
The Birth of Model Checking?

Edmund M. Clarke

emc@cs.cmu.edu

Department of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

“When the time is ripe for certain things, these things appear in different
places in the manner of violets coming to light in early spring.” (Wolfgang
Bolyai to his son Johann in urging him to claim the invention of non-
Euclidean geometry without delay [Vit88])

1 Model Checking

Model Checking did not arise in a historical vacuum. There was an important
problem that needed to be solved, namely Concurrent Program Verification.
Concurrency errors are particularly difficult to find by program testing, since
they are often hard to reproduce. Most of the formal research on this topic in-
volved constructing proofs by hand using a Floyd-Hoare style logic. Probably, the
best known formal system was the one proposed by Owicki and Gries [OG76] for
reasoning about Conditional Critical Regions. Although I had written my thesis
on the meta-theory of Hoare Logic [Cla77a,Cla77b,Cla78,Cla79a,Cla79c,Cla80]
and was very familiar with the Owick-Gries proof methodology, I was quite
skeptical about the scalability of hand constructed proofs. There had been some
practical research on state exploration methods for communication protocols by
Gregor Bochmann and others, but it was largely ignored by the “Formal Veri-
fication Community”. Also, in the late 1970’s, Pnueli [Pnu77] and Owicki and
Lamport [OL82] had proposed the use of Temporal Logic for specifying con-
current programs. Although they still advocated hand constructed proofs, their
work demonstrated convincingly that Temporal Logic was ideal for expressing
concepts like mutual exclusion, absence of deadlock, and absence of starvation.

Allen Emerson and I combined the state-exploration approach with Temporal
Logic in an efficient manner and showed that the result could be used to solve
non-trivial problems. Here is a quote from our original 1981 paper [CE81]:

? This research was sponsored by the National Science Foundation under grant nos.
CNS- 0411152, CCF-0429120, CCR-0121547, and CCR-0098072, the US Army Re-
search Office under grant no. DAAD19-01-1-0485, and the Office of Naval Research
under grant no. N00014-01-1-0796. The views and conclusions contained in this doc-
ument are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

“The task of proof construction is in general quite tedious and a good
deal of ingenuity may be required to organize the proof in a manageable
fashion.We argue that proof construction is unnecessary in the case of
finite state concurrent systems and can be replaced by a model-theoretic
approach which will mechanically determine if the system meets a speci-
fication expressed in propositional temporal logic. The global state graph
of the concurrent systems can be viewed as a finite Kripke structure and
an efficient algorithm can be given to determine whether a structure is
a model of a particular formula (i.e. to determine if the program meets
its specification).”

1.1 What is Model Checking?

The Model Checking problem is easy to state:

Let M be a Kripke structure (i.e., state-transition graph). Let f be a
formula of temporal logic (i.e., the specification). Find all states s of M
such that M, s |= f .

We used the term Model Checking because we wanted to determine if the tempo-
ral formula f was true in the Kripke structure M , i.e., whether the structure M
was a model for the formula f . Some people believe erroneously that the use of
the term “model” refers to the dictionary meaning of this word (e.g., a miniature
representation of something or a pattern of something to be made) and indicates
that we are dealing with an abstraction of the actual system under study.

Emerson and I gave a polynomial algorithm for solving the Model Checking
Problem for the logic CTL. The figure below shows the structure of a typical
Model Checking system. A preprocessor extracts a state transition graph from
a program or circuit. The Model Checking engine takes the state transition
graph and a temporal formula and determines whether the formula is true or
not (Figure 1).

4

The Model Checking Problem

The Model Checking Problem (CE81):

Let M be a Kripke structure (i.e., state-transition graph).

Let f be a formula of temporal logic (i.e., the specification).

 Find all states s of M such that M, s ! f .

Preprocessor Model Checker

Program or circuit

Formula f

True or False

Fig. 1. Model Checker Structure

1.2 Advantages of Model Checking

Model Checking has a number of advantages compared to other verification
techniques such as automated theorem proving or proof checking. A partial list
of some of these advantages is given below:

– No proofs! The user of a Model Checker does not need to construct a cor-
rectness proof. In principle, all that is necessary is for the user to enter a
description of the circuit or program to be verified and the specification to
be checked and press the “return” key. The checking process is automatic.

– Fast. In practice, Model checking is fast compared to other rigorous methods
such as the use of a proof checker, which may require months of the user’s
time working in interactive mode.

– Diagnostic counterexamples. If the specification is not satisfied, the Model
Checker will produce a counterexample execution trace that shows why the
specification does not hold (Figure 2). It is impossible to overestimate the
importance of the counterexample feature. The counterexamples are invalu-
able in debugging complex systems. Some people use Model Checking just
for this feature.

– No problem with partial specifications. It is unnecessary to completely spec-
ify the program or circuit before beginning to Model Check properties. Thus,
Model Checking can be used during the design of a complex system. The
user does not have to wait until the design phase is complete.

– Temporal Logics can easily express many of the properties that are needed
for reasoning about concurrent systems. This is important because the reason
some concurrency property holds is often quite subtle, and it is difficult to
verify all possible cases manually.

5

! No proofs!!

! Fast (compared to other rigorous methods such)

! Diagnostic counterexamples

! No problem with partial specifications

! Logics can easily express man concurrency properties

Advantages of Model Checking

Safety Property:
bad state unreachable

Counterexample

Initial State

Fig. 2. Diagnostic Counterexample

1.3 Disadvantages of Model Checking

Over the last twenty-five years I have heard many objections to the use of Model
Checking. I discuss some of these objections below:

– Proving a program helps you understand it. I do not believe that this is a
valid objection. In my opinion it is somewhat like the saying that “Suffering
makes us stronger”. It is possible to understand a program just as well, if
not better, by checking properties and examining the counterexamples when
they are false.

– Temporal logic specifications are ugly. I think this depends on who is writing
the specifications. I have seen very complicated and unreadable specifications
in languages designed for formal specification based on Z (Zed) notation
[ASM80]. A good rule of thumb is to keep the specifications as short as
possible. Some model checkers have a macro facility that allows the user
to encapsulate sub-expressions of formulas that would otherwise make it
complicated. Temporal logics like PSL [EF06] have very expressive sets of
operators that facilitate writing specifications.

– Writing specifications is hard. This is true. But it is also true of other ver-
ification techniques like automated theorem proving. Certainly, part of the
solution is better education. Very few computer science and electrical engi-
neering departments currently offer courses on formal verification. (Electri-
cal engineers in the U.S. often spend more time learning about the Laplace
transform than writing formal specifications for circuits!)

– State explosion is a major problem. This is absolutely true. The number of
global system states of a concurrent system with many processes or com-
plicated data structures can be enormous. All Model Checkers suffer from
this problem. In fact, the state explosion problem has been the driving force
behind much of the research in Model Checking and the development of new
Model Checkers.

2 Verifications Tools Before 1981

Automated verification tools in use before 1981 were either based on theorem
proving or exhaustive state exploration. I will focus on the state exploration
techniques since they are more closely related to Model Checking.

2.1 Petri Net Tools

When I started research on this paper, I was certain that there had been ear-
lier work on tools for verifying Petri Nets. I contacted two researchers, Tadao
Murata and Kurt Jensen, who were active in the Petri Net community in the
1970’s. To my surprise, I quickly discovered that there had been little serious
work on verification tools for Petri Nets before 1981. I include brief quotes from
Murata and Jensen below.

Murata:

“I started working on Petri nets from mid-1970, and attended the First
International Workshop on Petri Nets held in 1980 and thereafter. But

I do not recall any papers discussing formal verification using Petri Nets
(PNs) BEFORE 1981. Also, I doubt there were any PN reachability tools
before 1981. MetaSoft Company was selling earlier PN drawing tools and
may have had a primitive one before 1981.”

Jensen:

“Like Tad, I do not think there is any work on Petri net tools prior to
1981.The first Meta Software tool was made in the mid 80’s and was
merely a drawing tool for low level Petri nets. High-level Petri nets were
invented in the late 70’s. The first two publications appeared in TCS
in 1979 and 1980. It is only after this that people really started the
construction of tools. The first simulator for high-level nets and the first
state space tools for these were made in the late 80’s.”

2.2 Bochmann and Protocol Verification

Around 1980, I became aware of the use of automatic verification techniques
based on exhaustive state exploration by researchers in communication proto-
col verification. In particular, I read several very interesting papers by Gregor
Bochmann. While researching my 25 MC presentation, I contacted Bochmann
and asked him to comment about his work on this topic. I enclose below a quote
from his email message:

Bochmann:

“For a workshop organized by Andre Danthine, I prepared the paper Fi-
nite State Description of Protocols in which I presented a method
for the verification of communication protocols using the systematic ex-
ploration of the global state space of the system (sometimes called reach-
ability analysis). This paper was later published in Computer Networks
(1978) and was much cited. At the same time, Colin West had devel-
oped some automated tools for doing essentially the same as what I was
proposing, but I learned about his activities only later.”

In the same message Bochmann commented about the importance of Model
Checking.

“The need for exploring the reachable state space of the global system
is the basic requirement in protocol verification. Here model checking
has not provided anything new. However, temporal logic has brought a
more elegant way to talk about liveness and eventuality; in the protocol
verification community we were talking about reachable deadlock states
(easy to characterize) or undesirable loops (difficult to characterize).”

I believe that Bochmann’s comment is very perceptive, although I disagree with
his statement that Model Checking has not contributed to the task of computing
the reachable state space of a protocol. Indeed, much of the research in Model

Checking has focused on finding efficient techniques computing and representing
the set of reachable states. Symbolic Model Checking [BCM+90], for example,
was a major breakthrough because it enabled much larger state spaces to be
searched than was possible using explicit state space traversal.

2.3 Holzmann and Protocol Verification

I was not aware of Gerard Holzmann’s work on protocol verification until the
late 1980’s. In preparing for my MC 25 presentation, I contacted him to find out
about his early work on automatic techniques for protocol verification.

Holzmann:

“My first paper-method (never implemented) was from 1978-1979 – as
part of my PhD thesis work in Delft. My first fully implemented sys-
tem was indeed the Pan verifier (a first on-the-fly verification system),
which found its first real bug in switching software (based on a model
that I built in the predecessor language to Spin’s Promela) at AT&T on
November 21, 1980.”

Spin did not use temporal logic for specifications until 1987 or 1988 and thus
was not a true Model Checker in the sense that Emerson and I used the term
until the late 1980’s.

Holzmann continued:

“Things changed quite a bit towards the late eighties, with machines
getting faster and RAM memory larger. I implemented a small set of
temporal properties (inspired by Pnueli’s Tools and Rules for the
Practicing Verifier) that expressed liveness in my verification system
for SDL (the first such system built) in 1987/1988. That led to Spin in
1989 which generalized the method and allowed correctness properties
to be expressed as unrestricted omega-regular properties (i.e., as never
claims). The first full Spin version is from 1989. The converter from LTL
to never claims was later designed by Doron, I think around 95, to make
it easier for users to express LTL formulae directly.”

Holtzmann argues that a Model Checker need not provide a logic for writing
specifications.

“When do we call an efficient checker that uses models a Model Checker
though? I sometimes use the distinction between Model Checker and
Logic Model Checker” – where to qualify for the latter term you need to
support a logic.”

I believe that Holzmann does have a valid point. Verification tools that com-
pute some representation for the set of reachable states are often called Model
Checkers as are sequential equivalence checkers in hardware verification. This is
reasonable to me, although the term is not used in the spirit that Emerson and
I originally intended.

3 Fixpoint Theory, Hoare Logic, and Concurrency

There is a close relationship between fixpoint theory and Model Checking al-
gorithms for Branching-Time Logics. I read many papers on this topic as back-
ground research for my Ph.D. thesis. Perhaps the two most important results for
my subsequent research on Model Checking were Tarski’s Fixpoint Lemma [Tar55]
and Kleene’s First Recursion Theorem [Kle71]. Most Symbolic Model Checkers
exploit Tarski’s Lemma [Tar55] that every monotonic functional on a complete
lattice has a fixpoint. A paper by David Park Finiteness is Mu-Ineffable [Par74]
gives a first-order version of the Mu-calculus that I suggested as the logical basis
for the first paper on Symbolic Model Checking that Burch, Dill, McMillan and
I published in the 1990 LICS conference [BCM+90,BCM+92].

My first paper with Emerson [EC80] made the connection between Branching-
Time Logics and the Mu-calculus. Kozen references the 1980 paper that Emerson
and I wrote in his influential paper on the propositional Mu-calculus [Koz83].

Because of the close connection between the Mu-Calculus and Branching-
time Temporal Logics, I believe it was inevitable that Model Checking algorithms
were developed for Branching-time Logics before Linear-time Logics.

3.1 Thesis Research on Hoare Logic

My thesis dealt with the Soundness and Completeness of Hoare Logic. The two
papers that influenced me most were:

– J. deBakker and L. Meertens, On the Completeness of the Inductive
Assertion Method, [dBM75].

– S. Cook, Soundness and Completeness of an Axiom System for Pro-
gram Verification, [Coo78].

Cook’s paper introduced the notion of Relative Completeness of Hoare Logics.
I started on my thesis, entitled Completeness and Incompleteness The-

orems For Hoare Logics, in July 1975 and finished it a year later in August
1976. Robert Constable was my advisor at Cornell. I waited until I had com-
pleted my thesis before publishing any papers on my research. I wrote three
papers based on my thesis:

– E. Clarke, Programming Language Constructs for which it is impos-
sible to obtain Good Hoare-like Axiom Systems, [Cla77b,Cla79c].

– E. Clarke, Program Invariants as Fixedpoints, [Cla77a,Cla79a].
– E. Clarke, Proving Correctness of Coroutines Without History Vari-

ables, [Cla78,Cla80].

In later research, I addressed the question of what programming language
constructs could have good Hoare axiomatizations, i.e., sound and relatively com-
plete axiomatizations.

– E. Clarke, S. German, J. Halpern, Effective Axiomatizations of Hoare
Logic, [CGH83].

– E. Clarke, Characterization Problem for Hoare Logics, [Cla85].

The paper with German and Halpern gives a necessary and sufficient condition
for the existence of a sound and relatively complete Hoare axiomatization. The
1985 paper gives a unified account of my research on Hoare logic and extends
the results to total correctness.

3.2 Program Invariants as Fixed Points

In my thesis I showed that soundness and relative completeness results are really
fixed point theorems. I gave a characterization of program invariants as fixed
points of functionals obtained from the program text. For example, let b ∗ A
denote while b do A. Let wp[S](P) be the weakest precondition for partial
correctness of the Predicate P and the programming language statement S.
Thus, wp[S](P) satisfies two properties:

1. The Hoare triple {wp[S](P) } S {P } is true in the logical structure under
consideration, and

2. If the triple {P } S {Q } is true, then P → wp[S](Q) is true.

It is not difficult to prove

wp[b ∗A](Q) = (¬b ∧Q) ∨ (b ∧ wp[A](wp[b ∗A](Q)))

Thus, wp[b ∗A](Q) is a fixpoint of the functional

τ(U) = (¬b ∧Q) ∨ (b ∧ wp[A](U)).

In fact, wp[b ∗ A](Q) is the greatest fixpoint of the functional τ . The fixpoint
characterizations are more complicated for programming language constructs
that are not tail recursive.1

I showed that Relative Completeness is logically equivalent to the existence of
a fixed point for an appropriate functional, and that Relative Soundness follows
from the maximality of the fixed point.

For finite interpretations, the results give a decision procedure for partial
correctness, i.e., a primitive Model Checker for partial correctness! When I orig-
inally proved these results, this idea occurred to me, but I thought it would not
be practical and did not pursue the idea further at the time.

1 I was unaware of the work by Basu and Yeh [BY75] until I saw it cited in Emerson’s
paper in this volume. The paper shows that the weakest precondition for total cor-
rectness is the least fixed point of a functional obtained from the body of a while
loop. The theory in my thesis and the papers mentioned above applies to partial
correctness as well as total correctness and handles general loops (regular recur-
sions) and non-regular recursions as well. I also relate my fixpoint theory to relative
soundness and completeness proofs of Cook and others.

3.3 Data-flow Analysis

In 1978, I moved to Harvard. At Harvard, I taught the undergraduate course on
Compilers. In preparing for this course, I read a number of papers on data-flow
analysis including:

– G. Killdall, A Unified Approach to Global Program Optimization, [Kil73].
– J. B. Kam and J. D. Ullmann, Monotone Data-flow Analysis Frame-

works, [KU77].
– Richard N. Taylor and Leon J. Osterweil, Anomaly Detection in Con-

current Software by Static Data Flow Analysis, [TO80].
– P. Cousot and R. Cousot, Abstract Interpretation: A Unified Lattice

Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints, [CC77].

The paper by Fosdick and Osterweil was definitely ahead of its time. Although
it was written thirty years ago, the title sounds surprisingly modern. In fact,
several papers with similar sounding titles have been published in recent CAV
and TACAS conferences.

Data-flow analysis can be considered to be an instance of Model Checking as
the 1998 paper by David Schmidt demonstrates:

– D. Schmidt, Data-flow Analysis is Model Checking of Abstract In-
terpretations, [Sch98].

3.4 My Early Research On Concurrency

In 1977 I read the classic paper by Owicki and Gries [OG76] on methods for rea-
soning about concurrent systems using conditional critical regions for synchro-
nization. My research focussed on fixpoint equations, abstract interpretation,
and widening for concurrent programs. This research led to three papers:

– E. M. Clarke, Synthesis of Resource Invariants for Concurrent Pro-
grams, [Cla79b].

– E. Clarke and L. Liu, Approximate Algorithms for Optimization of
Busy Waiting in Parallel Programs, [CL79].

– L. Liu and E. Clarke, Optimization of Busy Waiting in Conditional
Critical Regions, [LC80].

4 Temporal Logic

Temporal logics describe the ordering of events in time without introducing time
explicitly. They were developed by philosophers and linguists for investigating
how time is used in natural language arguments. Most temporal logics have an
operator like Gf that is true in the present if f is always true in the future. To
assert that two events e1 and e2 never occur at the same time, one would write
G(¬e1 ∨ ¬e2). Temporal logics are often classified according to whether time is
assumed to have a linear or a branching structure. The meaning of a temporal
logic formula is determined with respect to a labeled state-transition graph or
Kripke structure.

4.1 Temporal Logic and Program Verification

Burstall [Bur74], Kröger [Krö77], and Pnueli [Pnu77], all proposed using tempo-
ral logic for reasoning about computer programs. Pnueli was the first to use tem-
poral logic for reasoning about concurrency. He proved program properties from
a set of axioms that described the behavior of the individual statements. The
method was extended to sequential circuits by Bochmann [Boc82] and Malachi
and Owicki [MO81]. Since proofs were constructed by hand, the technique was
often difficult to use in practice.

4.2 Pnueli’s 1977 Paper and Model Checking

I reread Pnueli’s 1977 paper [Pnu77] in preparing for my 25MC lecture. The
section entitled Finite State Systems is extremely interesting, although I do not
remember reading it before Emerson and I wrote our 1981 paper [CE81]. After
rereading this section, an obvious question is whether Pnueli should be credited
with inventing Model Checking in 1977. Theorems 4 and 5 in his paper are
particularly noteworthy.

Theorem 4: The validity of an arbitrary eventuality G(A → FB) is
decidable for any finite state system.

The proof of this theorem uses strongly connected components and is very similar
to the technique used for EG(P) in CES 83/86 [CES83,CES86]. Theorem 5 is
quite general.

Theorem 5: The validity of an arbitrary tense formula on a finite state
system is decidable and the extended system Kb is adequate for proving
all valid (propositional) tense formulas.

The proof of Theorem 5 is briefly discussed in an appendix to Pnueli’s paper.

Theorem 5 may be proved by reduction of the problem of validity of a
propositional tense formula on a finite state system to that of the valid-
ity of a formula in the Monadic Second Order Theory of Successor.

We show that for each propositional tense formula formula W , we can
construct an ω-regular language L(W) which describes all those Sω se-
quences on which W is true.

Our decision problem reduces to the question is L(AΣ) ⊆ L(W), i.e.
do all proper execution sequences of AΣ satisfy W .

The reference that Pnueli [Pnu77] gives for checking containment of ω-regular
languages does not indicate how an efficient algorithm could be constructed for
this purpose. Clearly, if Pnueli did discover Model Checking in 1977, he also
discovered Automata Theoretic Model Checking at the same time.

4.3 Branching-Time Logics

Emerson and I [EC80] proposed a very general branching-time temporal logic
based on Computation Trees (Figure 3) and made the connection with the mu-
calculus. Ben-Ari, Manna, and Pnueli (81 / 83) [BAMP83] gave an elegant syntax
for a branching time logic called UB. Here is how inevitably p would be expressed
in both logics. In EC 80, we wrote ∀path∃node p. The notation in BMP 81 was
much more concise. They simply wrote AF p. In [CE81] we adopted the UB
notation and introduced two versions of the until operator (AU and EU).

23

Computation Trees

Fig. 3. Kripke Structure and Computation Tree

4.4 Expressive Power of Temporal Logic

Lamport was the first to investigate the expressive power of various temporal
logics for verification. His 1980 POPL paper [Lam80] discusses two logics: a sim-
ple linear-time logic and a simple branching-time logic. He showed that each
logic could express certain properties that could not be expressed in the other.
Branching-time logic cannot express certain natural fairness properties that can
be easily expressed in the linear-time logic. Linear-time logic cannot express the
possibility of an event occurring sometime in the future along some computa-
tion path. Technical difficulties made Lamport’s result somewhat like comparing
”apples and oranges”.

Emerson and Halpern [EH86] provided a uniform framework for investigat-
ing this question. They formulated the problem in terms of a single logic called
CTL*, which combines both linear-time and branching-time operators. A state
formula may be obtained from a path formula by prefixing it with a path quan-
tifier, either be an A (for every path) or an E (there exists a path). Linear-time
logic (LTL) is identified with the set of CTL* state formulas Af where f is a path
formula not containing any state sub-formulas. The branching-time part (CTL)
consists of all state formulas in which every linear-time operator is immediately
preceded by a path quantifier. Since both LTL and CTL consist entirely of state
formulas, they were able to avoid the uniform framework problem in Lamport’s
paper.

They showed that there exists a formula of LTL that cannot be expressed
in CTL and vice versa. In general, the proofs of their inexpressibility results
are quite long and tedious. For example, the proof that the linear-time formula
A(FGp) is not expressible in CTL uses a complicated inductive argument that
requires 3.5 journal pages to present. Furthermore, the technique that they use
does not easily generalize to other examples.

In [CD88], Anca Dragahicescu (now Browne) proved the following theorem:

Theorem: Let M = (S,R,L, F) be a Kripke Structure with Müller
Fairness Constraints, and let M ′ = (S,R,L, F ′) where the set of con-
straints F ′ extends F . Then for all CTL formulas f and all states s ∈ S,
M, s |= f if and only if M ′, s |= f .

We used the theorem to give a short proof that no CTL formula can express
A(FGp) for the special case of Kripke structures with Müller fairness con-
straints.

5 Temporal Logic Model Checking

The basic papers on the use of Temporal Logic Model Checking were written
in the early 1980’s. I describe what was done and comment on similarities and
differences between various approaches.

5.1 Clarke and Emerson 1981

My work with Emerson came first in the spring of 1981 [CE81]. It was presented
in a predecessor conference of LICS organized by Dexter Kozen.

• Edmund M. Clarke and E. Allen Emerson,
• Design and Synthesis of Synchronization Skeletons Using Branching-Time

Temporal Logic.
• Presented at the Logics of Programs Workshop at Yorktown Heights, New

York in May 1981.
• The proceedings were published in LNCS 131.
• Also in Emerson’s 1981 Ph.D. Thesis.

The temporal logic model checking algorithms that Emerson and I developed
allowed this type of reasoning to be automated. Checking that a single structure
satisfies a formula is much easier than proving the validity of a formula for all
structures. Our algorithm for CTL was polynomial in the product of |M | and |f |.
We also showed how fairness could be handled without changing the complexity
of the algorithm.

Emerson and I had a Harvard undergraduate (Marshall Brin) implement the
fixpoint algorithm for Model Checking. Unfortunately, the implementation was
incorrect. There was a problem with fairness constraints. To our embarrassment,
we discovered this when we demonstrated the Model Checker to Bochmann when
he gave a lecture at Harvard.

5.2 My Eureka Moment

In the fall of 1980 and the spring of 1981, Emerson was writing his Ph.D. thesis
on the synthesis of finite state concurrent programs from CTL specifications.
The idea was to use a decision procedure for satisfiability of CTL formulas to
extract a finite model from a specification in CTL. The concurrent program
could then be extracted from the finite model. There were two disadvantages to
this approach: the exponential complexity of the decision procedure (in practice
as well as theory) and the need to completely specify the concurrent program in
temporal logic.

In January of 1981, I attended POPL where the paper by Ben-Ari, Manna,
and Pnueli [BAMP83] on ”The Temporal Logic of Branching Time” was orig-
inally presented. I had trouble understanding non-trivial formulas of the logic.
I spent several hours drawing Kripke Structures and checking to see if various
formulas were true or not. If the structures had many states and the formulas
were complicated, this turned out to be more complicated than I expected, and
my first guess was often wrong. I tried to find an algorithm to automate this
process. For some operators like AF p, the algorithm was obvious–just perform a
depth-first search starting from the initial state of the structure and see if there
was a path ending in a cycle along which ¬p always held. I suspected that there
was a linear algorithm for the problem, but getting it correct for all of CTL was
tricky.

After trying several examples, it occurred to me that often complex com-
munication and synchronization protocols were specified by state machines and
that an efficient algorithm for the checking formulas on models could be used
to see if the state machines satisfied their specifications. This was my ”Eureka
moment”! I realized that the important problem for verification was not the syn-
thesis problem but the problem of checking formulas on finite models. I began to
work on a depth-first search algorithm for the Model Checking problem. When
I told Emerson about my conclusion, he saw how fixpoint techniques could be
used to obtain an algorithm for the complete logic that was quadratic in the size
of the model. Of course, the quadratic complexity of the algorithm meant that
it did not scale to large models. I doubt if it would have been able to handle a
model with a 1000 states.

In the fall of 1982 after my move to Carnegie Mellon, I developed a strictly
graph theoretic algorithm for CTL Model Checking with Fairness Constraints.
My algorithm had linear complexity in the size of the model. I implemented the
algorithm myself in the EMC Model Checker. I wrote the program in a language
called ”Franz Lisp” and still have the original code! The new implementation is
described in my 1983 POPL paper with Emerson and Sistla [CES83,CES86].

5.3 Quielle and Sifakis 1982

The work of Quielle and Sifakis was presented at a conference in the Spring of
1982 [QS82], although a technical report version appeared in June of 1981. I
learned about their research when I was working on CES 83 / 86 probably late
in the fall of 1982. Their work was certainly independent of ours. I regard this
as a case of essentially simultaneous discovery of an idea whose time was ripe.

• J.P. Queille and J. Sifakis
• Specification and Verification of Concurrent Systems in Ceasar
• Technical Report 254 June 1981
• International Symposium on Programming, Turin, April, 1982
• Springer Lecture Notes in Computer Science 137, published in 1982

There are a number of similarities between the work that Emerson and I did
and the work of Quielle and Sifakis:

– Both used a branching-time temporal logic related to [BAMP83]. (POT is
like EF and INEV is like our AF.)

– Formula evaluation in [QS82] is by computing fixpoints as in [CE81]. In
[CES83,CES86] more efficient graph algorithms are used.

– The programming language CSP [Hoa85] is used for describing models in
both [QS82] and [CES83,CES86]. The Alternating Bit Protocol [BSW69] is
also used for illustration in both [QS82] and [CES83,CES86].

– There is a clear distinction between the model and the formula to be checked
in both (the term “Model Checking” originates with [CE81], however).

There are also a number of important differences:

– The logic used in [QS82] does not have an until operator U (trivial).
– Quielle and Sifakis do not analyze the complexity of their algorithm.
– Finally, they did not implement fairness constraints.

Their paper references Clarke [Cla77a,Cla79a] and Cousot [CC77] for computing
fixed points of monotonic operators on a lattice 2.

2 I sent a draft of this paper to Sifakis. He replied that they had another paper in FOCS
1982 and Acta Inf. 1983 [QS83] that included the until operator and could express
a particular class of fairness properties. However, this paper references [CE81], and
after 25 years, Sifakis was unable to explain how it differed from our first paper.

5.4 The EMC Model Checker

My paper with Emerson and Sistla [CES83,CES86] gave an improved algorithm
that was linear in the product of the |M | and |f |. The algorithm was implemented
in the EMC Model Checker and used to check a number of network protocols
and sequential circuits (EMC stands for Extended Model Checker. At the risk of
being obvious, note the similarity to my initials). It could check state transition
graphs with between 104 and 105 states at a rate of about 100 states per second
for typical formulas. In spite of these limitations, EMC was used successfully to
find previously unknown errors in several published circuit designs.

The EMC Model Checker was the first Model Checker to implement Fair-
ness Constraints. Fairness Constraints are formulas that must hold infinitely
often on each fair path. This feature made it possible to check some important
properties that could not be expressed in CTL. An example of such a property
is A(GF enabled→ GF executed), which expresses that property that a process
that is enabled for execution infinitely often must actually be executed infinitely
often. Because of this feature, the EMC algorithm was able to solve the Empti-
ness Problem for Non-deterministic Büchi Automata in time linear in the size
of the automaton.

Hardware Verification My student, Bud Mishra, was the first to use Model
Checking for Hardware Verification [MC85]. He found a bug in the Sietz FIFO
Queue (Figure 4) from Mead and Conway’s book, Introduction to VLSI Sys-
tems [MC79]. David Dill and Mike Browne also started working on hardware
verification. The four of us wrote several papers on applying Model Checking to
hardware verification [MC85,BCD85,BCD86,BCDM86,DC86]

Witnesses and Counterexamples EMC did not give counterexamples for
universal CTL properties that were false or witnesses for existential properties
that were true. I asked my student, Michael C. Browne, to add this feature to
the MCB model Checker in 1984 (MCB stands for Model Checker B. However,
note the similarity to Browne’s initials). It has been an important feature of
Model Checkers ever since (Figure 5).

5.5 LTL and CTL*

Complexity of LTL Sistla and I [SC86] analyzed the model checking prob-
lem for LTL and showed that the problem was PSPACE-complete. Pnueli and
Lichtenstein [LP85] gave an algorithm that is exponential in the length of the
formula, but linear in the size of the Model. Based on this observation, they
argued that LTL model checking is feasible for short formulas.

CTL* Model Checking CTL* is a very expressive logic that combines both
branching-time and linear-time operators. Model checking for this logic was
first considered in[CES83,CES86] where it was shown to be PSPACE-complete.

31

Hardware Verification

! B. Mishra and E. M. Clarke, Automatic and Hierarchical Verification
of Asynchronous Circuits using Temporal Logic, CMU Tech Report
(CMU-CS-83-155) and Theoretical Computer Science 38, 1985,
pages 269-291.

First use of Model Checking for
Hardware Verification

(found bug in the Sietz FIFO Queue
from Mead and Conway,
Introduction to VLSI Systems).

! Mishra and Clarke 83;
Browne, Clarke, and Dill 86;
Dill and Clarke 86

Fig. 4. Self-Timed FIFO Queue from Mead and Conway

34

Witnesses and Counterexamples

EMC did not give counterexamples for universal CTL properties that
were false or witnesses for existential properties that were true.

I asked Michael C. Browne (Mike) to add this feature to the MCB model
checker in 1984.

It has been an important feature of Model Checkers ever since.

Preprocessor Model Checker

Program or circuit

Formula f

True or Counterexample

Fig. 5. A Model Checker that supports Counterexamples

Emerson and Lei [EL85] showed that CTL* and LTL Model Checking have the
same complexity in |M | and |f |. Thus, for purposes of Model Checking, there
is no practical complexity advantage to restricting oneself to a linear temporal
logic.

5.6 Automata Theoretic Techniques and Process Algebra

Using Automata for both Models and Specifications Alternative tech-
niques for verifying concurrent systems have been proposed by a number of
other researchers. Some approaches use automata for specifications as well as
for implementations. The implementation is checked to see whether its behavior
conforms to that of the specification. Thus, an implementation at one level can
be used as a specification for the next level. The use of language containment is
implicit in the work of Kurshan, which ultimately resulted in the development
of the COSPAN verifier [AKS83,HK87,Dil89].

Automata Theoretic Model Checking with LTL Vardi and Wolper [VW86]
first proposed the use of ω-automata (automata over infinite words) for auto-
mated verification. They showed how the linear temporal logic Model Checking
could be formulated in terms of language containment. Many explicit state LTL
Model Checkers (e.g., Spin) use a variant of this construction. It can also be
used with Symbolic and Bounded Model Checkers as well.

Links to Process Algebra If two finite Kripke Structures can be distinguished
by some CTL* formula, then they can be distinguished by a CTL formula. In
[BCG88] we showed that for any finite Kripke structure M , it is possible to
construct a CTL formula FM that uniquely characterizes M . We use a notion
of equivalence between Kripke Structures, similar to the notion of bisimulation
studied by Milner [Mil71] and Park [Par81]. The first construction of FM uses of
the next-time operator X. We also considered the case in which the next-time
operator is disallowed. The proof, in this case, required another notion of equiv-
alence, equivalence with respect to stuttering. We gave a polynomial algorithm
for determining if two structures are stuttering equivalent.

6 Dealing with Very Complex Systems

Significant progress was made on the State Explosion Problem around 1990.
Both Symbolic Model Checking and the Partial Order Reduction were developed
about this time.

6.1 Symbolic Model Checking

In the original implementation of the Model Checking algorithm, transition rela-
tions were represented explicitly by adjacency lists. For concurrent systems with

small numbers of processes, the number of states was usually fairly small, and the
approach was often quite practical. In systems with many concurrent parts the
number of states in the global state transition graph was too large to handle. In
the fall of 1987, McMillan, then a graduate student of mine at Carnegie Mellon,
realized that by using a symbolic representation for the state transition graphs,
much larger systems could be verified. The new symbolic representation was
based on ordered binary decision diagrams (OBDDs) [BCM+90,McM93]. OB-
DDs provide a canonical form for boolean formulas that is often substantially
more compact than conjunctive or disjunctive normal form, and very efficient
algorithms have been developed for manipulating them. Because the symbolic
representation captures some of the regularity in the state space determined by
circuits and protocols, it is possible to verify systems with an extremely large
number of states—many orders of magnitude larger than could be handled by
the explicit-state algorithms. By using the original CTL Model Checking algo-
rithm of Clarke and Emerson with the new representation for state transition
graphs, it became possible to verify some examples that had more than 1020

states. Since then, various refinements of the OBDD-based techniques by other
researchers have pushed the state count up to more than 10120.

The SMV Model Checker The Model Checking system that McMillan devel-
oped as part of his Ph.D. thesis is called SMV [McM93]. It is based on a language
for describing hierarchical finite-state concurrent systems. Programs in the lan-
guage can be annotated by specifications expressed in temporal logic. The Model
Checker extracts a transition system represented as an OBDD from a program
in the SMV language and uses an OBDD-based search algorithm to determine
whether the system satisfies its specification. If the transition system does not
satisfy some specification, the verifier will produce an execution trace that shows
why the specification is false. The SMV system has been widely distributed, and
a large number of examples have now been verified with it. These examples pro-
vide convincing evidence that SMV can be used to debug real industrial designs.
Now there are two widely used versions of SMV: Cadence SMV released by
Cadence Berkeley Labs and an open source version, called NuSMV [CCGR00],
released by IRST in Trento, Italy.

Verification of the cache coherence protocol in the IEEE Futurebus+ stan-
dard illustrates the power of the SMV Model Checker. Development of the proto-
col began in 1988, but all previous attempts to validate it were based on informal
techniques. In the summer of 1992 my group at Carnegie Mellon constructed a
precise model of the protocol. Using SMV we were able to find several previously
undetected errors and potential errors in the design of the protocol. This was
the first time that an automatic verification tool had been used to find errors in
an IEEE standard [CGH+93,Lon93].

Other Work on Symbolic Model Checking Several other researchers in-
dependently discovered that OBDDs can be used to represent state-transition
systems. Coudert, et al. [CBM89] gave an algorithm for sequential equivalence

checking that used OBDDs for the transition functions. Bose and Fisher [BF89],
Pixley [Pix90], and Coudert et al. [CBM90] also experimented with symbolic
Model Checking algorithms.

6.2 Partial Order Reduction

Verifying software causes some problems for Model Checking. Software tends
to be less structured than hardware. In addition, concurrent software is usually
asynchronous, i.e., most of the activities taken by different processes are per-
formed independently, without a global synchronizing clock. For these reasons,
the state explosion phenomenon is a particularly serious problem for software.
Consequently, Model Checking has been used less frequently for software verifi-
cation than for hardware verification. The most successful techniques for dealing
with asynchronous systems are based on the partial order reduction. These tech-
niques exploit the independence of concurrently executed events. Two events
are independent of each other when executing them in either order results in the
same global state.

Model Checking algorithms that incorporate the partial order reduction are
described in several different papers. The stubborn sets of Valmari [Val90], the
persistent sets of Godefroid [God90] and the ample sets of Peled [Pel94] differ on
the actual details, but contain many similar ideas. Other methods that exploit
similar observations about the relation between the partial and total order mod-
els of execution are McMillan’s unfolding technique [McM93] and Godefroid’s
sleep sets [God90].

6.3 Special Purpose Techniques

Special techniques are needed when symbolic methods and the partial order
reduction don’t work. Four basic techniques are

– Compositional Reasoning,
– Abstraction,
– Symmetry Reduction,
– Induction and Parameterized Verification.

Compositional Reasoning This technique exploits the modular structure of
complex circuits and protocols. Many finite state systems are composed of mul-
tiple processes running in parallel. The specifications for such systems can often
be decomposed into properties that describe the behavior of small parts of the
system. An obvious strategy is to check each of the local properties using only the
part of the system that it describes. If the system satisfies each local property,
and if the conjunction of the local properties implies the overall specification,
then the complete system must satisfy this specification as well.

The naive form of compositional reasoning may not be feasible because of
mutual dependencies between the components. When verifying a property of

one component assumptions are needed about the behavior of the other com-
ponents. The assumptions must later be discharged when the correctness of the
other components is established. This strategy is called assume-guarantee rea-
soning [MC81,Jon83,Pnu84,GL94].

The main problem in employing assume-guarantee style reasoning in verifi-
cation relates to effectively computing environment assumptions for each com-
ponent. Initial attempts to perform such reasoning focused on hardware sys-
tems [McM97,AH99] and the assumptions were provided manually. Recently, a
method for automatically generating these assumptions has been proposed [CGP03].
Here, the task of computing an assumption is posed as a machine learning prob-
lem, where a learning algorithm for regular languages L∗ [Ang87,RS93] is used
to generate a finite-state assumption in an iterative fashion by making queries
to a teacher entity. A model checker plays the role of the teacher and assists
the learner by answering queries and providing counterexamples. Extensions
of this approach have been used to solve the Component Substitutability Prob-
lem [CCSS05,CCST05]. A symbolic extension of this approach using BDDs has
also been proposed [AMN05].

Abstraction Abstraction is essential for reasoning about reactive systems that
involve data. It is based on the observation that specifications of systems usu-
ally involve simple relationships among data values. For example, verifying a
program may depend on simple arithmetical relationships (predicate abstrac-
tion). In such situations abstraction can be used to reduce the complexity of
Model Checking. The abstractions is usually specified by a mapping between
data values in the system and a small set of abstract data values. By extending
the mapping to states and transitions, it is possible to produce a much smaller,
abstract version [CGL92,BBLS92,CGL94].

Symmetry Reduction Symmetry [ID93,CFJ93,ES93] can be used to reduce
the state explosion problem. Finite state concurrent systems often contain repli-
cated components, e.g., a network of identical processes communicating in some
fashion. This information can be used to obtain reduced models. Having phys-
ical symmetry in a system often implies existence of a non-trivial permutation
group that preserves the transition graph. The permutation group can be used
to define an equivalence relation on the state space. The resulting reduced model
can be used to simplify verification of Temporal logic properties.

Parameterized Systems Induction involves reasoning automatically about
entire families of finite state systems. Typically, circuit and protocol designs are
parameterized, that is, they define an infinite family of systems. For example, a
bus protocol may be designed for an arbitrary number of processors. Ideally, one
would like to be able to check that every system in a given family satisfies some
temporal logic property. In general, the problem is undecidable [AK86]. Often
it is possible to provide an invariant process that represents the behavior of an

arbitrary member of the family. Using the invariant, one can check property for
all members of the family at once [CGB86,KM89,WL89].

7 Big Events Since 1990 and Future Challenges

The pace of research in Model Checking has accelerated since 1990. Below I
list several of the most important breakthroughs during this period. I only cite
the initial paper (or papers) that led to the breakthrough, although each of the
seminal papers led to many papers often containing significant extensions of the
original work.

– Timed and Hybrid Automata [ACD90,HKPV95]
– Model Checking for Security Protocols [Ros94,MCJ97]
– Bounded Model Checking [BCCY99,BCC+03]
– Localization Reduction and CEGAR [Kur94,CGJ+00]
– Compositional Model Checking and Learning [MC81,Jon83,Pnu84,GL94]
– Predicate Abstraction [GS97,BMMR01]
– Infinite State Systems (e.g., pushdown systems) [BEM97]

I conclude with a list of challenges for the future. I believe that all of the
problems in the list are important and that all require major breakthroughs in
order to become sufficiently practical for widespread use in industry.

– Software Model Checking, Model Checking and Static Analysis
– Model Checking and Theorem Proving
– Exploiting the Power of SAT, Satisfiability Modulo Theories (SMT)
– Probabilistic Model Checking
– Efficient Model Checking for Timed and Hybrid Automata
– Interpreting Counterexamples
– Coverage (incomplete Model Checking, have I checked enough properties?)
– Scaling up even more!!

I expect the next twenty-five years will hold many surprises and be at least
as exciting as the past twenty-five. I look forward with great enthusiasm to
participating in at least some of this research.

Acknowledgements. The author wishes to thank Nishant Sinha for his help
in preparing this document. Martha Clarke, Jonathan Clarke, and Katie Clarke
read early versions of this document and gave useful comments.

References

[ACD90] R. Alur, C. Courcourbetis, and D. Dill. Model-checking for real-time sys-
tems. In Proceedings of the 5th Symp. on Logic in Computer Science, pages
414–425, 1990.

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods
in System Design: An International Journal, 15(1):7–48, July 1999.

[AK86] K. Apt and D. Kozen. Limits for automatic verification of finite-state
systems. IPL, 15:307–309, 1986.

[AKS83] S. Aggarwal, R. P. Kurshan, and K. Sabnani. A calculus for protocol
specification and validation. In H. Rudin and C. H. West, editors, Protocol
Specification , Testing and Verification, pages 19–34. North Holland, 1983.

[AMN05] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification
by learning assumptions. In CAV, 2005.

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples.
In Information and Computation, volume 75(2), pages 87–106, November
1987.

[ASM80] Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer. Speci-
fication language. In R. M. McKeag and A. M. Macnaughten, editors, On
the Construction of Programs, pages 343–410. Cambridge University Press,
1980.

[BAMP83] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching
time. Acta Informatica, 20:207–226, 1983.

[BBLS92] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserving
simulations. In G. V. Bochmann and D. K. Probst, editors, Proc. 4th
Workshop on Comput.-Aided Verification, pages 260–273, July 1992.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and
Y. Zhu. Bounded Model Checking, volume 58 of Advances in computers.
Academic Press, 2003.

[BCCY99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Yhu.
Symbolic model checking without BDDs. volume 1579 of LNCS, pages
193–207, March 1999.

[BCD85] M. C. Browne, E. M. Clarke, and D. Dill. Checking the correctness of
sequential circuits. In Proceedings of the 1985 International Conference on
Computer Design, pages 545–548, Port Chester, New York, October 1985.
IEEE.

[BCD86] M. C. Browne, E. M. Clarke, and D. L. Dill. Automatic circuit verifica-
tion using temporal logic: Two new examples. In Formal Aspects of VLSI
Design. Elsevier Science Publishers (North Holland), 1986.

[BCDM86] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic veri-
fication of sequential circuits using temporal logic. IEEE Transactions on
Computers, C-35(12):1035–1044, 1986.

[BCG88] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite
Kripke structures in propositional temporal logic. Theoretical Computer
Science, 59(1–2):115–131, July 1988.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.
Symbolic model checking: 1020 states and beyond. In Proc. 5th Ann. Symp.
on Logic in Comput. Sci. IEEE Comp. Soc. Press, June 1990.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Com-
putation, 98(2):142–170, June 1992.

[BEM97] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis
of pushdown automata: Application to model-checking. In International
Conference on Concurrency Theory, pages 135–150, 1997.

[BF89] S. Bose and A. Fisher. Verifying pipelined hardware using symbolic logic
simulation. In IEEE International Conference on Computer Design, Octo-
ber 1989.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Raja-
mani. Automatic predicate abstraction of C programs. volume 36(5), pages
203–213, June 2001.

[Boc82] G. V. Bochmann. Hardware specification with temporal logic: An example.
IEEE Transactions on Computers, C-31(3), March 1982.

[BSW69] Keith A. Bartlett, Roger A. Scantlebury, and Peter T. Wilkinson. A note
on reliable full-duplex transmission over half-duplex links. Commun. ACM,
12(5):260–261, 1969.

[Bur74] R. M. Burstall. Program proving as hand simulation with a little induction.
In IFIP congress 74, pages 308–312. North Holland, 1974.

[BY75] Sanat K. Basu and Raymond T. Yeh. Strong verification of programs.
IEEE Trans. Software Eng., 1(3):339–346, 1975.

[CBM89] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous
sequential machines based on symbolic execution. In Sifakis [Sif89], pages
365–373.

[CBM90] O. Coudert, C. Berthet, and J. C. Madre. Verifying temporal properties
of sequential machines without building their state diagrams. In Kurshan
and Clarke [KC90], pages 23–32.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proc. 4th Ann. ACM Symp. on Principles of Prog. Lang., pages
238–252, January 1977.

[CCGR00] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco
Roveri. Nusmv: A new symbolic model checker. STTT, 2(4):410–425,
2000.

[CCSS05] Sagar Chaki, Edmund Clarke, Natasha Sharygina, and Nishant Sinha. Dy-
namic component substitutability analysis. In Proc. of Conf. on Formal
Methods, 2005.

[CCST05] Sagar Chaki, Edmund Clarke, Nishant Sinha, and Prasanna Thati. Auto-
mated assume-guarantee reasoning for simulation conformance. In Proc. of
Computer-Aided Verific, 2005.

[CD88] E. M. Clarke and I. A. Draghicescu. Expressibility results for linear time
and branching time logics. In Linear Time, Branching Time, and Partial
Order in Logics and Models for Concurrency, volume 354, pages 428–437.
Springer-Verlag: Lecture Notes in Computer Science, 1988.

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Logic of Programs: Work-
shop, Yorktown Heights, NY, May 1981, volume 131 of LNCS. Springer-
Verlag, 1981.

[CES83] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. In Proc.
10th Ann. ACM Symp. on Principles of Prog. Lang., January 1983.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263, 1986.

[CFJ93] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. In Courcoubetis [Cou93], pages 450–462.

[CGB86] E. M. Clarke, O. Grumberg, and M. C. Browne. Reasoning about net-
works with many identical finite-state processes. In Proceedings of the Fifth
Annual ACM Symposium on Principles of Distributed Computing., pages
240–248. ACM, August 1986.

[CGH83] Edmund M. Clarke, Steven M. German, and Joseph Y. Halpern. Effective
axiomatizations of hoare logics. J. ACM, 30(3):612–636, 1983.

[CGH+93] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMil-
lan, and L. A. Ness. Verification of the Futurebus+ cache coherence pro-
tocol. In Claesen [Cla93].

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Computer Aided Verification, pages 154–
169, 2000.

[CGL92] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction. In POPL, pages 342–354, 1992.

[CGL94] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, September 1994.

[CGP03] J. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assump-
tions for compositional verification. volume 2619 of LNCS, pages 331–346,
April 2003.

[CL79] Edmund M. Clarke and L. Liu. Approximate algorithms for optimization
of busy waiting in parallel programs (preliminary report). In 20th Annual
Symposium on Foundations of Computer Science, pages 255–266. IEEE
Computer Society, 1979.

[Cla77a] Edmund M. Clarke. Program invariants as fixed points (preliminary re-
ports). In 18th Annual Symposium on Foundations of Computer Science,
pages 18–29. IEEE Computer Society, November 1977.

[Cla77b] Edmund M. Clarke. Programming language constructs for which it is im-
possible to obtain ”good” hoare-like axiom systems. In Fourth ACM Sym-
posium on Principles of Programming Languages, pages 10–20, New York,
NY, USA, January 1977. ACM Press.

[Cla78] Edmund M. Clarke. Proving the correctness of coroutines without history
variables. In ACM-SE 16: Proceedings of the 16th annual Southeast regional
conference, pages 160–167, New York, NY, USA, 1978. ACM Press.

[Cla79a] Edmund Clarke. Program invariants as fixed points. COMPUTING,
21(4):273–294, 1979.

[Cla79b] Edmund M. Clarke. Synthesis of resource invariants for concurrent pro-
grams. In POPL, pages 211–221, 1979.

[Cla79c] Edmund Melson Clarke. Programming language constructs for which it is
impossible to obtain good hoare axiom systems. J. ACM, 26(1):129–147,
1979.

[Cla80] Edmund Clarke. Proving correctness of coroutines without history vari-
ables. Acta Inf., 13:169–188, 1980.

[Cla85] E. M. Clarke. The characterization problem for hoare logics. In Proc. of
a discussion meeting of the Royal Society of London on Mathematical logic
and programming languages, pages 89–106, Upper Saddle River, NJ, USA,
1985. Prentice-Hall, Inc.

[Cla93] L. Claesen, editor. Proc. 11th Int. Symp. on Comput. Hardware Description
Lang. and their Applications. North-Holland, April 1993.

[Coo78] Stephen A. Cook. Soundness and completeness of an axiom system for
program verification. SIAM Journal on Computing, 7(1):70–90, 1978.

[Cou93] C. Courcoubetis, editor. Proc. 5th Workshop on Comput.-Aided Verifica-
tion, June/July 1993.

[dBM75] Jaco W. de Bakker and Lambert Meertens. On the completeness of the
inductive assertion method. Journal of Computer and System Sciences,
11:323–357, 1975.

[DC86] D. L. Dill and E. M. Clarke. Automatic verification of asynchronous circuits
using temporal logic. IEE Proceedings, Part E 133(5), 1986.

[Dil89] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[EC80] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of
parallel programs using fixpoints. In Lecture Notes in Computer Science
85, pages 169–181. Automata, Languages and Programming, July 1980.

[EF06] Cindy Eisner and Dana Fisman. A Practical Introduction to PSL (Series
on Integrated Circuits and Systems). Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2006.

[EH86] E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” revisited:
On branching time versus linear time. Journal of the ACM, 33:151–178,
1986.

[EL85] E. A. Emerson and C-L. Lei. Modalities for model checking: Branching time
strikes back. Twelfth Symposium on Principles of Programming Languages,
New Orleans, La., pages 84–96, January 1985.

[ES93] E. A. Emerson and A. P. Sistla. Symmetry and model checking. In Cour-
coubetis [Cou93], pages 463–478.

[GL94] O. Grumberg and D. E. Long. Model checking and modular verification.
ACM Transactions on Programming Languages and Systems, 16:843–872,
May 1994.

[God90] P. Godefroid. Using partial orders to improve automatic verification meth-
ods. In Kurshan and Clarke [KC90].

[GS97] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with
PVS. volume 1254 of LNCS, pages 72–83, June 1997.

[HK87] Z. Har’El and R. P. Kurshan. The COSPAN user’s guide. Technical Report
11211-871009-21TM, AT&T Bell Labs, 1987.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In Proceedings of the 27th Annual Symposium on
Theory of Computing, pages 373–382. ACM Press, 1995.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[ID93] C. W. Ip and D. L. Dill. Better verification through symmetry. In Claesen

[Cla93].
[Jon83] C. B. Jones. Specification and design of (parallel) programs. In Proceedings

of IFIP’83, pages 321–332. North-Holland, 1983.
[KC90] R. P. Kurshan and E. M. Clarke, editors. Proc. 1990 Workshop on Comput.-

Aided Verification, June 1990.
[Kil73] Gary A. Kildall. A unified approach to global program optimization. In

POPL, pages 194–206, 1973.
[Kle71] S. C. Kleene. Introduction to Metamathematics. Wolters-Noordhoff,

Groningen, 1971.
[KM89] R. P. Kurshan and K. L. McMillan. A structural induction theorem for

processes. In Proc. 8th Ann. ACM Symp. on Principles of Distributed
Computing, pages 239–247. ACM Press, August 1989.

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, December 1983.

[Krö77] Fred Kröger. Lar: A logic of algorithmic reasoning. Acta Inf., 8:243–266,
1977.

[KU77] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frame-
works. Acta Inf., 7:305–317, 1977.

[Kur94] Robert P. Kurshan. Computer-aided verification of coordinating processes:
the automata-theoretic approach. Princeton University Press, 1994.

[Lam80] L. Lamport. “Sometimes” is sometimes “Not Never”. In Ann. ACM Symp.
on Principles of Prog. Lang., pages 174–185, 1980.

[LC80] L. Liu and E. Clarke. Optimization of busy waiting in conditional criti-
cal regions. In 13th Hawaii International Conference on System Sciences,
January 1980.

[Lon93] D. E. Long. Model Checking, Abstraction, and Compositional Reasoning.
PhD thesis, Carnegie Mellon Univ., 1993.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent pro-
grams satisfy their linear specification. In Proc. 12th Ann. ACM Symp. on
Principles of Prog. Lang., pages 97–107, January 1985.

[MC79] Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1979.

[MC81] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans-
actions on Software Engineering, SE-7, No. 4:417–426, July 1981.

[MC85] B. Mishra and E.M. Clarke. Hierarchical verification of asynchronous cir-
cuits using temporal logic. Theoretical Computer Science, 38:269–291, 1985.

[MCJ97] W. Marrero, E. Clarke, and S. Jha. Model checking for security protocols,
1997.

[McM93] K. L. McMillan. Symbolic Model Checking: An Approach to the State Ex-
plosion Problem. Kluwer Academic Publishers, 1993.

[McM97] Kenneth L. McMillan. A compositional rule for hardware design refinement.
volume 1254 of LNCS, pages 24–35, June 1997.

[Mil71] R. Milner. An algebraic definition of simulation between programs. In Proc.
2nd Int. Joint Conf. on Artificial Intelligence, pages 481–489, September
1971.

[MO81] Y. Malachi and S. S. Owicki. Temporal specifications of self-timed sys-
tems. In H. T. Kung, B. Sproull, and G. Steele, editors, VLSI Systems and
Computations. Comp. Sci. Press, 1981.

[OG76] Susan Owicki and David Gries. Verifying properties of parallel programs:
an axiomatic approach. Commun. ACM, 19(5):279–285, 1976.

[OL82] Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent
programs. ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982.

[Par74] D. M. R. Park. Finiteness is mu-ineffable. Theory of Computation Report
No. 3, 1974.

[Par81] D. Park. Concurrency and automata on infinite sequences. In 5th GI-
Conference on Theoretical Computer Science, pages 167–183. Springer-
Verlag, 1981. LNCS 104.

[Pel94] D. Peled. Combining partial order reductions with on-the-fly model-
checking. In D. L. Dill, editor, Proc. 1994 Workshop on Comput.-Aided
Verification, volume 818 of LNCS, pages 377–390. Springer-Verlag, June
1994.

[Pix90] C. Pixley. Introduction to a computational theory and implementation of
sequential hardware equivalence. In Kurshan and Clarke [KC90], pages
54–64.

[Pnu77] A. Pnueli. The temporal semantics of concurrent programs. In 18th Annual
Symposium on Foundations of Computer Science, 1977.

[Pnu84] A. Pnueli. In transition for global to modular temporal reasoning about
programs. In K. R. Apt, editor, Logics and Models of Concurrent Systems,
volume 13 of NATO ASI series F. Springer-Verlag, 1984.

[QS82] J. P. Quielle and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the 5th International Symposium on
Programming, pages 337–350, 1982.

[QS83] J. P. Queille and J. Sifakis. Fairness and related properties in transition
systems - a temporal logic to deal with fairness. Acta Inf., 19:195–220,
1983. Presented originally in FOCS 1982.

[Ros94] A. W. Roscoe. Model-checking CSP. In A. W. Roscoe, editor, A Classical
Mind: Essays in Honour of C. A. R. Hoare, pages 353–378. Prentice-Hall,
1994.

[RS93] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata
using homing sequences. In Inf. Comp., volume 103(2), pages 299–347,
1993.

[SC86] A. P. Sistla and E. M. Clarke. Complexity of propositional temporal logics.
Journal of the ACM, 32(3):733–749, July 1986.

[Sch98] David A. Schmidt. Data flow analysis is model checking of abstract inter-
pretations. In POPL, pages 38–48, 1998.

[Sif89] J. Sifakis, editor. Proc. 1989 Int. Workshop on Automatic Verification
Methods for Finite State Systems, volume 407 of LNCS. Springer-Verlag,
June 1989.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pa-
cific J. Math, 5:285–309, 1955.

[TO80] Richard N. Taylor and Leon J. Osterweil. Anomaly detection in concurrent
software by static data flow analysis. IEEE Trans. Software Eng., 6(3):265–
278, 1980.

[Val90] A. Valmari. A stubborn attack on the state explosion problem. In Kurshan
and Clarke [KC90].

[Vit88] Paul M. B. Vitanyi. ”andrei nikolaevich kolmogorov”. 1:3–18, 1988.
[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program verification. In Proc. 1st Ann. Symp. on Logic in Comput. Sci.
IEEE Comp. Soc. Press, June 1986.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes
with network invariants. In Sifakis [Sif89].

