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Abstract

We construct, analyze and solve models of systems where a num-
ber of servers offer services to an incoming stream of demands. Each
server goes through alternating periods of being operative and inoper-

ative. The objective is to evaluate and optimize performance and cost
metrics. A large real-life data set containing information about server
breakdowns is analyzed first. The results indicate that the durations
of the operative periods are not distributed exponentially. However,
hyperexponential distributions are found to be a good fit for the ob-
served data. A model based on these distributions is then formulated,
and is solved exactly using the method of spectral expansion. A simple
approximation which is accurate for heavily loaded systems is also pro-
posed. The results of a number of numerical experiments are reported.

Keywords: Multi-server queues, Breakdowns, Grid computing, Spectral
Expansion.

1 Introduction

Service provisioning systems have been the subject of considerable interest
in recent years. They come in different flavours, and may be described either
in terms of web services, or as computing grids. However, the general idea
is that a (possibly distributed) cluster of computers (to be referred to as
‘servers’) is made available for the execution of tasks submitted by users
through a central dispatcher. In such systems, the quality of service, and
the cost of providing it, is important both to the users and to the provider.
A problem of particular interest is the effect that server breakdowns and
other outages have on the performance of the system. That problem is the
topic of the present paper.
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The starting point of the study is a model where demands, or jobs, arrive
in a Poisson stream into a common queue and are served by a number, N ,
of servers in parallel. Each server goes through alternating periods of being
operative and inoperative, independently of the others; the events causing a
change of server state will be referred to as breakdowns and repairs, although
in practice they may have other causes (e.g., scheduled maintenance, or tasks
of higher priority). A system of this type is illustrated in figure 1.
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Figure 1: A multi-server system with breakdowns and repairs

Among the questions one may wish to ask in this context are:

1. How does the system perform? A common performance measure is
the average response time or, equivalently, the average number of jobs
present.

2. What is the minimum number of servers that would ensure a desired
level of performance?

3. If there is a trade-off between the cost of making jobs wait and that of
providing servers, what is the optimal number of servers that should
be used?

The answers to all those questions depend not only on rates of demand
and service, but also on the nature of the operative and inoperative inter-
vals. Moreover, that ‘nature’ encompasses not only the means, but also
the distributions of those random variables. Exactly how one should model
breakdowns and repairs is a point that has not received much attention
in the literature. There are several papers on the subject of multi-server
queues with service interruptions (e.g., see [1, 2, 5, 7, 9]). However, they
all make the assumption that both the operative and inoperative intervals
are distributed exponentially. The validity of that assumption has not been
investigated.
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The contribution of this paper is two-fold: First, we analyze a large real-
life data set containing information about server breakdowns and repairs;
this data has been collected and made available to us by Sun Microsystems.
The results indicate that the distribution of repair times is reasonably close
to an exponential, but that of the operative intervals is not. A good approx-
imation for the latter is the hyperexponential distribution.

Second, we show how to obtain an exact solution for a model with non-
exponentially distributed operative and/or inoperative intervals. This is
done by reducing the problem to a Markov-modulated queue (with a suit-
ably defined Markovian environment) and then solving it by spectral expan-
sion. The solution can be computationally expensive and prone to numerical
difficulties when the number of servers (and/or the number of phases in the
hyperexponential distributions) is large. In those cases, one can apply a
simple approximation whose accuracy improves when the offered load in-
creases.

The statistical analysis of the Sun data set, including the fitting and
testing of hyperexponential distributions, is described in section 2. The
mathematical model based on these distributions, together with its exact
and approximate solutions, is presented in section 3. Some numerical results
illustrating the effects of different parameters on performance and costs are
described in section 4. Section 5 contains a summary and conclusions, and
mentions an open problem.

2 The data set

The Sun Microsystems data set contains 140,000 rows of data, each row
giving details of a particular event, corresponding to a server breakdown.
Of immediate interest were the fields representing the time a server was
inoperative, referred to as Outage Duration, and the time between a server
breakdown and its next breakdown, referred to as Time Between Events.
The lengths of operative periods can then be calculated as illustrated in
figure 2.

A small proportion of the data set (less than 4%) contained anomalous
entries (Time Between Events was smaller than the Outage Duration). This
data was ignored. Empirical probability density functions (histograms) were
generated for both the operative and inoperative periods, by grouping ob-
served period lengths into appropriate intervals.

Consider the operative periods. If the ith observation interval has a mid-
point xi, and fi of the observed operative periods fall into that interval,
then the corresponding empirical density, di, is obtained by assuming that
the operative periods take value xi with probability pi = fi/n, where n is
the total number of observations; then di = pi/δi, where δi is the length of
the ith interval. A similar procedure is followed for the inoperative periods.
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Figure 2: Alternating Periods of availability and unavailability

The empirical densities of the operative and inoperative periods are
shown in figures 3 and 4, respectively (together with the fitted hypothetical
distributions, to be described below). In each case, the observed range of
values was divided into intervals of equal length. The time unit has been
deliberately omitted, for reasons of confidentiality.

The two empirical densities were used to derive estimates for the mo-
ments of the corresponding distributions. The kth estimated moment, M̃k,
is calculated as

M̃k =
∑

xk
i pi ; k = 1, 2, . . . , (1)

where the sum extends over all empirical values.
The estimated variance, Ṽ , and coefficient of variation, C̃2, are given by

Ṽ = M̃2 − M̃2
1 ; C̃2 =

M̃2

M̃2
1

− 1 . (2)

From the empirical densities one can also obtain the empirical cumulative
distribution functions,

F̃ (xi) =
i
∑

j=1

pj . (3)

The null hypothesis that an empirical cumulative distribution function,
F̃ (x), is consistent with a given hypothetical one, F (x), can be tested by
means of the Kolmogorov-Smirnov goodness-of-fit test, [3]. The hypothesis
is accepted if the value of the statistic D, calculated as

D = max
xi

∣

∣

∣F (xi) − F̃ (xi)
∣

∣

∣ , (4)
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is sufficiently small, for a given level of significance; otherwise it is rejected
(the higher the level of significance, the more difficult it is to pass the test).

On the basis of the Sun data set, the hypothesis that the server operative
periods are distributed exponentially with a mean obtained from the sam-
ple, is strongly rejected. The calculated value of the Kolmogorov-Smirnov
statistic, using 50 points xi, was D = 0.4742; it would have had to have
been less than 0.19 to pass the test at 5% significance, and less than 0.23 at
1% significance.

The inoperative intervals are more likely to be exponentially distributed:
that hypothesis also fails the Kolmogorov-Smirnov test, but not so badly.
Moreover, we shall see later that an exponential distribution with a slightly
different mean passes the test quite comfortably.

The next task is to find hypothetical distributions that do agree with the
empirical densities for the operative and inoperative periods. An indication
of where to look is provided by the values of the estimated coefficients of
variation, which are both greater than 1 (C̃2 = 4.6 for the operative periods).
This suggests that the family of hyperexponential distributions, all of which
have coefficients of variation greater than 1, may be a good place to start.
An n-phase hyperexponential density function is a linear combination of n
exponential densities with different parameters; it has the form

f(x) =
n
∑

j=1

αjξje
−ξjx ; αj , ξj > 0 ;

n
∑

j=1

αj = 1 . (5)

Such a density is defined by 2n−1 parameters: n ‘rates’ ξj and n−1 ‘weights’
αj , (the last weight is given by the normalizing condition in (5)). Hence, an
n-phase hyperexponential distribution is completely determined by its first
2n − 1 moments. Those moments are expressed in terms of the parameters
as follows:

Mk =
n
∑

j=1

k!αj

ξk
j

; k = 1, 2, . . . 2n − 1 . (6)

Thus, a hyperexponential distribution can be fitted to a given empirical
density by first choosing the number of phases, n, and then determining the
parameters αj and ξj so that

Mk = M̃k ; k = 1, 2, . . . 2n − 1 . (7)

The above procedure was carried out for the operative periods, with
n = 3. The empirical density provided the first 5 estimated moments,
M̃1, . . . , M̃5. However, it turned out that the task of solving (7) is compu-
tationally difficult, because those equations are highly non-linear. Iterative
methods such as Newton or Gauss-Seidel [8] failed to converge. Instead, the
weights αj were eliminated explicitly from the first two equations in (7), and
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a brute force search was used to find the rates ξj that minimize

min
ξ1,ξ2,ξ3

5
∑

k=3

|Mk − M̃k| . (8)

It was observed that two of the rates thus calculated were almost equal.
In other words, a 2-phase hyperexponential distribution fits the data as well
as a 3-phase one (re-running the Gauss-Seidel iterations for n = 2 resulted
in convergence).

The 2-phase hyperexponential distribution that provides the best fit to
the empirical density has parameters α1 = 0.7246, α2 = 0.2754, ξ1 = 0.1663
and ξ2 = 0.0091. That is, approximately 72% of the operative periods are
distributed exponentially with mean 6, and 28% of them are distributed
exponentially with mean 110. That density is shown together with the
empirical one in figure 3. It passes the Kolmogorov-Smirnov goodness-of-fit
test at level of significance 5%, and also at 10% (the calculated statistic with
50 points xi has value D = 0.1412, whereas the 5% and 10% critical values
are 0.19 and 0.17 respectively).
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Figure 3: Densities of operative periods (0 − 250)

Similarly, for the inoperative periods, a best-fit 2-phase hyperexponential
distribution was found with weights β1 = 0.9303 and β2 = 0.0697, and
rates η1 = 25.0043 and η2 = 1.6346. This represents a mixture where
approximately 93% of the inoperative periods are distributed exponentially
with mean 0.04 and 7% are distributed exponentially with mean 0.61. The
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fitted density, together with the empirical one, is shown in figure 4. It
passes the Kolmogorov-Smirnov test at both the 5% and the 10% level of
significance (the calculated statistic with 40 points xi is D = 0.1832; the 5%
and 10% critical values are 0.21 and 0.19 respectively).

In view of the fact that the second component of the fitted hyperexponen-
tial distribution contributes very little to the mixture, it is not unreasonable
to model the inoperative periods as being distributed exponentially. Indeed,
the first component on its own, i.e. the exponential distribution with mean
0.04, passes the Kolmogorov-Smirnov test at level 5% (fails, but not badly,
at 10%).
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Figure 4: Densities of Inoperative periods (0 − 1.2)

3 The model and its solution

The preceding section offers evidence that, in a realistic model of a multi-
server system with breakdowns and repairs, it is appropriate to assume that
the distribution of the operative periods is hyperexponential, with n phases
and suitably chosen weight and rate parameters αj and ξj (j = 1, 2, . . . , n).
Similarly, the inoperative periods can be assumed to have a hyperexponential
distribution with m phases and weight and rate parameters βk and ηk (k =
1, 2, . . . ,m).

Assume further that jobs arrive according to a Poisson process with rate
λ, and their required service times are distributed exponentially with mean
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1/µ. The queue is unbounded. All arrival, service, breakdown and repair
events are mutually independent. An operative server cannot be idle if there
are jobs waiting to be served. A job whose service is interrupted by a server
breakdown is returned to the front of the queue. When an operative server
becomes available, the service is resumed from the point of interruption,
without any switching overheads.

The above assumptions ensure that the system is modelled by a Markov
process whose state at any moment in time is described by a triple S =
(X,Y, Z). Here, X = (x1, x2, . . . , xn) is a vector whose jth element, xj,
indicates how many servers are in phase j of an operative period; the number
of operative servers is x = x1 + x2 + . . .+ xn. Similarly, Y is a vector whose
kth element, yk, indicates how many servers are in phase k of an inoperative
period; the number of inoperative servers is y = y1 + y2 + . . . + ym. Finally,
Z is the number of jobs present. The valid states must of course satisfy
x + y = N , where N is the total number of servers.

The instantaneous transition rates from state S = (X,Y, Z) to state
S′ = (X′,Y′, Z ′) are equal to

r(S, S′) =



























λ if Z ′ = Z + 1
min(Z, x)µ if Z ′ = Z − 1
xjξjβk if x′

j = xj − 1, y′k = yk + 1

ykηkαj if x′

j = xj + 1, y′k = yk − 1

0 otherwise

, (9)

where all state variables that have not been mentioned have the same values
in S and S′.

The stability condition for this queue has a simple form. Denote the
average lengths of the operative and inoperative periods by 1/ξ and 1/η,
respectively. They are given by

1

ξ
=

n
∑

j=1

αj

ξj

;
1

η
=

m
∑

k=1

βk

ηk

. (10)

The long-term fraction of time that a given server is operative is equal to
η/(ξ + η). Hence, the steady state average number of operative servers is
Nη/(ξ + η); this is independent of the queue of jobs. That queue is stable
iff the offered load is less then the average number of operative servers, i.e.

λ

µ
<

Nη

ξ + η
. (11)

Note that this condition depends only on the averages of the operative and
inoperative periods; not on their distribution. However, the queue size dis-
tribution, and hence the measures of performance, depend very much on
the distributions of operative and inoperative periods. Computing those
performance measures is our next task.
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3.1 Spectral expansion solution

The model defined here is a special case of a Markov-modulated queue, i.e.,
a queue whose arrival and/or service parameters depend on the state of
a Markovian environment. In our case, the state of the environment is
described by the vectors X and Y, specifying the numbers of servers in each
of the possible operative/inoperative states. The environment affects the
queue via the number of operative servers, which determines the departure
rate (second line in the right-hand side of (9)).

Markov-modulated queues can be solved by the method of ‘Spectral
Expansion’ (e.g., see [6]).

The number, s, of different environment states, is equal to the number of
ways that the integer N can be partitioned into a sum of n+m components.
That number is

s =

(

N + n + m − 1
n + m − 1

)

. (12)

One can therefore enumerate the states of the environment using a single
integer, i, called ‘operational mode’: i = 0, 1, . . . , s − 1. For example, in a
system where N = 2, n = 2 and m = 1, the operational mode i may take 6
different values:

i=0: 2 inoperative servers
i=1: 1 operative in phase 1 and 1 inoperative
i=2: 1 operative in phase 2 and 1 inoperative
i=3: 2 operative in phase 1
i=4: 1 operative in phase 1 and 1 operative in phase 2
i=5: 2 operative in phase 2

The system is then said to be in state (i, j) if the operational mode is i
and there are j jobs present (i = 0, 1, . . . , s−1; j = 0, 1, . . .). The transition
rates (9) can be expressed in terms of the following s × s matrices:

(a) Matrix A contains transition rates that change the operative mode
but not the number of jobs: from state (i, j) to state (k, j) (0 ≤ i, k < s, i 6=
k). The main diagonal of A is zero by definition. In the above example,
with s = 6, the matrix A has the form

A =



















0 2ηα1 2ηα2 0 0 0
ξ1 0 0 ηα1 ηα2 0
ξ2 0 0 0 ηα1 ηα2

0 2ξ1 0 0 0 0
0 ξ2 ξ1 0 0 0
0 0 2ξ2 0 0 0



















(b) Matrix B contains transitions that increase the number of jobs in
the system by 1: from state (i, j) to state (k, j + 1). Since in our model
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arrivals do not change the operational mode, B is diagonal:

B = λI ,

where I is the identity matrix of order s.
(c) Matrices Cj contain transitions that decrease the number of jobs in

the system by 1: from state (i, j) to state (k, j − 1). Since departures do
not change the operational mode, Cj is diagonal. For the same example, Cj

has the form

Cj =



















µ0,j

µ1,j

µ1,j

µ2,j

µ2,j

µ2,j



















where µi,j = min(i, j)µ; Note that these matrices depend on j if j < N , but
cease to do so when j ≥ N ; then the index j may be dropped and we can
write Cj = C. Also, C0 = 0 by definition.

Let pi,j be the steady state probability that the system is in state (i, j).
Define also the row vectors of probabilities corresponding to states with j
jobs in the system:

vj = (p0,j, p1,j , . . . , ps−1,j) ; j = 0, 1, . . . . (13)

Then, the balance equations for the equilibrium probabilities can be written
as:

vj [D
A + B + Cj ] = vj−1B + vjA + vj+1Cj+1 , j = 0, 1, . . . , (14)

where DA is the diagonal matrix whose i th diagonal element is equal to the
i th row sum of A.

When j > N , the matrices in equations (14) do not depend on j. The
equations can be re-written in the form of a homogeneous vector difference
equation of order 2:

vjQ0 + vj+1Q1 + vj+2Q2 = 0 ; j = N,N + 1, . . . , (15)

where Q0 = B, Q1 = A−DA−B−C and Q2 = C. Associated with equation
(15) is the so-called ‘characteristic matrix polynomial’, Q(z), defined as

Q(z) = Q0 + Q1z + Q2z
2 . (16)

Let zk be the ‘generalized eigenvalues’, of Q(z) in the interior of the unit
disk, and d be their number. Denote by uk the corresponding ‘generalized
left eigenvectors’. These eigenvalues and eigenvectors satisfy

det[Q(zk)] = 0 ; |zk| < 1 ; k = 1, 2, . . . , d , (17)
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where det[Q(z)] is the determinant of Q(z). Also,

ukQ(zk) = 0 ; k = 1, 2, . . . , d . (18)

In what follows, the qualification generalized will be omitted.
The theory of spectral expansion shows that, when the queue is ergodic,

the number of eigenvalues in the interior of the unit disk is equal to the
number of states of the Markovian environment. In our case, d = s. More-
over, experience indicates that they are simple. Then, the the solution of
(15) has the form

vj =
s
∑

k=1

γkukz
j
k ; j = N,N + 1, . . . , (19)

where γ1, . . ., γs are some (possibly complex) constants. Those coeffi-
cients, and the ‘boundary’ probabilities, pi,j, for j < N , are determined
from the balance equations (14), for j = 0, 1, . . . , N . This is a set of
(N + 1)s linear equations with Ns unknown probabilities (the vectors vj

for j = 0, 1, . . . , N − 1), plus the s constants γk. However, only (N +1)s− 1
of these equations are linearly independent, since the generator matrix of the
Markov process is singular. On the other hand, an additional independent
equation is provided by the requirement that all probabilities must sum up
to 1:

∞
∑

j=0

(vj · 1) = 1 , (20)

where 1 is a column vector with s elements, all of which are equal to 1.

3.2 A simple approximation

The exact solution is computationally intensive, and for systems with many
operational modes (large number of servers and/or large number of phases
in the hyperexponential distributions), that solution may be intractable or
prone to numerical problems. In that case, one may accept an approximate
solution which is numerically robust and very simple to implement [4].

The approximation consists of discarding all terms in the spectral ex-
pansion solution (19), except the one corresponding to the eigenvalue with
the largest modulus, zs (which is always real and positive). That amounts
to assuming that the queue size is distributed geometrically with parameter
zs, and is independent of the operational mode. The approximate solution
has the form

vj =
us

(us · 1)
(1 − zs)z

j
s ; j = 0, 1, . . . . (21)

It requires the computation of only one eigenvalue and its corresponding left
eigenvector.

It has been shown (see [4]) that the geometric approximation is asymp-
totically exact when the system is heavily loaded.
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4 Numerical results

The solution described in the previous section yields performance metrics
which may be used to answer the questions raised in the Introduction. In
particular, we can compute the average number of jobs present in the system,
L, and hence the average response time, W = L/λ (by Little’s theorem).
Moreover, if it costs c1 per unit time to hold a job in the system, and c2 per
unit time to provide a server, then the steady state total cost, C, associated
with hosting a service cluster may be expressed as

C = c1L + c2N . (22)

Such a cost function implies that there is a trade-off between the ‘user’
costs (measured by c1L), which decrease with N , and the ‘provider’ costs
(measured by c2N), which increase with N . It can be expected that, for
each set of parameters, there will be an optimal number of serves.

Several numerical experiments were carried out in the context of a system
where the operative periods have a 2-phase hyperexponential distribution,
while the inoperative periods are distributed exponentially (i.e., n = 2,
m = 1). That is, the queue is modulated by an environment which, when
there are N servers, has s = (N + 2)(N + 1)/2 operational modes. In all
cases, the average required service time is 1/µ = 1.

In the first experiment, the parameters of the operative and inoper-
ative periods are fixed as for the fitted distributions (α1 = 0.7246, ξ1 =
0.1663, α2 = 0.2754, ξ2 = 0.0091, η = 25), and N is varied.

Figure 5 shows how the cost function (22) changes with N , for three
different values of the arrival rate. The values of the cost coefficients, c1 =
4, c2 = 1, reflect a situation where waiting is quite strongly discouraged.
As expected, for each λ there is an optimal value of N that minimizes C.
Moreover, the heavier the load, the larger the optimal N (the latter is 11
for λ = 7, 12 for λ = 8 and 13 for λ = 8.5).

The next experiment aims to evaluate the effect of operative period
variability on performance. The average length of the operative period,
1/ξ = α1/ξ1 +α2/ξ2, is kept fixed at 34.62, but the coefficient of variation is
varied by changing α1, α2 and ξ1 (the operative periods in phase 1 become
larger and less likely). In figure 6, L is plotted against C2 for two different
arrival rates, λ. The average inoperative period is fixed at 1/η = 5. The
value C2 = 1 corresponds to the exponential distribution. The first point
on each curve, where C2 = 0 (i.e., constant operative periods) was obtained
by simulation.

In all cases, the average queue size grows with the coefficient of vari-
ation. The effect is weak when the system is lightly loaded, but becomes
more pronounced as the load increases. At heavy loads, an assumption of
exponentially distributed operative periods can seriously underestimate the
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Figure 5: Cost as a function of N

α1 = 0.7246, ξ1 = 0.1663, ξ2 = 0.0091, η = 25, c1 = 4, c2 = 1

average queue size and hence the number of servers that are required in
order to ensure a target quality of service.

A similar effect is displayed in figure 7, where the distribution of the op-
erative periods is kept fixed, while the availability of the servers is reduced
by increasing the average inoperative period. The figure shows the average
queue sizes under exponentially and hyperexponentially distributed oper-
ative periods with the same mean. The predictions corresponding to the
exponential distribution are seen to become more and more over-optimistic
as the average repair time increases.

The accuracy of the geometric approximation (21) is illustrated in figure
8. The average queue size is plotted against the arrival rate, for a system
with 10 servers; the other parameters are the same as in figure 5. The figure
confirms the theory that as the load increases, the approximation becomes
more accurate.

The last experiment demonstrates how the model and its solution can be
used to answer questions of the type “what is the minimum number of servers
that would ensure a certain level of performance?”. In figure 9, the average
response is plotted against the number of servers. The characteristics of
the operative and inoperative periods are the same as in figure 5. Both
the exact and the approximate solutions were evaluated. As an example of
an application of such a figure, suppose that the objective was to ensure
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that the average response time does not exceed 1.5. The results would then
indicate that at least 9 servers should be deployed. On this occasion the
approximate solution underestimates the average response times; in other
cases it overestimates them.

When N becomes large (greater than about 24), the exact solution begins
to warn of possible numerical problems due to ill-conditioned matrices. The
approximation does not display such problems.

5 Conclusions

An attempt has been made to improve the realism of models used to eval-
uate and optimize multi-server systems subject to breakdowns and repairs.
Statistical analysis of a large volume of data concerning real servers has
shown that their operative periods are not distributed exponentially, but
that a good fit can be obtained with a hyperexponential distribution. The
inoperative periods may reasonably be assumed to have an exponential dis-
tribution, although a hyperexponential distribution would be more accurate
for them too.

A model with hyperexponentially distributed operative and inoperative
periods has been formulated and solved exactly and approximately. These
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solutions have been used in numerical experiments, addressing a number of
cost and quality of service problems.

An open problem in this area concerns the distribution of response times.
The solutions presented here can be used to determine the distribution of
the queue size, hence the average queue size and the average response time.
However, they do not provide the distribution (e.g., the 90% percentile) of
the response time. That would be an interesting topic for future research.
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