As a result, reliability analysis would require Boolean
operations on Gaussian distributions to propagate errors from
gate inputs to the output. Since the resulting distribution may
not be Gaussian, either scalability or accuracy will be lost in this
approach. Since there are multiple sources of noise and since it
is desirable to work with a higher abstraction for the combined
effects of these sources, the Gaussian model for noise is dis-
cretized by computing the probability that the nominal voltage
exceeds the noise margin for both low and high output voltages.
Without loss of generality, the average probability that the low
and high voltages exceed the noise margin is used to estimate
the gate failure probability ε for the rest of this paper. Note that
all the algorithms proposed in this paper can be extended to
handle 0 → 1 and 1 → 0 gate failure probabilities separately.

Reliability of a logic circuit is defined as the probability of
error at the output of the logic circuit δ as a function of failure
probabilities �ε of the gates, where �ε is the vector containing
the failure probabilities {ε1, ε2, . . .} of the gates in the circuit.
Reliability δ(�ε) can lie in the interval from zero to one. The
expected number of simultaneous gate failures is given by∑

εi. Thus, the value of εis determines the distribution of the
number of simultaneous gate failures. Note that if εi �= 0∀i,
then the number of simultaneous gate failures can vary from
zero to all the gates in the circuit with some nonzero probability
(although the probability of a large number of simultaneous
gate failures is very low). Such a wide range for the number
of gate failures is an artifact of the independent gate failure
model. The independent gate failure model can be improved by
imposing a limit on the number of simultaneous gate failures.
For instance, in the single gate failure model, the limit is one.
This paper describes an efficient reliability analysis algorithm
when the limit on the number of simultaneous gate failures is
k ≤ N .

In special cases, reliability analysis can leverage existing
techniques from switching activity computation [18] and ob-
servability computation [19]. If failures at only the primary
inputs of the circuit are considered, and gates are assumed to
be error free, then the problem of reliability analysis can be
solved using switching activity computation algorithms. The
0 → 1 and 1 → 0 error probabilities can be thought of as the
switching probability, and the switching activity of every gate

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

can be computed. The resulting 0 → 1 and 1 → 0 switching
probabilities at a gate are the error probabilities at that gate.
However, in the general case, reliability analysis becomes more
complex when gate failures are also considered, because of
the exponential number of combinations of gate failures. If
only single gate failures are considered, the reliability analysis
problem can be solved by simply computing the observability
of the gates. The contribution of each gate to the error proba-
bility of an output (y) is given by the failure probability of the
gate (ε) times the observability of the gate at the output y. In
the general case, reliability analysis for multiple gate failures
becomes more complex because the observabilities of the gates
are not independent of each other, and the gate failures can
change observability of the gates. These effects are described
in greater detail in Section III-A.

The traditional approach to reliability analysis uses fault
injection and simulation in a Monte Carlo framework. Recent
progress in reliability analysis has seen the use of PTMs [8],
Bayesian networks [9], and Markov random fields [10], [11].
Without exception, these approaches suffer from the problem
of scalability. Monte Carlo simulations have the added dis-
advantage of inflexibility, since the entire simulation has to
be repeated for any change in circuit structure or �ε. PTM-
based reliability analysis uses transfer matrices to represent
input–output behavior of noisy circuits. PTMs store the prob-
ability of occurrence of every input–output vector pair for each
level in the circuit to compute the probability of error at the
output of the circuit. This leads to massive matrix storage and
manipulation overhead. Even with compaction of the matri-
ces using ADDs, the high runtimes reported for benchmark
circuits with 20–50 gates suggest their inapplicability to large
circuits. Although this problem is somewhat mitigated in the
Bayesian network approach for small circuits, manipulating
Bayesian networks for large circuits is potentially intractable.
A probabilistic design methodology based on Markov random
fields is presented in [10] that uses the Gibbs distribution to
characterize reliability in terms of entropy and noise in terms of
thermal energy. Evaluating reliability using this technique be-
comes computationally intensive for arbitrary multilevel logic
circuits because it involves minimization of a complex Gibbs
distribution function with a large number of variables. This
technique is more suitable for evaluating reliability of regular
redundancy architectures like triple modular redundancy and
NAND multiplexing [11]. Alternatively, analytical approaches
developed to study fault-tolerant approaches like NAND multi-
plexing and majority voting can be used for reliability analysis
[6], [7]. However, the simple compositional rules that these
approaches use work best on regular structures. When used on
irregular multilevel structures such as logic circuits, they suffer
significant penalties in accuracy even on small circuits.

III. OBSERVABILITY-BASED RELIABILITY ANALYSIS

In this section, an intuitive approach to reliability analysis is
described. It is based upon the observation that a failure at a
gate close to the primary output has a greater probability of
propagating to the primary output than a gate several levels
of logic away from the primary outputs. This is because a

failure that has to propagate through several levels of logic has
a higher probability of being logically masked. This can be
quantified by applying the concept of observability [19], which
has historically found use in the testing and logic synthesis
domains [20].

For reliability analysis, the observability of any wire in the
circuit can be defined as the probability that a 0 → 1 or 1 → 0
error at that wire affects the output of the circuit. Note that
the observabilities are the noiseless observabilities, i.e., all the
gates are assumed noise-free when the observabilities are cal-
culated. Observabilities can be calculated using Boolean differ-
ences, symbolic techniques based on binary decision diagrams
(BDDs), or simulation. Using the observabilities, a closed-form
expression for the reliability, δy(�ε), is derived.

Let us begin with the trivial case of a circuit with a single
gate having a failure probability ε. Since there is only one gate,
the output of the gate is the primary output of the circuit and has
an observability o of 1. Hence, the probability of failure of the
output is equal to ε · o = ε. Now, consider the case of a circuit
with two cascaded gates g1 and g2 having failure probabilities
ε1 and ε2 and observabilities o1 and o2. When both gates are
error free, the primary output of the circuit is always error free.
When at least one gate is in error, the error at the primary output
is computed by analyzing two cases when 1) only one gate is in
error and 2) both g1 and g2 are in error. When exactly one gate
has failed, the primary output is in error when the failed gate
is observable. Hence, the first error component of the output is
ε1(1 − ε2)o1 + (1 − ε1)ε2o2.

When both g1 and g2 are in error, the primary output is in
error when g1 and g2 are jointly observable. Joint observability
of two gates g1 and g2 is the probability that the primary
output toggles when the outputs of both g1 and g2 toggle. Note
that the joint observability is different from the simultaneous
observability of g1 and g2, which is the probability that a
toggle at g1 causes a toggle at the primary output and a toggle
at g2 also causes a toggle at the primary output. Computing
joint observability for all combinations of multiple gate failures
is expensive because joint observability computation is itself
computationally demanding and the number of combinations
of multiple gate failures is exponential in the number of gates
in the circuit. Thus, observability-based reliability analysis
makes two simplifying assumptions for estimating the effect of
multiple gate failures.

1) The effect of gate failures at the primary output are
decoupled from each other, i.e., a failure at each gate gi

is assumed to affect the output with a probability oi

regardless of other gate failures. This assumption allows
the joint observability to be replaced by simultaneous ob-
servability, which is computationally less demanding, to
compute the effect of multiple gate failures at the output.

2) The observability of the gates are assumed to be inde-
pendent of each other. Using this assumption, the compu-
tation of simultaneous observability of two gates can be
simplified to the product of the individual gate observabil-
ities. For instance, the probability that g1 is observable
and g2 is not observable is given by o1(1 − o2) and the
probability that g1 and g2 are both not observable is given
by (1 − o1)(1 − o2).

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

CHOUDHURY AND MOHANRAM: RELIABILITY ANALYSIS OF LOGIC CIRCUITS 395

Let Ω be the set of all the gates in the circuit and S be the
set of all nonempty subsets of Ω. Consider a set G ∈ S of
gates that have failed. The exact effect of these failed gates is
given by the joint observability of the gates in G. Using the first
assumption, it can be argued that the output is in error whenever
an odd number of gates in G are simultaneously observable.
Using the same assumption, when an even number of gates
in G are simultaneously observable, the effect of these gate
failures cancel each other. Thus, the joint observability of gates
in G is estimated as the sum of simultaneous observability of
an odd number of gates in G. Using the second assumption,
the simultaneous observability of the two gates is given by
the product of their individual observabilities. Note that in
practice, there are cases when an odd number of simultaneously
observable gates in G do not cause an error at the primary
output and also cases when an even number of simultaneously
observable gates in G cause an error at the primary output.
These are averaged and absorbed into the probability of an odd
number of failed gates being simultaneously observable by the
first assumption.

For the two gate example described above, the second error
component of the output (both gates in error) is given by
ε1ε2(o1(1 − o2) + o2(1 − o1)). The first term o1(1 − o2) is
the probability that g1 is observable and g2 is not and vice
versa for the second term. The joint observability of g1 and
g2 is estimated by o1(1 − o2) + o2(1 − o1) (odd number of
erroneous gates being simultaneously observable). The inaccu-
racies introduced due to the two simplifying assumptions are
illustrated with an example in Section III-A.

With this background, we shall derive the expression for
the probability of error at the output for a general circuit
with N gates. Without loss of generality, we assume that the
circuit has a single output y. Denote the error probability
(observability) of the ith gate by εi(oi). Let 2G denotes the
set of all subsets of G. Let F ∈ 2G be the set of gates in G
that are simultaneously observable. Using the first assumption,
the output y will be in error when an odd number of gates
in G are simultaneously observable, i.e., F contains an odd
number of gates. Using the second assumption, the simul-
taneous observability of a set of gates can be computed by
simply multiplying the individual observabilities of the gates.
For instance, if G contains three gates (g1, g2, and g3) and
F = {g1, g2}, then the probability that g1 and g2 are simulta-
neously observable is given by o1o2(1 − o3). In general, the
probability that the gates in F are observable is given by A =∏

i/∈F (1 − oi)
∏

j∈F oj . The expression B =
∏

i/∈F (1 − oi)∏
j∈F −oj has the same magnitude as A and same sign as A

when F has an even number of gates, and opposite sign as
A when F has an odd number of gates. Thus, when F has
an odd number of gates, the expression 1/2(A − B) gives the
probability that the gates in F are observable, and when F has
an even number of gates 1/2(A − B) is equal to zero. Thus, the
probability that an odd number of gates in G are observable is
given by

∑
F∈2G

1
2

⎛
⎝∏

i/∈F

(1 − oi)
∏
j∈F

oj −
∏
i/∈F

(1 − oi)
∏
j∈F

−oj

⎞
⎠ . (1)

By the first simplifying assumption, the probability of error at
the output y(yerror) given that the gates in G have failed is also
given by (1). Thus

Pr(yerror|G) =
1
2

⎛
⎝∑

F∈2G

∏
i/∈F

(1 − oi)
∏
j∈F

oj

−
∑

F∈2G

∏
i/∈F

(1 − oi)
∏
j∈F

−oj

⎞
⎠

= 1/2

⎛
⎝∏

j∈G

(oj +(1−oj))−
∏
j∈G

((1−oj)−oj)

⎞
⎠

= 1/2

⎛
⎝1 −

∏
j∈G

(1 − 2oj)

⎞
⎠ .

The probability that the gates in G are in error and the gates in
Gc(Ω \ G) are error free is given by

∏
i∈G εi

∏
j∈Gc(1 − εj).

Thus, the probability of error at the output y is given by

Pr(yerror) =
∑
G∈S

∏
i∈G

εi

∏
j∈Gc

(1 − εj)

×
(1 −∏j∈G(1 − 2oj)

2

)
⇒ Pr(yerror) = 1/2

∑
G∈S

∏
i∈G

εi

∏
j∈Gc

(1 − εj)

− 1/2
∑
G∈S

∏
i∈G

εi(1 − 2oi)
∏

j∈Gc

(1 − εj).

Since S contains all nonempty subsets of Ω, the first
term

∑
G∈S

∏
i∈G εi

∏
j∈Gc(1 − εj) contains all the terms in∏

i∈Ω((1 − εi) + εi) (when it is expanded) except
∏

i∈Ω(1 −
εi). Hence, the first term can be replaced by∏

i∈Ω

(1 − εi + εi) −
∏
i∈Ω

(1 − εi) = 1 −
∏
i∈Ω

(1 − εi).

A similar transformation for the second term yields

Pr(yerror)=1/2

(
1−
∏
i∈Ω

(1−εi)

)

−1/2

(∏
i∈Ω

(1−εi+εi(1−2oi))−
∏
i∈Ω

(1−εi)

)

⇒ Pr(yerror)=1/2

(
1−
∏
i∈Ω

(1−2εioi)

)
. (2)

Equation (2) is a closed-form expression for the reliability
of the output of a circuit as a function of error probabilities
at each gate. Since the product of (1 − 2εioi) is over all gates
in the circuit, it can be computed very efficiently once the
observability of each gate is known. It is interesting to note
that the closed-form expression computes the exact expression
for reliability of an XOR tree circuit. The observabilities of the
XOR gates in the tree are independent and always equal to one
irrespective of other XOR gate failures in the tree. Thus, the two
simplifying assumptions of the observability-based reliability

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

Fig. 1. Circuit for illustrating the effect of noise and correlation on observability.

analysis described previously in this section are valid for an
XOR tree.

A. Noise and Correlation Distort Observability

Simulation results indicate that the closed-form expression
for δ(�ε) is highly accurate for small circuits, and deviates by a
small margin for ε close to 0.5. Note that the same value of gate
failure probability has been used for each gate, and hence, �ε is
replaced by ε. For example, the Monte Carlo and observability-
based curves for δ(ε) for the circuit in Fig. 1(a) are shown in
Fig. 1(b). Simulation results also indicate that the closed-form
expression performs well for small values of ε in large circuits,
and that the accuracy depends on the number of gates in the
circuit with ε > 0. For example, Fig. 1(c) compares the δ(ε)
curves for a single output of the benchmark circuit b9, where a
large error is observed as ε increases.

Observability-based reliability analysis is accurate for small
ε because the probability of single gate failures is significantly
higher than the probability of multiple gate failures. Since the
effect of an error at a single gate is given by the gate failure
probability scaled by its observability, it is exactly accounted
for in the closed-form expression for reliability. As ε increases,
the effect of multiple gate failures starts becoming significant
and a deviation of the observability-based curve from the Monte
Carlo curve is observed. There are two reasons for the inaccu-
racy of observability-based analysis in computing the effects of
multiple gate failures. Both arise from the simplifying assump-
tions made in the derivation of the closed-form expression and
are related to the fact that observability calculations are done
statically.

1) In the Absence of Noise: When the observability calcula-
tions are performed in the absence of noise, it is assumed that
a path remains sensitized irrespective of failures at gates that
contribute to sensitizing that path. However, a failure at one or
more of these gates may increase or decrease the observability
of the original gate. This is exactly the reason for the inaccuracy
arising due to the first simplifying assumption—joint observ-
ability replaced by simultaneous observability. For instance,
consider gates Gx and Gz in the circuit of Fig. 1(a). Exhaustive
analysis indicates that if both Gx and Gz fail, the probability
of an output failure is 46/256, i.e., the joint observability of
Gx and Gz is 46/256. However, the closed-form expression
ignores the effects of how failures at Gz influence the prop-
agation of failures from Gx and estimates this probability to

be 19/256. This problem is further exacerbated by the effects
of reconvergent fan-out that is common in logic circuits, since
observability calculation at the source of reconvergent fan-outs
becomes more complex and expensive.

2) On Individual Gates in the Circuit: When observability
computation is performed on gates one at a time in the deriva-
tion of the closed-form expression for δ(�ε), the events of two
or more gates being simultaneously observable is computed
assuming that the events are independent. The second simpli-
fying assumption suffers from this inaccuracy. For instance,
consider gates Gx and Gy in the circuit of Fig. 1(a). Assuming
independence suggests that Gx is observable even when Gy

is not because ox(1 − oy) > 0. However, since Gx is in the
transitive fan-in of Gy , it is clear that Gx is observable only
if Gy is observable. Assuming independence thus introduces
inaccuracies in the closed-form expression.

In conclusion, the observability-based closed-form expres-
sion is highly suitable for reliability analysis of small circuits
and for small values of gate failure probabilities in large cir-
cuits. The algorithm is simple, yet efficient and flexible because
a change in the value of noise at any gate(s) just requires
recomputation of the closed-form expression (2). Since gate
failure rates in current CMOS technologies are of the order of
10−8 − 10−4, it can easily be applied to reliability analysis and
optimization.

IV. SINGLE-PASS RELIABILITY ANALYSIS

The efficient single-pass reliability analysis technique
described here addresses the accuracy drawbacks of the
observability-based algorithm. At the core of this algorithm
is the observation that an error at the output of any gate is
the cumulative effect of a local error component attributed to
the ε of the gate, and a propagated error component attributed
to the failure of gates in its transitive fan-in cone. When the
components are combined, the total error probability at gate g
is given by: 1) a 0 → 1 error probability given that its error-free
value is zero, Pr(g0→1) and 2) a 1 → 0 error probability given
that its error-free value is one, Pr(g1→0).

In general, Pr(g0→1) �= Pr(g1→0) for an internal gate in a
circuit. Initially, Pr(xi,0→1) and Pr(xi,1→0) are known for the
primary inputs xi of the circuit. In the core computational step
of the algorithm, the 0 → 1 and 1 → 0 error components at
the inputs to a gate are combined using a weight vector W to
obtain a weighted input error vector PW . The PW vector is

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

CHOUDHURY AND MOHANRAM: RELIABILITY ANALYSIS OF LOGIC CIRCUITS 397

TABLE I
EXPRESSIONS FOR WEIGHTED INPUT ERROR COMPONENTS

then combined with the local gate failure probability ε to obtain
Pr(g0→1) and Pr(g1→0) at the output of the gate. Computation
of the: 1) weight vector and 2) weighted input error vector is
described below.

Single-pass reliability analysis is performed by applying the
core computational step of the algorithm recursively to the gates
in a topological order. At the end of the single pass, Pr(y0→1)
and Pr(y1→0) is obtained for the output y of the circuit. The
reliability δy of an output y is then given by the weighted sum
of Pr(y0→1) and Pr(y1→0) as follows:

δy(ε) = Pr(y = 0)Pr(y0→1) + Pr(y = 1)Pr(y1→0).

Given the weight vectors at all gates, the time complexity of
the algorithm is O(N), where N is the number of gates in the
circuit. Note that single-pass reliability analysis gives the exact
values of probability of error at the output in the absence of
reconvergent fan-out.

1) Weight Vector: The weight vector for a gate stores the
probability of occurrence of every combination of inputs at that
gate. For instance, the weight vector of a two-input (three-input)
gate consists of four (eight) entries. Since the weight vector
is just the joint signal probability distribution of the inputs of
a gate, it can be computed by random pattern simulation or
symbolic techniques based on BDDs. Weight vectors are inde-
pendent of �ε and change only if the structure of the logic circuit
changes. To improve the efficiency of the algorithm, weight
vector computation may be performed once at the beginning
and used over several runs of reliability analysis. The BDDs
for the gates in the circuit are used to compute the components
W00, W01, etc., of W . For example, if b1 and b2 are the inputs to
a gate, W00 is given by the number of minterms in b1b2 divided
by the total number of input vectors to the circuit.

2) Expressions for Weighted Input Error Vector: Expres-
sions for the components of PW , for a two-input AND gate with
inputs i and j, are given in Table I. The calculation of PW(0)
to propagate the 0 → 1 error component using the entries in
the upper part of Table I is described here. Propagation of the
1 → 0 input error component is similar, using the entries in the
lower part of Table I.

Since the probability of a 0 → 1 error is actually the proba-
bility of a 0 → 1 error given that the error-free output of the gate
is zero, there are only three rows in the upper table, one for each
input vector for which the output of the AND gate is zero. The
first column in the table is the input vector under consideration.
The input vector has been ordered as ij. The second column is

the probability of occurrence of the input vector, i.e., the weight
vector. The third column is the probability of a 0 → 1 error at
g, caused only due to errors at its inputs (when g itself does
not fail). The entries in the third column are computed using
Pr(i0→1), Pr(i1→0), Pr(j0→1), and Pr(j1→0) as illustrated
below with an example.

Consider the input 10, whose error-free output is zero. For
g to be in error only due to errors at the inputs, j has to
fail, and i has to be error free so that the input to the gate
is 11 instead of 10. Thus, the probability of a 0 → 1 error
at g due to this input vector is (1 − Pr(i1→0)) Pr(j0→1). To
compute the effect of the input vector 10, this probability
of error is weighted by its probability of occurrence, i.e., by
W10. Thus, the value in the third column for the vector 10 is
W10(1 − Pr(i0→1)) Pr(j0→1). Similar entries for the inputs 00
and 01 are derived, and summed to obtain an expression for the
weighted input error probability PW(0).

Since we are calculating the weighted 0 → 1 input error
probability at g given that the error-free output is zero, PW(0)
has to be divided by W(0) to restrict the inputs to a set for
which the error-free output is zero. Thus, the weighted 0 → 1
and 1 → 0 input error probability at g are given by

Pr(g0→1|g does not fail) =PW(0)/W(0)

Pr(g1→0|g does not fail) =PW(1)/W(1).

3) Expressions for Pr(g0→1) and Pr(g1→0): If g fails with
a probability of ε, Pr(g0→1) is given by

Pr(g0→1) = (1 − ε)
(PW(0)

W(0)

)
+ ε

(
1 − PW(0)

W(0)

)
.

Similarly, Pr(g1→0) is given by

Pr(g1→0) = (1 − ε)
(PW(1)

W(1)

)
+ ε

(
1 − PW(1)

W(1)

)
.

Note that the two terms (1 − Pr(i1→0)) and Pr(j0→1)) are
multiplied in the computation of the entries in the third column
of Table I. This implies that the events of i being correct and
j failing are assumed independent. This assumption is valid
if the gate is not a site for reconvergence of fan-out. Since
reconvergence causes the two events to be correlated, it is
handled separately in Section IV-A.

Although the computation has been illustrated for an AND
gate, the computation for an OR gate is symmetric, i.e., there
are three rows for the probability of 1 → 0 error table and a
single row for the probability of 0 → 1 error table. Inverters,
NANDs, NORs, and XORs are all handled in a similar manner and
the tables have been excluded for brevity.

Single-pass reliability analysis is illustrated for the circuit
shown in Fig. 2. The weight vector, gate failure probability (ε),
and probability of 0 → 1 and 1 → 0 error are indicated for
each gate. The gates are numbered on the order in which they
are processed. Since all the gates in the circuit have only two
inputs, the weight vector for each gate consists of four entries.
All entries of the weight vector for gate 1 are 0.25 because
the primary input vectors are equally likely. The fan-out at
gate 2 reconverges at gate 6 via gates 4 and 5. Thus, the event

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

Fig. 2. Illustrative example for single-pass reliability analysis.

of 0 → 1 and 1 → 0 error at the outputs of gates 4 and 5
are correlated. However, independence is assumed and the
probability of these events are used in the computation of 0 → 1
and 1 → 0 probability of error values for the output of gate 6.

A. Handling Reconvergent Fan-out

The presence of reconvergent fan-out renders the single-pass
reliability analysis approximate because the events of 0 → 1 or
1 → 0 error for the inputs of a gate may not be independent
at the point of reconvergence. Handling reconvergent fan-out
has been the subject of extensive research in signal probability
computation. In this section, the theory of correlation coeffi-
cients used in signal probability computation [21], is extended
to make single-pass reliability analysis more accurate in the
presence of reconvergent fan-out.

This approach relies on the propagation of the correlation
coefficients for a pair of wires from the source of fan-out to
the point of reconvergence. Note that the word “wire” has
been used as opposed to “node” because for a gate with fan-
out > 1, each fan-out is treated as a separate wire, but they
constitute the same node. The correlation coefficient for events
on a pair of wires is defined as the joint probability of the events
divided by the product of their marginal probabilities. For
signal probability computation, an event on a wire is defined
as the value of the wire being one. Thus, for a pair of wires, a
single correlation coefficient is sufficient to compute the joint
probability of a one on both the wires.

For reliability analysis, however, an event is defined as a
0 → 1 or 1 → 0 error on a wire. Hence, instead of a single
correlation coefficient, four correlation coefficients for a pair
of wires, one for every combination of events on the pair of
wires are used. If v and w are two wires, the four correlation
coefficients for this pair are denoted by Cvw, Cvw̃, Cṽw, and Cṽw̃,
where v, w, ṽ, and w̃ refers to the event of a 0 → 1, 0 → 1,
1 → 0, and 1 → 0 error at v and w, respectively.

The correlation coefficients come into play at the gates whose
inputs are the site of reconvergence of fan-out. At such gates,
the events of 0 → 1 or 1 → 0 error at the inputs are not
independent. Thus, the entries in the third column of Table I
are weighted by the appropriate correlation coefficient, e.g.,
Pr(i0→1)(1−Pr(j1→0)) becomes Pr(i0→1)(1−Pr(j1→0)Cij̃).

1) Correlation Coefficient Computation: The correlation
coefficient for a pair of wires can be calculated by first com-

Fig. 3. Computation and propagation of correlation coefficients.

puting the correlation coefficients for the wires in the fan-out
source that cause the correlation, and then propagating these
correlation coefficients along the appropriate paths leading to
the pair of wires. Note that all four correlation coefficients for
two independent wires are one. The computation of correlation
coefficients for the fan-out source and the propagation of corre-
lation coefficients at a two-input AND gate are described below.

2) Computation at Fan-out Source Node: The fan-out
source node i is shown in Fig. 3(a). The correlation coefficient
for the pair of wires {l,m} is computed as follows:

Pr(l0→1) = Pr(l0→1,m0→1) = Pr(l0→1) Pr(m0→1)Clm

i.e.,

Clm =
1

Pr(m0→1)
.

Cl̃m̃ can be computed in a similar manner. Cl̃m and Clm̃ are zero
because it is not possible to have a 0 → 1 error on m and a
1 → 0 error on l, or vice versa.

3) Propagation at an AND Gate: Propagation of correlation
coefficients is shown for the AND gate in Fig. 3(b). Let i, j, k be
three wires whose pairwise correlation coefficients are known.
Computation of the correlation coefficients for the pair {l, k}
involves propagation of the correlation coefficients through the
AND gate, using the correlation coefficients of i, j with k

Clk =
Pr(l0→1|k0→1)

Pr(l0→1)
.

The expression for Pr(l0→1|k0→1) in terms of the correlation
coefficients of the inputs i, j with k is shown in Fig. 4. The
terms in the expression for Pr(l0→1|k0→1) are similar to the
terms in the third column of the upper part of Table I. The only
difference is that the probability of 0 → 1 and 1 → 0 errors
have been multiplied by appropriate correlation coefficients.
Note that the terms of the weight vector W include the signal
probability of k. The expression for Cl̃k is derived in a similar
manner using the lower part of Table I, and is left out for

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

CHOUDHURY AND MOHANRAM: RELIABILITY ANALYSIS OF LOGIC CIRCUITS 399

Fig. 4. Derivation of Pr(l0→1|k0→1) in terms of correlation coefficients of its inputs.

Fig. 5. Handling reconvergent fan-out in single-pass reliability analysis with
four correlation coefficients.

brevity. Expressions for Clk̃ and Cl̃k̃ are derived by replacing
k by k̃ in the expressions for Clk and Cl̃k, respectively. In
Fig. 5, the consolidated probability of error at two correlated
primary outputs of benchmark circuit b9 is used to illustrate the
accuracy achieved with correlation coefficients.

B. Accuracy Versus Computational Complexity

As shown in Fig. 5, the degree of accuracy obtained using
four correlation coefficients for a pair of wires is high and
should suffice for most applications. In the example shown
in Fig. 3, the correlation coefficients used in the simplest
conditional probability terms like Pr(l0→1|k0→1)Clk are termed
as first-order correlation coefficients. Second-order correlation
coefficients are of the form Pr(i0→1|j0→1, k0→1)Cijk and so
on for higher orders. Correlation coefficients of order greater
than one are approximated using the product of first-order
correlation coefficients, i.e., Cijk = CijCik. When only four
correlation coefficients are used, there are some first-order cor-
relation coefficients that are not evaluated exactly. For instance,
consider the correlation coefficient (C) of a 0 → 0 transition on
l and a 0 → 1 transition on k. Note that C is different from the
correlation coefficients Clk and Cl̃k. The exact value for C can
be derived as follows:

Pr(l0→0, k0→1) + Pr(l0→1, k0→1) = Pr(k0→1|l = 0).

Since Pr(l0→1) is actually Pr(l0→1|l = 0), using correlation
coefficients the above expression can be rewritten as

Pr(l0→0)C + Pr(l0→1)Clk =
Pr(k0→1|l = 0)

Pr(k0→1)

Pr(l0→0)C =
Pr(k0→1|l = 0)

Pr(k0→1)
− Pr(l0→1)Clk.

When only four correlation coefficients are used, C is approxi-
mated to 1 − Pr(l0→1)Clk because the value of Pr(k0→1|l = 0)
is not known, and cannot be computed easily. This problem can
be solved by using 16 correlation coefficients for a pair of wires.
These 16 coefficients arise from the correlation among all
combinations of {0 → 0, 0 → 1, 1 → 0, 1 → 1} failures for the
two wires. The computation of these 16 correlation coefficients
is done in the exact same manner as described for four correla-
tion coefficients. Thus, using 16 correlation coefficients, higher
accuracy can be obtained at the cost of higher computational
complexity in computing and propagating the 16 correlation
coefficients.

V. MAXIMUM-k GATE FAILURE RELIABILITY ANALYSIS

Recall from Section III that Ω = {0, 1, . . . , N − 1} is the set
of all gates in a circuit with N gates. The failure probability
of the ith gate is denoted as εi. Both the observability-based
and single-pass reliability analysis algorithms assume an inde-
pendent gate failure model. Under the independent gate failure
model, the probability that a subset (G,G ⊂ Ω) of gates fail
simultaneously is given by the expression

Pr(G) =
∏
i∈G

εi

∏
i/∈G

(1 − εi).

Thus, there is a nonzero probability that a large number of gates
in the circuit fail simultaneously. For example, in a circuit with
10 000 gates, if each gate has a failure probability of 10−3, then
the probability of ten gates failing simultaneously is 0.125. It is
not unreasonable to expect such high failure rates for emerging
technologies such as carbon nanotube transistors, single elec-
tron transistors, or graphene at least with the current fabrication
technology for these devices. However, these failure rates are
much beyond what has been predicted for future semiconductor
technologies. It is possible to adjust the average number of gate
failures by varying the gate failure probability. For example,
consider a circuit with ten gates and an independent gate failure
model. Suppose we are interested in only a single gate failure on
average, the gate failure probability must be set to 0.1. By fixing
the gate failure probability, we are also fixing the rate at which
failures occur in the entire circuit, i.e., the fraction of clock
cycles in which at least one gate failure occurs. In this example,
the probability of at least one gate failure is 1 − (1 − 0.1)10 =
0.65, i.e., 65 out of 100 clock cycles will result in at least one
gate failure. Thus, the independent gate failure model has an
inherent disadvantage that the average number of gate failures
and the fraction of clock cycles in which gate failures occur are
dependent, and cannot be varied independently. This problem
is resolved by limiting the maximum number of gate failures.

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

400 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

If we are concerned with only single gate failures, we can
set the limit to one. Now, the failure probability of the gates
will determine the fraction of clock cycles in which at least one
gate failure occurs in the circuit. For instance, if the failure
probability is 0.1, the probability that no gate failures occur
is equal to (1 − 0.1)10 = 0.910. Probability that exactly one
gate fails is 10 × 0.1 × (1 − 0.1)9 = 0.99. Hence, the fraction
of clock cycles in which gate failures occur is 0.99/(0.910 +
0.99) = 0.53. Single-event upsets are an excellent example of
maximum-k gate failure model. For instance, let us assume that
the flux of energetic particle strikes is such that it can cause one
upset every N cycles. In the maximum-k gate failure model,
this is done by setting the limit on the number of gate failures
to one, and adjusting the failure probabilities of the gates such
that the error rate of the circuit is 1/N . To summarize, a more
realistic gate failure model is to have an upper bound on the
number of simultaneous gate failures.

Under the maximum-k gate failure model, gate failures are
still independent of each other. However, an additional con-
straint, that only a maximum of k gates can fail simultaneously,
is introduced. This global constraint causes the gate failures to
be correlated with each other, which can be explained mathe-
matically as follows. Note that the maximum number of gate
failures that can occur in parallel is an empirical quantity that
depends on the source of the noise. For instance, in the case
of memories, single/double bit errors are pervasive. A similar
characterization of noise sources in logic circuits can be used
to determine the maximum simultaneous number of failures in
a logic circuit.

Let Xi be a random variable that takes a value one when
the ith gate fails and a value zero otherwise. In the maximum-
k gate failure model, the Xis are independent of each other,
but the additional constraint is that

∑
Xi ≤ k. This constraint

means that Pr(Xk+1 = 1|X1 = 1,X2 = 1, . . . , Xk = 1) = 0.
However, Pr(Xk+1 = 1) = εk+1. Since the conditional proba-
bility is not equal to the marginal probability, the gate failures
are correlated with each other.

In the rest of this section, a maximum-k gate failure reliabil-
ity analysis algorithm that combines a sampling algorithm with
single-pass reliability analysis is described. Several techniques
to sample k (with given weights) out of a sample space of N
have been proposed in literature, e.g., [22]. However, for the
maximum-k gate failure model, the size of the sample space is(
N
0

)
+
(
N
1

)
+ · · · + (Nk). For N of the order of 104, the sample

space becomes intractably large even for k = 3. However, a
special property of the sample space—the independence of gate
failures—is exploited in the proposed sampling algorithm to
reduce the computational complexity to O(Nk2).

A. Why Fault Injection and Simulation Does Not Scale

The most straightforward algorithm for reliability analysis
with the maximum-k gate failure model is based on fault in-
jection and random pattern simulation in a Monte Carlo frame-
work. By generating a random number uniformly distributed
over the interval [0,1] for each gate and comparing it to the
failure probability of the gate, it can be determined whether
the gate has failed or not. Thus, the set of all failed gates

constitutes a sample of failed gates. Since the random numbers
for each gate are generated independently, there is no control
over the size of the sample. A sample of failed gates has to be
discarded if it violates the constraint on the maximum number
of gate failures. If the constraint is satisfied, random pattern
simulation is performed to evaluate the effect of the failed gates
on the outputs. This procedure is repeated for a large number of
samples, and their effect on the outputs is averaged.

A major drawback of this algorithm is that for large values
of gate failure probabilities and low values of k, a large number
of generated samples may not obey the constraint on maximum
number of gate failures and have to be discarded. For instance,
suppose that the total number of gates in the circuit is 10 000,
each gate fails independently with a probability 0.05, and k=3.
Since fault injection is performed independently at each gate,
the average number of erroneous gates is 10 000 × 0.05 =
500
 3. Hence, a large number of samples will be discarded
because they do not satisfy the constraint on the maximum
number of gate failures. Thus, a very large number of runs are
required to achieve convergence of the solution, and this makes
the algorithm computationally intensive.

In contrast, the maximum-k gate failure algorithm, described
below, is based on generating only correct samples of gate
failures (which satisfy the constraint on the maximum number
of gate failures). After generating a sample of failed gates, the
single-pass reliability analysis algorithm is used to evaluate the
probability of error at the output of the circuit. The probability
of failure at each primary output is obtained by averaging over
a large number of samples. Since only correct samples are
generated and since single-pass reliability analysis is used to
compute the effect of each sample of gate failures, the algorithm
is orders of magnitude faster the Monte Carlo approach.

B. Sampling Algorithm

When the maximum number of simultaneous gate failures is
bounded by k, the sample space of the possible combinations
of simultaneous gate failures is reduced to sets G with |G| ≤ k.
Let Sε be the sum of the probability of gate failure combina-
tions in this sample space. Thus, Sε is given by the following
expression:

Sε =
∑

{G⊂Ω,|G|≤k}

∏
i∈G

εi

∏
i/∈G

(1 − εi).

Note that Sε �= 1 because the sample space is reduced to sets G
such that |G| ≤ k. Thus, for the maximum-k gate failure model
the probability that a subset of gates, G, fail simultaneously is
given by the following expression:

Pr(G) =
{∏

i∈G εi

∏
i/∈G(1 − εi)/Sε, |G| ≤ k

0, |G| > k.
(3)

Let αi = εi/(1 − εi). If Sα is defined as

Sα =
∑

{G⊂Ω,|G|≤k}

∏
i∈G

αi

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

CHOUDHURY AND MOHANRAM: RELIABILITY ANALYSIS OF LOGIC CIRCUITS 401

TABLE II
SAMPLE SPACE OF POSSIBLE GATE FAILURES

(3) can be rewritten more succinctly in terms of αi and Sα as

Pr(G) =
{∏

i∈G αi/Sα, |G| ≤ k
0, |G| > k.

(4)

As an illustration for the probability distribution expressed by
(4), the sample space and associated probability of failure for
N = 4 and k = 2 is shown in Table II.

We start by describing two straightforward techniques for
generating samples of erroneous gates according to the proba-
bility distribution given in (3). It turns out that the first solution
is incorrect because the generated samples have a slightly
different probability distribution, and that the second solution is
computationally intractable. This motivates the third solution,
which is efficient and generates the samples from the correct
probability distribution.

The first intuitive approach to generate a sample of ≤ k gates
is to select the gates one at a time over k steps. In each step,
the interval [0,1] is divided into subintervals proportional to
{1, α1, α2, . . .}. The subinterval αi corresponds to failure of
gate i. The subinterval proportional to one corresponds to “no
gate failure.” A uniformly distributed random number is gener-
ated in the interval [0,1] and the subinterval in which the gener-
ated random number lies indicates the erroneous gate. Note that
if the random number lies in the subinterval proportional to one,
then no gate is erroneous in that step. If the random number lies
in the interval αi, then the ith gate is designated as failed, and it
is removed from the Ω. The reduced Ω is then used for the next
step. This procedure is repeated for k steps. For instance, sup-
pose k = 3. If the three steps generate {1, 1, 1}, then no gate has
failed (denoted as {} in Table II). If {1, α2, α4} is generated,
then gate 2 and gate 4 have failed (denoted as {2, 4} in Table II).
Although this approach seems correct at first, a closer look re-
veals that the distribution from which the sample of failed gates
is generated by this approach is incorrect. The reason is that the
samples of gate failures shown in Table II are unordered sets,
i.e., the sample {1, α2, α4} is the same as {α2, 1, α4}. How-
ever, the sample {α1, α2, α4} can be generated in six ways in
this algorithm (differing only in the order in which the gates are
generated in different steps, {α1, α2, α4}, {α1, α4, α2}, . . .).
However, the sample {1, 1, 1} can be generated only once, and
the sample {1, 1, α2} can be generated in only three ways.

A second straightforward but inefficient approach is to divide
the interval [0,1] into subintervals of widths equal to the proba-

Fig. 6. Proposed sampling algorithm.

bilities given in (4). Thus, every subset of possible gate failures
has a subinterval in [0,1] with width equal to its probability of
occurrence [given by (4)]. Then, a uniform random number in
[0,1] is generated, and the subinterval in which it lies indicates
the generated sample of erroneous gates. Since, the number
of subsets of erroneous gates is

(
N
0

)
+
(
N
1

)
+ · · · + (Nk), the

runtime complexity of this algorithm is O(Nk). For large N ,
this algorithm is unusable even for small values of k.

The proposed algorithm for generating a sample of erroneous
gates has a runtime complexity O(Nk2). The pseudocode for
the algorithm is shown in Fig. 6. Table III is used for generating
the sample of erroneous gates in the proposed algorithm. The
columns of Table III are divided into two parts: 1) erroneous
gate, which has N columns, {1, 2, . . . , N} and 2) new sample
size, which has k columns, {0, 1, . . . , k − 1}. The probability
distribution of the samples shown in Table II can be rewritten
by grouping together samples that share a gate. This grouping
can be done systematically as shown in the first part of Table III
under the column “Erroneous gate.” The jth column in the table
is the sum of the probabilities of all samples that contain gate j.
The ith row is the probability distribution when the maximum
number of gate failures is i. Thus, in the ith row, the probability
of every sample of erroneous gates occurs i times, once each
under the column corresponding to every gate in the erroneous
gate sample.

The BuildTable routine in the pseudocode (in Fig. 6) con-
structs Table III for a given Ω and k. The core routine that gen-
erates the sample of erroneous gates is the NextGateFailure
routine. The possible outcomes of an execution of the
NextGateFailure routine are the following: 1) if k = 0, the
algorithm ends; 2) no new erroneous gate is generated and
the sample size is reduced by at least one; and 3) a new
erroneous gate is generated and the sample size is reduced
by one. The random number r is used to decide between

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

402 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

TABLE III
PROPOSED SAMPLING ALGORITHM TABLE

outcome 2) and 3) as follows. The entries in the kth row of
Table III are used to divide the interval [0, Tk] (Tk is the row
total of the kth row) into subintervals. Let I be the subinterval
that contains the random number rTk.

If I corresponds to an entry in the “Erroneous gate” part of
Table III, then the outcome is 3). In this case, a new erroneous
gate g has been generated. The column number corresponding
to subinterval I is used to determine the erroneous gate g. The
gate g is added to the sample set G and removed from Ω. The
value of k is reduced by one since one erroneous gate has been
found. The fraction of overlap that rTk had with the subinterval
I is used as the new value of r. The function BuildTable
is recursively called so that a new table (Table III) can be
generated for the reduced Ω.

If I corresponds to an entry in the “New sample size” part of
Table III, then the outcome is 2). In this case, no new erroneous
gate has been generated, but the sample size has been reduced
by at least one. This means that the size of the final sample
will be less than k. The column number corresponding to the
subinterval I is used to determine the new value of k, knew.
The random number r is also recomputed as described earlier.
Since, Ω has not changed, Table III can be reused for the row
knew. Hence, in this case, NextGateFailure is directly called
instead of BuildTable.

C. Effect of Multiple Gate Failures

After the sample of gate failures has been generated, the
effect of these gate failures on the output of the circuit is
computed. This problem is solved efficiently using the single-
pass reliability analysis algorithm described in Section IV by
setting the failure probability of the gates in the sample equal to
one and the failure probability of rest of the gates equal to zero.
Note that the flexibility of the single-pass reliability analysis
is useful here, because for different samples of gate failures,
it is only the failure probability of the gates in the circuit that
is changing. Since there is no change in the circuit structure,
the weight vector W has to be computed only once. This
makes the algorithm for reliability analysis for the maximum-
k gate failure model very efficient, and thus scalable to large
circuits. Since single-pass reliability analysis is reused as the
core reliability analysis engine, the results of this algorithm are
also very accurate.

VI. RESULTS

The simulations were run on a 2.4-GHz Opteron-based sys-
tem with 6 GB of memory. A Monte Carlo framework for

TABLE IV
ACCURACY OF MONTE CARLO-BASED RELIABILITY ANALYSIS FOR

DIFFERENT NUMBER OF MONTE CARLO RUNS

reliability analysis based upon fault injection was used for com-
parison with single-pass reliability analysis. Table IV shows the
accuracy of Monte Carlo simulator as the sample size for the
simulation is increased from 64 to 6.4 million random patterns.
We have chosen sample sizes to be multiples of 64 because
a 64-bit parallel pattern simulator was used to implement the
Monte Carlo simulator. The percentage error for each sample
size is reported with respect to the result for 64 million random
patterns. Since the maximum error for the largest benchmark
circuit, i10, with 6.4 million random patterns is only 3.6%, we
have used this sample size for all Monte Carlo simulations in
this paper.

The benchmark circuits used in [17] were synthesized using
gates with a maximum of three inputs. However, the benchmark
circuits used in this paper are synthesized using only two input
gates. This was done to reduce second-order correlations oc-
curring due to multiple reconvergent paths at a three-input gate.
Note that using two-input gates does not completely eliminate
second-order correlation coefficients (refer Fig. 7). Moreover,
reordering of BDDs using CUDD_REORDER_SIFT was used
to lower the runtimes from those reported in [17].

A. Observability-Based Reliability Analysis

A comparison of Monte Carlo and observability-based reli-
ability analysis is presented in Table V. Both Monte Carlo and
observability-based reliability analysis were used to compute
the reliability of each benchmark circuit for 50 values of ε ∈
[0, 0.5]. Of these, eight values are reported in Table V. Note
that the observability-based reliability analysis is accurate for
small values of ε (Nε ≈ 1, N is the total number of gates in
the circuit). For larger values of ε (as shown in Table V), the
accuracy of the observability-based reliability analysis is quite
low for most of the benchmark circuits. The reasons for this
inaccuracy have been discussed in Section III-A. It is interesting
to note that the accuracy of the observability-based reliability
analysis increases for very large values of ε(≈ 0.2−0.3). This

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

CHOUDHURY AND MOHANRAM: RELIABILITY ANALYSIS OF LOGIC CIRCUITS 403

Fig. 7. Figure shows the circuit structures that introduce (a) first-order and
(b) higher-order correlation coefficients.

is because for such large values of ε, δ(ε) for the outputs begin
to saturate at 0.5 (pure noise). The value of the observability-
based closed-form expression also begins to saturate to 0.5
for those values of ε. Hence, the percentage error decreases.
When ε is 0.5, both evaluate to 0.5 and the percentage error
is zero. The runtimes for small- and medium-sized circuits are
encouraging. However, for the large benchmark circuits (e.g.,
c3540) the runtime is high. This is because exact observability
computation is computationally intensive as reconvergent fan-
out increases, and this occurs with the c3540 benchmark.

B. Single-Pass Reliability Analysis

Simulation results comparing single-pass reliability analysis
with Monte Carlo simulations are reported in Table VI. In
Table VI, columns 1 and 2 give the name and number of gates
in the benchmark circuit. Both the Monte Carlo and single-
pass reliability frameworks were used to compute δ(�ε) for ten
different values of ε over the range 0 to 0.5. Note that the
same value of ε has been used for all the gates in the circuit,
and hence, �ε is replaced by ε. The third column reports the
percentage error in single-pass reliability analysis with 0, 4, and
16 correlation coefficients, averaged over all the outputs and
over ten values of ε ∈ [0, 0.5]. The cumulative runtime for ten
runs is reported in the fourth column. The runtime required for
the weight vector computation used in the single-pass reliability
analysis is reported under the setup time column in the table.

The maximum percentage error in δ(�ε) is less than 2%
for the largest benchmark circuit, i10. For circuits with sig-
nificant reconvergent fan-out, e.g., c499, c1355, and c1908,
the maximum percentage error in δ(�ε) is 13.1%, 13.5%, and

6.5%, respectively. The largest percentage error is observed
when zero correlation coefficients are used, i.e., when the
correlations in failures introduced due to reconvergent fan-
out is ignored. The percentage error progressively improves
as 4 and 16 correlation coefficients are used. Note that the
error correcting benchmark circuits like c499, c1355, and
c1908 have large reconvergent fan-out that requires the use
of higher-order correlation coefficients. The circuit structure(s)
that introduce first-order and higher-order correlation coeffi-
cients are shown in Fig. 7(a) and (b) respectively. Since the
higher-order correlation coefficients are approximated in all
three schemes (0, 4, and 16), only a slight improvement in
accuracy is observed when 4 and 16 correlation coefficients
are used.

Fig. 8 shows δ(ε) for two outputs of benchmark i10. The cone
sizes of the two outputs are 662 and 1034 gates, respectively.
Each graph has two curves: one from Monte Carlo reliability
analysis and one from single-pass reliability analysis using zero
correlation coefficients. The two curves are indistinguishable,
as shown in the figure. The diverse shapes of the curves
illustrates not only the complexity of the relation between δ and
ε, but also the accuracy of single-pass reliability analysis.

Fig. 9 shows the percentage error in δ(�ε) for each of the
32 outputs of benchmark circuit c499. On each run, the ε for
each gate was derived from a uniform random distribution
over the interval [0,0.5]. Single-pass reliability analysis with
zero correlation coefficients was compared to Monte Carlo
reliability analysis. The percentage error in δ(�ε) for each output,
averaged over 1000 runs, is 1.5%–3.5%. This illustrates that
single-pass reliability analysis is highly accurate even when the
ε values are allowed to vary independently at every gate.

It is clear from the results that the proposed single-pass relia-
bility analysis technique is highly accurate. Although a head-
to-head performance comparison with approaches based on
PTMs and Bayesian networks was not possible, it is our belief
based on the results reported in [9] that the proposed technique
affords at least a 500 X speedup over Bayesian networks on
the largest circuit b9: 2.5 seconds for Bayesian networks versus
0.005 seconds per run with single-pass reliability analysis. Note
also that results reported in [9] show that Bayesian networks
afford a 1000 X speedup over PTMs. In summary, it is rea-
sonable to conclude that the strengths of the proposed single-
pass reliability analysis algorithm are its accuracy, scalability
to large circuits, and speedup in performance.

C. Maximum-k Gate Failure Model

The results for reliability analysis under the maximum-k
gate failure model for different benchmark circuits is shown in
Table VII. The results have been presented for three values of
k. Single-pass reliability analysis with zero correlation coeffi-
cients was used as the core engine to evaluate the reliability
for the 50,000 samples generated by the sampling algorithm.
A significant fraction of the runtime can be attributed to the
weight vector computation W . For the maximum-k gate failure
reliability analysis, W is computed only once and stored for
use in all the 50,000 runs. Thus, the runtime reported for
maximum-k gate failure reliability analysis shown in Table VII

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

404 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

TABLE V
COMPARISON BETWEEN OBSERVABILITY-BASED AND MONTE CARLO RELIABILITY ANALYSIS FOR TEN BENCHMARK CIRCUITS.

EIGHT VALUES OF ε HAVE BEEN USED FOR COMPARISON

TABLE VI
COMPARISON OF ACCURACY AND RUNTIMES FOR SINGLE-PASS RELIABILITY ANALYSIS WITH 0, 4, AND 16 CORRELATION COEFFICIENTS

Fig. 8. δ(ε) curves for two outputs of i10.

Fig. 9. Average error in δ(�ε) per output of circuit c499 over 1000 runs. On
each run, εi ∈ Uniform (0,0.5) for each gate.

is much less than 50,000 times the runtime reported for single-
pass reliability analysis shown in Table VI. Thus, the pro-
posed maximum-k gate failure reliability analysis algorithm

TABLE VII
RUNTIMES FOR DIFFERENT BENCHMARK CIRCUITS UNDER MAXIMUM-k

GATE FAILURE MODEL. A TOTAL OF 50-K SAMPLES WERE USED TO

EVALUATE RELIABILITY

is scalable to large circuits. Another important point to be
noted is that the runtimes increase very slowly as k increases.
This is because the complexity of the sampling algorithm is
polynomial in k.

VII. CONCLUSION

Even as reliability gains wide acceptance as a significant
design challenge, there is a lack of effective techniques for its
analysis and optimization. This paper described three accurate
and scalable techniques for reliability analysis of logic cir-
cuits for different gate failure models. The observability-based

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

CHOUDHURY AND MOHANRAM: RELIABILITY ANALYSIS OF LOGIC CIRCUITS 405

reliability analysis algorithm provides a closed-form expression
for reliability using the observabilities of the gates, and is
accurate when single gate failures are dominant. The single-
pass reliability analysis algorithm is based on a single topo-
logical walk through the circuit to compute the reliability of
the circuit, and is accurate even for multiple gate failures. The
maximum-k gate failure reliability analysis algorithm allows an
upper limit, k, on the number of simultaneous gate failures in a
circuit. An efficient sampling technique is proposed to generate
a set of ≤ k failed gates, and single-pass reliability analysis is
used to evaluate the effect of these failed gates at the outputs.
The three algorithms have potential applications to reliability
analysis of failures arising due to a broad range of mechanisms
including single-event effects, process variations, and reliability
degradation due to aging.

REFERENCES

[1] R. W. Keyes, “Fundamental limits of silicon technology,” Proc. IEEE,
vol. 89, no. 3, pp. 227–239, Mar. 2001.

[2] J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on silicon nanoelectronics
for terascale integration,” Science, vol. 293, no. 5537, pp. 2044–2049,
Sep. 2001.

[3] G. Bourianoff, “The future of nanocomputing,” Computer, vol. 36, no. 8,
pp. 44–53, Aug. 2003.

[4] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, “Limits
to binary logic switch scaling—A Gedanken model,” Proc. IEEE, vol. 91,
no. 11, pp. 1934–1939, Nov. 2003.

[5] M. A. Breuer, S. K. Gupta, and T. M. Mak, “Defect and error tolerance
in the presence of massive numbers of defects,” IEEE Des. Test Comput.,
vol. 21, no. 3, pp. 216–227, May/Jun. 2004.

[6] J. von Neumann, “Probabilistic logics and the synthesis of reli-
able organisms from unreliable components,” in Automata Studies,
C. E. Shannon and J. McCarthy, Eds. Princeton, NJ: Princeton Univ.
Press, 1956, pp. 43–98.

[7] A. Sadek, K. Nikoliæ, and M. Forshaw, “Parallel information and com-
putation with restitution for noise-tolerant nanoscale logic networks,”
Nanotechnology, vol. 15, no. 1, pp. 192–210, Jan. 2004.

[8] S. Krishnaswamy, G. Viamontes, I. Markov, and J. Hayes, “Accurate re-
liability evaluation and enhancement via probabilistic transfer matrices,”
in Proc. Des. Autom. Test Eur., 2005, pp. 282–287.

[9] T. Rejimon and S. Bhanja, “Scalable probabilistic computing models
using Bayesian networks,” in Proc. Int. Midwest Symp. Circuits Syst.,
2005, pp. 712–715.

[10] I. Bahar, J. L. Mundy, and J. Chen, “A probabilistic-based design method-
ology for nanoscale computation,” in Proc. Int. Conf. Comput.-Aided
Des., 2003, pp. 480–486.

[11] D. Bhaduri and S. Shukla, “Nanolab: A tool for evaluating reliability
of defect-tolerant nano architectures,” in Proc. Annu. Symp. VLSI, 2004,
pp. 25–31.

[12] B. Zhang, W.-S. Wang, and M. Orshansky, “FASER: Fast analysis of soft
error susceptibility for cell-based designs,” in Proc. Int. Symp. Quality
Electron. Des., 2006, pp. 755–760.

[13] M. Zhang and N. R. Shanbhag, “A soft error rate analysis (SERA) method-
ology,” in Proc. Int. Conf. Comput.-Aided Des., 2004, pp. 111–118.

[14] S. Almukhaizim, Y. Makris, Y.-S. Yang, and A. Veneris, “Seamless inte-
gration of SER in rewiring based design space exploration,” in Proc. Int.
Test Conf., 2006, pp. 1–9.

[15] S. Krishnaswamy, S. Plaza, I. Markov, and J. Hayes, “Enhancing design
robustness with reliability-aware resynthesis and logic simulation,” in
Proc. Int. Conf. Comput.-Aided Des., 2007, pp. 149–154.

[16] M. Choudhury and K. Mohanram, “Approximate logic circuits for low
overhead, non-intrusive concurrent error detection,” in Proc. Des. Autom.
Test Eur., 2008, pp. 903–908.

[17] M. Choudhury and K. Mohanram, “Accurate and scalable
reliability analysis of logic circuits,” in Proc. Des. Autom. Test Eur., 2007,
pp. 1454–1459.

[18] M. Nemani and F. Najm, “Towards a high-level power estimation capa-
bility,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 15,
no. 6, pp. 588–598, Jun. 1996.

[19] M. Damiani and G. De Micheli, “Observability don’t care sets and
Boolean relations,” in Proc. Int. Conf. Comput.-Aided Des., 1990,
pp. 502–505.

[20] T. Larrabee, “Test pattern generation using Boolean satisfiability,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 11, no. 1,
pp. 4–15, Jan. 1992.

[21] S. Ercolani, M. Favalli, M. Damiani, P. Olivo, and B. Ricco, “Estimate
of signal probability in combinational logic networks,” in Proc. Eur. Test
Conf., 1989, pp. 132–138.

[22] G. Fishman, “Monte Carlo: Concepts, algorithms and applications,” in
Springer Series in Operations Research. New York: Springer-Verlag,
1995.

Mihir R. Choudhury (S’06) received the B.Tech.
degree in computer science and engineering from
Indian Institute of Technology, Bombay, India, in
2005 and the M.S. degree in electrical and computer
engineering from Rice University, Houston, TX, in
2008, where he is currently working toward the Ph.D.
degree in computer engineering.

His research interests include logic synthesis, cir-
cuit simulation, and design for reliability in scaled
electronic technologies.

Kartik Mohanram (S’00–M’04) received the
B.Tech. degree in electrical engineering from Indian
Institute of Technology, Bombay, India, in 1998 and
the M.S. and Ph.D. degrees in computer engineering
from University of Texas, Austin, in 2000 and 2003,
respectively.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
Rice University, Houston, TX. His primary research
interests are in computer engineering and systems,
with an emphasis on modeling, simulation, and

computer-aided design for scaled electronic technologies.
Dr. Mohanram is a recipient of the National Science Foundation CAREER

Award, the Association for Computing Machinery/Special Interest Group De-
sign Automation Technical Leadership Award, and the A. Richard Newton
Graduate Scholarship.

Authorized licensed use limited to: Rice University. Downloaded on April 14, 2009 at 14:05 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

