
Key Agreement Protocols and their Security Analysis �Simon Blake-Wilsony Don Johnsonz Alfred MenezesxSeptember 9, 1997AbstractThis paper proposes new protocols for two goals: authenticated key agreement andauthenticated key agreement with key con�rmation in the asymmetric (public-key) set-ting. A formal model of distributed computing is provided, and a de�nition of the goalswithin this model supplied. The protocols proposed are then proven correct within thisframework in the random oracle model. We emphasize the relevance of these theoret-ical results to the security of systems used in practice. Practical implementation ofthe protocols is discussed. Such implementations are currently under consideration forstandardization [2, 3, 21].Keywords: Di�e-Hellman, key agreement, provable security, random oracle paradigm.1 IntroductionThe key agreement problem is stated as follows: two entities wish to agree on keying infor-mation in secret over a distributed network. Since the seminal paper of Di�e and Hellmanin 1976 [17], solutions to the key agreement problem whose security is based on the Di�e-Hellman problem in �nite groups have been used extensively.Suppose now that entity i wishes to agree on secret keying information with entity j.Each party desires an assurance that no party other than i and j can possibly compute thekeying information agreed. This is the authenticated key agreement (AK) problem. Clearlythis problem is harder than the key agreement problem in which i does not care who (orwhat) he is agreeing on a key with, for in this problem i stipulates that the key be sharedwith j and no-one else.Several techniques related to the Di�e-Hellman problem have been proposed to solve theAK problem [23, 18, 1]. However, no practical solutions have been provably demonstratedto achieve this goal, and this de�ciency has lead in many cases to the use of awed protocols�To be presented at the Sixth IMA International Conference on Cryptography and Coding, Cirencester,England, 17{19 December 1997.yDept. of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UnitedKingdom. Email: phah015@rhbnc.ac.uk. The author is an EPSRC CASE student sponsored by RacalAirtech. Work performed while a visiting student at Auburn University funded by the Fulbright Commission.zCerticom Corp., 200 Matheson Blvd West, Mississauga, Ontario L5R 3L7, Canada. Email: djohn-son@certicom.comxDept. of Discrete and Statistical Sciences, Auburn University, Auburn, AL 36849-5307, U.S.A. Email:menezal@mail.auburn.edu 1

(see [26, 16, 22, 25]). The aws have, on occasion, taken years to discover; at best, suchprotocols must be employed with the fear that a aw will later be uncovered.Since in the AK problem, i merely desires that only j can possibly compute the key,and not that j has actually computed the key, solutions are often said to provide implicit(key) authentication. If i wants to make sure in addition that j really has computed theagreed key, then key con�rmation is incorporated into the key agreement protocol, leadingto so-called explicit authentication. The resulting goal is called authenticated key agreementwith key con�rmation (AKC). It is a thesis of this paper that key con�rmation essentiallyadds the assurance that i really is communicating with j to the AK protocol. Thus thegoal of key con�rmation is similar to the goal of entity authentication, as de�ned in [7].More precisely, the incorporation of entity authentication into the AK protocol provides ithe additional assurance that j can compute the key, rather than the (slightly) strongerassurance that j has actually computed the key.Practical solutions that employ asymmetric techniques to solve the AK and AKC prob-lems are clearly of fundamental importance to the success of secure distributed computing1.The motivation for this paper stems in part from the recent successes of the `random ora-cle model' [8] in providing practical, provably good asymmetric schemes [8, 9, 11, 12, 27],and in part from the desire of various standards' bodies (in particular IEEE P1363 [21])to lift asymmetric techniques in widespread use above the unsuccessful `attack-response'design methodology. The goal of this paper is to make strides towards the provision ofpractical solutions for the AK and AKC problems which are provably good | �rstly byproviding clear, formal de�nitions of the goals of AK and AKC protocols, and secondly byfurnishing practical, provably secure solutions in the random oracle model. The model ofdistributed computing adopted appears particularly powerful, and the de�nitions of secu-rity chosen particularly strong. The approach we take closely follows the approach of [7],where provable security is provided for entity authentication and authenticated key trans-port using symmetric techniques. Also relevant is the adaptation of techniques from [7] tothe asymmetric setting found in [14].Roughly speaking, the process of proving security comes in �ve stages:1. speci�cation of model;2. de�nition of goals within this model;3. statement of assumptions;4. description of protocol;5. proof that the protocol meets its goals within the model.We believe that the goals of AK and AKC currently lack formal de�nition. It is one of ourcentral objectives to provide such de�nitions.We particularly wish to stress the important roles that appropriate assumptions, anappropriate model, and an appropriate de�nition of protocol security play in results ofprovable security|all protocols are provably secure in some model, under some de�nitions,or under some assumptions. Thus we believe that the emphasis in such work should be howappropriate the assumptions, de�nitions, and model which admit provable security are,1Informally, by `distributed computing' we refer to what we all think of as a computer network; that isa number of separate machines which can only communicate over public channels.2

rather than the mere statement that such-and-such a protocol attains provable security.It is a central thesis of this work, therefore, that the model of distributed computing wedescribe models the environment in which solutions to the AK and AKC problems arerequired, and that the de�nitions given for the AK and AKC problems are the `right' ones.The remainder of the paper is organized as follows. x2 discusses the requirements of asecure key agreement protocol. x3 describes the model of distributed computing adopted.x4 discusses AKC protocols and introduces the protocols we propose. In x5 we turn ourattention to the AK problem. x6 analyzes other properties of the protocols proposed to seewhether the protocols attain additional desirable attributes. Finally, practical issues arediscussed in x7, and x8 makes concluding remarks.2 Properties of Key Agreement ProtocolsThere is a vast literature on key agreement protocols (see [25] for a survey). Unlike otherprimitives, such as encryption or digital signatures, it is not clear what constitutes an attackon a key agreement protocol. A number of distinct types of attacks have been proposedagainst previous schemes, as well as a number of less serious weaknesses. Therefore, beforewe can begin to analyze any protocol, it is necessary to identify what attacks a protocolshould withstand, and what attributes are desirable for a protocol to have.First we identify two types of attack:1. passive attacks, where an adversary attempts to prevent a protocol from achieving itsgoal by merely observing honest entities carrying out the protocol;2. active attacks, where an adversary additionally subverts the communications them-selves in any way possible: by injecting messages, intercepting messages, replayingmessages, altering messages, and the like.Clearly it is essential for any secure protocol to withstand both passive and active attacks,since an adversary can reasonably be assumed to have these capabilities in a distributednetwork.A number of desirable attributes of key agreement protocols have also been identi�ed:1. known session keys. A protocol still achieves its goal in the face of an adversary whohas learned some previous session keys.2. (perfect) forward secrecy. If long-term secrets of one or more entities are compromised,the secrecy of previous session keys is not a�ected.3. unknown key-share. Entity i cannot be coerced into sharing a key with entity j withouti's knowledge, i.e., when i believes the key is shared with some entity l 6= j.4. key-compromise impersonation. Suppose i's secret value is disclosed. Clearly an ad-versary that knows this value can now impersonate i, since it is precisely this valuethat identi�es i. However, it may be desirable that this loss does not enable anadversary to impersonate other entities to i.5. loss of information. Compromise of other information that would not ordinarily beavailable to an adversary does not a�ect the security of the protocol. For example, inDi�e-Hellman type protocols, security is not compromised by loss of �SiSj (where Sirepresents entity i's long-term secret value).3

6. message independence. Individual ows of a protocol run between two honest entitiesare unrelated.Each attribute may be thought of as desirable for either AK or AKC protocols, or both. Forexample, we will argue in x5 that aws in AKC protocols that exploit known session keys area much more serious weakness than such aws in AK protocols without key con�rmation.Similarly, message independence is more desirable in AK protocols; conceptually AKCprotocols inherently contain some message dependence.Finally we mention that in some applications it may be desirable to demonstrate that aprotocol is provably an agreement. Informally this means that neither party is able to a�ectthe choice of key. In reality however, one entity selects its contribution to the key beforethe other, therefore enabling the other entity to test various selections of its contribution bycalculating what the agreed key will be. To formalize this, we could say that this trial-and-error procedure is e�ectively the best way for either entity to e�ect the choice of key. Whilewe will not discuss this further, heuristic arguments suggest that our protocols achieve suchan agreement property.3 Model of Distributed EnvironmentBefore formal statements of the problems can be made, we need a formal model to workin. First some notation and language is introduced, and then the model itself is described.The model is a variant of the Bellare-Rogaway model, described in [7, 10]. The descriptionwe provide of the model is necessarily terse; see [7] for further details.3.1 Set-upf0; 1g� denotes the set of �nite binary strings, and � denotes the empty string. I =f1; : : : ; N1g is the set of entities in this environment (the adversary is not included asan entity). The number of entities being dealt with is polynomial in the security parameter,k, so that N1 = T1(k) for some polynomial function T1. A real-valued function �(k) isnegligible if for every c > 0 there exists kc > 0 such that �(k) < k�c for all k > kc. Afunction n(k) is non-negligible if it is not a negligible function.De�nition 1 A protocol is a pair P = (�;G) of probabilistic polytime computable func-tions (polytime in their �rst input):� speci�es how (honest) players behave;G generates key pairs for each entity.The domain and range of these functions is as follows. � takes as input:1k | the security parameter;i 2 I | identity of sender;j 2 I | identity of intended recipient;Ki;j | i's key pair Ki together with j's public value;tran | a transcript of the protocol run so far (i.e. the ordered set of messagestransmitted and received by i so far in this run of the protocol).�(1k; i; j;Ki;j; tran) outputs a triple (m; �; �), where:4

m 2 f0; 1g�[f�g is the next message to be sent from i to j (� indicatesno message is sent);� 2 fAccept; Reject; �g is i's current decision (� indicates no decisionyet reached);� is the agreed key.Our protocols are described in terms of arithmetic operations in the subgroup generatedby an element � of prime order q in the multiplicative groupZ�p = f1; 2; : : : ; p�1g, where pis a prime. In each case, an entity's private value is an element Si ofZ�q = f1; 2; : : : ; q� 1g,and the corresponding public value is Pi = �Si mod p 2, so that i's key pair is Ki = (Si; Pi).Note that the protocols can be described equally well in terms of the arithmetic operationsin any �nite group; of course, we would then have to convert our security assumptions onthe Di�e-Hellman problem to that group.G takes as input the security parameter 1k and selects the triple of global parameters(p; q; �) to be used by all entities by running GDH , the parameter generator for a Di�e-Hellman scheme, on input 1k. The operation of GDH will be discussed in x4, when aDi�e-Hellman scheme is de�ned. G then picks a secret value S for each entity by makingN1 independent random samples fromZ�q , and calculates the public value P = �S of eachentity. G then forms a directory public-info containing the global parameters (p; q; �) andan entry corresponding to each entity | the entry corresponding to entity i consists of thepair (i; Pi) of i's identi�er and i's public value. G outputs each entity's key pair along withthe directory public-info.G is a technical description of the key generation process. It is a formal model designedto capture the attributes of the techniques typically used to generate keys in a distributedenvironment. Of course, in real life, each entity will usually generate key pairs itself andthen get them certi�ed by a Certi�cation Authority.A generic execution of a protocol between two players is called a run of the protocol.While a protocol is formally speci�ed by a pair of functions P = (�;G), in this paperit is informally speci�ed by the description of a run between two arbitrary entities. Anyparticular run of a protocol is called a session. The word `session' is often associated withanything speci�c to one particular execution of the protocol. For example, the keyinginformation agreed in the course of a protocol run is referred to as a session key. Theindividual messages that form a protocol run are called ows.3.2 Description of ModelOur adversary is a�orded enormous power. She controls all communication between entities,and can at any time ask an entity to reveal its long-term secret key. Furthermore she mayat any time initiate sessions between any two entities, engage in multiple sessions with thesame entity at the same time, and in some cases ask an entity to enter a session with itself.With such a powerful model it is not clear what it means for a protocol to be secure.Informally, we say that an AK protocol is secure if no adversary can learn anything abouta session key held by an uncorrupted entity i (an entity whose long-term keying material2The operator `modp' will henceforth be omitted.5

she has not revealed), provided that i has computed that session key in the belief that it isshared with another entity j (who is also uncorrupted). Again informally, we will say thatan AKC protocol is secure if the protocol distributes a key just like an AK protocol, andhas the additional property that an accepting entity i is assured that it has been involved ina real-time communication with j. Therefore to make an entity accept in an AKC protocol,the adversary e�ectively has to act just like a wire.We now formalize the above discussion.An adversary, E, is a probabilistic polytime Turing Machine taking as input the securityparameter 1k and the directory public-info. E has access to a collection of oracles:f�si;j : i 2 I; j 2 I; s 2 f1; : : : ; N2gg :Oracle �si;j behaves as entity i carrying out a protocol session in the belief that it is commu-nicating with j for the sth time (i.e. the sth run of the protocol between i and j). Each �si;joracle maintains its own variable tran to store its view of the run so far. E is equipped witha polynomial number of �i;j oracles, so that N2 = T2(k) for some polynomial function T2.Each �si;j oracle takes as initial input the security parameter 1k, the key pair Ki assignedto entity i by G, a tran value of �, and the directory public-info.E is allowed to make three types of queries of its oracles, as illustrated in the tablebelow. Query Oracle reply Oracle updateSend(�si;j ; x) �m�(1k; i; j;Ki;j; tran:x) tran tran:x:mReveal(�si;j) ��(1k; i; j;Ki;j; tran) |Corrupt(i;K) Ki Ki KIn the table, �m� denotes the �rst two arguments of �si;j 's output, and �� denotes thethird. The Send query represents E giving a particular oracle message x as input. Einitiates a session with the query Send(�si;j ; �), i.e. by sending the oracle it wishes to startthe session the empty string �. Reveal tells a particular oracle to reveal whatever sessionkey it currently holds. Corrupt tells all �si;j oracles, for any j 2 I , s 2 f1; 2; : : : ; N2g, toreveal entity i's long-term secret value to E, and further to replace Ki with any valid keypair K of E's choice. In addition, all oracles' copies of i's public value in the directorypublic-info are updated.Our security de�nitions now take place in the context of the following experiment |the experiment of running a protocol P = (�;G) in the presence of an adversary E usingsecurity parameter k:1. Toss coins for G, E, all oracles �si;j , and any public random oracles;2. Run G on input 1k;3. Initialize all oracles;4. Start E on input 1k and public-info.Now when E asks oracle �si;j a query, �si;j calculates the answer using the description of �.This de�nition of the experiment associated with a protocol implies that when we speak of6

the probability that a particular event occurs during the experiment, then this probabilityis assessed over all the coin tosses made in step 1 above.The �rst step in de�ning the security of a protocol is to show that the protocol is `well-de�ned'. To assist in this process we sometimes need to consider the following particularlyfriendly adversary. For any pair of oracles �si;j and �tj;i, the benign adversary on �si;j and�tj;i is the deterministic adversary that always performs a single run of the protocol between�si;j and �tj;i, faithfully relaying ows between these two oracles.An oracle �si;j has accepted if ��(1k; i; j;Ki;j; tran) = Accept, it is opened if there hasbeen a Reveal(�si;j) query, and it is corrupted if there has been a Corrupt(i; �) query. transi;jwill be used to denote the current state of �si;j 's variable tran .So far all we have done is describe the model. We are now ready to give formal de�nitionsof the goals.4 AKCFirst, we'll look at the AKC problem. The model described in x3 provides the necessaryframework for our security proofs; however, before we can prove anything about any pro-tocol, a formal de�nition of the goal of a secure AKC protocol must be given.4.1 De�nition of SecurityAs stated in the introduction, a central thesis to this paper is that the goal of an AKCprotocol is essentially identical to the goal of an authenticated key transport protocol [7, 14].The intent of an AKC protocol is therefore to assure two speci�ed entities that they areinvolved in a real-time communication with each other. Further, the protocol must providethe two entities with a key distributed uniformly at random from f0; 1gk. No adversaryshould be able to learn any information about the agreed key held by an uncorrupted entityi, provided the entity j that i believes it is communicating with is also uncorrupted.Matching Conversations. To formalize the notion that two oracles are involved in areal-time communication, the concept of matching conversation is de�ned. For simplicitywe focus on the case where R, the number of ows in the protocol, is odd. The case whereR is even is analogous. The idea of matching conversations was �rst formulated in [13],re�ned in [18], and later formalized in [7].Fix an execution of an adversary E. For any oracle �si;j its conversation can be capturedby a sequence: C = Csi;j = (�1; �1; �1); (�2; �2; �2); : : : ; (�m; �m; �m) :This sequence encodes that at time �1 oracle �si;j was asked �1 and responded with �1; andthen at some later time �2 > �1, the oracle was asked �2 and answered �2; and so forth,until �nally, at time �m it was asked �m and answered �m. Adversary E terminates withoutasking oracle �si;j any more queries.If oracle �si;j has �1 = �, it is called an initiator oracle; otherwise it is called a responderoracle. 7

De�nition 2 ([7]) Fix a number of ows R = 2�� 1 and an R-ow protocol P . Run P inthe presence of an adversary E and consider two oracles �si;j , an initiator oracle, and �tj;i,a responder oracle, that engage in conversations C and C 0 respectively.1. C 0 is said to be a matching conversation to C if there exist �0 < �1 < � � � < �R�1 and�1; �1; : : : ; ���1; �� such that C is pre�xed by:(�0; �; �1); (�2; �1; �2); : : : ; (�2��2; ���1; ��)and C 0 is pre�xed by:(�1; �1; �1); (�3; �2; �2); : : : ; (�2��3; ���1; ���1) :2. C is said to be a matching conversation to C 0 if there exist �0 < �1 < � � � < �R and�1; �1; : : : ; ���1; �� such that C 0 is pre�xed by:(�1; �1; �1); (�3; �2; �2); : : : ; (�2��3; ���1; ���1); (�2��1; ��; �)and C is pre�xed by:(�0; �; �1); (�2; �1; �2); : : : ; (�2��2; ���1; ��) :If C is a matching conversation to C 0 and C 0 is a matching conversation to C, then �si;jand �tj;i are said to have had matching conversations.Roughly speaking, this de�nition captures when the adversary E merely acts like a wire.In the �rst case, E faithfully carries all �si;j 's messages (except possibly the last) to �tj;i,and then relays the replies back. The second case implies the �rst, but in addition �si;j 'slast message is relayed to �tj;i.Protocol Security. Matching conversations now provide the necessary formalism tode�ne the assurance provided to entity i during an AKC protocol that it has been involvedin a real-time communication with entity j. Let No-MatchingE(k) denote the event that,when protocol P is run against adversary E, there exists an oracle �si;j which accepted butthere is no oracle �tj;i which has engaged in a matching conversation to �si;j . Further, werequire i; j 62 C (where C denotes the set of entities corrupted by the adversary E duringthe experiment).The notion that no adversary can learn information about session keys is formalizedalong the lines of polynomial indistinguishability. Speci�cally at the end of its execution,the adversary should be unable to gain more than a negligible advantage when it tries todistinguish the actual key held by an uncorrupted entity from a key sampled at randomfrom f0; 1gk.Therefore we make the following addendum to the experiment. Call a �si;j oracle freshif it has accepted, neither i nor j has been corrupted, it remains unopened, and there is noopened oracle �tj;i with which it has had a matching conversation. After the adversary hasasked all the queries it wishes to make, E selects any fresh �si;j oracle. E asks this oracle asingle new query: Test(�si;j) :8

To answer the query, the oracle ips a fair coin b f0; 1g, and returns the session key �si;jif b = 0, or else a random key sampled from f0; 1gk if b = 1. The adversary's job is nowto guess b. To this end, E outputs a bit Guess. Let Good-GuessE(k) be the event thatGuess = b. Then we de�ne:advantageE(k) = jPr[Good-GuessE(k)]� 12 j :De�nition 3 A protocol P = (�;G) is a secure AKC protocol if:1. In the presence of the benign adversary on �si;j and �tj;i, both oracles always acceptholding the same session key �, and this key is distributed uniformly at random onf0; 1gk;and if for every adversary E:2. If uncorrupted oracles �si;j and �tj;i have matching conversations then both oraclesaccept and hold the same session key �;3. The probability of No-MatchingE(k) is negligible;4. advantageE(k) is negligible.The �rst condition says that in the presence of a benign adversary, oracles always acceptholding the same, randomly distributed key. The second says that in the presence of anyadversary if two entities behave correctly, and the transmissions between them are nottampered with, then both accept and hold the same key. The third says that essentially theonly way for any adversary to get an uncorrupted entity to accept in a run of the protocolwith any other uncorrupted entity is by relaying communications like a wire. The fourthsays that no adversary can learn any information about a session key held by a fresh oracle.This de�nition is identical to the de�nition of an authenticated key transport protocolas de�ned in [7]. While it seems strange to suggest that the de�nitions of security fortwo goals that have traditionally been regarded as distinct should in fact be identical, thejusti�cation for this security de�nition for AKC is straightforward. It is intuitively what werequire from an AKC protocol. Further, a review of the literature reveals that a numberof the attacks proposed on previous protocols can be explained by the observation that theprotocols concerned do not meet this de�nition.4.2 Description of PrimitivesBefore we can specify a particular protocol, the various primitives our protocols employmust be described and the security of each of these primitives de�ned. The two primitivesused are message authentication codes (MACs) and Di�e-Hellman schemes (DHSs). Theproposed protocols use MACs to provide key con�rmation because this seems to be theleast restrictive primitive to employ; in particular, a MAC is unlikely to be subject to thesame export restrictions as an encryption scheme. Of course, some applications may wishto use another primitive to achieve con�rmation. This is perfectly realistic: for example,if the agreed session key is later to be used for encryption, it seems sensible to employan encryption scheme to achieve key con�rmation, rather than waste time implementing aMAC. 9

Message Authentication Codes. Provably secure message authentication codes havebeen discussed in [6, 5, 4]. We restrict attention to MACs that have key space uniformlydistributed on f0; 1gk.De�nition 4 ([4]) A message authentication code is a deterministic polytime algorithmMAC (:)(�). To authenticate a message m, an entity with key �0 computes:(m; a) = MAC�0(m) :The authenticated message is the pair (m; a); a is called the tag on m. To verify (m; a)is indeed an authenticated message, any entity with key �0 checks that MAC�0(m) doesindeed equal (m; a).An adversary F (of the MAC) is a probabilistic polytime algorithm which has access toan oracle that computes MACs under a randomly chosen key �0. The output of F is a pair(m; a) such that m was not queried of the MACing oracle.De�nition 5 ([4]) A MAC is a secure MAC if for every adversary F of the MAC, thefunction �(k) de�ned by�(k) = Pr[�0 f0; 1gk; (m; a) F : (m; a) = MAC �0(m)]is negligible.Roughly speaking, this means a MAC is secure only if the probability of forging a validtag on any message that has not yet been authenticated using a call to the MACing oracleis negligible. Thus we require a MAC to withstand an adaptive chosen-message attack.Note that since the MACing algorithm is deterministic, each message m has a unique taga under �0. This is important in conjunction with matching conversations | it means thatan adversary who sees an authenticated message (m; a) is unable to alter a to another validtag a0 for m.Diffie-Hellman schemes. The assumption that the Di�e-Hellman problem is hard iscommon in the cryptographic literature. In order to formalize what we mean by `the Di�e-Hellman problem is hard', we �rst de�ne a Di�e-Hellman scheme.De�nition 6 A Di�e-Hellman scheme (DHS) is a pair of polytime algorithms, (GDH ; calc),the �rst being probabilistic. On input 1k, GDH generates a triple of global parameters(p; q; �). p and q are primes such that q divides p � 1, and � is an element of order q inZ�p. calc exponentiates in Z�p | it takes as input ((p; q; �); g; x) where the triple (p; q; �)has been generated by GDH , g is in Z�p, and x is an integer satisfying 0 � x � p � 2. calcoutputs gx mod p.An adversary F (of the Di�e-Hellman scheme) is a probabilistic polytime algorithmwhich takes as input a parameter set (p; q; �) generated using GDH , and a pair (�R1 ; �R2)for R1 and R2 chosen independently at random fromZ�q . The output of F is an element gof Z�p. 10

De�nition 7 A secure DHS is one for which the function �(k) de�ned by�(k) = Pr[(p; q; �) GDH (1k);R1; R2 Z�q; g F ((p; q; �); (�R1; �R2)) : g = �R1R2]is negligible for every adversary F .The Di�e-Hellman problem is hard if there exists a secure Di�e-Hellman scheme. Thisformal de�nition corresponds precisely with our intuitive notion that the Di�e-Hellmanproblem is `hard' (in subgroups of prime order) | i.e. it is extremely unlikely that anyonecan guess �R1R2 given only �R1 and �R2 .The proofs in this paper assume that i does not enter protocol runs with itself. Thiscondition can be removed provided the DHS being employed is also secure against anadversary that takes as input a pair (�R1 ; �R1) rather than (�R1 ; �R2). Call a secure DHS�-secure if it remains secure against this modi�ed opponent. Work done by Maurer andWolf [24] suggests that secure DHSs and �-secure DHSs are equivalent.Random Oracles. The security proofs of this paper take place in the `random oraclemodel' [8]. All parties involved in the protocols are supplied with a `black-box' randomfunction H(�) : f0; 1g� �! f0; 1gk :All random oracles in this paper will map �nite strings to strings of length k. Following [8],21 will denote the set of all random oracles. It is often convenient to think of H de�ned interms of its coin tosses in the following way. When H is queried for the �rst time, say onstring x, it returns the string of length k corresponding to its �rst k coin tosses as H(x).When queried with a second string, say x0, �rst H compares x and x0. If x0 = x, H againreturns its �rst k coin tosses H(x). Otherwise H returns its second k tosses as H(x0). Andso on.Of course, a random oracle is a theoretical construct designed to facilitate securityanalysis. In instantiations,H will be modeled by a hash function H (or some more complex`key derivation function' [21]). We emphasize that the security proofs take place in therandom oracle model, and that instantiating a random oracle using a speci�c function isa heuristic step, known as `the random oracle paradigm'. We refer the reader to [8] forfurther discussion of the `random oracle paradigm'; here we merely echo the assertion ofthose authors that `it is important to neither over-estimate nor under-estimate what therandom-oracle paradigm buys you in terms of security guarantees'. Also [12] contains anexcellent discussion of the implications of `provable security in the random oracle model'.4.3 Protocol 1We can now describe the �rst AKC protocol proposed. It is represented graphically inFigure 1. Use 2R to denote an element chosen independently at random, and commasto denote a unique encoding through concatenation (or any other unique encoding). H1and H2 represent independent random oracles. When entity i wishes to initiate a runof P with entity j, i selects Ri 2R Z�q and sends �Ri to j. On receipt of this string, jchecks that 2 � �Ri � p � 1 and (�Ri)q = 1, then chooses Rj 2R Z�q , and computes �Rj11

and �0 = H1(�SiSj). Finally, j uses �0 to compute MAC�0(2; j; i; �Rj; �Ri), and sends thisauthenticated message to i. (Recall that MAC�0(m) represents the pair (m; a), not just thetag a.) On receipt of this string, i checks that the form of this message is correct, and that2 � �Rj � p� 1 and (�Rj)q = 1. i then computes �0 and veri�es the authenticated messageit received. If so, i accepts, and sends back to j MAC�0(3; i; j; �Ri; �Rj). Upon receiptof this string, j checks the form of the message, veri�es the authenticated message, andaccepts. Both parties compute the agreed session key as � = H2(�RiRj). If at any stage, acheck or veri�cation performed by i or j fails, then that party terminates the protocol run,and rejects. �Ri j(Pj ;Sj)MAC�0 (3; i; j; �Ri ; �Rj)MAC�0 (2; j; i; �Rj ; �Ri)�0 = H1(�SiSj)� = H2(�RiRj) �0 = H1(�SiSj)� = H2(�RiRj)i(Pi;Si) Figure 1: Protocol 1Theorem 8 Protocol 1 is a secure AKC protocol provided the DHS and MAC are secureand H1 and H2 are independent random oracles.The proof of this theorem appears in Appendix A.Comments. In practice, entity i may wish to append its identity to the �rst ow ofProtocol 1. Doing so in no way a�ects the security proof. We omit this identity becausecertain applications may desire to identify the entities involved at the packet level ratherthan the message level | in this instance, identifying i again is therefore superuous.Note that entities use two distinct keys in Protocol 1 | one key for con�rmation, anda di�erent key as the session key for subsequent use. This separation appears important.In particular, the common practice of using the same key both for con�rmation and asthe session key is clearly dangerous if this means the same key is used by more than oneprimitive.It is easy to show that the probability that a �si;j oracle with i; j 62 C has a matchingconversation with more than one �j;i oracle in a run of Protocol 1 is negligible (the sameis true of all the protocols described in this paper).Protocol 1 is di�erent from most proposed AKC protocols in the manner that entitiesemploy their long-term secret values and session-speci�c secret values. Most proposedprotocols use both long-term secrets and short-term secrets in the formation of all keys.In Protocol 1, long-term secrets and short-term secrets are used in quite independent ways.Long-term secrets are used only to form a session-independent con�rmation key and short-term secrets only to form the agreed session key. Conceptually this approach has bothadvantages and disadvantages over more traditional techniques. On the plus side, the useof long-term keys and short-term keys is distinct, serving to clarify the e�ects of a key12

compromise | compromise of a long-term secret is fatal to the security of future sessions,and must be remedied immediately, whereas compromise of a short-term secret e�ects onlythat particular session. On the negative side, both entities must maintain a long-termshared secret key �0 in Protocol 1.Separation of an AK phase of this AKC protocol appears impossible.4.4 Protocol 2Protocol 2 is an AKC protocol designed to deal with some of the disadvantages of Protocol1. It is represented graphically in Figure 2. The actions performed by entities i and jare similar to those of Protocol 1, except that the entities use both their short-term andlong-term values in the computation of both the keys they employ. Speci�cally, the entitiesuse �0 = H1(�RiRj ; �SiSj) as their MAC key for this session, and � = H2(�RiRj ; �SiSj) asthe agreed session key. �Ri j(Pj ;Sj)MAC�0 (3; i; j; �Ri ; �Rj)MAC�0 (2; j; i; �Rj ; �Ri)i(Pi;Si) �0 = H1(�RiRj ; �SiSj)� = H2(�RiRj ; �SiSj)�0 = H1(�RiRj ; �SiSj)� = H2(�RiRj ; �SiSj) Figure 2: Protocol 2Theorem 9 Protocol 2 is a secure AKC protocol provided the DHS and MAC are secureand H1 and H2 are independent random oracles.The proof of this theorem appears in Appendix B.Comments. Unlike Protocol 1, both long-term secrets and both short-term secrets are usedin Protocol 2 to form each key. While this makes the e�ect of a compromise of one of thesevalues less clear, it also means that there is no long-term shared key used to MAC messagesin every session between i and j. However, the two entities do still share a long-term secretvalue �SiSj . This value must therefore be carefully guarded against compromise, along withSi and Sj themselves. Conceptually it is possible to separate the AK phase and the keycon�rmation phase in Protocol 2. This will be the subject of x5.5 AKDefinition of Security. In the past, de�ning the goal of an AK protocol has proveddi�cult. The clarity of the de�nition provided for AKC protocols (De�nition 3 in x4) allowsus to separate out a de�nition of security for AK protocols. Informally, we require an AKprotocol to distribute a key to two speci�ed entities in such a way that no adversary can13

learn any information about the agreed key. This is translated into the formal language ofour model as follows.De�nition 10 A protocol P is a secure AK protocol if:1. In the presence of the benign adversary on �si;j and �tj;i, both oracles always acceptholding the same session key �, and this key is distributed uniformly at random onf0; 1gk;and if for every adversary E:2. If uncorrupted oracles �si;j and �tj;i have matching conversations then both oraclesaccept and hold the same session key �;3. advantageE(k) is negligible.Conditions 1 and 2 say that a secure AK protocol does indeed distribute a key of thecorrect form. Condition 3 says that no adversary can learn any information about the keyheld by a fresh oracle.Protocol 3. Our �rst attempt at specifying a secure AK protocol tries to separate an AKphase from Protocol 2. Figure 3 contains a graphical representation of the actions taken byi and j in a run of Protocol 3. �Rii(Pi ;Si) j(Pj ;Sj)�Rj � = H(�RiRj ; �SiSj)� = H(�RiRj ; �SiSj) Figure 3: Protocol 3Theorem 11 Protocol 3 is a secure AK protocol as long as E makes no Reveal queries,and provided that the DHS is secure and H is a random oracle .The proof of this theorem appears in Appendix C.Comments. To see that Protocol 3 is not a secure AK protocol if an adversary can revealuncon�rmed session keys, notice the following attack. E begins two runs of the protocol, onewith �si;j , and one with �ui;j . Suppose �si;j sends �Ri , and �ui;j sends �R0i . E now forwards�Ri to �ui;j , and �R0i to �si;j . E can now discover the session key � = H(�RiR0i; �SiSj) heldby �si;j by revealing the (same) key held by �ui;j .Theorem 11 really says that care must be taken when separating authenticated keyagreement from key con�rmation. Protocol 3 above is not a secure AK protocol in the fullmodel of distributed computing we've been adopting, but can nonetheless be turned intoa secure AKC protocol, as in Protocol 2. At issue here is whether it is realistic to expectthat an adversary can learn keys that have not been con�rmed. Indeed, studying the list14

of suggested reasons for session key compromise in [16], it can be seen that the majority ofthe scenarios discussed lead to the disclosure of con�rmed keys.Therefore, although in this paper we have tried to separate the goals of AK and AKC,the principle that Theorem 11 suggests is that no key agreed in an AK protocol shouldbe used without key con�rmation. The only reason we have endeavored to separate au-thenticated key agreement from key con�rmation is to allow exibility in how a particularimplementation chooses to achieve key con�rmation. For example, architectural consider-ations may require key agreement and key con�rmation to be separated | some systemsmay provide key con�rmation during a `real-time' telephone conversation subsequent toagreeing a session key over a computer network, while others may instead prefer to carryout con�rmation implicitly by using the key to encrypt later communications.The reason that we have speci�ed the use of a subgroup of prime order by the DHSsin this paper is to avoid various known session key attacks on AK protocols that exploitthe fact that a key may be forced to lie in a small subgroup of Z�p. Note however that thiscondition is not necessary for the security proofs to work | from the point of view of thesecurity proofs, we could equally well have made assumptions about DHSs de�ned in Z�prather than a subgroup of Z�p.Theorem 11 testi�es to the strength of our de�nition for security of an AK protocol.Notice in particular that, as is the case with Protocol 3, many previous AK protocols (e.g.,those of [23]) do not contain asymmetry in the formation of the agreed key to distinguishwhich entity involved is the protocol's initiator, and which is the protocol's responder. Suchprotocols certainly will not meet the security requirements of De�nition 10.Protocol 4. We speculate that the following protocol meets the full rigor required byDe�nition 10. Again, instead of describing the actions of i and j verbally, we illustrate theseactions in Figure 4. �Rii(Pi ;Si) j(Pj ;Sj)�Rj � = H(�SiRj ; �SjRi)� = H(�SiRj ; �SjRi) Figure 4: Protocol 4Conjecture 12 Protocol 4 is a secure AK protocol provided the DHS and MAC are secureand H is a random oracle.Comments. While at �rst glance, Protocol 4 may look almost identical to the well-knownMTI protocol [23], where the shared value computed is �SiRj+SjRi , notice the followingimportant distinction. Entity i calculates a di�erent key in Protocol 4 depending on whetheri believes it is the initiator or responder. In the �rst case, i computes � = H(�SiRj ; �SjRi),and in the second case � = H(�SjRi ; �SiRj). As we remarked above, such asymmetry isessential in a secure AK protocol under De�nition 10. Of course, such asymmetry is not15

always desirable | a particular environment may require that i calculate the same key nomatter whether i is the initiator or responder. In such a case, De�nition 10 would require(slight) modi�cations.If indeed it can be shown that Protocol 4 is a secure AK protocol, then we imagine itcan be turned into a secure AKC protocol in the same spirit as Protocol 2.6 Attributes of ProtocolsIn this section, we discuss which of the attributes described in x2 the proposed protocolspossess.6.1 Known Session KeysThe Reveal query is designed to capture the notion that an adversary may learn previoussession keys | in the model of distributed computing adopted, E may learn previous sessionkeys by simply asking for them. The security de�nitions we have given for the AK and AKCproblems demand that no adversary be able to learn any information about the session keyheld by a fresh oracle even when the adversary employs its Reveal query to learn othersession keys. Any protocol for either AK or AKC which is secure under the de�nitions givenwill therefore resist known session key attacks.6.2 Forward SecrecyIntuitively, both the AKC protocols proposed achieve forward secrecy. Consider, for exam-ple, Protocol 1. Suppose entity i's secret value Si is compromised at some time � . Protocol 1is a secure AKC protocol, so i is assured that it engaged in a matching conversation withentity j during the agreement of any session key, provided this agreement took place beforetime � . Therefore such an agreed key is of the form H(�RiRj) for some Ri and Rj cho-sen at independently at random by entities i and j | this means that an adversary stillfaces the Di�e-Hellman style problem of working out �RiRj from �Ri and �Rj to learn anyinformation about the key. The fact that E later learns Si is clearly of no help to her.Note that the above argument includes the scenario in which E has learned some pre-vious session keys as well as compromising Si at some time. Of course, by this we meanthat E still faces a tough problem learning any session key agreed before time � that shehas not discovered through other means (such as the Reveal query).6.3 Unknown Key-ShareFirst we discuss the relevance of the unknown key-share attribute. Suppose E can coercean entity i into holding session key � in the belief that it is shared with entity e, andalso coerce j to hold � in the belief that it is shared with i. Now e can claim to i that anycommunications j sent to i using � (e.g., a MACed message) in fact originated with e. Also,e can decrypt any messages that j encrypts using � and sends to i. This kind of `attack'has been proposed against a number of previous schemes. We propose this attribute for the�rst time as a `generic' class of attacks. 16

Prevention of these unknown key-shares has also been built into the model that we'veadopted. For suppose entity i can be coerced into sharing a key with e, when really i sharesthe key with j. In the model of distributed computing, this corresponds to a �i;e oracleand a �j;i oracle holding the same session key. An adversary E could therefore reveal thekey held by �i;e, pick �j;i to ask its Test query, and in this way defeat the AK or AKCprotocol.6.4 Key-Compromise ImpersonationProtocols 1, 2, and 3 fail to achieve the key-compromise impersonation attribute. That is,if entity i discloses its secret value Si then an adversary E is not just able to impersonatei to any entity, but also can impersonate any entity j to i, since in this event E is able tocompute the `secret value' component �SiSj involved in a run of the protocol between i andj. Procotol 4, on the other hand, would appear to possess the key-compromise attribute.6.5 Loss of InformationIs it possible that loss of some information other than i's secret value can compromise theprotocols? Unfortunately this is the case in each of Protocols 1, 2, and 3, since loss of �SiSjcertainly allows an adversary to impersonate i to j and vice versa. Thus none of theseprotocols remains secure if this supplementary information is lost. It is not clear whate�ect loss of other supplementary information might have | for example, if entity i wereto inadvertently disclose some bits of Si.6.6 Message IndependenceBoth the AK protocols proposed attain message independence | that is in a bona �de runof the protocols, the individual ows are unrelated.The AKC protocols, on the other hand, do not achieve message independence. Thisis unsurprising, since by de�nition the goal of key con�rmation is similar to the goal ofentity authentication. Flows sent by j in a protocol with such a goal necessarily containinformation speci�c to this particular run which has been selected by i in order to preventreplay attacks. Thus while our AKC protocols do not achieve message independence, itappears that such a property is inherent to all protocols that achieve key con�rmation.7 Practicalities7.1 `Real-World' ImplicationsWhat are the implications of these theoretical results to the `real world'?Until the recent advent of `practice-oriented provable security', systems which o�eredany degree of provable security were impractical due to the large computational overheadsincurred by their operation. As in [8, 9, 11, 27], this is not the case here. All the protocolsin this paper are examples of the `uni�ed model' of key agreement, which it is our task17

to present. Practical implementations of the uni�ed model are as e�cient as any imple-mentations used in practice; indeed the uni�ed model is currently under consideration forstandardization [2, 3, 21].However, while the results of this paper ensure theoretical correctness of the protocols,the theoretical proofs take place in the random oracle model. Therefore the security of apractical implementation of any of the protocols relies on the ability of a hash function toinstantiate a random oracle. The potential for such an instantiation to introduce weaknesseshas led to criticism of the random oracle paradigm. Let us address some common concerns.Firstly, as with all proofs in the random oracle model, our results guarantee securityagainst generic attacks | attacks which do not exploit any special properties of the hashfunction instantiating the random oracle. It is precisely such generic attacks that havecaused the downfall of many previous key agreement protocols. Let us therefore emphasizethat such attacks are prohibited by our results within the model of distributed computingemployed.Secondly, let's consider the typical cost of generic attacks on key agreement protocols. Inthe case of signature and encryption schemes which employ hash functions, generic attacksusually carry a high computational overhead, so it is unclear whether a non-generic attackthat exploits the structure of the hash function used will involve as much work as a genericattack. In contrast, generic attacks on key agreement protocols typically involve almost nocomputational burden | non-generic attacks on the other hand will require the traditionallygreater computational expense of exploiting a weakness in the hash function being used.Thirdly, let's examine the strength of the requirements made on the instantiation of therandom oracle in implementations of the protocols. All the protocols essentially employ arandom oracle mapping �xed-length inputs to �xed-length outputs. Therefore the security ofthe hash function is not stretched by the need to produce arbitrary length outputs. In mostimplementations a single application of the hash function chosen will produce su�cientlymany output bits. Furthermore, the use of the hash function is likely to be infrequent, sincethe hash function needs to be used only once or twice each time a new key is agreed. Thisis in contrast to the use of hash functions in practical implementations of provably securesignature schemes or encryption schemes, where the frequent need to use the hash functionmakes its e�ciency vital. In this instance, an implementation may choose to use a lesse�cient, but (supposedly) more secure hash function construct. As a concrete suggestion,hash functions and MACs whose construction employs an underlying block cipher could bechosen. Using such instantiations, the security of practical implementations of the protocolscan be made to rest on, say, the security of DES and the Di�e-Hellman problem, bothcryptographic schemes that have withstood 20 years of extensive investigation.Finally, we must discuss the justi�cation for using a hash function in a key agreementprotocol (aside from its ability to facilitate provable security in the random oracle model).Traditionally, the most signi�cant bits of a Di�e-Hellman number have been used as theagreed session key. While recent work [15] has shown that some of the most signi�cant bitsof a Di�e-Hellman number are as hard to compute as the entire number, it is not clearwhat this exact number of hard bits is. Moreover, it is not known whether these mostsigni�cant bits are pseudorandom. Thus it seems sensible that a hash function should beused to `distill' pseudorandomness from the whole Di�e-Hellman number. Hashing in thisway also renders known key attacks less damaging | for while it may be unclear whether18

revealing previous Di�e-Hellman numbers calculated using Si and Sj enables informationabout Si and Sj or other session keys calculated using Si and Sj to be inferred, the one-wayproperty of hash functions adds to any con�dence one may have that disclosure of previoussession keys gives nothing away when the agreed value has been hashed to form the sessionkey.In summary, when employing the proposed protocols in practice, an implementor isassured that no subtle aws exist in the form of the protocols, and further that an attackon their implementation is likely to incur the heavy computational burden associated withbreaking one of the underlying cryptographic primitives. No currently employed protocolcan give such assurances, and as discussed in x1, a large number of aws have been foundin the protocols previously proposed. Thus, not only do our protocols provably achieve thegoals of AK and AKC in the random oracle model, but in addition, practical implementa-tions of the protocols that employ a hash function to instantiate the random oracle o�ersuperior security assurances compared to any currently in use.7.2 Implementation IssuesThis subsection discusses some practical issues, such as e�ciency, that may arise whenimplementing the protocols.One issue is how to instantiate the random oracles. SHA-1 [20] should provide su�cientsecurity for most applications. It can be used in various ways to provide instantiations ofindependent random oracles. For example, an implementation of Protocol 1 may choose touse: H1(x) := SHA-1(01; x) and H2(x) := SHA-1(10; x) :A particularly e�cient instantiation of the random oracles used in Protocol 2 is possibleusing SHA-1 or RIPEMD-160 [19]. Suppose 80-bit session keys and MAC keys are required.Then the �rst 80 bits of SHA-1(�RiRj ; �SiSj) can be used as �0 and the second 80 bits used as�. Of course, such e�cient implementations may not o�er the highest conceivable securityassurance of any instantiation.It is easy to make bandwidth savings in implementations of the AKC protocols. Insteadof sending the full authenticated messages (m; a) in ows 2 or 3, in both cases the entitycan omit much of m, leaving the remainder of the message to be inferred by its recipient.In some applications, it may not be desirable to carry out a protocol run each time anew session key is desired. Considering speci�cally Protocol 2 by way of example, entitiesmay wish to compute the agreed key as:H2(�RiRj ; �SiSj ; counter) :Then instead of running the whole protocol each time a new key is desired, most of thetime the counter is simply incremented. Entities need then only resort to using the protocolitself every now and then to gain some extra con�dence in the `freshness' of the session keysthey're using.In Protocols 1, 2, and 3, performance and security reasons may make it desirable to usea larger (and presumably more secure) group for the static Di�e-Hellman number (�SiSj1)19

than for the ephemeral Di�e-Hellman number (�RiRj2) calculation. The larger group isdesirable because the static number will be used more often. The static numbers may becached to provide a speed up in session key calculation.Finally, note that a practical instantiation of G using certi�cates should check knowledgeof the secret value before issuing a certi�cate on the corresponding public value. We believethat this is a sensible precaution in any implementation of a Certi�cation Hierarchy.8 Conclusions and Further WorkThis paper has proposed formal de�nitions of secure AK and AKC protocols within a formalmodel of distributed computing. The `uni�ed model' of key agreement has been introduced,and several variants of this model have been demonstrated to provide provably secure AKand AKC protocols in the random oracle model. Strong evidence has been supplied thatpractical implementations of the protocols also o�er superior security assurances than thosecurrently in use, while maintaining similar computational overheads.The de�nitions we have suggested for secure AK and AKC protocols are new, and the�rst question to ask is: are these the correct de�nitions for AK and AKC? We have suppliedjusti�cation for the de�nitions we've chosen; further debate of the appropriateness of thesede�nitions is clearly required.A number of other questions are suggested by our results. Is the model of distributedcomputing adopted ideal? What impact do security proofs have on protocols? Can thesemethods be applied to protocols with di�erent security goals? For which other goals wouldimplementors like to see proven secure solutions? At a more concrete level: is it possible toremove, or at least minimize, the random oracle assumptions on which the security proofsrely? Can the reductions in the proofs be used to obtain meaningful measures of exactsecurity [11]?9 AcknowledgementsThe authors are grateful to Karl Brincat, Mike Burmester, and Peter Wild for commentson an early draft of this work, and to Phil Rogaway for comments and an enlighteningconversation at PKS'97. The authors also wish to thank Rick Ankney of CertCo for hiscontributions to the description of the uni�ed model in X9.42.References[1] N. Alexandris, M. Burmester, V. Chrissikopoulos, and D. Peppes. Key agreement pro-tocols: two e�cient models for provable security. In S.K. Katsikas, D. Gritzalis, editors,Information Systems Security, Facing the Information Society of the 21st century, IFIPSEC '96, Chapman & Hall, pages 227{236, 1996.[2] ANSI X9.42-1996: Public Key Cryptography for the Financial Services Industry: Agree-ment of Symmetric Algorithm Keys Using Di�e-Hellman. September 1996. WorkingDraft. 20

[3] ANSI X9.63-1997: Public Key Cryptography for the Financial Services Industry: El-liptic Curve Key Agreement and Key Transport Protocols. 1997. Working Draft.[4] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authen-tication. In Advances in Cryptology: Crypto '96, pages 1{15, 1996.[5] M. Bellare, R. Guerin, and P. Rogaway. XOR MACs: New methods for message au-thentication using �nite pseudorandom functions. In Advances in Cryptology: Crypto'95, pages 15{28, 1995.[6] M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining. In Ad-vances in Cryptology: Crypto '94, pages 341{358, 1994.[7] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances inCryptology: Crypto '93, pages 232{249, 1993. A full version of this paper is availableat http://www-cse.ucsd.edu/users/mihir[8] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designinge�cient protocols. In 1st ACM Conference on Computer and Communications Security,pages 62{73, 1993.[9] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in Cryptol-ogy: Eurocrypt '94, pages 92{111, 1995.[10] M. Bellare and P. Rogaway. Provably secure session key distribution|the three partycase. In Proceedings of the 27th ACM Symposium on the Theory of Computing, pages57{66, 1995.[11] M. Bellare and P. Rogaway. The exact security of digital signatures { how to sign withRSA and Rabin. In Advances in Cryptology: Eurocrypt '96, pages 399{416, 1996.[12] M. Bellare and P. Rogaway. Minimizing the use of random oracles in authenticatedencryption schemes. In Proceedings of PKS'97, 1997.[13] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. System-atic design of two-party authentication protocols. In Advances in Cryptology: Crypto'91, pages 44{61, 1991.[14] S. Blake-Wilson and A.J. Menezes. Entity authentication and authenticated key trans-port protocols employing asymmetric techniques. To appear in Security ProtocolsWorkshop '97, Springer Verlag, 1997.[15] D. Boneh and R. Venkatesan. Hardness of computing the most signi�cant bits of secretkeys in Di�e-Hellman and related schemes. In Advances in Cryptology: Crypto '96,pages 129{142, 1996.[16] M. Burmester. On the risk of opening distributed keys. In Advances in Cryptology:Crypto '94, pages 308{317, 1994. 21

[17] W. Di�e and M. Hellman. New directions in cryptography. IEEE Transactions onInformation Theory, IT-22(6): 644{654, November 1976.[18] W. Di�e, P.C. van Oorschot, and M.J. Wiener. Authentication and authenticated keyexchanges. Designs, Codes, and Cryptography, 2: 107{125, 1992.[19] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: a strengthened version ofRIPEMD. In Fast Software Encryption, Third International Workshop, pages 71{82,1996.[20] FIPS 180-1. Secure hash standard. Federal Information Processing Standards Publica-tion 180-1, 1995.[21] IEEE P1363. Standard for Public-Key Cryptography. July 1997. Working Draft.[22] M. Just and S. Vaudenay. Authenticated multi-party key agreement. In Advances inCryptology: Asiacrypt '96, pages 36{49, 1996.[23] T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key-distributionsystems. The Transactions of the IECE of Japan, E69: 99{106, 1986.[24] U.M. Maurer and S. Wolf. Di�e-Hellman oracles. In Advances in Cryptology: Crypto'96, pages 268{282, 1996.[25] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptogra-phy, chapter 12. CRC Press, 1996.[26] J.H. Moore. Protocol failure in cryptosystems. Chapter 11 in Contemporary Cryptology:the Science of Information Integrity, G. J. Simmons, editor, pages 541{558, IEEE Press,1992.[27] D. Pointcheval and J. Stern. Security proofs for signature schemes. In Advances inCryptology: Eurocrypt '96, pages 387{398, 1996.A Proof of Theorem 8Theorem 13 (8) Protocol 1 is a secure AKC protocol provided the DHS and MAC aresecure and H1 and H2 are independent random oracles.Proof. We deal with each condition of De�nition 3 in turn.Conditions 1 and 2: The �rst two conditions follow immediately from the description ofP and the assumption that H2 is a random oracle.Condition 3: Let's turn to the third condition. Consider an arbitrary adversary E, andsuppose, by way of contradiction, that Pr[No-MatchingE(k)] is non-negligible. We say thatE succeeds if at the end of E's experiment, there exists an oracle �si;j (i; j 62 C) which has22

accepted but no �j;i oracle has had a matching conversation to �si;j . Further in this casewe say that E has succeeded against �si;j . Hence, by assumption:Pr[E succeeds] = n(k)for some non-negligible n(k) by assumption. Now call Ak the event that, during E's exper-iment, there exists a pair i; j 2 I with i; j 62 C for which �SiSj is queried of H1 either by Eor by any oracle except �i;j or �j;i oracles.Case 1: Suppose that Pr[Ak] = n1(k) is non-negligible. In this case we construct from Ean adversary F of the DHS that wins its experiment with non-negligible probability.F 's operation: F takes as input (p; q; �) generated by GDH (1k) and (�S0 ; �S00) for S 0; S00chosen at random fromZ�q , and must try to guess �S0S00 (cf. De�nition 7).F picks at random a pair i; j 2 I , guessing that E or an oracle other than a �i;j or�j;i oracle will query H1 with �S0iSj . F must perform E's experiment. Instead of runningG, F makes its own input (p; q; �) the global parameters to be used by P , and chooses allentities' secret values at random itself, except for i's and j's. F makes �S0 i's public value(so Si = S 0) and �S00 j's public value (so Sj = S 00), forms the directory public-info, andstarts E.F must answer all the oracle queries involved in E's experiment. F answers all distinctH1 and H2 queries at random (just as a real random oracle would). F answers all E'sReveal queries as speci�ed by �, all E's Send queries as speci�ed by � except for Sendqueries to �i;j and �j;i oracles, and all E's Corrupt queries as speci�ed by � providedneither i nor j is being corrupted.When E asks a �i;j or �j;i oracle a Send query, instead of computing H1(�SiSj) andusing this as the long-term MAC key shared by the two entities, F picks a key �0 at randomfrom f0; 1gk to `represent' H1(�SiSj) (of course, F doesn't know �SiSj | that's why there'sa problem!). F then uses �0 when determining these oracles responses.If E asks a Corrupt query to i or j then F gives up.Now let T3(k) denote a polynomial bound on the number of distinct H1 calls made byE and its oracles during the experiment. F picks l 2R f1; : : : ; T3(k)g, guessing that thelth distinct call made to H1 by E or any oracle (except for �i;j or �j;i oracles) will be on�SiSj . When the lth distinct H1 call is made (say on g), F stops and outputs g as its guessat �SiSj .If E halts before the lth distinct H1 query is made, F gives up.Only one problem remains. H1 may have been queried on �SiSj at some time before thelth distinct H1 call. In this case, F will have answered the call at random, and its answermay have been in contradiction to the key �0 it's using to represent H1(�SiSj). The problemis that E is not guaranteed to halt in this eventuality. To sidestep this potential problem,let T4(k) denote a polynomial bound on E's runtime under ordinary circumstances. If Fruns E for longer than T4(k), F gives up, concluding that it must have missed an H1 queryon �SiSj .Analysis: Observe that if the lth distinctH1 query made by E or its oracles is on �SiSj , thenF certainly wins its experiment. We conclude that the probability F outputs the correct23

value g = �SiSj is at least: n1(k)(T1(k))2T3(k)which is non-negligible. This contradicts the assumed security of the DHS. We concludethat n1(k) is negligible.Case 2: Let n2(k) be the probability that E succeeds against at least one initiator oracle,and n3(k) be the probability that E succeeds against at least one responder oracle but noinitiator oracles. We have: n(k) = n2(k) + n3(k) :So there are two subcases to consider.Case 2(a): Suppose n2(k) is non-negligible. In this case we construct from E an adversaryF of the MAC.F 's operation: F has access to a MACing oracle that computes MACs under a key �00 whichwas chosen at random from f0; 1gk. F 's task is to compute a valid authenticated message(m; a), where m was not queried of its oracle (cf. De�nition 5).F performs E's experiment. F runs G on input 1k | G chooses a parameter set (p; q; �)and secret values for all the entities. G calculates all public values and forms the directorypublic-info.F now starts E on input 1k and public-info. F picks i; j 2R I and s 2R f1; : : : ; T2(k)g,guessing that E will succeed against initiator �si;j oracle.F answers all E's queries itself. To answer queries of H1 and H2, F itself picks repliesat random, with the exception of H1 queries on �SiSj (note that F can compute �SiSj). IfH1 is queried on �SiSj by E or an oracle that's not a �i;j or �j;i oracle, then F gives up.F 's actions when H1 is queried on �SiSj by a �i;j or �j;i oracle are speci�ed below.F answers E's Reveal queries and Corrupt queries as speci�ed by �. However if E asksi or j a Corrupt query F gives up.F also answers Send queries not sent to �i;j and �j;i oracles as speci�ed by �. To answerSend queries of �i;j and �j;i oracles, F answers as speci�ed by �, except that instead ofcalculating �0 = H1(�SiSj) and using this key to MAC messages, F calls its own MACingoracle to compute its response. (F thus implicitly uses �00 to `represent' �0.) F thereforeneeds to call its MACing oracle to calculate ows on behalf of �i;j and �j;i oracles, andalso to decide whether or not such oracles should accept.If E does not invoke �si;j as an initiator oracle, then F gives up.On the other hand, if E does invoke �si;j as an initiator oracle, then at some time �0,�si;j receives � and responds with �Ri . If �si;j does not at some later time receive a ow ofthe form (m; a) where m = (2; j; i; �Rj; �Ri) for some �Rj , then F gives up.However, if �si;j is to accept, it must later receive a ow of this form. In this event,provided F has not called its MACing oracle previously on m, then F stops and outputs(m; a) as its guess at a valid forgery. If F has previously called its MACing oracle tocompute the ow then F gives up. 24

Analysis: Suppose E does succeed against initiator �si;j . In this event, F outputs a validforgery and wins its experiment, provided E or some other oracle (except �i;j or �j;ioracles) has not called H1 on �SiSj , and provided F has not previously calculated the owthat makes �si;j accept on behalf of some �i;j or �j;i oracle.Certainly, by Case 1, the probability that H1 has been called on �SiSj is negligible.Furthermore, the probability that F has called its MACing oracle to produce the ow isalso negligible. For F could only have called on this message on behalf of a responder �tj;iwhich received �Ri as its own �rst ow, or on behalf of an initiator �ui;j with u 6= s whichalso chose �Ri and needs to decide whether or not it should accept. The probability the callwas made by a responder �tj;i before �0 is negligible since Ri was chosen at random (notethat 1q�1 is certainly negligible, since the DHS is secure), and if the call was made after �0,then �tj;i has had a matching conversation to �si;j . The probability the call was made by�ui;j is negligible since in this event, �ui;j and �si;j have independently chosen the same Ri.We conclude that F constructed in this way wins its experiment with probability atleast: n2(k)(T1(k))2T2(k) � �(k)for some negligible �(k) | this is still non-negligible, and therefore contradicts the assumedsecurity of the MAC. Thus n2(k) must be negligible.Case 2(b): Suppose n3(k) is non-negligible. Again we construct from E an adversary F ofthe MAC.F 's operation: The operation of F is similar to the operation of the MAC adversary con-structed during Case 2(a), except that this time, F picks i; j 2R I and t 2R f1; : : : ; T2(k)g,guessing that E will succeed against responder �tj;i oracle and not succeed against anyinitiator oracles.F answers queries just like the previous adversary we constructed | calling its ownMACing oracle as necessary to answer Send queries to �i;j and �j;i oracles.This time, if E does not invoke �tj;i as a responder oracle, or if E succeeds against someinitiator oracle, then F gives up.On the other hand, if E does invoke �tj;i as a responder oracle, then at some time �1the oracle must receive �Ri for some Ri, and reply with:MAC �00(2; j; i; �Rj; �Ri)for some Rj 2R Z�q (with the MAC actually computed by F 's MACing oracle).If �tj;i does not at some later time �3 > �1 receive a message of the form (m; a) withm = (3; i; j; �Ri; �Rj), then F gives up.However, if �tj;i is to accept, it must later receive a ow of this form. If F has notpreviously called its MACing oracle on m, then F outputs (m; a) as its guess at a validforgery. If F has already made a call on m, then F gives up.Analysis: Suppose E does succeed against responder �tj;i and against no initiator oracles.In this event, F outputs a valid forgery and wins its experiment, provided E or some other25

oracle (except �i;j or �j;i oracles) has not called H1 on �SiSj , and provided F has notpreviously calculated the ow that makes �tj;i accept on behalf of some �i;j or �j;i oracle.Certainly, by Case 1, the probability that H1 has been called on �SiSj is negligible.Furthermore, the probability that F has called its MACing oracle to produce the ow isalso negligible. For F could only have called on this message on behalf of an initiator �si;jwhich sent �Ri as its own �rst ow, or on behalf of a responder �uj;i with u 6= t which alsochose �Rj and needs to decide whether or not it should accept. The probability the callwas made by an initiator �si;j is negligible since such a �si;j has accepted, so by assumptionthere exists �vj;i which has had a matching conversation to �si;j . The probability v 6= t isnegligible, since then �vj;i and �tj;i have independently chosen the same Rj , and v = t isexcluded, since then �si;j has had a matching conversation to �tj;i. The probability the callwas made by �uj;i is negligible since in this event, �uj;i and �tj;i have again independentlychosen the same Rj.We conclude that F constructed in this way wins its experiment with probability atleast: n3(k)(T1(k))2T2(k) � �(k)for some negligible �(k) | this is still non-negligible, and therefore contradicts the assumedsecurity of the MAC. Thus n3(k) must be negligible.Together Cases 2(a) and 2(b) contradict the assumption that n(k) is non-negligible. Weconclude that Pr[No-MatchingE(k)] is negligible for all adversaries E.Condition 4: We argue by contradiction. Fix an arbitrary adversary E and suppose thatadvantageE(k) is non-negligible. We say that E succeeds (against �si;j) if E picks �si;j toask its Test query and outputs the correct bit Guess. ThusPr[E succeeds] = 12 + n(k)for some non-negligible n(k) by assumption. Now call Ak the event that E picks some �si;joracle to ask its Test query such that some �tj;i oracle has had a matching conversation to�si;j . ClearlyPr[E succeeds] = Pr[E succeedsjAk]Pr[Ak] + Pr[E succeedsjAk]Pr[Ak] :Condition 3 ensures that Pr[Ak] = �(k) is negligible. Hence12 + n(k) � Pr[E succeedsjAk]Pr[Ak] + �(k) :Therefore Pr[Ak] = 1� �(k) andPr[E succeedsjAk] = 12 + n1(k)for some non-negligible n1(k). Now, given event Ak, the key held by �si;j will be of the formH2(�RiRj) for Ri chosen at random by �si;j and Rj chosen at random by �tj;i. Call Bk theevent that H2 has been queried on �RiRj by E or some oracle other than �si;j or �tj;i. ThenPr[E succeedsjAk] = Pr[E succeedsjAk ^ Bk]Pr[BkjAk] + Pr[E succeedsjAk ^Bk]Pr[Bk jAk]:26

SinceH2 is a random oracle, and �si;j and �tj;i remain unopened by de�nition, Pr[E succeedsjBk ^ Ak] = 12 . Thus12 + n1(k) � Pr[E succeedsjAk ^Bk]Pr[BkjAk] + 12so that Pr[BkjAk] � n1(k). We conclude that given E picks some �si;j for which thereexists some �tj;i that has had a matching conversation to �si;j , then the probability thatH2 has previously been queried on �RiRj by E or some oracle other than �si;j or �tj;i isnon-negligible.Therefore we use E to construct an adversary F of the DHS.F 's operation: F takes as input (p; q; �) generated by GDH (1k) and (�R0 ; �R00) for R0, R00chosen an random from Z�q , and must try to guess �R0R00 . F makes (p; q; �) the globalparameters for P and picks all entities' secret values at random. F forms the directorypublic-info and starts E.Now F picks i; j 2R I and s; t 2R f1; : : : ; T2(k)g, guessing that E will select �si;j to askits Test query after �tj;i has had a matching conversation to �si;j .F now answers all H1 and H2 oracle queries at random, just like a real random oraclewould.F answers Corrupt queries as speci�ed by �, except that if E asks i or j a Corruptquery, F gives up.F also answers Reveal queries as speci�ed by �, except that if E asks �si;j or �tj;i aReveal query, then F gives up.Finally, F also answers all Send queries as speci�ed by �, except for Send queries to�si;j and �tj;i. When E asks �si;j its �rst Send query, instead of taking a random sampleto form its challenge, �si;j chooses �R0 (so Ri = R0). Similarly, F has �tj;i choose �R00 (soRj = R00).If E does not make its queries in such a way that �tj;i has a matching conversation to�si;j , then F gives up. On the other hand, if E does make its queries in this way, then �si;jwill accept (holding the key H2(�RiRj), although of course F doesn't know �RiRj and socan't actually compute this key).Now let T3(k) denote a polynomial bound on the number of distinct H2 queries madeby E and its oracles. F picks l 2R f1; : : : ; T3(k)g, guessing that the lth distinct H2 callmade during the experiment will be on �RiRj . When the lth distinct H2 call is made (sayon g), then F stops and outputs g as its guess at �RiRj .If E and its oracles do not make l distinct H2 oracle calls before E asks its Test query,then F gives up.Analysis: Suppose E does pick �si;j to ask its Test query after �tj;i has had a matchingconversation to �si;j . Then, as we have seen, with non-negligible probability, E or someother oracle has called H2 on �RiRj . Hence the probability that F succeeds is at least:n1(k)(T1(k))2(T2(k))2T3(k) � �(k)for some negligible �(k) | this is still non-negligible, and therefore contradicts the as-sumed security of the DHS. We conclude that n1(k) must be negligible, and thus thatadvantageE(k) must be negligible. 227

B Proof of Theorem 9B.1 PreliminariesBefore we give the proof itself, some preliminaries are required. The �rst is the de�nitionof a modi�ed MAC adversary called a �-adversary. Roughly speaking, the �-adversaryhas access to a MACing oracle which MACs messages under an element of an ordered listL = [�1; �2; : : : ; �l] of keys chosen independently at random. The list is unknown to the�-adversary, who can however specify which element in the list the oracle should use toMAC a particular message. The �-adversary's goal is to forge a valid tag on any message(that has not yet been authenticated) under some key �i 2 L, where i is also known to the�-adversary. This idea is made precise below.A �-adversary F of a MAC is a probabilistic polytime algorithmwith access to a MACingoracle. The MACing oracle is supplied with a private random oracle P (to which theadversary has only indirect access through its queries to the MACing oracle). F 's queriesto its MACing oracle take the form (s;m) where s is a seed to be used by the MACingoracle to compute a key using P , and m is the message to be MACed. To answer a query(s;m), the MACing oracle �rst calls P on input s, to get:�0 = P(s) :It then calculates: MAC �0(m) = (m; a)and returns (s;m; a) to F . The output of F is now a triple (s;m; a) such that F has notpreviously queried its MACing oracle on (s;m).De�nition 14 (5') A MAC is a �-secure MAC if for every �-adversary F of the MAC, thefunction �(k) de�ned by�(k) = Pr[P 21; (s;m; a) F :MAC �0(m) = (m; a) where �0 = P(s)]is negligible.It is easy to see that �-secure MACs are also secure. The following lemma shows that�-secure MACs and secure MACs are equivalent.Lemma 15 If a MAC is secure, then it is also �-secure.Proof. Suppose, by way of contradiction, that F is a �-adversary of a secure MAC whichsucceeds with non-negligible probability. We use F to build an (ordinary) adversary F ofthe MAC. By assumption Pr[F succeeds] = n(k)for some non-negligible n(k). 28

Let T3(k) denote a polynomial bound on the number of distinct seeds on which F makesa MAC query. Provided the message space is non-trivial, we can assume without loss ofgenerality that F always makes a MAC call during its experiment on the seed s that formspart of its eventual output (s;m; a).F 's operation: F must perform F 's experiment. F picks l 2R f1; : : : ; T3(k)g, guessing thatF 's eventual output will take the form (s;m; a) where s is the lth distinct seed on which Fqueried its MACing oracle.F answers F 's queries as follows. If F queries (s0; m0) where s0 is not the lth distinctseed queried by F , then F picks a key �00 at random to represent P(s0), and returns(s0; m0; a0) where (m0; a0) = MAC�00(m0) :If F queries (s;m) where s is the lth distinct seed queried by F , then F calls its ownMACing oracle on m, receiving (m; a) in return. F then answers F 's query with:(s;m; a) :If F does not make queries on l distinct seeds, then F gives up.Otherwise, F outputs (�; �; �). If � = s, then F outputs (�; �) as its guess at a validauthenticated message. Otherwise, if � 6= s, F gives up.Analysis: If F does indeed output a `good' triple (�; �; �) where � was the lth distinct seedon which F queried its oracle, then F certainly succeeds. Therefore the probability that Fsucceeds is at least n(k)T3(k)which is still non-negligible. This contradicts the assumed security of the MAC. 2During the main proof that Protocol 2 is secure, we will in some cases show that asuccessful adversary E of P can be used to build a successful �-adversary F of the MAC.Lemma 15 above demonstrates that the existence of such an F which succeeds with non-negligible probability contradicts the assumed security of the MAC.B.2 The proofRecall that in Protocol 2, keys are formed as H1(�RiRj ; �SiSj) and H2(�RiRj ; �SiSj). Inwhat follows, it will sometimes be helpful to think of H1 and H2 as taking two distinctinputs | the �rst �RiRj and the second �SiSj . This is certainly `well-de�ned', since wehave stipulated that the encodings used are unique.Theorem 16 (9) Protocol 2 is a secure AKC protocol provided the DHS and MAC aresecure and H1 and H2 are independent random oracles.The proof of this theorem is in many respects analogous to the proof of Theorem 8. Wedraw the reader's attention to this analogy in case it is helpful to compare the two proofs.29

Proof. Again, take each condition of De�nition 3 in turn.Conditions 1 and 2: The �rst two conditions follow immediately from the description ofP and the assumption that H2 is a random oracle.Condition 3: Consider an arbitrary adversary E, and suppose Pr[No-MatchingE(k)] =n(k) is non-negligible. Call Ak the event that during E's experiment, there exists a pairi; j 2 I with i; j 62 C for which H1 or H2 is queried with �SiSj as second input either by Eor by any oracle except �i;j or �j;i oracles.Case 1: Suppose that Pr[Ak] = n1(k) is non-negligible. E can be used to construct anadversary F of the DHS that wins its experiment with non-negligible probability.F 's operation: F takes as input (p; q; �) and (�S0 ; �S00) and must try to guess �S0S00 .F picks a pair i; j 2R I , guessing that E or an oracle other than a �i;j or �j;i oraclewill query H1 or H2 with �SiSj as the second input. F performs E's experiment | making(p; q; �) the global parameters for P , and choosing all entities' secret values at random,except for i's and j's. F makes �S0 i's public value (so Si = S 0) and �S00 j's public value(so Sj = S 00). F starts E.F answers all H1 and H2 queries at random just like a real random oracle would. Fanswers all Send and Reveal queries as speci�ed by �, except for these queries made to�i;j and �j;i oracles. F also answers all Corrupt queries not made to i or j as speci�ed by�. If E asks i or j a Corrupt query, then F gives up.When E asks a �i;j or �j;i oracle a Send query, instead of computing the valuesH1(�RiRj ; �SiSj) and H2(�RiRj ; �SiSj) and using them as the keys used by the oracle,F must pick �0 and � at random to `represent' H1(�RiRj ; �SiSj) and H2(�RiRj ; �SiSj) re-spectively, since F doesn't actually know �SiSj . F then uses �0 and � when determiningthe oracle's actions.If F asks a Reveal query to a �i;j or �j;i oracle, then of course instead of revealingH2(�RiRj ; �SiSj), the oracle must reveal the � F has chosen to represent H2(�RiRj ; �SiSj).Now let T3(k) denote a polynomial bound on the number of calls made by E and itsoracles toH1 andH2 that have distinct second inputs. F picks l 2R f1; : : : ; T3(k)g, guessingthat the lth distinct second input on which H1 or H2 are queried will be �SiSj . When thecall is made on the lth distinct second input to either H1 or H2 (say on g), F stops andoutputs g as its guess at �SiSj .If E halts before the lth distinct second input is queried, F gives up.As before, one problem remains. H1 or H2 may have been queried with �SiSj as secondinput at some time before the lth distinct second input call. In this case, F will haveanswered at random, and its answer may have been in contradiction to one of the keys thathas been used by some �i;j or �j;i oracle. The problem is that E is not guaranteed to haltin this eventuality. To sidestep this potential problem, let T4(k) denote a polynomial boundon E's runtime under ordinary circumstances. If F runs E for longer than T4(k), F givesup, concluding that it must have missed an H1 or H2 query with second input �SiSj .Analysis: Observe that if the lth distinct H1 or H2 second input query made by E or itsoracles is on �SiSj , then F certainly wins its experiment. We conclude that the probability30

F outputs the correct value g = �SiSj is at least:n1(k)(T1(k))2T3(k)which is non-negligible. This contradicts the assumed security of the DHS. We concludethat n1(k) is negligible.Case 2: Let n2(k) be the probability that E succeeds against at least one initiator oracle,and n3(k) be the probability that E succeeds against at least one responder oracle but noinitiator oracles. We have: n(k) = n2(k) + n3(k) :So there are two subcases to consider.Case 2(a): Suppose n2(k) is non-negligible. In this case we construct from E a �-adversaryF of the MAC.F 's operation: F performs E's experiment. F runs G on input 1k | G chooses a parameterset (p; q; �) and secret values for all the entities. G calculates all public values and formsthe directory public-info.F now starts E on input 1k and public-info. F picks i; j 2R I and s 2R f1; : : : ; T2(k)g,guessing that E will succeed against initiator �si;j oracle.F answers all E's queries itself. To answer queries of H1 and H2, F itself picks repliesat random, with the exception of H1 queries with second input �SiSj . If H1 is queried onsecond input �SiSj by E or an oracle that's not a �i;j or �j;i oracle, then F gives up. F 'sactions when H1 is queried on second input �SiSj by a �i;j or �j;i oracle are speci�ed below.F answers E's Reveal queries and Corrupt queries as speci�ed by �. However if E asksi or j a Corrupt query F gives up.F also answers Send queries not sent to �i;j and �j;i oracles as speci�ed by �. To answerSend queries of �i;j and �j;i oracles, F answers as speci�ed by �, except that instead ofcalculating �0 = H1(�RiRj ; �SiSj) each time and using this key to MAC messages, F callsits own MACing oracle on the message under the seed s = �RiRj to compute its response.(F is thus implicitly using �00 = P(�RiRj) to `represent' �0.) F therefore needs to callits MACing oracle to calculate ows on behalf of �i;j and �j;i oracles, and also to decidewhether or not such oracles should accept. Note that provided H1 is only called by �i;j and�j;i on second input �SiSj , then P(s) = H1(s; �SiSj) essentially forms a private randomoracle shared by �i;j and �j;i oracles.If E does not invoke �si;j as an initiator oracle, then F gives up.On the other hand, if E does invoke �si;j as an initiator oracle, then at some time �0,�si;j receives � and responds with �Ri . If �si;j does not at some later time receive a ow ofthe form (m; a) where m = (2; j; i; �Rj; �Ri) for some �Rj , then F gives up.However, if �si;j is to accept, it must later receive a ow of this form. In this event,provided F has not called its MACing oracle previously on m under the seed s = �RiRj ,then F stops and outputs (s;m; a) as its guess at a valid forgery. If F has previously calledits MACing oracle to compute the ow under this seed then F gives up.31

Analysis: Suppose E does succeed against initiator �si;j . In this event, F outputs a validforgery and wins its experiment, provided E or some other oracle has not called H1 onsecond input �SiSj , and provided F has not previously calculated the ow that makes �si;jaccept on behalf of some �i;j or �j;i oracle.Certainly, by Case 1, the probability that H1 has been called on second input �SiSj isnegligible.Furthermore, the probability that F has called its MACing oracle to produce the owis also negligible. For F could only have called on this message on behalf of a responder�tj;i which received �Ri as its own �rst ow, or on behalf of an initiator �ui;j with u 6= swhich also chose �Ri and needs to decide whether or not it should accept. The probabilitythe call was made by a responder �tj;i before �0 is negligible since Ri was chosen at random,and if the call was made after �0, then �tj;i has had a matching conversation to �si;j . Theprobability the call was made by �ui;j is negligible since in this event, �ui;j and �si;j haveindependently chosen the same Ri.We conclude that F constructed in this way wins its experiment with probability atleast: n2(k)(T1(k))2T2(k) � �(k)for some negligible �(k) | this is still non-negligible, and therefore contradicts the assumedsecurity of the MAC. Thus n2(k) must be negligible.Case 2(b): Suppose n3(k) is non-negligible. Again we construct from E a �-adversary F ofthe MAC.F 's operation: The operation of F is similar to the operation of the MAC �-adversary con-structed during Case 2(a), except that this time, F picks i; j 2R I and t 2R f1; : : : ; T2(k)g,guessing that E will succeed against responder �tj;i oracle and not succeed against anyinitiator oracles.F answers queries just like the previous adversary we constructed | calling its ownMACing oracle as necessary to answer Send queries to �i;j and �j;i oracles.This time, if E does not invoke �tj;i as a responder oracle, or if E succeeds against someinitiator oracle, then F gives up.On the other hand, if E does invoke �tj;i as a responder oracle, then at some time �1the oracle must receive �Ri for some Ri, and reply with:MAC �00(2; j; i; �Rj; �Ri)for some Rj 2R Z�q (with the MAC actually computed by F 's MACing oracle in answer toa call on (s;m0) with s = �RiRj and m0 = (2; j; i; �Rj; �Ri)).If �tj;i does not at some later time �3 > �1 receive a message of the form (m; a) withm = (3; i; j; �Ri; �Rj), then F gives up.However, if �tj;i is to accept, it must later receive a ow of this form. If F has notpreviously called its MACing oracle on (s;m), then F outputs (s;m; a) as its guess at avalid forgery. If F has already made a call on (s;m), then F gives up.32

Analysis: Suppose E does succeed against responder �tj;i and against no initiator oracles.In this event, F outputs a valid forgery and wins its experiment, provided E or some otheroracle has not calledH1 on second input �SiSj , and provided F has not previously calculatedthe ow that makes �tj;i accept on behalf of some �i;j or �j;i oracle.Certainly, by Case 1, the probability that H1 has been called on second input �SiSj isnegligible.Furthermore, the probability that F has called its MACing oracle to produce the ow isalso negligible. For F could only have called on this message on behalf of an initiator �si;jwhich sent �Ri as its own �rst ow, or on behalf of a responder �uj;i with u 6= t which alsochose �Rj and needs to decide whether or not it should accept. The probability the callwas made by an initiator �si;j is negligible since such a �si;j has accepted, so by assumptionthere exists �vj;i which has had a matching conversation to �si;j . The probability v 6= t isnegligible, since then �vj;i and �tj;i have independently chosen the same Rj , and v = t isexcluded, since then �si;j has had a matching conversation to �tj;i. The probability the callwas made by �uj;i is negligible since in this event, �uj;i and �tj;i have again independentlychosen the same Rj.We conclude that F constructed in this way wins its experiment with probability atleast: n3(k)(T1(k))2T2(k) � �(k)for some negligible �(k) | this is still non-negligible, and therefore contradicts the assumedsecurity of the MAC. Thus n3(k) must be negligible.Together Cases 2(a) and 2(b) contradict the assumption that n(k) is non-negligible. Weconclude that Pr[No-MatchingE(k)] is negligible for all adversaries E.Condition 4: Fix an arbitrary adversary E and suppose that advantageE(k) is non-negligible. Thus Pr[E succeeds] = 12 + n(k)for some non-negligible n(k) by assumption. Now call Ak the event that E picks some �si;joracle to ask its Test query such that some �tj;i oracle has had a matching conversation to�si;j . ClearlyPr[E succeeds] = Pr[E succeedsjAk]Pr[Ak] + Pr[E succeedsjAk]Pr[Ak] :Condition 3 ensures that Pr[Ak] = �(k) is negligible. Hence12 + n(k) � Pr[E succeedsjAk]Pr[Ak] + �(k) :Therefore Pr[Ak] = 1� �(k) andPr[E succeedsjAk] = 12 + n1(k)for some non-negligible n1(k). Now, given event Ak, the key held by �si;j will be of the formH2(�RiRj ; �SiSj) for Ri chosen at random by �si;j and Rj chosen at random by �tj;i. Call33

Bk the event that H2 has been queried on (�RiRj ; �SiSj) by E or some oracle other than�si;j or �tj;i. ThenPr[E succeedsjAk] = Pr[E succeedsjAk ^ Bk]Pr[BkjAk] + Pr[E succeedsjAk ^Bk]Pr[Bk jAk]:SinceH2 is a random oracle, and �si;j and �tj;i remain unopened by de�nition, Pr[E succeedsjAk ^Bk] = 12 . Thus12 + n1(k) � Pr[E succeedsjAk ^Bk]Pr[BkjAk] + 12so that Pr[BkjAk] � n1(k). We conclude that given E picks some �si;j for which there existssome �tj;i that has had a matching conversation to �si;j , then the probability that H2 haspreviously been queried on (�RiRj ; �SiSj) is non-negligible. In particular, this means thatthe probability that either H1 or H2 has been queried on �rst input �RiRj is non-negligible(speci�cally at least n1(k)).Therefore we use E to construct an adversary F of the DHS.F 's operation: F takes as input (p; q; �) generated by GDH (1k) and (�R0 ; �R00). F makes(p; q; �) the global parameters for P and picks all entities' secret values at random. F formsthe directory public-info and starts E.Now F picks i; j 2R I and s; t 2R f1; : : : ; T2(k)g, guessing that E will select �si;j to askits Test query after �tj;i has had a matching conversation to �si;j .F now answers all H1 and H2 oracle queries at random, just like a real random oraclewould.F answers Corrupt queries as speci�ed by �, except that if E asks i or j a Corruptquery, F gives up.F also answers Reveal queries as speci�ed by �, except that if E asks �si;j or �tj;i aReveal query, then F gives up.Finally, F also answers all Send queries as speci�ed by �, except for Send queries to�si;j and �tj;i. When E asks �si;j its �rst Send query, instead of taking a random sample toform its challenge, �si;j instead chooses �R0 (so Ri = R0). Similarly, F has �tj;i choose �R00(so Rj = R00). Furthermore, if E makes its queries in such a way that �si;j and �tj;i havematching conversations, then F must also choose a key �0 to represent H1(�RiRj ; �SiSj),and use this key when deciding how these oracle should respond to Send queries.If E does not make its queries in such a way that �tj;i has a matching conversation to�si;j , then F gives up. On the other hand, if E does make its queries in this way, then �si;jwill accept (holding the key H2(�RiRj ; �SiSj), although of course F doesn't know �RiRj andso can't actually compute this key).Now let T3(k) denote a polynomial bound on the number of H1 and H2 queries ondistinct �rst inputs made by E and its oracles. F picks l 2R f1; : : : ; T3(k)g, guessing thatthe lth distinct �rst input on which H1 or H2 is called during the experiment will be on�RiRj . When the lth distinct �rst input is called is made (say on g), then F stops andoutputs g as its guess at �RiRj .If E and its oracles do not make l distinct �rst input calls to H1 and H2 before E asksits Test query, then F gives up.One problem remains. H1 may have been called on (�RiRj ; �SiSj) before H1 or H2 iscalled on the lth distinct �rst input. In this case, F will have picked an answer at random,34

and its answer may have been in contradiction to the keys that it has used to representthis call. The problem is that E is not guaranteed to halt in this eventuality. To sidestepthis potential problem, let T4(k) denote a polynomial bound on E's runtime under ordinarycircumstances. If F runs E for longer than T4(k), F gives up, concluding that it must havemissed an H1 query on �rst input �RiRj .Analysis: Suppose E does pick �si;j to ask its Test query after �tj;i has had a matchingconversation to �si;j . Then, as we have seen, with non-negligible probability,E or some otheroracle has called H1 or H2 on �rst input �RiRj . Hence the probability that F succeeds isat least: n1(k)(T1(k))2(T2(k))2T3(k) � �(k)for some non-negligible �(k) | this is still non-negligible, and therefore contradicts theassumed security of the DHS. We conclude that n1(k) must be negligible, and thus thatadvantageE(k) must be negligible. 2C Proof of Theorem 11This theorem is only a stepping-stone to Theorem 8, and the ideas used in the proof havealready been seen in the previous proofs, so we just give a sketch of the construction here.Proof.(sketch)The �rst two conditions of De�nition 10 follow immediately from the description of Pand the assumption that H is a random oracle.Consider the third condition. Fix an arbitrary adversary E that makes no Revealqueries, and suppose that advantageE(k) is non-negligible. E picks some �si;j oracle toask its Test query. The key held by such an oracle will be of the form H(�RiRj ; �SiSj).Since i and j are by de�nition uncorrupted, and by assumption E does not ask any Revealqueries, if E is to succeed with non-negligible probability, then it must itself have queried Hon second input �SiSj at some time. Therefore such an adversary can be used to constructan adversary of the DHS which succeeds with non-negligible probability, in much the sameway as such an adversary was constructed in Case 1 of the proof of Theorem 9. Theexistence of such an adversary contradicts the assumed security of the DHS, so we concludethat advantageE(k) must be negligible for all adversaries E that make no Reveal queries.2
35

