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Abstract—Server virtualization opens up a range of new
possibilities for autonomic datacenter management, through the
availability of new automation mechanisms that can be exploited
to control and monitor tasks running within virtual machines.
This offers not only new and more flexible control to the
operator using a management console, but also more powerful
and flexible autonomic control, through management software
that maintains the system in a desired state in the face of changing
workload and demand. This paper explores in particular the use
of server virtualization technology in the autonomic management
of data centers running a heterogeneous mix of workloads. We
present a system that manages heterogeneous workloads to their
performance goals and demonstrate its effectiveness via real-
system experiments and simulation. We also present some of
the significant challenges to wider usage of virtual servers in
autonomic datacenter management.

I. INTRODUCTION

Many organizations rely on a heterogeneous set of applica-
tions to deliver critical services to their customers and partners.
This set of applications includes web workloads typically
hosted on a collection of clustered application servers and
a back-end tier database. The application mix also includes
non-interactive workloads such as portfolio analysis, document
indexing, and various types of scientific computations. To
efficiently utilize the computing power of their datacenters,
organizations allow these heterogeneous workloads to execute
on the same set of hardware resources and need a resource
management technology to determine the most effective allo-
cation of resources to particular workloads.

A traditional approach to resource management for hetero-
geneous workloads is to configure resource allocation policies
that govern the division of computing power among web
and non-interactive workloads based on temporal or resource
utilization conditions. With a temporal policy, the resource
reservation for web workloads varies between peak and off-
peak hours. Resource utilization policies allow non-interactive
workload to be executed when resource consumption by web
workload falls below a certain threshold. Typically, resource
allocation is performed with a granularity of a full server

machine, as it is difficult to configure and enforce policies that
allow server machines to be shared among workloads. Coarse-
grained resource management based on temporal or resource
utilization policies has previously been automated [1], [2].

Once server machines are assigned to either the web or
the non-interactive workload, existing resource management
policies can be used to manage individual web and non-
interactive applications. In the case of web workloads, these
management techniques involve flow control [3], [4] and dy-
namic application placement [5]. In the case of non-interactive
workloads, the techniques involve job scheduling, which may
be performed based on various existing scheduling disci-
plines [6]. To effectively manage heterogeneous workloads,
we need a solution that combines flow control and dynamic
placement techniques with job scheduling. To the best of our
knowledge, no such solution has been proposed.

We present a system that considerably improves the way
heterogeneous workloads are managed on a set of heteroge-
neous server machines using automation mechanisms provided
by server virtualization technologies. The system introduces
several novel features. First, it allows heterogeneous workloads
to be collocated on any server machine, thus reducing the
granularity of resource allocation. This is an important aspect
for many organizations that rely on a small set of powerful ma-
chines to deliver their services, as it allows for a more effective
resource allocation when any workload requires a fractional
machine allocation to meet its goals. Second, our approach
uses high-level performance goals (as opposed to lower-level
resource requirements) to drive resource allocation. Hence,
unlike previous techniques [7] and [8], which manage virtual
machines according to their defined resource requirements, our
technique provides an application-centric view of the system
in which a virtual machine is only a tool used to achieve
performance objectives. Third, our technique exploits a range
of new automation mechanisms that will also benefit a system
with a homogeneous, particularly non-interactive, workload by
allowing more effective scheduling of jobs.

Integrated automated management of heterogeneous work-



loads is a challenging problem for several reasons. First, per-
formance goals for different workloads tend to be of different
types. For interactive workloads, goals are typically defined
in terms of average or percentile response time or throughput
over a certain time interval, while performance goals for non-
interactive workloads concern the performance of individual
jobs. Second, the time scale of management is different. Due
to the nature of their performance goals and short duration of
individual requests, interactive workloads lend themselves to
automation at short control cycles. Non-interactive workloads
typically require calculation of a schedule for an extended
period of time. Extending the time scale of management
requires long-term forecasting of workload intensity and job
arrivals, which is a difficult if not impossible problem to solve.
Server virtualization helps us avoid this issue by providing
automation mechanisms by which resource allocation may be
continuously adjusted to the changing environment. Third, to
collocate applications on a physical resource, one must know
the applications’ behavior with respect to resource usage and
be able to enforce a particular resource allocation decision.
For web applications, with the help of an L7 gateway, one
can rather easily observe workload characteristics and, taking
advantage of similarity of web requests and their large number,
derive reasonably accurate short-time predictions regarding the
behavior of future requests. Non-interactive jobs do not exhibit
the same self-similarity and abundance properties, hence pre-
dicting their behavior is much harder. Enforcing a resource
allocation decision for web workloads can also be achieved
relatively easily by using flow control mechanisms [3], [4].
Server virtualization gives us similar enforcement mechanisms
for non-interactive applications.

While server virtualization allows us to better manage
workloads to their respective SLA goals, it also introduces
considerable challenges in order to use it effectively. They
concern the configuration and maintenance of virtual images,
infrastructure requirements to make an effective use of the
available automation mechanisms, and the development of al-
gorithmic techniques capable of utilizing the larger number of
degrees of freedom introduced by virtualization technologies.
This paper addresses some of these challenges.

This paper is structured as follows. In Section II we
present the architecture of our resource management system.
In Section IIT we describe some fundamental aspects of virtu-
alization, focussing on those aspects that our system controls.
Section IV presents components of our system that are specific
to managing virtual resources. In Section V we evaluate our
system through experimentation. Related work is discussed in
Section VI. We conclude the paper in Section VII.

II. SYSTEM ARCHITECTURE

Figure 1 shows a simple example of a system we consider
in this paper. The managed system includes a set of hetero-
geneous server machines, referred to henceforth as nodes.
Web applications, which are served by application servers,
are replicated across nodes to form application server clusters.
Requests to these applications arrive at an entry router which

may be either an L4 or L7 gateway that distributes requests
to clustered applications according to a load balancing mech-
anism. Long-running jobs are submitted to the job scheduler,
placed in its queue, and dispatched from the queue based on
the resource allocation decisions of the management system.

Our management architecture takes advantage of an over-
load protection mechanism that can prevent a web application
from utilizing more than the allocated amount of resources.
Such overload protection may be achieved using various
mechanisms including admission control [9], flow control [3],
[4], or OS scheduling techniques [10]. Server virtualization
mechanisms could also be applied to enforce resource alloca-
tion decisions on interactive applications.

In the system considered in this paper, overload protection
for interactive workloads is provided by an L7 request router
which implements a flow control technique. The router classi-
fies incoming requests into flows depending on their target
application and service class, and places them in per-flow
queues. Requests are dispatched from the queues based on
weighted-fair scheduling discipline, which observes a system-
wide concurrency limit. The concurrency limit ensures that all
the flows combined do not use more than their allocated re-
source share. The weights further divide the allocated resource
share among applications and flows.

Both the concurrency limit and scheduling weights are
dynamically adjusted by the flow controller in response to
changing workload intensity and system configuration. The
flow controller builds a model of the system that allows it
to predict the performance of the flow for any choice of
concurrency limit and weights. This model may also be used
to predict workload performance for a particular allocation of
CPU power. In this paper, we use this functionality of the flow
controller to come up with a utility function for each web
application, which gives a measure of application happiness
with a particular allocation of CPU power given its current
workload intensity and performance goal. The flow control
technique implemented by the flow controller and request
router has been introduced in [4] and further enhanced in [11],
and will not be further discussed in this paper.

Long-running jobs are submitted to the system via the
job scheduler, which, unlike traditional schedulers, does not
make job execution and placement decisions. In our system,
the job scheduler only manages dependencies among jobs
and performs resource matchmaking. Once dependencies are
resolved and a set of eligible nodes is determined, jobs are
submitted to the application placement controller (APC).

Each job has an associated performance goal. Currently we
only support completion time goals, but we plan to extend
the system to handle other performance objectives. From this
completion time goal we derive an objective function which is
a function of actual job completion time. When job completes
exactly on schedule, the value of the objective function is zero.
Otherwise, the value increases or decreases linearly depending
on the distance of completion time from the goal.

The job scheduler uses APC as an adviser to where and
when a job should be executed. When APC makes a placement
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Fig. 1.

Management system architecture for heterogeneous workloads. Thin dotted lines indicate request or job paths. Thin solid lines indicate interactions

among management system components. Thick dotted lines show management actions applied to the managed system.

decision, actions pertaining to long-running jobs are returned
to the scheduler and put into effect via its job executor
component. The job executor monitors job status and makes
it available to APC for use in subsequent control cycles.

From the point of view of this work, APC is the most
important component of the system. It provides the decision-
making logic that affects placement of both web and non-
interactive workloads. To learn about jobs in the system and
their current status, APC interacts with the job scheduler via
its job scheduler proxy. The placement optimizer calculates
the placement that maximizes the minimum utility across all
applications. In [5], we have introduced a technique that pro-
vides such dynamic placement for web applications. It is able
to allocate CPU and memory to applications based on their
CPU and memory requirements, where memory requirement
of an application instance is assumed not to depend on the
intensity of workload that reaches the instance. APC used in
this system is a version of the controller presented in [5]
that has been enhanced in several ways. We modified the
algorithm inputs from application CPU demand to a per-
application utility function of allocated CPU speed. Permit-
ting resource requirements to be represented by non-linear
utility functions allows us to better deal with heterogeneous
workloads which may differ in their sensitivity to a particular
resource allocation. The attention to workload sensitivity to
resource allocation is important when system is overloaded and
resource requirements of some applications cannot be satisfied
in full. We also changed the optimization objective from
maximizing the total satisfied CPU demand to maximizing
the minimum utility across all applications, which focuses

the algorithm on ensuring fairness and, in particular, prevents
it from starving some applications. In addition, we have
improved the heuristics used be the algorithm, which resulted
in a significant reduction of its computational complexity.

Since APC is driven by utility functions of allocated CPU
demand and (for non-interactive workloads) we are only given
objective functions of achieved completion times, we need
a way to map completion time into CPU demand, and vice
versa. Recall that for web traffic we already have a similar
mechanism, provided by the flow controller. The required
mapping is very hard to obtain for non-interactive workloads,
because the performance of a given job is not independent of
CPU allocation to other jobs. After all, when not all jobs can
simultaneously run in the system, the completion time of a job
that is waiting in the queue for other jobs to complete before
it may be started depends on how quickly the jobs that were
started ahead of it complete, hence it depends on the CPU
allocation to other jobs. In our system, we have implemented
heuristics that allow us to estimate CPU requirements for long-
running jobs for a given value of utility function. We use
this estimation to obtain a set of data-points from which we
extrapolate the utility function. The utility function allows us
to evaluate a placement of long-running jobs with respect to
how well it is likely to satisfy their SLAs. The process of
calculating the utility function is rather involved, and due to
space limitations it will not be described in this paper.

To manage web and non-interactive workloads, APC relies
on the knowledge of resource consumption by individual
requests and jobs. Our system includes profilers for both
kinds of workloads. The web workload profiler, which was
introduced in [12], obtains profiles for web requests in the



form of the average number of CPU cycles consumed by
requests of a given flow. The job workload profiler, which is a
subject of our ongoing research, obtains profiles for jobs in the
form of the number of CPU cycles required to complete the
job, the number of threads used by the job, and the maximum
CPU speed at which the job may progress.

III. VALUE OF SERVER VIRTUALIZATION

Space does not permit a full discussion of the various types
of virtualization and their relative merits here; the reader
is referred instead to [13], [14]. Instead, we will briefly
enumerate the features of virtualization of which our system
is capable of taking advantage. The terminology here aligns
with that of Xen [15].

e PAUSE When a virtual machine is paused, it does not
receive any processor time, but remains in memory.

e RESUME Resumption is the opposite of pausing—the
virtual machine is once again allocated processor time.

e SUSPEND When a virtual machine is suspended, its
memory image is saved to disk, and it is unloaded.

e RESTORE Restoration is the opposition of suspension—
an image of the virtual machine’s memory is loaded from
disk, and the virtual machine is permitted to run again.

e MIGRATE The virtual machine is first paused, then the
memory image is transferred across the network to a
target node, and the virtual machine is resumed.

e LIVE_MIGRATE A variant of migration in which the
virtual machine is not paused. Instead, the memory image
is transferred over the network whilst running.

e MOVE_AND_RESTORE When a virtual machine has been
suspended, and needs to be restored on a different node,
the saved memory image is moved to the target node, and
the virtu machine is then restored.

e RESOURCE_CONTROL Resource control modifies the
amounts of various resources that a virtual machine can
consume. We consider CPU and memory.

While virtualization can be provided using various technolo-
gies, our system uses Xen as it is capable of providing the wide
variety of controls discussed above—all of these controls are
most directly accessible from a special domain on each node,
labeled domain O.

IV. MANAGING SERVER VIRTUALIZATION

In this section, we discuss how our system makes use of vir-
tualization technologies to manage heterogeneous workloads.
Recall from Section II that, to manage web workloads, our
system relies on an entry gateway that provides flow control
for web requests. The entry gateway provides a type of high-
level virtualization for web requests by dividing CPU capacity
of managed nodes among competing flows. Together with an
overload protection mechanism, the entry gateway facilitates
performance isolation for web applications. Such virtualiza-
tion technology exists in some application server middleware
systems, of which WebSphere Extended Deployment [16] is
the example most familiar to us.

Server virtualization could also be used to provide perfor-
mance isolation for web applications. This would come with
a memory overhead caused by additional copies of the OS
that would have to be present on the node. Hence, we believe
that middeware virtualization technology is a better choice for
managing the performance of web workloads.

Since middeware virtualization technology can only work
for applications whose request-flow it can control, a lower
level mechanism must be used to provide performance isola-
tion for other types of applications. As outlined in the previous
section, server virtualization provides us with powerful mech-
anisms to control resource allocation of non-web applications.

Several server virtualization technologies have been devel-
oped thus far [13] and they all could be used by our system,
although possibly with a limited set automation mechanisms.
Our implementation makes use of Xen [15].

A. VM management

To manage VMs inside a physical Xen-enabled node, we
have implemented a component, called the machine agent
(Figure 2), which resides in domain O so as to have access
to the Xen domain controls. The machine agent provides a
Java-based interface to create and configure a VM image for
a new domain, copy files from domain O to another domain,
start a process in another domain, and to control the mapping
of physical resources to virtual resources. During its life-cycle,
a domain can transition between various states in accordance
with the transitions shown in Figure 3.

start
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process,

stop
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CREATED
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Fig. 3. Life-cycle of a Xen domain.

We use Xen to provide on-line automation for resource
management, hence we want to make management actions
light-weight and efficient. This consideration concerns the
process of creating virtual images, which may be quite time
consuming. We avoid substantial delays, which would oth-
erwise be incurred each time we intend to start a job, by
pre-creating a set of images for use during runtime. The
dispensing of these pre-created images is performed by the
image management subsystem. Images once used to run a
process are scrubbed of that process data and may be reused
by future processes. In our small-scale testing thus far, we
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found it sufficient to pre-create a small number of images,
however, we plan to extend the image management subsystem
to dynamically extend the pool of available images, if needed.

Inside a created image, we can create new processes. This
is done by populating the image with the files necessary to
run that new process. In our system, we assume that the files
required for of all processes that may run on the node are
placed in its domain O in advance. Hence, we only need to
copy them from domain O to the created image. Clearly, there
are mechanisms that would allow us to transfer files from an
external repository to a node where the process is intended to
run, but we have not used them in our prototype.

Before it may be booted, an image must be provided with
configuration files to set up its devices and networking. This
functionality is encapsulated by the configuration manage-
ment subsystem. To assign an IP address and DNS name, a
DHCP server can be used, although in our system we have
implemented a simpler, more restrictive, module that selects
configuration settings from a pool of available values.

An image, once configured, may then be booted. Once in the
running state, it may be suspended or paused. New processes
may be created and run inside it. An image that is either
running or paused may also be resource controlled. Migration
may be used to transfer the image to another node. Since at the
time of writing this paper we do not have the shared storage
infrastructure required to use migration, we have implemented
a suspend-move-and-restore mechanism by which the domain
is suspended on one machine, the checkpoint and image files
are copied to another node, and the domain is restored on the
new host node. This is obviously quite inefficient mechanism,
which nevertheless allows us to study the benefits of migration.

Xen provides resource control mechanisms to manage mem-

ory and CPU usage by its domains. We set memory for a
domain based on configured or profiled memory requirements.
We set CPU allocation for a domain based on the decisions
of APC, which result from its optimization technique. The
CPU allocation to a domain may be lower that the amount
of CPU power actually required by a process running inside
a domain. Both memory and CPU allocations to a domain
may change while the domain is running based on changing
process requirements and decisions of APC.

CPU allocation to domains may be controlled in Xen using
three mechanisms. First, the number of virtual CPUs (vCPUs)
can be selected for any VM. Second, vCPUs may be mapped to
physical CPUs. By ‘pinning’ vCPUs of a domain to different
physical CPUs we can improve the performance of the domain.
Finally, CPU time slices may be configured for each domain.
When all vCPUs of a domain are mapped to different physical
CPUs, allocation of 50 out of 100 time slices to the domain
implies that each vCPU of the domain wil receive 50% of
the physical CPU to which it is mapped. Xen also permits
borrowing, by which CPU slices allocated to a domain that
does not need them can instead be used by other domains.

In a default configuration provided by Xen, each domain
receives the same number of vCPUs as there are physical
CPUs on a machine. Each of those vCPUs will be mapped
to a different physical CPU and receives O time slices with
CPU borrowing turned on. In the process of managing the
system, we modify this allocation inside the virtual-to-physical
resource mapper. When a domain is first started, we allow
Xen to create the default number of vCPUs and map them
to different physical CPUs. We only set the number of time
slices to obtain the CPU allocation requested by placement
controller. While domain is running, we observe its actual



CPU usage. If it turns out that the domain is not able to
utilize all vCPUs it has been given, we can conclude that the
job is not multi-threaded. Hence, to receive its allocated CPU
share, its vCPUs must be appropriately reduced and remapped.
The virtual-to-physical resource mapper must attempt to find
a mapping that provides the domain with the required amount
of CPU power spread across the number of vCPUs that the job
in the domain can use—clearly, this is not always possible.
All the VM actions provided by the machine agent are
asynchronous JMX calls followed by JMX notifications.

B. Job management

To hide the usage of VMs from a user, we have implemented
a higher-layer of abstraction, embedded inside the node agent,
which provides the job management functionality. It provides
operations to start, pause, resume, suspend, restore, and re-
source control a job. To implement these operations, the node
agent interacts with the machine agent in domain O using its
VM management interfaces. When a job is first started, the
node agent creates (or obtains a pre-created) image in which
to run the job. It records the mapping between the job ID and
VM ID. Then it asks the machine agent to copy corresponding
process binaries to the new image and to boot the image. Once
domain is running, the job is started inside it.

Observe that we always place a job in its own domain. This
gives us performance isolation among jobs such that we can
control their individual resource usage, but it comes at the
expense of added memory overhead. We plan to extend our
system such that it allows collocation of multiple jobs inside
a single domain based on some policies.

The node agent process is placed in domain 1, which is
the domain we use for all web applications. There are two
reasons for placing the node agent in a separate domain than
domain 0. First, our application server middleware already
provides a node agent process with all required management
support, thus adding new functionality is a matter of a simple
plugin. Second, domain O is intended to remain small and
light-weight. Hence, we avoid using it to run functionality
that does not directly invoke VM management tools. Like the
machine agent, the node agent exposes its API using JMX.

C. Xen machine organization

In Figure 2 we show the organization of a Xen-enabled
server machine we use in our system. We always run at least
two domains, domain O with the machine agent, and domain 1
with the node agent and all web applications. Since resource
control for web applications is provided by request router and
flow controller, such collocation of web applications does not
affect our ability to provide performance isolation for them.
Domains for jobs are created and started on-demand.

V. EXPERIMENTS AND RESULTS

In this section, we experimentally evaluate our approach us-
ing both real system measurements and a simulation. We have
implemented our system and integrated it with WebSphere
Extended Deployment [16] application server middleware. We

use WebSphere Extended Deployment to provide flow control
for web applications and use Xen virtual machines to provide
performance isolation for non-interactive workloads.

In the experiments, we use a single micro-benchmark
web application that performs some CPU intensive calcula-
tion interleaved with sleep times, which simulate backend
database access or I/O operations. We also use a set of non-
interactive applications, which consists of well known CPU-
intensive benchmarks. In particular, we use BLAST [17],
Lucene [18], ImageMagick [19] and POV-Ray [20] as repre-
sentative applications for bioinformatics, document indexing,
image processing and 3D rendering scenarios respectively.
BLAST (Basic Local Alignment Search Tool) is a set of
similarity search programs designed to explore all of the
available sequence databases for protein or DNA queries.
Apache Lucene is a high-performance, full-featured, open-
source text search engine library written entirely in Java. In
our experiments, we have run the example indexing application
provided with the Lucene library to index a large set of files
previously deployed in the filesystem. POV-ray (Persistence
of Vision Raytracer) is a high-quality free tool for creating
three-dimensional graphics. ImageMagick is a software suite
to create, edit, and compose bitmap images.

In the experiments, we submit six different jobs, whose
properties are shown in Table I. We achieve differentiation
of execution time by choosing different parameters, or by
batching multiple invocations of the same application. All used
applications except BLAST are single-threaded, hence they
can only use one CPU. In addition, Lucene is I/O intensive,
hence it cannot utilize a full speed of a CPU. We assign jobs
to three service classes. Completion time goal for each job is
defines relative to its profiled execution time and is equal to
1.5, 3, and 10 for platinum, gold, and silver class, respectively.

We experiment with our system on a cluster of two physical
machines, xd018 and xd020, each with two 3GHz CPUs and
2GB memory. We used the XenSource-provided Xen 3.0.2
packages for RedHat Enterprise Linux 4.

While testing our system, we determined that the resource
control actions of our version of Xen are rather brittle and
cause various internal failures across the entire Xen machine.
Therefore, in our experiments, we have supressed resource
control actions in the machine agent code.

A. Effectiveness of automation mechanisms

In this section, we study the effectiveness of automation
mechanisms used by our system. We take three different jobs
from our set, JOB1, JOB2, and JOBS, and perform various
automation actions on them while measuring their duration.
We do not measure migration, as we have not set it up in
our system. Instead, we use move-and-restore (as discussed
in Section IV). Clearly, this is quite an inefficient process,
mostly due to the overhead of copying the image. We expect
a dramatically different result once we put live-migration in
place. Clark et al [21] report sub-second application downtime
when live-migration is used.



TABLE I
JOBS USED IN EXPERIMENTS

JOB1 JOB2 JOB3 JOB4 JOB5 JOB6
Job Type BLAST ImageMagick POV-Ray @ BLAST  Lucene  BLAST
Exec. time[min] 15 127 40 8 69 30
Class Bronze Platinum Platinum  Platinum Gold Platinum
Max. speed [CPUs] 2 1 1 2 0.6 2
Memory [MB] 550 750 250 550 350 550

In Table II, the domain creation time includes the time taken
to create the domain metadata, such as configuration files.
Process creation involves copying process files into process
target domain while domain is in running state. Suspend and
restore operations involve creating a checkpoint of domain
memory and saving it to disk, and restoring domain mem-
ory from checkpoint on disk, respectively. The checkpoint
copy operation involves transfering checkpoint file between
machines in the same LAN. The checkpoint file is practically
equal in size to the amount of RAM memory allocated to a
domain. Similarly, time to copy an image is measured between
two machines in LAN. There is a clear relationship between
domain RAM size and its checkpoint copy time, and between
domain image size and image copy time. Both copy image
and copy checkpoint can be avoided when shared storage
is available. Migration time includes suspend, resume, copy
image and copy checkpoint, and could be greatly reduced with
the use of shared storage.

TABLE I
RUNTIME OF VM OPERATIONS FOR VARIOUS CONTAINED JOBS

JOB1 JOB2 JOBS5
Process files:
File number 286 16 2693
Disk space [MB] 614 4 115
File size [MB]:
Image 6900 6900 6900
Checkpoint 550 750 350
Execution times [s]:
Create 3 3 3
Boot 33 33 32
Create process 61 2 79
Suspend 19 21 13
Restore 19 21 14
Copy checkpoint 51 70 35
Copy image 906 904 1000
Migrate 994 1016 1060

B. Managing heterogeneous workloads

In this section we describe an experiment we carry out to
demonstrate the benefits of using server virtualization tech-
nology in the management of heterogeneous workloads. We
deploy StockTrade (a web-based transactional test application)
in domain 1 on two machines xd018 and xd020. We vary
load to StockTrade using a workload generator that allows us to
control the number of client sessions that reach an application.
Initially, we start 55 sesstions and observe that with this load,
response time of StockTrade requests is about 380ms and

approaches response time goal of 500ms, as shown in Figure 4.
At this load intensity, StockTrade consumes about 5/6 of CPU
power available on both machines. Then we submit JOBS (A).
Recall from Table I that JOBS is associated with platinum
service class and therefore has completion time goal equal to
1.5 to its expected execution time. After a delay caused by
the duration placement control cycle (B) and domain starting
time, JOBS is started (C) in domain 2 on xd020 and, in the
absence of any resource control mechanism, allocates it the
entire requested CPU speed, which is equivalent to 0.6 CPU.
As a result of decreased CPU power allocaton to domain 1, on
xd020, the response time for StockTrade increases to 480ms,
but it stays below the goal. A few minutes after submitting
JOB 5, we submit JOB1 (D), whose service class is bronze.
JOB1 has a very relaxed completion time goal but it is very
CPU demanding. Starting it now would take 2CPUs from the
current StockTrade allocation.
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Fig. 4. Response time for StockTrace and job placement on nodes.

At 800s since the begining of the experiment, we reduce
load to StockTrade to 25 concurrent client sessions. When
CPU usage of StockTrade reduces to about 50% of each
machine, the placement controller decides (E) to start JOB1
(F) on xd018. After 1000s, we increase the number of client
sessions back to 55, placement controller suspends JOBI1
(G). Typically, JOB1 will later be resumed when any of the
following conditions occur: (1) JOBS completes, (2) load to
StockTrade is reduced, or (3) JOB1 gets close enough to its
target completion time so as to necessitate its resumption,
even at the expense of worsened performance for StockTrade.



However, the occurrence of the third condition indicates that
the system is under-provisioned, hence SLA violation may not
be avoided. This simple experiment demonstrates that with
the use of server virtualization, our system is able to balance
resource usage between web and non-interactive workloads.

C. Non-interactive workload management

In this paper, we also show the usefulness of server virtual-
ization technology in the management of homogeneous, in this
case non-interactive workloads. Using the same experimental
set-up as in Section V-B, we run a testcase that involves only
long-running jobs shown in Table I. The placement of jobs on
nodes over time is shown in Figure 5.

We start the testcase by submitting JOB1 (A), which is
started on xd020 and takes its entire CPU power. Soon after
JOBI1 is submitted, we submit JOB2 and JOB3 (B), which
both get started on xd018 and each of them is allocated
one CPU on the machine. Ten minutes later, we submit JOB4
(C), which has a very strict completion time requirement. In
order to meet this requirement, APC decides to suspend JOB1
and start JOB4 in its place. Note that if JOB1 was allowed
to complete before JOB4 is allowed to start, JOB4 would
wait 5 min in the queue, hence it would complete no earlier
than 13 min after its submission time, which would exceed
its goal. Instead, JOB4 is started as soon as it arrives and
completes within 10 min, which is within its goal. While JOB4
is running, we submit JOBS5 (D). However, JOBS belongs to
a lower class than any job currently running, and therefore is
placed in the queue. When JOB4 completes, JOBS is started
on xd020. Since JOB5 consumes only 1 CPU, APC also
resumes JOB1 and allocates it the remaining CPU. However,
to avoid Xen stability problems in the presence of resource
control mechanisms, we supress the resource control action,
and resolving CPU contention is delegated to Xen hypervisor.
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Fig. 5. Node utilization by long running jobs.

In the next phase of the experiment, we demonstrate the
use of migration. We wait until the completion of JOB1 and
JOB3, and then we submit JOB6 (E). When JOBG6 arrives,

JOB2 and JOBS each consume 1 CPU on xd018 and xd020
respectively. Since JOB6 requires 2 CPUs, APC may either
(1) make it wait in the queue, (2) suspend JOB2 or JOBS,
(3) collocate and resource control JOB6 with either JOB2 or
JOBS, or (4) migrate either JOB2 or JOBS. Options (1)-(3)
would result in wasted capacity on one or both machines.
Moreover, options (1) and (3) would result in having platinum
class job receive proportionately less CPU power than JOBS,
whose service class is gold. This would clearly not be the
optimal decision. Hence, APC decides (E) to move JOB4 to
xd018 (which it will now share with JOBS) and start JOB6
on the now-empty xd020.

Even though this experiment shows that APC correctly uses
migration when machine fragmentation makes it difficult to
place new jobs, it also demonstrates a limitation of our opti-
mization technique, which is currently oblivious to the cost of
performing automation actions. Although in this experiment,
15 min is an acceptable price to pay for migrating a job, it is
easy to imagine a scenario where this would not be the case.

D. Simulation study

In this section, we study potential benefits of using vir-
tualization technology in the management of non-interactive
workloads. We simulate a system in which jobs with charac-
teristics similar to the ones in Table I are submitted randomly
with exponentially distributed interarrival times. The workload
mix includes 25% multithreaded jobs with execution time of
32 min, 25% multithreaded jobs with execution time of 23
min, 25% single-threaded jobs with execution time of 66 min,
15% single-threaded jobs with execution time of 45 min, and
10% single-threaded jobs with execution time of 127 min. The
service class distribution for all jobs is 50%, 40%, and 10%
for platinum, gold, and silver service class, respectively. We
vary mean interarrival time between 8 and 30 min.

Our simulation does not model the cost of performing vir-
tualization actions. Hence, the results concern the theoretical
bound on the particular algorithmic technique we use.

We evaluate our placement algorithm (APC) with well
known scheduling techniques: first-come-first-serve (FCFES)
and earliest-deadline-first (EDF), in which we interpret com-
pletion time goal as deadline. We also execute our placement
technique after disabling automation mechanisms provided by
virtualization technology (APC_NO_KNOBS).

Figure 6 shows the percentage of jobs that missed their
completion time goal as a function of interarrival time. When
APC uses virtualization mechanims, it performs much better
than FCFS and EDF. Throughout the experiment, it does
not violate any SLAs, with the exception of a high-overload
case corresponding to job interarrival time of 8min. In the
overloaded system, our technique has 20-30% lower number
of missed targets that FCFC and EDF, which is not shown
Figure 6. When virtualiztion mechanisms are not used, our
algorithm is no better or worse than EDF. This shows that
the improvement observed in the case of APC is truly due to
the use of virtualization technology and not due to some new
clever scheduling technique.
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Figures 7 and 8 show the number of suspensions and
movements during the experiment. Not surprisingly, as load
increases, the number of actions also increases. With very high
load each job is suspended and moved more than once, which
in practice will increase its execution time. In order to benefit
from the usage of the automation mechanism in practice,
it is therefore important to consider the cost of automation
mechanisms in the optimization problem solved by APC. We
plan to consider such costs in our future work.
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VI. RELATED WORK

Our approach differs from prior virtual machine manage-
ment techniques [22], [10], [23], [24] in a key aspect. While
previous techniques concentrate on managing virtual machines
as primary abstractions, our technique manages applications
using automation mechanisms provided by VMs. We take an
application-centric approach and strive to keep the usage of
VM technology invisible to the end user.
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Fig. 8. Sum of migrations and move-and-restore actions.

Virtuoso [22], [10] provides a OS scheduling technique,
VSched [10], for heterogeneous workload VMs. VSched en-
forces compute rate and interactivity goals for interactive
workloads, including web workloads, and non-interactive ones.
It provides soft real-time guarantees for VMs hosted on a
single server machine. VSched could be used as a component
of our system for providing resource-control automation mech-
anism within a machine, but clearly our approach is broader as
it addresses resource allocation for heterogeneous workloads
across a cluster of server boxes.

The management of clusters of virtual machines is ad-
dressed in [23], [25]. Fisher et al. [23] deal with the problem
of deploying a cluster of virtual machines with given resource
configurations across a set of machines. Czajkowski et al. [25]
define an API for Java VM that permits a developer to
define resource allocation policies. Neither of these techniques
provide a technology to dynamically adjust allocation based
on SLA objectives in the presence of resource contention.

VMware DRS [7] provides technology to automatically ad-
just the amount of physical resources available to VMs based
on defined policies. This is a achieved using live-migration
automation mechanism provided by VMotion. VMware DRS
adopts a VM-centric view of the system: policies and priorities
are configured on a VM-level. A approach similar to VMware
DRS is proposed in [8], which proposes a dynamic adaptation
technique based on rearranging VMs so as to minimize the
number of physical machines used. The application awareness
is limited to configuring physical machine utilization thresh-
olds based on off-line analysis of application performance as a
function of machine utilization. Runtime requirements of VMs
are taken as a given and there is no explicit mechanism to tune
resource consumption by any given VM.

Unlike [7] and [8], our system takes an application-centric
approach—the virtual machine is considered only as a con-
tainer in which an application is deployed. Using knowledge of
application workload and performance goals, we can utilize a
more versatile set of automation mechanisms than [7] and [8].



We can vary the number of VMs over which a clustered
application is provided, suspend a VM for a long-running job,
and decide how much resource a VM should be allowed to
consume. In addition, our system is able to utilize various
kinds of virtualization for various applications. For example,
for web workloads, we chose to use virtualization technology
provided by application server middleware technology.

The adaptation problem for virtual environments has also
been studied in [24]. The problem there is to place virtual
machines interconnected using virtual networks on physical
servers interconnected using a wide area network. Given the
nature of the network, the primary concern in this problem is to
allocate network bandwidth for virtual networks. VMs may be
migrated, but their resource allocation is taken as a given. Our
problem deals with datacenter environments, in which network
bandwidth is of lesser concern, and our solution considers VM
placement as well as resource allocation.

Our work could also be compared to numerous prior pub-
lications on job scheduling [6]. This paper does not claim to
advance the field of job scheduling. Nevertheless, we show that
virtualization technology offers important control mechanisms
that can be used to facilitate more effective scheduling of jobs
and should be considered in future job scheduling techniques.

VII. CONCLUSIONS AND FUTURE WORK

We present a system that allows us to manage heterogeneous
workloads on a set of heterogeneous server machines us-
ing automation mechanisms provided by server virtualization
technologies. The system introduces several novel features.
First, it allows heterogeneous workloads to be collocated on
any server machine, thus reducing the granularity of resource
allocation. Second, our approach uses high-level performance
goals (as opposed to lower-level resource requirements) to
drive resource allocation. Third, our technique exploits a range
of new automation mechanisms that will also benefit a system
with a homogeneous, particularly non-interactive, workload by
allowing more effective scheduling of jobs.

More work remains to be done. In the immediate future
we plan to investigate problems with Xen VM monitor, which
prevented us from utilizing resource control mechanism. We
also plan to implement live-migration control knob and use it
in our system. Other short-term goals include the implemen-
tation of workload profiler for long-running jobs and support
multiple jobs in the same VM.

We believe that using server virtualization for automatic
performance management is an exciting research problem.
It requires novel resource allocation algorithms capable of
reasoning of many new automation mechanisms and many
different levels at which virtualization may be provided. It
also requires techniques to deploy and manage virtual images
and to model multi-level relationships among resources. We
must also consider multiple resources that may be virtualized.
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