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Abstract—A limited energy budget is a major obstacle to
the practical, wide deployment of sensor networks and hence
necessitates the judicious optimization of available resources. In
this paper, joint optimization of sensing and communication re-
sources to minimize total energy spent within a sensor network is
considered. A particular sensor network model with one Gaussian
source observed by many sensors, subject to additive independent
Gaussian observation noise, is examined. Sensors communicate
with the receiver over an additive Gaussian multiple access
channel. The aim of the receiver is to reconstruct the underlying
source with minimum mean squared error. The fundamental
tradeoff between communication and sensing over this sensor
network model is characterized. Under symmetric conditions, for
a single sensor, power is shared equally between communication
and sensing. As the number of sensors increases, the sensing
error dominates the overall error expression, hence sensing takes
almost all power. The optimal power scheduling among sensors
in the asymmetric case is determined, and it is shown that
the power allocation schedule admits a simple decentralized
implementation. Numerical results show that joint optimization
of communication and sensing power yields significant power
savings compared to the conventional approach of optimization
of only communication power allocation.

Index Terms—joint sensing and transmission, sensor networks,
power allocation, underwater communications

I. INTRODUCTION

In this paper, we study optimal power allocation strategies
within a sensor network where each sensor can adjust its
sensing and transmission power on the fly, during the sensing
and transmission stage. Such highly adaptive sensor networks
are particularly useful for certain types of sensor networks
such as underwater sensor networks. In such networks, the cost
of communication and sensing can be comparable, with both
being expensive, see e.g. [1], [2] and the references therein.

Although sensing is a measurable part of total power budget,
sensing power optimization was only very recently considered,
partly because fixed sensing strategies (given the network
conditions) were assumed in most prior work, see eg. [3]–
[12]. In this paper, we consider the fundamental problem
of joint sensing and communication, via ”active sensing”.
Our problem constitutes an instance of a class of problems
known as active classification problems, where the goal is
to efficiently estimate an unknown phenomenon of interest
by exploiting different sensing modalities (e.g., sensor type,
number of samples, location), see eg. [13]–[17] and the
references therein.

In this paper, we study the joint optimization of sensing
and communication power allocation over a sensor network.
We focus on a particular sensor network model which involves
a single Gaussian source observed by many sensors, subject
to additive independent Gaussian observation noise. Sensors
communicate with the receiver over an additive Gaussian
multiple access channel. The aim of the receiver is to recon-
struct the underlying source with minimum mean squared error
(MSE). We consider a particular sensing model where sensing
power acts as effective power over a Gaussian sensing test
channel. We limit the communication strategies to amplify-
and forward, motivated by the fact that this zero-delay scheme
is indeed optimal for the symmetric case, among all encoding
schemes with arbitrary delay [18]. Optimal communication
power allocation strategies for this setting was analyzed in
several recent work [4], [11], [12], [19].

The rest of the paper is organized as follows. In Section
II, we describe the problem setting. In Section III, we present
our results pertaining to the symmetric sensor network setting.
We study optimal power assignment for an asymmetric sensor
network in Section IV. In Section V, we demonstrate the
effectiveness of optimization by comparative results. Finally,
in Section VI, we discuss future directions.

II. PROBLEM DEFINITION

Let E(·), R and R+ denote the expectation operator, and the
sets of real numbers and positive real numbers respectively.
Gaussian distribution with mean µ and variance σ2 is denoted
as N (µ, σ2). Let (x)+ denote max(0, x). In this paper, we
focus on scalar, Gaussian sources and additive white Gaus-
sian noise. Communication policies are limited to zero-delay,
amplify-forward schemes.

A. Sensing Model

The single sensor model is depicted in Figure 1. The source
{S(i)} is a sequence of i.i.d. real valued Gaussian random
variables with zero mean and variance σ2

S .The sensor has
a total power budget P to be allocated across sensing and
communication tasks, denoted by PS and PT respectively
(P = PS + PT ). The greater the power allowed for sensing,
the better the ability of the sensor to estimate the source.
To facilitate the computation, we model this improvement
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Fig. 1. Point-to-point (single sensor) setting

equivalent to the power for transmission of a source with i.i.d.
sensing noise W (i) ∼ N (0, σ2

W ), i.e., the sensor receives

U(i) =

√
PS
σ2
S

S(i) +W (i). (1)

Note that the choice of sensing model determines the optimal
power allocation. We focus on this Gaussian test channel
approach in modeling the relationship between sensing power
and the associated mean squared error. Clearly, the sensor has
no control over the source signal, however our model captures
sensing capability clearly.

B. Sensor Network

The sensor network of interest is illustrated in Figure 2.
Suppose that there are M sensors each making observations
on a common unknown random, memoryless scalar source S.
The underlying source {S(i)} is a sequence of i.i.d. real valued
Gaussian random variables with zero mean and variance σ2

S .
Sensor m ∈ [1 :M] observes a sequence {Um(i)} defined as

Um(i) =

√
PSm

(i)

σ2
S

S(i) +Wm(i), (2)

where {Wm(i)} is a sequence of i.i.d. Gaussian random
variables with zero mean and variance σ2

Wm
, independent of

{S(i)} and each other for all m. For notational convenience
in the asymmetric setting (Section IV), we express the sensing
channel with two parameters βm ∈ R+ and hm ∈ R+, where
βm is a given system parameter (sensing scaling coefficient)
and hm is the sensing control parameter, i.e.,

Um(i) = βmhmS(i) +Wm(i), (3)

Sensor m ∈ [1 :M] applies a linear function to Um(i) so as to
generate sequence of channel inputs

Xm(i) =

√
PTm

σ2
Um

Um(i), (4)

where σ2
Um

is the variance of Um(i). Similar to the sensing
case, we represent this with two coefficients for each sensor:
αm ∈ R+ representing the given channel parameter and gm ∈
R+ is the communication parameter, i.e.,

Xm(i) = gmUm(i), (5)

and the channel output is then given as

Y (i) =Z(i) +
M∑
m=1

αmXm(i), (6)

=Z(i)+
M∑
m=1

(αmgmhmβmS(i)+αmgmWm(i)) , (7)

where {Z(i)} is a sequence of i.i.d. Gaussian random variables
of zero mean and variance σ2

Z , independent of {S(i)} and
{Wm(i)}. The receiver applies a linear estimator to the
received sequence {Y (i)} to minimize the cost, which is
measured as the MSE between the underlying source S and
the estimate at the receiver Ŝ:

J(g,h) = E
{[
S(i)− Ŝ(i)

]2}
. (8)

where g = [g1, . . . gM ] and h = [h1, . . . , hM ]. Throughout
this paper, we drop the time index i for notational convenience
since sources and channels are memoryless, and transmission
mappings are zero-delay. Recall that βm is the sensing co-
efficient and αm is the channel gain. The sensors have at
their disposal the ability to adapt hm (sensing control) and
gm transmit power control to minimize J(g,h) subject to the
total power constraint.

III. SYMMETRIC SETTING

In this section, we analyze the effect of the number of
sensors on the optimal power allocation between sensing and
communication. To facilitate the analysis, we assume that
αm = βm = 1 and σ2

Wm
= σ2

W , ∀m and each sensor has
identical power limit P . The following theorem presents the
optimal power allocation between the sensing power PS and
PT , where PS + PT = P .

Theorem 1. The optimal sensing power, P ∗S is:

P ∗S=

P/2 if σ2
Z=Mσ2

W

MPσ2
W+σ2

Wσ2
Z−
√
σ2
Wσ2

Z(P+σ2
W )(MP+σ2

Z)

Mσ2
W−σ2

Z
o.w. .

(9)

The proof directly follows from standard estimation theo-
retic principles and it is omitted here. In the following, we
present two results which directly follow from Theorem 1.
For simplicity, in the following we assume that σ2

W = σ2
Z .

Corollary 1. For a single sensor, i.e., the point to point setting,
P ∗S = P ∗T = P

2 .

Corollary 2. P ∗S is monotonically increasing function of M .
As M →∞, PS → P and hence PT → 0.

Remark 1. Although it might seem surprising that asymp-
totically, sensing takes all allocated power, this observation
has an intuitive explanation. As M →∞, the communication
channel approaches a noiseless channel due to the fact that

we have Z +
∞∑
m=1

(
PS

σ2
S
S +Wm

)
at the decoder, and SNR

of this channel is unbounded, provided that PS is constant.
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Fig. 2. Gaussian sensor network

That is we have infinite diversity on the observation of the
common source. While the effective source variance increases
with M2 the noise variance increases only with M . Hence,
the communication error vanishes asymptotically, irrespective
of the communication power, and all power is allocated to
sensing.

IV. ASYMMETRIC SETTING

We next consider the more practical, ”asymmetric” setting
of the sensor network, where the sensors minimize (8) sub-
ject to a total power constraint, by adapting gm and hm.
In this section, without loss of generality we assume that
σ2
S = σ2

Wm
= σ2

Z = 1, ∀m. The following theorem presents
our main result that pertains to this setting:

Theorem 2. The optimal sensing and coding coefficients for
sensor m are:

gm =
1

βm

√√√√( λ2αmβm

2
√
1 + λ1α2

m

− 1

)+

, (10)

and

hm = gm
√
1 + λ1α2

m. (11)

Proof. Note that

E{SY } =
M∑
m=1

hmβmgmαm, (12)

and

E{Y 2} = 1 +

(
M∑
m=1

hmβmgmαm

)2

+
M∑
m=1

α2
mg

2
m. (13)

The distortion is (observing that σ2
S = 1):

D =1− E{SY }
E{Y 2} , (14)

=1−

(
M∑
m=1

hmβmgmαm

)2

1 +

(
M∑
m=1

hmβmgmαm

)2

+
M∑
m=1

α2
mg

2
m

, (15)

=

1 +
M∑
m=1

α2
mg

2
m

1 +
M∑
m=1

α2
mg

2
m +

(
M∑
m=1

hmβmgmαm

)2 . (16)

Note that this problem is not convex in gm, hm. By changing
the variables, we can convert this problem into a convex form
which is solvable in closed form. First, instead of minimizing
the distortion with a power constraint, we can equivalently
minimize the power with a distortion constraint. This a well
known method in convex optimization and it is known that
there is no duality gap since the distortion is a convex function
of power [20]. The convexity of the distortion with respect
to total power can be intuitively understood from the fact
that sensors can use time-sharing among different powers to
achieve the convex hull of total power-distortion curve. The
modified problem is to minimize:

M∑
m=1

(1 + β2
mh

2
m)g2m + h2m, (17)

subject to

1 +
M∑
m=1

α2
mg

2
m

1 +
M∑
m=1

α2
mg

2
m +

(
M∑
m=1

hmβmgmαm

)2 ≤ D. (18)
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Note that

1

D
= 1 +

(
M∑
m=1

hmβmgmαm)2

1 +
M∑
m=1

α2
mg

2
m

(19)

Next, we introduce a slack variable

r =
M∑
m=1

αmβmgmhm. (20)

The optimization problem is to minimize
M∑
m=1

(1 + β2
mh

2
m)g2m + h2m, (21)

subject to

1 +
M∑
m=1

α2
mg

2
m ≤ (D−1 − 1)−1r2, (22)

and (20). This problem is convex in the variables gm, hm and
r. Hence, we construct the Lagrangian cost as

J=
M∑
m=1

(
1+β2

mh
2
m

)
g2m+h2m+λ1

(
1+

M∑
m=1

α2
mg

2
m−

r2

(D−1−1)

)

+ λ2

(
r −

M∑
m=1

αmβmgmhm

)
, (23)

where λ1 ∈ R+ and λ2 ∈ R. Next, we apply the KKT
optimality conditions:

∂J

∂hm
= 2hmg

2
mβ

2
m + 2hm − λ2αmβmgm = 0, (24)

∂J

∂gm
=2gm(1+β2

mh
2
m)+2λ1gmα

2
m−λ2αmβmhm=0, (25)

∂J

∂r
= −2λ1(D−1 − 1)−1r + λ2 = 0, (26)

and we have (20) and

1 +
M∑
m=1

α2
mg

2
m =

(
D−1 − 1

)−1
r2. (27)

From (24), we obtain hm in terms of the unknown gm as

hm =
λ2αmβmgm
2(1 + β2

mg
2
m)
, (28)

and similarly, from (25), we have

gm =
λ2αmβmhm

2 (1 + β2
mh

2
m + λ1α2

m)
. (29)

Plugging (29) in (28), we obtain (24) and (25).

hm = gm
√

1 + λ1α2
m, (30)

and

g2m =
1

β2
m

(
λ2αmβm

2
√
1 + λ1α2

m

− 1

)+

. (31)

Remark 2. The optimal coefficients can be computed for
each sensor in a distributed manner. The central agent can
compute the optimal values of λ1 and λ2 and then broadcast
this information to all sensors. Next, each sensor can compute
its own sensing and communication power allocation based
on local parameters αm and βm and the broadcasted global
parameters λ1 and λ2.

Remark 3. The optimal coefficients for two special cases are
of interest: a) the communication variables gm are fixed and
the MSE is minimized only over the sensing variables hm; b)
the sensing coefficients hm are fixed and the communication
power allocation is optimized through gm. Solutions to both of
these problems follow simply from the proof of Theorem 2. An
important distinction for joint optimization compared to such
fixed optimization strategies is that joint optimization allows
for shutting off the bad sensors, i.e., the power allocation has
an intuitive waterfilling solution. However, fixed optimization
does not yield such a result, sensing and/or communication
power is allocated to each sensor, irrespective of the sensing
or communication channel qualities, see eg., [4]. The loss due
to not optimizing jointly will be seen in the Numerical Results.

V. NUMERICAL RESULTS

In this section, we present numerical results demonstrat-
ing the effectiveness of joint optimization of sensing and
communication power. We simulate the asymmetric sensor
network with 10 sensors, αm and βm are generated from a
uniform distribution over [0, 5]. To obtain statistically mean-
ingful results, we average the performances over 100 trials.
In Fig. 3, we plot the distortion in MSE versus total power
in dB. We also simulated the performance of optimization of
the communication powers only (denoted as ”Only Comm.
Optimized”), with a fixed randomly chosen sensing power:
we set hm = 1, ∀m optimize gm (see also [4]). As a naive
competitor (denoted as ”Naive”), which can change sensing
and communication power, without optimization, we simulate
the performance of gm = hm = γP, ∀m, where gamma is
adjusted so that the total power constraint is achieved.

Two observations can be made regarding the numerical re-
sults. Firstly, joint optimization of sensing and communication
yields significant power savings for the same MSE, compared
to a naive scheme that changes sensing and communication
power in a simple, non-optimized manner and a scheme
that only optimizes communication power. More importantly,
in the high SNR regime, communication only optimization
converges to a distortion significantly larger than that of the
joint optimization. In that setting, even a naive optimization
strategy performs superior to fixed sensing, communication
only optimization method. This is simply due to the fact that
communication only optimization cannot decrease its sensing
error with increased total power.

VI. DISCUSSION

In this paper, we studied optimal power allocation between
two fundamental tasks of a sensor network: sensing and com-
munication. We showed that in the symmetric setting, allocated
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Fig. 3. Comparative results

sensing power increases with the number of sensors. In the
asymmetric setting, we derived the optimal power allocation
among sensors that minimizes the achieved MSE under a
total power constraint. We also showed that optimal sensing
and communication power can be calculated in a distributed
manner by using local information. Numerical results show
that optimizing sensing and transmit power jointly improves
significantly over conventional strategies. As a future work, we
will extend our analysis to other network topologies, including
orthogonal MAC, and to multidimensional settings.
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