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for Air Tra�c Management Systems
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Abstract|In this paper, we consider optimal resolution of
air tra�c conicts. Aircraft are assumed to cruise within
a given altitude layer, and are modeled as a kinematic sys-

tem with constant velocity and curvature bounds. Aircraft
can not get closer to each other than a prede�ned safety
distance. For such system of multiple aircraft, we consider

the problem of planning optimal paths among given way-
points. Necessary conditions for optimality of solutions are

derived, and used to devise a parameterization of possible
trajectories that turns into e�cient numerical solutions to
the problem. Simulation results for a realistic aircraft con-

ict scenario are provided. A decentralized implementation
of the optimal conict resolution scheme is introduced that
may allow free-ight coordination in a cooperative airspace

management scheme. Impact of decentralization on perfor-
mance and safety is �nally discussed with the help of exten-

sive simulations.

I. Introduction

A
IRCRAFT coordination in increasingly crowded air-
space is becoming a major concern for air tra�c man-

agement authorities in the U.S., Japan, and Europe [1], [2].
Conventional management schemes are being replaced by
extensively computer{integrated Air Tra�c Management
Systems (ATMS) to maintain safety levels and increase
throughput of congested airways. On the other hand, to-
day's aircraft instrumentation and communications allow
increasingly complex decisions to be taken on-board, thus
enabling a progressive move towards decentralized control
scenarios often referred to as free{ight ATMS [3], [4].

Our work is aimed at providing e�cient algorithms for
conict resolution and strategies which are inherently safe
and minimize fuel consumption, to address pollution as
well as economic concerns. In this paper, we apply optimal
control and game theory (with particular reference to the
branch addressing cooperative games, also known as team
theory), to a kinematic model of airtra�c.

Speci�cally, we will address the problem of planning mo-
tions of a system of multiple aircraft whose dynamics are
described by the point{mass model ([6], [7]). Aircraft con-
icts are modelled as collisions between the \conict en-
velopes" that surround each aircraft. We make the cen-
tral assumption that conicts are to be solved while air-
craft cruise within a �xed altitude layer. We also assume
that aircraft dynamics and disturbances are dealt with, and
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\backstepped" to ([8]), �rst order rate equations by autopi-
lot controllers. Aircraft can thus be modeled in a purely
kinematic fashion, as points in a plane with an associated
fore axis and conict envelope radius. The task of each
vehicle is to reach a given goal con�guration from a given
start con�guration (start and goal con�gurations represent
way points planned for the aircraft by the higher level plan-
ner). Optimal solutions in the sense of minimizing total
ight time will be considered.
Another important assumption we make is that all inter-

acting aircraft cooperate towards optimization of a com-
mon goal, as agents in the same team. This will apply to
all aircraft in the centralized schemes to be discussed, while
cooperation will only be assumed among aircraft that be-
long to the same cell of the information structure in our
proposed decentralized scheme. Such a cooperative game
approach has been considered already in the ATC liter-
ature (see e.g. [9]), and should be contrasted with the
antagonistic approach developed by [10], which results in
single{aircraft strategies that are safe against worst{case
maneuvers of all other potentially conicting vehicles.
In the remaining sections of this paper, we will present

the adopted model of air tra�c (sec. II) and discuss neces-
sary conditions for optimality of conict resolution schemes
(sec. III), from which numerical algorithms are derived
(sec. IV). Furthermore, the decentralized implementation
of this AT management scheme will be described within
the game{theoretic framework of teams (sec. V). The per-
formance and robustness of this decentralization scheme is
assessed by means of simulation trials in section VI.

II. Modeling

The point{mass aircraft model is a widely accepted de-
scription of dynamical e�ects encountered in civil aviation
[11]. It consists of six equations, which, disregarding earth
rotation and curvature, are

_x = V cos  cos�; (1)

_y = V cos  sin�; (2)
_h = V sin ; (3)

_ =
g

V
(n cos'� cos ); (4)

_� =
g

V

n sin'

cos 
; (5)

_V =
T �D

m
� g sin : (6)

Here x; y; h denote the components of the position of the
center of gravity (c.g.) of the aircraft in a ground{based
reference frame, and are usually referred to as down{range
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Fig. 1. Aircraft coordinate system

(or longitude), cross-range (or latitude), and altitude, re-
spectively. Angles are also de�ned with respect to the same
frame: ' is the bank angle, � is the heading angle, and  is
the ight-path angle (see �g.1). The ground speed veloc-
ity, V , is assumed to be equal to airspeed, where T is the
engine thrust, D is the aerodynamic drag, m the aircraft
mass, g the gravity acceleration. Notice that the thrust
depends on the altitude h, Mach number M , and throt-
tle � by an assumedly known relationship T = T (h;M; �).
Also, it is assumed that the drag is a known function of
h, M , and of the aerodynamic lift L (D = D(h;M;L)).
The bank angle ', the engine thrust T , and the load fac-
tor n are the control variables for the aircraft. The bank
angle is commanded combining rudder and ailerons trims;
the thrust is commanded by the engine throttle, and the
load factor by elevators (n = L

gm
). Using suitable nonlinear

feedback of states (described in detail e.g. in [8] or [11]), the
point{mass model can be linearized to Brunovsky's canon-
ical form, i.e.

�x = Ux; �y = Uy; �h = Uh; (7)

and the ensuing linear system can be easily controlled along
planned trajectories xdes(t), ydes(t), hdes(t) by adopting
robust linear control techniques. The linearized equations
(7), complemented with constraints on applicable inputs,
form the basis of many aircraft trajectory optimization
problems in the literature. Constraints are usually writ-
ten in terms of original state variables and controls. The
most common constraints considered are upper and lower
bounds on airspeed, altitude, load factor, and thrust, and
maximum climb and descent rates. These constraints can
be translated in the linearized coordinates and controls, al-
though this usually generates very involved formulations of
the constraints, that contribute a major obstacle towards
analytic solution of optimization problems.
In air tra�c conict resolution, a crucial consideration is

the separation constraint, imposing that the so{called con-

Fig. 2. The airspace is structured in separate layers, within which
tra�c conicts have to be resolved.

ict envelopes of all aircraft do not overlap during ight.
The current de�nition of conict ([12]) of two aircraft in-
volves that their altitude di�ers by less than 600m (2000
ft.) or that they get closer, in a horizontal plane, than
9260m (5 n. miles). The constraint can be visualized by
considering for each aircraft a disk 600m (2000 ft.) high
and with a 4630m (2:5n. miles) radius, centered in the air-
craft representative point (e.g., the c.g.): in this case, the
separation constraint imposes that the disks do not overlap
during ight.
In order to make an analytical solution of the optimal

AT conict resolution problem possible, and to gain the
geometric insight that is often missing from numerically
obtained solutions, the dynamic point-mass model is still
too complex. Based on current practice in ATC, we in-
troduce here a few simplifying assumptions that will make
the problem tractable, while keeping the model reasonably
close to real aircraft cruise conditions.
First, we consider air tra�c problems that possess an

altitude{layered structure, in which the airspace is subdi-
vided in horizontal layers of depth Hl (see �g.2). Each
aircraft is supposed to be given waypoints belonging to
the same layer, and not to be allowed to leave the layer
while cruising between the waypoints. Bu�er layers of
depth Hb are interposed between di�erent altitude layers,
where ight is forbidden. By imposing this structure on
the airspace, with Hl � 600 m � Hb, the conict reso-
lution problem is e�ectively decoupled, as no conict can
happen between aircraft of di�erent layers. Conicts need
only to be resolved among aircraft ying within the same
layer, and only the distance between projections of the air-
craft c.g.'s on a horizontal plane need to be considered. As
a consequence, to all practical purposes in the problem at
hand, we may assume that longitudinal dynamics are reg-
ulated independently from the conict resolution problem,
and disregard altitude variations in the model. A simpli�ed
planar aircraft model can then be adopted as

_x = u cos�; (8)

_y = u sin�; (9)

_� = !; (10)

where u
def
= V cos  is the horizontal velocity, and !

def
=

L sin'
m

1
u
. Furthermore, we assume that forward dynam-

ics (6) can be e�ectively controlled by the autopilot so

as to track a given reference V̂ (t) cos ̂(t) = û(t), with
negligible errors, provided that the reference airspeed be-
longs to a given interval and is su�ciently smooth. We
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will henceforth regard u and ! as control inputs to the
kinematic model (8) through (10). Bounds on the air-
speed Vmin � V � Vmax, and on the ight{path angle,
jj � max, reect in bounds on the new inputs as

Vmin cos max
def
= Umin � u � Umax

def
= Vmax (11)

The other input to the kinematic planar aircraft model is
!, whose physical dimensions are those of an angular ve-
locity, and will be termed yaw rate. Constraints on the yaw
rate result from constraints on the bank angle j'j � 'max

and on the aerodynamic lift (proportional to the square of
airspeed: jLj � �LV

2). Accordingly, a bound on the yaw
rate is obtained as

j!j �
u

R
; (12)

where R
def
= V 2 cos2 max

n g sin j'maxj
. The constant R has the dimen-

sions of a length, and actually, in the kinematic model (8)
| (10), (12) de�nes the minimum curvature radius that
planar trajectories of the aircraft may achieve (the bound
is actually achieved in planar cruise,  = 0).

A. Optimization Problem Statement

According to the previous discussion, consider N aircraft
in the plane, whose individual con�guration is described by
�i = (xi; yi; �i) 2 IR�IR�S1. Each aircraft is assigned two
waypoint con�gurations, �i;s and �i;g , respectively. The ini-
tial waypoint time is assigned and denoted by T s

i . Assume
aircraft are ordered such that T s

1 � T s
2 � � � � � T s

N . We
denote by T g

i the time at which the i{th vehicle reaches its

goal, and let Ti
def
= T g

i � T s
i . Motions of the i{th airplane

before T s
i and after T g

i are not of interest.

The i{th aircraft motion is described by the control sys-
tem _�i = fi(�i; ui; !i), with

fi(�i; ui; !i) =

0
@ ui cos�i

ui sin�i
!i

1
A : (13)

All vehicles are subject to the following constraints:

i) the linear velocity is bounded: Ui;min � ui � Ui;max;
ii) the path curvature is bounded: j!ij � 
i, where 
i =
juij
Ri

and Ri > 0 denotes the minimum curvature radius of
trajectories for the i{th vehicle;
iii) the distance between two vehicles must remain larger
than, or equal to, a given separation limit: Dij(t) =
(xj(t) � xi(t))

2 + (yj(t) � yi(t))
2 � d2ij � 0, at all times

t (dii = 0; i = 1; : : : ; N).

The length of the planar path joining the waypoints for
the i{th vehicle is

Li =

Z T
g

i

T s
i

q
_x2i + _y2i dt =

Z T
g

i

T s
i

uidt (14)

Consider the optimal conict resolution problem for mul-

tiple vehicles de�ned as:

8>>>>>><
>>>>>>:

min
PN

i=1 Ji
_�i = fi(�i; ui; !i) i = 1; : : : ; N
Ui;min � ui � Ui;max i = 1; : : : ; N

j!ij �
juij
Ri

i = 1; : : : ; N

Dij(t) � 0; 8t; i; j = 1; : : : ; N
�i(T

s
i ) = �i;s; �i(T

g
i ) = �i;g :

(15)

where Ji = Li for shortest total path problems, and Ji = Ti
for minimum total time problems. In this paper, we restrict
to the case that the aircraft velocity ui are constant. In this
hypothesis, the two problems are equivalent, and we will
henceforth use the minimum total time formulation.

B. Formulation as an Optimal Control Problem

Notice that the cost for the total time problem, J =PN
i=1 Ti =

PN
i=1

R T g
i

T s
i

dt, is not in the standard Bolza form.

In order to use powerful results from optimal control the-
ory, we rewrite the problem as follows. Let h(t) denote the
Heavyside function, i.e.

h(t) =

�
0 t < 0
1 t � 0

;

and de�ne the window function wi(t) = h(t� T s
i )� h(t�

T g
i ). Then the minimum total time cost is written as

J =

Z 1

0

NX
i=1

wi(t)dt (16)

Using the notation colNi=1 (vi) =
�
vT1 ; : : : ; v

T
N

�T
, de�ne the

aggregated state � = colNi=1 (�i), controls u = colNi=1 (ui)
and ! = colNi=1 (!i), and de�ne the admissible control
set 
 accordingly. Also de�ne the separation vector
D = [D12; � � � ; D1N ; D23; � � � ; DN�1;N ], and de�ne the vec-

tor �eld f(�; u; !) = colNi=1 (fiwi). Finally introduce ma-

trices �i = colNj=1 (�ij [1 1 1]
T ), with �ij = 1 if i = j, else

�ij = 0, and functions i(�(t); ��) = �i
�
�(t)� ��

�
, where ��

is a vector of con�gurations. Our optimal control problem
is then formulated as
Problem 1. Minimize J subject to _� = f(�; u; !), ! 2 
,
D � 0, and to the two sets of N interior{point constraints

i(�(t); �
s
i ) = 0; t = T s

i

i(�(t); �
g
i ) = 0; t = T g

i (unspeci�ed)

III. Necessary conditions

Necessary conditions for problem 1 can be studied by
adjoining the cost function with the constraints multiplied
by unspeci�ed Lagrange covectors. Omitting to write ex-
plicitly the extents of iterative operations when extending
from 1 to N, let

Ĵ =
P

i �
s
i i(�(T

s
i )� �si )

+
P

i �
g
i i(�(T

g
i )� �gi )

+
R1
0

P
i wi + �T ( _� � f) + �TDdt;

(17)
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with � and � costates of suitable dimension, and with
�i = 0 if Di > 0, �i � 0 if Di = 0 and �si and �gi are
the unknown multiplier vectors corresponding to imposing
initial and �nal conditions, respectively. Let the Hamilto-
nian be de�ned as

H =
X
i

wi + �T f + �TD (18)

Substituting (18) in (17), integrating by parts, and com-
puting the variation of the cost, one gets:

�Ĵ =
P

i

h
�T (T s�

i )� �T (T s+
i ) + �si

@i
@�(T s

i
)

i
d�(T s

i )

+
P

i

h
�T (T g�

i )� �T (T g+
i ) + �gi

@i
@�(T g

i
)

i
d�(T g

i )

+
P

i

h
H(T g�

i )�H(T g+
i ) + �gi

@i
@T

g

i

i
dT g

i

+
R1
0

h�
_�T + @H

@�

�
�� + @H

@!
�!
i
dt

(19)
(recall that dT s

i � 0). Therefore, we have the following
necessary conditions for an extremal solution:

�i(T
s�
i ) = �i(T

s+
i ) + �Ti �

s
i (20)

�i(T
g�
i ) = �i(T

g+
i ) + �Ti �

g
i (21)

H(T g�
i ) = H(T g+

i ) (22)

_�T = �
@H

@�
(23)

@H

@!
�! = 0 8�!admiss: (24)

Extremal trajectories for the i{th aircraft will be comprised
in general of unconstrained arcs (with Dij > 0, 8j 6= i)
and of constrained arcs, where the constraint is marginally
satis�ed (9j : Dij = 0). We will accordingly distinguish
the discussion of necessary conditions.

A. Extremal unconstrained arcs

Suppose that, for the i{th vehicle, the separation con-
straints are not active in the interior of an interval [tai ; t

b
i ],

T s
i � tai < tbi � T g

i , i.e. Dij(t) > 0; j = 1; : : : ; N; t 2
(tai ; t

b
i ). The characterization of optimal solutions in the

unconstrained case proceeds along the lines of the classical
Dubins solution (see [13], [14], [15]). We succinctly report
some results here for the reader's convenience.
Expanding (23), one gets

h
_�i1; _�i2; _�i3

i
= [0; 0; �i;1ui sin�i � �i2ui cos�i] : (25)

By integrating (25) one gets �i1(t
a
i < t < tbi ) = ��i1,

�i2(t
a
i < t < tbi ) =

��i2, and �i3(t
a
i < t < tbi ) =

��i1yi(t) �
��i2xi(t) + ��i3, with constant ��i;j ; j = 1; 2; 3.
In light of these relationships, conditions (20) and (21)

imply that the costate components �i1 and �i2 are piece-
wise constant, with jumps possibly at the start and arrival
time of the i{th aircraft. The addend in the Hamiltonian
relative to the i{th vehicle and _�i3 can be written respec-
tively as

Hi = 1 + ui�i cos(�i �  i) + �i3!i;

and
_�i3 = �iui sin(�i �  i); (26)

where �i
def
=
q
��2i1 +

��2i2 and  i
def
= atan2 (��i2; ��i1).

As the model is not explicitly time{dependent, from
Pontryagin Minimum Principle (PMP), we have Hi(t) =
const: � 0 along time{extremal unconstrained arcs. Also
from PMP, we have that extremal arcs correspond to values
of the control �ui

R
� !i �

ui
R

that minimize the Hamilto-
nian.
Extremals of Hi within the open segment fj!j < ui=Rg

can only obtain if

@Hi

@!i
= �i3 = ��i1yi(t)� ��i2xi(t) + ��i3 = 0: (27)

Notice that (27) is the equation of a straight line in the
ight plane. In the following, such lines will be referred to
as supporting lines.
If condition (27) holds on a time interval of non-zero

measure, then _�i;3 = 0 on the interval: this implies
�iui sin(� �  ) = 0, hence either �i = 0 or � =  mod �
and then !i = 0.
In the former case (�i = 0) we have Hi = 1 + �i3!i =

const:, hence possible paths are either a line segment (de-
noted by a letter S), or an arc of circle (denoted by a letter
C). Clearly such solution applies only to initial and �nal
waypoints lying on the same line or circle, respectively. For
�i 6= 0, conditions (27) and (26) imply �i =  i mod � and
then !i = 0 for �i 6= 0. In such an interval, the aircraft
is ying on a straight route (coinciding with a supporting
line) in the horizontal x; y plane described in (27).
Other extremals of Hi occur at the boundaries of the in-

put set ! = �ui=R. The sign of the minimizing yaw rate
! is opposite to that of �i3; in other words, the supporting
line also represent the switching locus for the yaw rate in-
put. Trajectories corresponding to !i = �ui=R correspond
to circles of minimum radius R followed counterclockwise
or clockwise, respectively.
The following propositions can be proved to hold along

extremal paths ([15]):
a) The quantity �i3(t) � �i2(t)yi(t) + �i1(t)xi(t) remains
constant;
b) Straight arcs and inexion point (changes in curvature)
belong to the supporting line;
c) Any circular arc between two points where �i3 = 0 has
length > �R.
In the case of a single vehicle, the discussion of optimal

unconstrained arcs can be further re�ned by several geo-
metric arguments, for which the reader is referred directly
to the literature [13], [14], [15]. Optimal paths for a single
vehicle necessarily belong to either of two path types in the
Dubins' su�cient family:

fCaCbCe ; CuSdCvg (28)

where the subscripts, indicating the length of each piece,
are restricted respectively to

b 2 (�R; 2�R); a; e 2 [0; b]; u; v 2 [0; 2�R); d � 0 (29)
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Fig. 3. Left: Four extremal arcs of type CSC joining two way-
points. Right: An extremal arc for the same waypoints including
a \waiting" circle.

A complete synthesis of optimal paths for a single Dubins
vehicle is reported in [16]. The length of Dubins paths
between two con�gurations, denoted by LD(�

s
i ; �

g
i ), is then

unique and de�nes a metric on IR2 � S1. One simply has
LD(�; �) = R(jaj+jbj+jcj) for a CaCbCe path, and LD(�; �) =
R(juj+ jvj) + d for a CuSdCv path.

If a set of non{colliding Dubins' trajectories exists, then
this is obviously a solution of the minimum total time prob-
lem. However, if with all combinations of possible inde-
pendent Dubins trajectories a collision results, then the
optimal solution must be searched among other, longer
extremal solutions, or among paths with at least a con-
strained arc. While the latter case is discussed in the next
subsection, we consider here an explicit characterization of
all possible unconstrained extremal paths. This is done by
distinguishing two cases as follows.

Case A: Unconstrained extremal paths containing a linear
segment.
We know that all linear segments in an extremal path be-
long to a single supporting line. Furthermore linear seg-
ments have to be tangent to any circular arcs in the path.
Hence, possible supporting lines are at most four (see �g.3,
left). Switchings of !i among 0, ui=R, and �ui=R can
only occur when the aircraft center is on the support-
ing line. As a consequence, for any extremal arc of type
CuSdCv of length L, there exists a family of extremals of
type CuSd1C2�Sd2 � � �SdnC2�Sdn+1Cv , with d =

Pn

i=1 di,
whose length is L + 2n�. Arcs of type C2� can be inter-
preted as \waiting" circular maneuvers for another aircraft
to pass by and avoid collision (see �g.3, right). For any
pair of waypoints, there are therefore four families of un-
constrained extremal solutions of this type. For each family
of extremals, the solution with smallest n for which there
exist d1; d2; : : : ; dn that make it collision{free, is the short-
est possible solution within the family.
Case B: Unconstrained extremal paths containing no lin-
ear segments.
In this case, all inexion points are aligned with a support-
ing line parallel to the lines joining the centers of tangent
circles to the initial and �nal con�gurations (only the two
pairs that can followed with the same direction need to be
considered). Let D denote the distance between two cen-
ters: for any n � d D

4Re, n 2 IN, one can have an extremal
path formed by a concatenation of exactly 2n+ 1 circular

Fig. 4. Two unconstrained extremal solutions of type CCC:::CCC,
with n = 2 (left) and n = 3 (right), respectively.

arcs of type Cu1CaCbCa : : : CaCbCaCu2 , where a = �b and
jaj � �R (see �g.4). For any pair of waypoints, there are
therefore two families of unconstrained extremal solutions
of type CCC:::CCC, each containing a countable in�nity
of paths. The solution with smallest n which is collision{
free is the shortest possible solution within these families
of extremals.

B. Extremal Constrained arcs

Some further manipulation of the cost function is instru-
mental to deal with constrained arcs, i.e. arcs in which
at least two vehicles are exactly at the critical separation
(Dij = 0, i 6= j). To �x some ideas, let us consider a
constrained arc involving only vehicles 1 and 2. Along a
constrained arc, the constraint and its derivatives of the
constraint must vanish, i.e.

N =

�
D12
_D12

�
=�

(x2 � x1)
2 + (y2 � y1)

2 � d2

2(x2 � x1)( _x2 � _x1) + 2(y2 � y1)( _y2 � _y1)

�
= 0

(30)
with d = d12. Let � be the direction of the segment joining
the two vehicles, so that

x2 � x1 = d cos�;
y2 � y1 = d sin�;

(31)

From the second equation in (30), one gets

(x2 � x1)(u2 cos�2 � u1 cos�1) + (y2 � y1)(u2 sin�2 � u1 sin�1) = 0

(32)
and, using (31),

u1 cos(� � �1)� u2 cos(� � �2) = 0: (33)

When the constraint is active, the two aircraft envelopes
are in contact, and the relative orientation of the two
vehicles must satisfy (33), which de�nes (for given u1,
u2) two manifolds of solutions in the space f(�1; �2; �) 2
S1 � S1 � S1g described as

a) �a2 = �+ arccos

�
u1
u2

cos(�� �1)

�
; (34)

b) �b2 = �� arccos

�
u1
u2

cos(�� �1)

�
: (35)
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Fig. 5. Possible constrained arcs for two vehicles with the same
airspeed

The two solutions correspond to two di�erent types (\a"
and \b") of relative con�gurations in contact. For instance,
for u1 = u2, one has:

a) �a2 = �1; (36)

b) �b2 = 2�� �1: (37)

In case a) the two vehicles have the same velocity, while
in case b) velocities are symmetric with respect to the seg-
ment joining the vehicles (see �g.5). In order to study con-
strained arcs of extremal solutions, it is useful to rewrite
the cost function (17) as

�J = �TN
+
P

i �
s
i i(�(T

s
i )� �si )

+
P

i �
g
i i(�(T

g
i )� �gi )

+
R1
0

P
i wi + �T ( _� � f) + � �D12dt;

(38)

with � � 0 along a constrained arc. The jump conditions
at the entry point of a constrained arc, occurring at time
� , are now

�i(�
�) = �i(�

+) + �
@N

@�

����
�

(39)

H(��) = H(�+) (40)

(41)

where H =
P

i wi + �T f + �T �D12, and

�
@N

@�

�T

= 2

2
6666664

(x1 � x2) u1 cos�1 � u2 cos�2
(y1 � y2) u1 sin�1 � u2 sin�2

0 du1 sin(� � �1)
(x2 � x1) u2 cos�2 � u1 cos�1
(y2 � y1) u2 sin�2 � u1 sin�1

0 �du2 sin(�� �2)

3
7777775
:

A further distinction among constrained arcs of zero and
nonzero length should be done at this point.
Consider �rst a constrained arc of zero length occurring
at a generic contact con�guration, which is completely de-
scribed by the con�guration of one aircraft (e.g., �c = �1),
by the angle �c = �, and by the contact type. Assume
for the moment that there is only one constrained arc of
zero length in the optimal path between start and goal of
the two aircraft. Equation (39), taking into account that

costates of each aircraft are determined (once the start,
goal, and contact con�gurations are �xed) up to constants
�i(�

�), �i(�
+) in equation (26), provides a system of 6

equations in 6 unknowns of the form

A(�c; �c)

2
6666664

�1(�
�)

�1(�
+)

�2(�
�)

�2(�
+)

�1
�2

3
7777775
= 0;

where the explicit expression of matrix A(�c; �c), for each
contact type, can be easily evaluated in terms of �s1 , �

g
1 , �

s
2 ,

�g2 , and is omitted here for space limitations. Non{triviality
of costates implies that (�c; �c) must satisfy det(A) = 0.
A further constraint on contact con�gurations is implied
by the equality of ight times from start to contact for
the airplanes, which is expressed in terms of Dubins dis-
tances as LD(�

s
1 ; �c)=u1 = LD(�

s
2; �

0
c)=u2, where �

0
c denotes

the con�guration of aircraft 2 at contact, which is uniquely
determined for each contact type. If m constrained arcs of
zero length are present in an optimal solution, similar con-
ditions apply (with start and goal con�gurations suitably
replaced by previous or successive contact con�gurations),
yielding 2m equations in 4m unknowns.
On the other hand, constrained arcs of nonzero length can
be studied by recasting the problem in a reduced con�gu-
ration space. Solutions consist in optimal trajectories for
aircraft that remain constantly at the minimum tolerated
distance. As such, these solutions are of interest in co-
ordinating ight of aircraft formations (employed e.g. for
reducing fuel consumption by reducing aerodynamic drag)
and have been studied in detail by the authors in [17].
However, this type of border{line solutions seem to be un-
acceptable in conict resolution for commercial air tra�c.
Henceforth, we disregard the possibility that, in an opti-
mal resolution of a conict, there are constrained arcs of
nonzero length.

IV. Numerical computation of solutions

The necessary conditions studied in the previous sections
provide useful hints in the search for an optimal solution
to the problem of planning trajectories of N aircraft in a
common airspace. Although a complete synthesis has not
been obtained so far, we will describe in this section an
algorithm that �nds suboptimal solutions to the optimal
planning problem under some simplifying assumptions.
Based on the discussion of the sections above, the op-

timal conict resolution paths for multiple aircraft may
include multiple waiting circles (�g.3) or winding paths
(�g.4), and constrained arcs of both zero and nonzero
length. However, based on heuristic considerations about
acceptability to passengers, we assume henceforth that the
following are not allowed:
h1 constrained arcs of nonzero length (see sec. V);
h2 multiple zero{length constrained arcs among the same
aircraft;
h3 concatenations of arcs of type CC:::C (see sec. III-A);



106 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, DECEMBER 2000

Fig. 6. Numerically computed solutions to optimal cooperative con-
ict resolution for two aircraft. Minimum curvature circles are
reported at the start and goal con�gurations, along with safety
discs of radius d=2 (dashed).

Moreover, for simplicity of description, in the following
we assume that all aircraft have equal geometric character-
istics and equal speed (removal of these hypotheses does
not alter substantially the algorithm described below).

Consider �rst the case of two aircraft. If the Dubins'
trajectories joining the way-points con�gurations do not
collide, then this is the optimal solution. Otherwise we
compute the shortest contact{free solution with waiting
circles, and let its length be Lf . Hence we look for a so-
lution with a concatenation of two Dubins' paths and a
single constrained zero{length arc of either type a) or b)
for both aircraft. Such solution can be searched over a 2{
dimensional submanifold of the contact con�guration space
(IR2 � S1 � S1). The optimal solution can be obtained by
using any of several available numerical constrained opti-
mization routines: computation is sped up considerably by
using very e�cient algorithms made available for evaluat-
ing Dubins' paths ([16]). The length Lc of such solution
is compared with Lf , and the shorter solution is retained
as the two{aircraft optimal conict management path with
at most a single constrained zero-length arc (OCMP21, for
short). Some examples of OCMP21 solutions are reported
in Figure 6 where two aircraft are involved in a conict
and the solution is a concatenation of two Dubins path,
before and after the contact, respectively. This example,
as well as others to be presented, refer to a scenario with
two equal aircraft, with mass m = 83250kg (185klbm), air-
speed Vmax = 150m/sec (500ft/sec), load factor n = 1:12,
max. bank angle 'max = 27deg., hence (for  = 0), the
minimum curvature radius results R = 4445m (2:4n.miles)
([11]).

If N aircraft y in a shared airspace, their possible con-

Fig. 7. Four cases of three{aircraft conict resolution. Up left: the
conict is resolved at level 0. Up-right: a level 1 solution. Bottom
left: a level 2 solution. Bottom right: a level 2 resolution that
generates a roundabout{like maneuver.

icts can be managed with the following multilevel policy:

Level 0 Consider the unconstrained Dubins paths of all air-
craft, which may be regarded as N single{aircraft, optimal
conict management paths, or OCMP10. If no collision
occurs, the global optimum is achieved, and the algorithm
stops. Otherwise compute the shortest contact{free paths
(with waiting circles) and go to next level;

Level 1 Consider the M = 2

�
N
2

�
possible solutions

with a single contact (of either type a) or b)), between
two aircraft, and possibly waiting circles for other aircraft,
and compute the shortest path in this class. If this is longer
than the shortest path obtained at level 0, exit. Otherwise,
continue;
Level m � 2. Consider the M

Qm�1
`=1 (M � 2`) possible so-

lutions involving m zero{length constrained arcs between
di�erent pairs of aircraft and (possibly) waiting circles for
other aircraft, and compute the shortest path in this class.
If this is longer than the shortest path obtained at level
m� 1, exit. Otherwise, continue.

A few three{aircraft conict resolution trajectories at dif-
ferent levels are reported in Figure 7.

When the number of aircraft increases, the number of
optimization problems to be solved grows combinatorially.
However, in practice, it is hardly to be expected that con-
icts between more than a few aircraft at a time have to
be managed, that require solutions of level higher than 2.

V. Decentralized Implementation for

Free{Flight

In decentralized ATMS schemes, each agent (aircraft) is
allowed to take decisions autonomously, based on the in-
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formation that is available at each time. Several models of
decentralized ATC are conceivable, which may di�er in the
degree of cooperative/competitive behaviour of the agents,
and in the information structure ([11], [10]). In this pa-
per, we consider a cooperative scheme which falls within
the scope of the theory of teams (cf. e.g. [18], [19]). In
particular, we consider a scheme in which

� The i{th agent has information on the state and goal's of
all other agents which are at a distance less than an \alert"
radius Ai;
� Each agent plans its ight according to an optimal strat-
egy which consists in minimizing the sum of the time{to{
goal's of all aircraft the agent is aware of.

Let Si(�) denote the set of indices of aircraft within dis-
tance Ai from the i{th aircraft at time � . The goal of the
i{th agent at time � with information Si is therefore to
minimize

Ji;Si(�) =
X
j2Si

Z Tj

�

dt (42)

under the constraints Dij(�i; �j) � 0; 8j 2 Si.
Obviously, when all Ai are large w.r.t. the dimension of
the considered airspace, each agent solves the same prob-
lem the centralized controller would solve, and the resulting
performance would be equal (although with N{fold com-
putational redundancy).
When, during execution of ight maneuvers that were

planned based on a certain information structure I =
(S1; : : : ; SN ), an aircraft i with i 62 Sj gets at distance
Aj from aircraft j, the information structure is updated,
and optimal paths are replanned according to the new cost
and constraints for aircraft j.
The system resulting from the above decentralized

ATMS scheme is described by a set of continuous vari-
ables �i; !i, i = 1; : : : ; N , and a set of variables Si that
take values over discrete sets. To each di�erent informa-
tion structure Ik there corresponds a working mode for the
system, i.e. dynamics (13) driven by controls optimizing
Ji;Si under constraints Dij > 0; j 2 Si, which can be com-
puted as described in previous sections of this paper. The
resulting hybrid system is composed of a �nite{state ma-
chine and of associated continuous{time dynamic systems,
transitions among states being triggered by conditions on
the continuous variables.
For instance, in the case with N = 3, A1 = A2 = A3,

there are eight possible states (modes of operation), cor-
responding to di�erent information structures Ik (see Fig-
ure 8).
At every state transition, each agent evaluates in real{

time the optimal steering control from the current position
to the goal for itself as well as for all other aircraft within
its alert radius. Only the control policy evaluated by an
agent for itself is then executed, as the one calculated for
others may ignore part of the information available to them
(as e.g. it happens in states I5; I6, and I7 in Figure 8).
All optimal policies coincide for large Ai's. However, for

small alert radii, the localization of conict solution might
give raise to a cascading e�ect on other conicts, with pos-

Fig. 8. A decentralized ATMS with three aircraft having equal alert
radius. Each node in the graph corresponds to di�erent costs
and constraints in the agents' optimal steering problem. Opti-
mizing controllers for such problems cause di�erent continuous
time dynamics at each node. Switching between modes is trig-
gered when an airplane enters or exits the alert neighborhood of
another (Di;j changes sign).

sibly destabilizing consequences. To avoid this problem, a
possible solution is to make the information structure re-
exive and transitive. In our setup, an information struc-
ture is reexive if i 2 Sj ) j 2 Si; it is transitive if i 2 Sj
and j 2 Sk ) i 2 Sk. Imposing a reexive and transi-
tive structure however might quickly destroy advantages of
decentralization by increasing the size of the optimization
problems to be solved. In the following, we will not im-
pose such conditions, and will leave the provision of safety
guarantees as a fundamentally open problem for the hybrid
model in �g.8.
The decentralized solutions of a two{agent conict man-

agement problem is reported in Figure 9. It can be ob-
served that the two aircraft initially are not aware of each
other, and follow their unconstrained Dubins path, which
would be bound for collision (indicated by little crosses).
When they enter the alert zones (this happens roughly at
the third step after start in Figure 9), an OCMP21 is ob-
tained by both agents. Notice that, in this two{agent prob-
lem with equal alert radius, the same problem is solved by
both agents by means of the same algorithm, hence the
same solution is obtained. Aircraft start following their
modi�ed paths, which di�er from both the unconstrained
Dubins paths, and the optimal paths that would have been
computed by a centralized planner.

VI. Performance and Fault Tolerance of the

Decentralized Implementation

A number of issues should be considered when deciding
on the appropriate level of centralization such as e�cency,
complexity, robustness and exibility.
In order to assess the e�ects of increasing decentraliza-

tion in ATMS, we performed a number of simulations whose
results are reported below.
In particular, we experimentally compared results ob-
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Fig. 9. Decentralized solution of the two{agent conict management
problem (trajectories traced by small circles). Alert discs are
drawn in solid lines around the initial and �nal con�gurations of
agents. The unconstrained Dubins' paths are superimposed for
reference.

Fig. 10. Total length own by aircraft at varying the alert zone
radius. The measures are in nautical miles.

tained by a centralized planner with those achieved by sev-
eral decentralized planners, with decreasing alert zone ra-
dius. The alert zone radius can be regarded as an inverse
measure of the degree of centralization for an information
structure such as that introduced in the section above.
The �rst set of simulations concerns performance evalu-

ation. The performance measure, i.e. the total length cu-
mulatively own by all airplanes, for the problem described
in Figure 9 has been calculated for three di�erent values
of the safety radius. Results of simulations are reported
in Figure 10, and show that the increase of the alert zone
radius entails a rather smooth decrease of the total length
own by aircraft. As an e�ect of the presence of local min-
ima in the numerical optimization process, the length does
not decrease monotonically as it would have been expected.

The second set of simulations was performed to assess
fault tolerance, and involved the same scenario and plan-
ning algorithms, under degraded control conditions. In
particular, we assume that some of the controllers fail dur-
ing ight. The j{th failure period (or \crisis") of the i{th
controller is initiated at time ti;j (with T

s
i < ti;j < T g

i ) and
resolved at time ti;j +�i;j . During a crisis, the i{th con-
troller provides random erroneous references for the i{th
aircraft. At the end of a crisis, the controller is supposed
to access correct data again, and to replan accordingly. Un-
der decentralized ATC, other agents are able to maintain

Fig. 11. Fault tolerance to controller failures at varying the degree of
decentralization. The number of accidents is relative to 100 crisis
situations. Labels on the x-axis refer to alert radii measured in
nautical miles.

their correct operation mode, and replan in real time to try
and avoid collisions.

It is important to notice that two crisis scenarios are pos-
sible, corresponding to whether or not the crisis of the i{th
controller is detected by other agents operating regularly.
We assume that, whenever a critical situation is detected by
any agent, then the operating mode of the agent is switched
from the cooperative strategy described in this paper, to
an antagonistic approach such as that reported in [10]. We
therefore assume in what follows that failures of one agent
are not detected by other agents.

In simulations reported below, the crisis periods have
been chosen to have constant length �i;j = �; 8i; j in all
simulation runs: � is set to approximately 3% of the ex-
pected ight time between the waypoints. The initial crisis
time ti;j is a uniformly distributed random variable over
both the aircraft index and the ight time span. Casual
references for critical aircraft are generated by applying the
usual planning algorithm to a random goal con�guration.

As a �gure of fault tolerance of ATMS schemes, we con-
sider the number of accidents for 100 crisis situations. Re-
sults of simulations, relative to the same initial scenario
as in Figure 9, are reported in Figure 11. In the central-
ized ATMS case, all aircraft are assumed to receive random
ight directions from the single centralized controller when
this enters a critical situation: 12 crises out of 100 led to
accidents in this con�guration. The percentage of unrecov-
erable crises under a decentralized strategy is reduced to
roughly 9% with an alert radius of 10 nautical miles, down
to 5% when the radius is doubled. These results agree
with the expectation that introducing decentralization can
achieve some degree of robustness of ATC with respect to
centralized schemes. The fact that robustness is enhanced
by increasing the alert radius is clearly explained by the
degree of computational redundancy introduced.

VII. Conclusion

In this paper, we have studied the problem of planning
optimal conict resolution maneuvers for kinematic mod-
els of aircraft ying in a horizontal plane with constant
velocity. Necessary conditions have been derived, and an
algorithm for numerically �nding suboptimal solutions has
been described. A decentralized implementation has been
introduced, and extensive simulations have been employed
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to establish its performance and fault tolerance.

Future work on this topic will address the problem of
�nding a complete optimal synthesis at least for the sim-
plest cases (N = 2), and extending to the case of variable
longitudinal velocity. Further re�nement of the algorithm
can be sought, to exploit more of the rich structure of op-
timal solutions. The case when the aircraft speed can be
varied needs also to be studied in detail. An ever standing
issue is that of computational e�ciency of the optimiza-
tion algorithm, to achieve real{time solutions for conicts
involving more than 3 aircraft. A crucial problem is to an-
alyze in depth the properties of the hybrid system in �g.8,
and to determine exact regions of state space for which
safety guarantees can be given for given perturbation lev-
els.
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