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Abstract. At the end of 2011, Google released version 4.0 of its An-
droid operating system for smartphones. For the first time, Android
smartphone owners were supplied with a disk encryption feature that
transparently scrambles user partitions, thus protecting sensitive user
information against targeted attacks that bypass screen locks. On the
downside, scrambled telephones are a a nightmare for IT forensics and
law enforcement, because once the power of a scrambled device is cut any
chance other than bruteforce is lost to recover data.
In this paper we present Frost, a tool set that supports the forensic
recovery of scrambled telephones. To this end we perform cold boot
attacks against Android smartphones and retrieve disk encryption keys
from RAM. We show that cold boot attacks against Android phones
are generally possible for the first time, and we perform our attacks
practically against Galaxy Nexus devices from Samsung. To break disk
encryption, the bootloader must be unlocked before the attack because
scrambled user partitions are wiped during unlocking. However, we show
that cold boot attacks are more generic and allow to retrieve sensitive
information, such as contact lists, visited web sites, and photos, directly
from RAM, even though the bootloader is locked.

1 Introduction

In 2011, 83 percent of the American adults had a cell phone from which 42
percent had a phone that can be classified as smartphone [35]. Android is
today the most common smartphone platform, followed by iOS, Blackberry,
and Windows. Regardless of the platform in use, smartphones are an important
technology to keep employees connected to their company. Most consumers use
their smartphones for both business and personal use, and a missing device has
severe consequences for both private users and their employers.

1.1 Physical Smartphone Security

In 2011, AVG and the Ponemon Institute presented findings of their Smartphone
Security Survey [30] considering the smartphone usage of 734 consumers. 84
percent of the surveyed consumers use their smartphone for both business and
personal purposes. For example, 89 percent use their smartphone for email and



82 percent use it also for business email. 66 percent admit they keep a significant
amount of personal data on their phone, 38 percent use it for electronic payments,
and 14 percent use it even for online banking. Sensitive information like those
are at risk when a phone is physically lost or stolen. Although malicious apps can
be used to spy upon user data remotely [1, 11], we focus on the phyiscal security
layer of smartphones.

In another study from 2011, McAfee and the Ponemon Institute presented
results of their survey The Lost Smartphone Problem [31] on 439 U.S. organiza-
tions from both industry and public sectors. The study objectively determined
that in a 12-month period 142,708 out of 3,297,569 employee smartphones were
lost or stolen, i.e., 4.3 percent per year. 5,034 of these smartphones are known to
be theft, while the others are just “missing”. Only 9,298 smartphones could be
recovered within the time of the study. 47 percent of the smartphones were lost
at home or in hotel rooms, 29 percent were lost while traveling, and 13 percent
were lost in the office.

Personal and corporate data are not only at risk when smartphones become
intentionally stolen by criminals, but also if they are lost and found by ordinary
people. In 2012, researchers from Symantec presented their results of the Smart-
phone Honey Stick Project [40]. In this project, 50 smartphones were intentionally
lost in cities around the U.S. and in Canada. The phones were prepared with a
contact list, an app called “online banking”, files named “salaries” and “saved
passwords”, an email account, personal photos, and more. Additionally, the
phones were loaded with logging software so that Symantec could keep track of
all activities. The study came to the result that 96 percent of all smartphones
were accessed by their finders. 89 percent of the finders accessed personal data,
and 83 percent accessed corporate data. For example, 43 percent clicked on the
online banking app, 53 percent clicked on the salaries file, 60 percent checked
personal emails, and 72 percent checked personal photos.

1.2 Protection Mechanisms against Physical Access

Although lost and stolen smartphones are widely known to be a security concern,
risky behaviors and weak security postures are frequently in place today [32].
Using screen locking mechanisms can already prevent ordinary people from
accessing sensitive data, but less than 50 percent of consumers use PIN-locks
or passwords today [30]. To the contrary, 57 percent of all smartphones are not
protected with any security mechanism [31]. The most frequently stated reason
for that is the inconvenience arising from screen locks.

Even worse, also if PIN-locks or passwords are used, only opportunistic attacks
can be defeated. Given physical access, we distinguish two types of attacks against
smartphones: opportunistic and targeted attacks. In opportunistic attacks an
adversary finds or steals a smartphone and immediately tries to retrieve personal
(or corporate) data from it. This scenario is withstood by common screen locking
mechanisms like PIN-locks, passwords, and pattern-locks, or by new technologies
like finger gestures, face recognition, and speech recognition [24]. However, more
careful adversaries, such as forensic experts from law enforcement, can carry out
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targeted attacks. Targeted attacks do not stop at the barrier of screen locks, but
try to retrieve data through more advanced methods. For example, although
screen locks are in use, data can be retrieved from flash memories without using
telephone software. Considering external flash memory (i.e., SD cards) this task
becomes trivial, but considering internal flash memory, the attack requires expert
knowlegde in electronics or computer science, e.g., about the JTAG interface and
tools like the RIFF Box [33].

Targeted attacks can be counteracted through anti-theft solutions with remote
wipe functionality to delete sensitive contents of lost and stolen smartphones [3].
Such anti-theft solutions are available from all notable anti virus vendors, like
Kaspersky, F-Secure, and Symantec. However, to reduce the risk of sensitive data
being accessible, encryption technologies based on AES [14] are more reliable.
Besides third party apps like the Encryption Manager, which works on file basis,
Android supports full disk encryption (FDE) to scramble entire user partitions
transparently. The encryption feature is available since Android 4.0 which was
released in October 2011. Apple’s iOS has built-in support for data encryption
even longer and enables it automatically if a password is set [5].

With a disk encryption solution in use, targeted attacks on smartphones
should fail because only scrambled data can be retrieved when bypassing the
screen lock. Hence, encryption technologies are an important feature for personal
smartphones, and an essential requirement for future business devices. However,
they are a nightmare for IT forensics. It seems as law enforcement eventually lost
the crypto wars because there are no restrictions against strong cryptography on
the mass-market today. For Apple and BlackBerry phones, it is already rumored
that “the rise of AES hardware encryption in devices such as the iPhone and
BlackBerry has made it all but impossible for the government forensic experts to
extract desired info” [13].

1.3 Contributions: Breaking Android FDE with Cold Boot Attacks

In the work at hand we investigate the security of Android’s encryption feature.
Android is the most widespread mobile platform in use today, and it is most
amenable for an in-depth security analysis because it is open source and Linux-
based, such that kernel-hacking (as required by our implementation) becomes
possible. In short, for the case of Android we show that the encryption solution is
vulnerable to cold boot attacks [18]. In this sense, Android’s encryption solution
does withstand opportunistic attacks, but it does not withstand targeted attacks.
More detailed, our contributions are:

– We prove that cold boot attacks against Android/ARM-based devices like
tablets and smartphones are possible in general.

– In particular, we present the tool Frost (Forensic Recovery of Scrambled
Telephones) for Galaxy Nexus devices. Frost is a recovery image that is to
be installed into the recovery partition of a smartphone after we got physical
access to it. It is not necessary to have Frost installed before the attack.

3



– On devices with an unlocked bootloader, Frost can recover encryption keys
from RAM and decrypt the user partition directly on the phone. Similarly,
we integrated a bruteforce option against short PINs that runs directly on
the phone and decrypts the user partition, too.

– On devices with a locked bootloader, retrieving encryption keys from RAM
is pointless since the unlocking process wipes all user data. However, Frost
can also be deployed to take complete memory dumps of the phone in order
to analyze them offline. We were able to recover recent emails, photos, and
visited web sites from physical RAM dumps.

– We evaluate how the operating temperature of a Galaxy Nexus device corre-
lates with the success of cold boot attacks.

A tutorial, a photo series, source codes (published under GPL v2 [36]), and
compiled binaries are available at www1.cs.fau.de/frost/.

1.4 Paper Outline

The remainder of this paper is structured as follows: In Sect. 2 we provide
background information about Android’s encryption solution and about cold
boot attacks. In Sect. 3 we describe technical details behind the implementation
of our recovery image Frost, and in Sect. 4 we evaluate the effectiveness of cold
boot attacks against scrambled telephones. We conclude with an outlook over
possible countermeasures and future works in Sect. 5.

2 Background Information

We now provide necessary background information about the support of full disk
encryption in Android 4.0 and subsequent versions (Sect. 2.1), as well as the cold
boot attack on encryption keys (Sect. 2.2). We also give a brief summary about
technical details of our device under test, the Samsung Galaxy Nexus (Sect. 2.3).

2.1 Disk Encryption in Android 4.0

Google’s Android operating system is a Linux-based open source project that can
be adapted by smartphone and tablet manufacturers and can freely be shipped
together with new devices. The initial beta version of Android was released in
November 2007, and the first stable version 1.0 followed in September 2008.
Versions appear regularly and in October 2011, Android 4.0 alias Ice Cream
Sandwhich, in short Android ICS, was published. Since Android 4.0, Google
maintains an ARM-specific fork of the Linux kernel version 3.0.

With Android 4.0, support for full disk encryption was introduced. While
third party apps that extend the functionality of Android-based smartphones are
primarily written in Java, disk encryption resides entirely in system space and
is written in C. It is based on the known FDE solution dm-crypt [34] which is
available in Linux mainline kernels since years. Dm-crypt relies on the device-
mapper infrastructure and Crypto API and thus, it provides a flexible way to
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encrypt block devices transparently. It creates a virtual encryption layer on top of
all kinds of abstract block devices, including real devices, logical partititions, loop
devices (files), and swap partitions. Writing to a mapped device gets encrypted
and reading from it gets decrypted. LUKS [15], for example, makes use of the
dm-crypt backend, too. Although dm-crypt is suitable for whole disk encryption,
Android does not encrypt whole disks but user partitions mounted at /data only.

Dm-crypt is kept modular and it supports ciphers and modes of opera-
tion known from the Crypto API, including AES, Twofish and Serpent, as
well as CBC, XTS, and ESSIV. Android 4.0 makes use of the dm-crypt mode
aes-cbc-essiv:sha256 with 128-bit keys [4]. The AES-128 data encryption
key (DEK, also master key) is encrypted with an AES-128 key encryption key
(KEK) which is in turn derived from the user PIN or password through the
password-based key derivation function 2 (PBKDF2) [39]. Using two different
keys, namely the DEK and the KEK, renders cumbersome re-encryption in the
case of PIN or password changes unnecessary. The encrypted DEK as well as an
initialization vector (IV, also salt) for PBKDF2 are random 128-bit numbers
taken from /dev/urandom and get stored inside the crypto footer. The crypto
footer of a disk can either be an own partition or it can be placed at the very
last 16 kBytes of an encrypted partition.

Unlike iOS, which does automatically activate disk encryption when a passcode
is set, Android’s encryption is disabled by default. Activating it manually, takes
up to an hour for the inititial process to encrypt the disk and cannot be undone.
Furthermore, it can only be activated if PIN-locks or passwords are in use.
PINs consist of 4 to 16 numeric characters, and passwords consists of 4 to
16 alphanumeric characters with at least one letter. 4-digit PINs are still the
most widespread screenlock today. New screen locking mechanisms like pattern-
locks and face recognitition are less secure, and thus Google forbids them in
combination with FDE. Pattern-locks, for example, can be broken by so called
Smudge Attacks [6], and face recognition can simply be tricked by showing a
photo of the smartphone owner [23].

2.2 The Cold Boot Attack

On PCs, adversaries with physical access can perform one of several physical
access attacks against FDE. Besides evil maid attacks [20] (also known as bootkits)
and DMA attacks over FireWire [7], PCIe [12], or Thunderbolt [8], cold boot
attacks constitute such a threat. Cold boot attacks are known since 2008, when
Halderman et al. [18] showed how to exploit the remanence effect of DRAM [17]
in order to recover encryption keys. The remanence effect says that RAM contents
fade away gradually over time, as slower as colder the RAM chips are. Due to
this effect, keys can be restored from main memory through rebooting a PC
with malicious USB drives, or by replugging RAM chips physically into another
PC. Such attacks are generic and constitute a threat to all software-based FDE
technologies, including dm-crypt for Linux [34], BitLocker for Windows [25], and
the cross-platform utility TrueCrypt [38]. A recent study from 2011 [10] confirms
the practicability of cold boot attacks against x86 PCs.
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However, it has not been reported yet if cold boot attacks are applicable against
ARM-based devices such as smartphones and tablets, or against Android devices
in particular. We conjecture such devices are vulnerable, because Android’s
underlying encryption solution dm-crypt is already known to be vulnerable.
Technically, it makes no difference if dm-crypt is running on ARM or an x86
architecture, because the vulnerability relies in the AES key schedule that is
stored inside RAM. AES key schedules can be identified by recovery tools like
aeskeyfind [19] that search for suspicious patterns of a schedule in RAM. Dm-
crypt is vulnerable to such tools, because it creates the AES key schedule initially
inside RAM during boot and it gets lost only if power is cut.

The open question we had to answer was, how to obtain a physical RAM
dump from Android devices if the screen is locked? Unlike x86 PCs, we can
neither plugin a bootable USB drive, nor can we simply unplug RAM chips
physically in order to read them out in a second device.

2.3 Samsung Galaxy Nexus

We have chosen the Galaxy Nexus from Samsung as device under test because
it is the first device that was available with Android 4.0 and consequently, it
is the first Android-based smartphone with FDE support. Furthermore it is an
official Google phone, meaning that it comes with a stock Android from Google
that is not modified by its hardware vendor. Official Google phones are most
amenable for an in-depth security analysis, and flaws can be generalized best
to a wider class of devices. For the Samsung Galaxy SII, for example, we were
able to recover AES keys from RAM, but we could not instantly decrypt the
user partition because Samsung’s encryption mode seems to differ from that of
official Android releases. For Sony’s Xperia mini, on the other hand, we were not
even able to turn on encryption, although Android 4.0 was installed, presumably
because Sony disabled it for performance reasons.

More specifically, we own a GSM/HSPA variant of the Galaxy Nexus (GT-
9250), codename tuna/maguro. There are slightly different CDMA/LTE models
available (codename tuna/toro) but we conjecture that our implementations run
on both variants. The Galaxy Nexus family comes with an OMAP4 chip from
Texas Instruments (4460) such that it has a Cortex-A9 CPU implementing the
ARMv7 instruction set [37].

The partition layout of a scrambled Galaxy Nexus is given in Fig. 2.3. Most of
the thirteen partitions can be ignored for our purpose, except userdata, metadata
and recovery. The userdata partition contains the encrypted filesystem we want to
break. The metadata partition is the crypto footer holding necessary information
about the encryption, as stated in Sect. 2.1. And the recovery partition is a
partition that holds a second bootable Linux system besides the system partition
with Android. This partition can be compared best with a rescue system from
ordinary PCs, allowing basic operations on the hard disk without booting into
full Android.

The recovery partition plays a role in our cold boot attack because we make
use of it to boot our own, malicious recovery image. As we are not able to boot
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block device partition name description

/dev/block/mmcblk0p1 xloader bootloader code
/dev/block/mmcblk0p2 sbl bootloader code
/dev/block/mmcblk0p3 efs static information like IMEI
/dev/block/mmcblk0p4 param boot parameters
/dev/block/mmcblk0p5 misc system settings like carrier ID
/dev/block/mmcblk0p6 dgs unknown (zero filled on all devices)
/dev/block/mmcblk0p7 boot boot code
/dev/block/mmcblk0p8 recovery recovery image
/dev/block/mmcblk0p9 radio radio firmware (GSM)
/dev/block/mmcblk0p10 system Android operating system
/dev/block/mmcblk0p11 cache cache (e.g., for user apps)
/dev/block/mmcblk0p12 userdata user data (encrypted)
/dev/block/mmcblk0p13 metadata crypto footer

Fig. 1: Partition layout of scrambled Samsung Galaxy Nexus devices.

smartphones from external USB devices, as we could do on PCs, we had to find
another way to execute system code. In short, we build a recovery image that
walks through all phyiscal memory pages in order to find AES keys. We flash this
image to the Galaxy Nexus device and then reboot; this can be done after we
found the device. However, if the bootloader is locked it must first get unlocked
in order to flash. Unfortunately, the unlocking process wipes the userdata and
cache partition and thus, searching for the AES key after unlocking becomes
pointless (although still possible). We verified that the Galaxy Nexus actually
wipes the userdata and cache partition, meaning that it zero-fills them.

The wiping process implemented by Google is commendable as it even renders
data recovery in the case of non-encrypted partitions difficult. However, the first
series of Galaxy Nexus devices, which could be ordered via Google’s Play Store,
had an implementation flaw: they did not wipe the user partition after unlocking
the bootloader [42]. Furthermore, we conjecture that there is an above-average
number of Galaxy Nexus devices with unlocked bootloaders, because it is a
developer phone. Other devices, like the Samsung Galaxy SII, even come with
unlocked bootloaders out-of-the-box [41]. For all Android-based smartphones we
find with an unlocked bootloader, or that we can unlock without wiping the user
partition, we can perform cold boot attacks against disk encryption. For all other
devices, we can still perform cold boot attacks to retrieve information from RAM
such as contact lists, photos, and visited websites.

3 Implementation of the Frost Recovery Image

We now present the implementation of our utility Frost (Forensic Recovery
Of Scrambled Telephones). Technically, Frost is a set of tools that are bracket
together into an easy-to-use recovery image for Galaxy Nexus smartphones. The
recovery image displays a graphical user interface that allows IT practitioners,
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for example, from law enforcement, to recover encryption keys and to unlock the
scrambled user partition with only a few clicks. Furthermore, we implemented an
option for bruteforce attacks against weak PINs, and we implemented an option
to save full RAM dumps to PCs in order to analyze them offline.

3.1 The Linux Kernel Module

The heart of our Frost project is its loadable Linux kernel module (LKM)
of the same name. The Frost LKM is based on the known userland utility
aeskeyfind [18, 19] that searches for AES keys in a given memory image of x86
PCs. Contrary to that, Frost is implemented for ARM and searches for AES
keys on-the-fly, i.e., directly on the phone. Without the Frost LKM, the process
of cold boot attacks would be quite cumbersome, because (1) a memory image
of the phone would have to be taken, e.g., with the Linux Memory Extractor
(LiME) [21], (2) this memory image would have to be transferred to a PC via
USB, and (3) the image would have to be analyzed with aeskeyfind. The entire
process would take up to ten minutes. Frost, on the other hand, recovers AES
keys in about 10 seconds. An exemplary Frost output is given in Fig. 2.

The Frost module was developed and tested on Galaxy Nexus devices, but it
works on other Android-based smartphones, too. It is a part of our project which
is platform-independent meaning that it even runs on non-Android systems. For
example, we have successfully tested our module on a PandaBoard with Ubuntu.
In general, Frost can be used on all ARM devices where you have a Linux shell
with root access. It is licensed under GPL v2 [36] and is together with other
information available on our webage. You may use it independent of the Frost
recovery image.

The Frost LKM basically supports two search modes: quick search and full
search. Quick search is highly optimized for Galaxy Nexus devices and looks
for AES keys at certain RAM addresses. In detail, we have chosen the physical
address space 0xc5000000 to 0xd0000000 because all our tests revealed that AES
keys are placed in this range. In quick search mode, the recovery process finishes
within seconds. This mode, however, might fail on other devices because the
search space might be too specific. Therefore, we implemented a full search mode
considering the entire physical RAM. Additionally, full search mode uses a sliding
window mechanism that looks at each physical RAM page twice. In quick search
mode, AES key schedules which are spread over multiple physical pages might
be missed.1 As a downside, the full search mode runs up to ten minutes. It is
generally a good idea to use quick search first and full search only if that fails.

3.2 PIN Cracking through Bruteforce

PINs are still the most frequent screen lock in use today. But long PINs are too
inconvient for most people that work on their phones on a daily basis, because
1 In practice, however, this is very unlikely. We never observated any AES key schedule

that was spread over two pages. (The page size in Android is 4096 bytes.)
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adb> insmod frost.ko fullsearch=0 ; dmesg

key-32: 4ee35476397b76905828a89f3d9b872f

: ccb6671af6eebffe94ea1bc87c0948e4

key-32: 4ee35476397b76905828a89f3d9b872f

: ccb6671af6eebffe94ea1bc87c0948e4

key-16: bcdbc55cf809cb5989e58a40ecbb7164

key-16: bcdbc55cf809cb5989e58a40ecbb7164

Summarizing 4 keys found.

Fig. 2: AES keys recovered by the Frost LKM.

adb> ./crackpin

magic: D0B5B1C4

encdek: 3c4ac402c6095ed46cf4f1e2281a1f3e

salt: 19043211840adfde95110c7f99263d6c

>> KEK: 2165534cc66099714a8226753d70b576

>> IV: 05cb47cf3a98d77e563bb4cfcde791aa

>> DEK: bcdbc55cf809cb5989e58a40ecbb7164

>> PIN: [2323]

Fig. 3: Key and PIN recovered by brutefore.

they must be enterend for each interaction with the device, e.g., for giving a call,
for writing a message, and for taking a photo. Consequently, people commonly
use short PINs of only 4 digits. That is concerning, because in Android the screen
lock PIN necessarily equals the PIN that is used to derive the disk encryption key.
Hence, short PINs are just another weak point of Android’s encryption feature
besides cold boot attacks.

In 2012, Cannon et al. [9] presented details about Android’s encryption system
and gave instructions on how to break it with bruteforce attacks against the PIN.
They published their findings in form of a Python script that breaks Android
encryption offline, meaning that it runs on an x86 PC after the userdata and
metadata (crypto footer) partition have been retrieved “somehow”. Basically,
we re-implemented the Python script in C and cross-compiled it for the ARM
architecture, so that we can perform efficient attacks directly on the phone without
the need to download the user partition first. To this end, we cross-compiled
the PolarSSL library [2] for Android, an open source library similar to OpenSSL
but more light-weight and easier to use and integrate. We then statically linked
our PIN cracking program with the PolarSSL library as Android systems do not
support dynamic linking out-of-the-box. Both the source code and the statically
linked binary are available on our webpage under GPL v2 [36]. Again, you may
use it independent of the Frost recovery image. An exemplary output can be
found in Fig. 3.

3.3 Recovery Image and GUI

We integrated both the Frost LKM as well as our bruteforce program into an
easy-to-use recovery image that allows to operate our system utilities with a few
clicks. Technically, the Frost recovery image is based on the recovery image
from ClockwordMod, a known provider of custom Android ROMs. A precompiled
version of Frost for Galaxy Nexus devices can be found on our website. However,
we believe that similar images can easily be build for a wider class of devices
with the system utilities that we provide.
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Fig. 4: Graphical user interface of the recovery image. F.l.t.r: recovered PIN from
bruteforce, UI menu, and key recovery with the Frost LKM.

All in all, users can choose between one of the following options in the Frost
recovery image:

– Telephone encryption state: To check the encryption state of the phone, we
simply try to mount the userdata partition and check whether that fails.

– Key recovery (quick search): Induces a quick search for AES keys as described
in Sect. 3.1. Internally, the Frost LKM is loaded and its output is displayed
to the user.

– Key recovery (full search): Induces a full search for AES keys as described in
Sect. 3.1. Also here, the Frost LKM is loaded.

– RAM dump via USB : To load full memory dumps to the PC we make use of
the LiME module [21]. Similar to the Frost LKM, LiME parses a kernel
structure to learn physical memory addresses. It then maps each physical
page that is in system RAM, i.e., that does not belong to an I/O device, to a
virtual address in kernel space. Each mapped page is transferred over a TCP
socket to the computer via USB.

– Crack 4-digit PINs: Performs bruteforce attacks against weak PINs as de-
scribed in Sect. 3.2.

– Decrypt and mount /data: Decrypts the user partition with recently recovered
keys. To decrypt the userdata partition, we integrated a statically linked
ARM binary of the dmsetup utility [43]. This option becomes available only
if one of the key recovery methods or the bruteforce approach were successful,
i.e., only after the decryption key is known.

4 On the Effectiveness of Cold Boot Attacks against
Scrambled Telephones

We now give a detailed evaluation regarding the usability and the effectiveness
of Frost. First we describe ways how to flash our recovery image onto phones
in Sect. 4.1. For devices where that it is possible without destroying the user
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partition, we look at the runtime performance of our key recovery and bruteforce
procedures in Sect. 4.2. For other devices, we look at the information we can
gain from RAM even though the user partition gets destroyed in Sect. 4.4. We
also investigate the correlation of the operating temperature of Galaxy Nexus
devices with the success of cold boot attacks in Sect. 4.3.

4.1 Flashing the Recovery Image

The question we answer in this section is, how do we cold boot a smartphone
and install the Frost image when we just gained physical access to it? Or, how
can law enforcement forensically investigate scrambled telephones with the help
of Frost? An important point at the beginning is to assure that the device
has enough power. Otherwise it should be charged first, because once a device
looses power there is no possibility other than bruteforce to recover keys. Next,
the device must be cooled down to increase the success rate of cold boot attacks
(cf. Sect. 4.3). As a rule of thumb, we have positive experience with putting the
device into a −15◦C freezer for 60 minutes. Take care to pack it up in a freezer
bag due to water condensation.

After the phone has been charged and cooled down, we can perform cold
boot attacks. First, we assume the bootloader of the device is already unlocked.
Since the device has no reset button, we have to reboot it by unplugging the
battery briefly. Shutting the device down in software from the lock screen is so
slow that key information might get lost. To boot up the device quickly after the
battery has been re-inserted, the power button must already been hold before
removing the battery. The entire process must happen quickly such that the
phone is without power only for milliseconds. We recommend to practice this
procedure several times before carrying it out in real cases.

Once the smartphone is up again, the risk of loosing RAM contents is defeated.
Flashing the recovery image does not destroy important RAM lines according
to our tests. To flash the Frost image onto the phone, the buttons Volume
Up and Volume Down must additionally be hold during boot to enter the
Fastboot mode. Once the phone is in Fastboot mode, it must be connected to
a Linux PC via USB, and Frost can be flashed onto it with the command
fastboot flash recovery frost.img. Afterwards, the Recovery Mode option
must be selected from the phone menu in order to boot into our GUI, and to
eventually recover keys.

If the bootloader is locked, we have additionally to run fastboot oem unlock
before flashing the recovery partition. Unfortunately, this process does wipe all
user data, and you have to confirm the warning: “To prevent unauthorized access
to your personal data, unlocking the bootloader will also delete all personal data
from your phone”. Once you confirm this warning, the scrambled user partition
gets wiped. If that is the case, however, you can still use Frost to recover RAM
contents (cf. Sect. 4.4); but you cannot decrypt the user partition anymore.
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4.2 Runtime Performance

In this section we give a brief overview of the performance that you can expect
when running Frost. The key recovery mode optimized for Galaxy Nexus (quick
search mode) finishes in about 9s. Contrary to that, the full search mode requires
7m 40s. To take a full memory dump of 700 MB with help of the LiME module,
we need 3m 9s. 4-digit PINs are cracked within 2m 58s at maximum, i.e., in
one and a half minute on average. Although we only implemented the important
4-digit case, we can estimate that 5-digit PINs would be cracked in about 15m,
6-digit PINs in 2h 30m, and 7-digit PINs in about 25h.

4.3 Impact of the DRAM Operating Temperature

We now analyze the reliability of Frost, i.e., the success rate of cold boot attacks,
in dependence of the operating temperature and the time of battery removal.
Earlier in our investigations, we recognized that the chance to recover AES keys
from DRAM increases considerably if the phone is cold because it has just been
switched on. We also experimented with putting the phone into a fridge and
then into a freezer, and we got even better success rates. In the following we give
exact benchmarks for this effect.

ε 0.5− 1s 1− 2s 3− 4s 5− 6s

5− 10 ◦C 0 (0%) 2 (0%) 1911 ( 5%) 8327 (25%) 24181 (73%)
10− 15 ◦C 0 (0%) 976 (2%) 2792 ( 8%) 18083 (55%) 25041 (76%)
15− 20 ◦C 0 (0%) 497 (1%) 4575 (13%) 20095 (61%) 25433 (77%)
20− 25 ◦C 0 (0%) 421 (1%) 16461 (50%) 23983 (73%) 27845 (84%)
25− 30 ◦C 1 (0%) 2204 (6%) 16177 (49%) 27454 (83%) 28661 (87%)

Fig. 5: Number of bit flipping errors per phyiscal page (in total and percentage)
dependent on the phone temperature and the time of battery removal.

Fig. 5 lists the bit error rate of RAM pages as a function of the device
temperature and the time without power before reboot. To determine the device
temperature we utilitzed an infrared thermometer and pointed it to the exactly
same position of the phone’s motherboard each test run. To cool down the phone,
we put it into a −15 ◦C freezer. 25 − 30 ◦C is the normal operating temperature
of a Galaxy Nexus, 20 − 25 ◦C is reached after 10 minutes, 15 − 20 ◦C after 20
minutes, 10 − 15 ◦C after 40 minutes, and 5 − 10 ◦C after 60 minutes inside the
freezer.

To determine the bit error rate, we filled pages at fixed physical addresses
entirely with 0xff . The page size in Android is 4096 and hence, we filled them
with 4096 · 8 = 32768 one-bits. After rebooting the device, we re-considered the
pages we recently filled and counted the bits that were zero. By this means, we
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got the total number of inverted bits and we were able to estimate the overall bit
error rate, as listed in Fig. 5. 2

The most inaccurate part of our measurements are the times that a device
was without power. The problem of rebooting a Galaxy Nexus is that battery
removal is a manual, mechanic task and that milliseconds are crucial for the
success of cold boot attacks. With ε we define the quickest unplugging-replugging
procedure that we were able to perform; this was consistently below 500 ms.
Thereover, we define four intervals up to six seconds, and say that we replugged
the battery “somewhen” during these intervals. We explain inconsistencies of the
table given in Fig. 5 mostly with inaccurate timings.
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Fig. 6: Visualized bit error rate in dependence of time and temperatures.

In Fig. 6, we visualized the data set from Fig. 5. It becomes clear that the bit
error rate of DRAM increases with both the temperature and the time without
power. For example, at a temperatur of approximately 25 ◦C we have a bit error
rate of already 50% after one second without power, whereas the corresponding
bit error rate at temperatures around 10 ◦C is only 5%. Hence, besides replugging
the battery quickly, putting a device into the freezer increases the chance of a
successful cold boot attack considerably.

4.4 Recovery of Non-Key Data from DRAM

We now assume that the bootloader of a Galaxy Nexus is locked and investigate
which sensitive data we can forensically recover from DRAM without accessing

2 Note that the highest possible bit error rate is 87.5%, and not 100%, because the
passive state of 50% of RAM lines is 0xc0, and not 0x00.
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the disk. We are after personal and corporate data such as contact lists, messaging,
photos, and calendar entries.

Fig. 7: Photos we could recover from DRAM via cold boot attacks. The right most
picture was taken with the Galaxy Nexus instantly before the attack. The other
pictures were taken weeks before the attack with another smartphone, but they
got synchronized with our target phone via Dropbox.

Technically, we used the Frost recovery image to take full memory dumps,
as described above. We then examined the memory dumps with known system
utitilities like strings or hexdump, and made use of the program PhotoRec [16].
Besides photos, PhotoRec can recover websites, text files, databases, sound files,
source codes, and binary programs from raw memory images. In our main test
case, we were able to recover 68 JPEG and 199 PNG pictures, 36 OGG tracks, 295
HTML and 386 XML files, 215 SQlite databases, 28 ZIP and 105 JAR archives,
1214 ELF binaries, 485 JAVA source codes, and 6331 text files.

While most PNG images that we recovered were system images and logos,
most JPEG files were personal photographies, as shown in Fig. 7. We were able to
recover both pictures that were recently taken and older pictures. We were quite
surprised as we first recovered pictures that were taken with another smartphone
weeks before – the reason was that they got synchronized in background via
Dropbox. In some cases, we recovered two variants of a photo: a small thumbnail
and a bigger variant. In most cases, however, we could only retrieve smaller
variants and high-resolution pictures remained secret.

We also recovered broken JPEG images with PhotoRec that were composed
of several images and destroyed blocks. We conjecture that this effect comes from
bit flipping errors from the cold boot attack, and so we visualized the influence of
bit errors in Fig. 8. For the picture series in Fig. 8, we used a 4096-byte bitmap
that exactly fits into one physical page. 3 We then increased the interval that
the phone was without power during boot from 0.5 to 6 seconds. Whenever the
bitmap header got destroyed, we fixed it manually in order to display the image.
Fig. 8 impressively shows the effect and the distribution of bit errors. It also
shows that the passive state of the first half of a physical RAM page is 0x00,
while the passive state of the second half is 0xc0.

Most PNG images that we recovered were system files, but, for example,
also the Wikipedia and Wikimedia Logos were available. Before the attack, we
3 We used a bitmap rather than a JPEG in order to visualize bit errors because using

JPEGs, entire blocks get destroyed rather than single bits.
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Fig. 8: An Android bitmap after 0s, 0.5s, 1s, 2s, 4s, and 6s in DRAM without power.
The cold boot attack has been deployed at room temperature.

intentionally surfed to wikipedia.org, and the HTML source of this page could be
recovered, too. Even more critical, we found personal text files such as emails,
and we found the entire Whatsapp chat history in RAM. We also explicitly
searched for names of our contact list and we found each name to be present in
RAM several times, as well as respective phone numbers and email addresses.
Additionally, we recovered the birthday of some people from Jorte Calendar,
and we even found passwords in RAM. Actually, we did search for the SSID of
our WLAN and we could easily locate the according username and password in
plaintext.

Concluding, we did recover the following sensitive information from RAM:

– New and old personal photos (from Dropbox).
– Recently visited websites.
– Emails and Whatsapp messages.
– Contact lists including names, phone numbers, and email addresses.
– Calendar entries like birthdays (Jorte Calendar).
– WLAN credentials: username and password.

Summarizing, we could recover dozens of sensitive information by simple means
like the strings and PhotoRec utility. We did not use specialized forensic software
such as the Volatility framework, and we still miss some interesting information
like GPS coordinates and the list of recent phone calls. But we are confident that
these information can be retrieved from RAM with more effort in future, too.
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5 Countermeasures and Future Work

We believe our study is important for two reasons: First, it reveals a significant
security gap in Android’s full disk encryption that must be counteracted in
future. We present possible countermeasures in Sect. 5.1. Second, we provide the
utility Frost which allows law enforcement to forensically recover telephones.
We discuss future improvements for Frost in Sect. 5.2. We conclude in Sect 5.3.

5.1 Countermeasures

Physically loosing a smartphone, we can distinguish two severe consequences:
(1) data loss or damage and (2) unauthorized access to data [28]. While the
former can be counteracted by regular backup solutions today, the latter must
be counteracted by more secure encryption solutions than thus that are available
today. As we have shown, the current FDE system implemented in Android 4.0
is vulnerable to cold boot attacks – a generic threat that is known since years.
All the more surprising it is, that no company attended to it in recent years.
Linux’ dm-crypt as well as Microsoft’s BitLocker and Apple’s FileVault are still
vulnerable. On the other hand, several academic projects have shown that cold
boot resistant implementations of FDE are basically possible.

The common idea of these academic projects is simple: keep the key outside
RAM. FrozenCache (2009) [22] holds the key in CPU caches, AESSE (2010) [26]
holds it in SSE registers, TRESOR (2011) [27] in debug registers, and LoopAm-
nesia (2011) [29] in MSRs. All these solutions are Linux-based and thus, they are
perfectly suited to get adopted for Android. Another solution would be to wipe
the key from RAM each time the screen gets locked and to re-derive it from the
PIN only when the screen gets unlocked. Apple’s iOS [5], for example, pursues
this approach and, consequently, it is mostly immune to cold boot attacks.

5.2 Future Work

Our plans for future improvements of Frost are twofold. First, we want to make
our recovery image available for more Android devices than just the Galaxy
Nexus. However, we already provide device independent system utilities like
the Frost LKM and the PIN cracking program on our webpage, such that
experienced IT practitioners can compose recovery images for other devices on
their own. To this end, we also provide appropriate howtos. The next device
that we want to support ourselves is the Google Nexus 7 tablet manufactured by
Asus.

Second, an important research topic for future releases is to find a way to
retrieve physical memory dumps without the need to unlock the bootloader
first. This task requires some electronic skills, but with available tools like the
RIFF Box [33], it is feasible to retrieve RAM dumps via the JTAG interface
already today. Another interesting question is how to acquire a full copy of the
user partition without unlocking the bootloader. This might be possible with
help of the RIFF Box and JTAG interface, too, or through other hardware
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operations. At all events, it eventually would allow us to perform cold boot
attacks against encryption keys although the bootloader is locked and thus,
would have considerable consequences for practical scenarios.

5.3 Conclusions

The convenience that smartphones offer today for both private persons and
companies cannot be ignored because they brought mobility, connectivity, and
productivity to people. In fact, smartphones are miniaturized business computers
and carry around personal data like emails, contact lists, messaging logs, and
more. However, when loosing an Android-based smartphone chances are to lose
confidential information although all possible security measures have been taken.
Because, as we have proven, cold boot attacks are not restriced to x86 PCs but
Android-based devices are equally affected.

To this end, we presented Frost, a forensic tool that can help law enforcement
to recover encryption keys from scrambled telephones. We implemented both
the cold boot approach and a bruteforce approach. For the cold boot approach
we implemented a Frost LKM that walks through all physical RAM pages
and searches for AES key schedules. The biggest limitation to date, however, is
that Frost requires an unlocked bootloader in order to break FDE. Otherwise,
sensitive RAM contents can still be recovered but the disk remains unaccessible
as it gets wiped when unlocking the bootloader.
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