
Technology Report

© Future Drugs Ltd. All rights reserved. ISSN 1473-7159 89

CONTENTS

Molecular beacons

Summary & conclusions

Expert opinion

Five-year view

Information resources

Key issues

References

Affiliations

www.future-drugs.com

Molecular beacons: colorful 
analysis of nucleic acids
Jacqueline AM Vet†, Brenda JM Van der Rijt and Henk J Blom

The completion of the Humane Genome Project has resulted in an exponential rise in the 
demand for molecular diagnostic assays. To meet this demand, several innovative 
technologies have become available for performing homogeneous genetic analyses. For 
this type of assay, special detector probes are necessary. In 1996, Tyagi and Kramer 
described fluorogenic hairpin-shaped detector probes, called ‘molecular beacons’, 
which are extraordinarily specific. Since they characterize alleles by the generation of 
fluorescent signals, they are perfectly suited for homogeneous genetic analysis. Molecular 
beacons assays are simple, fast, inexpensive, sensitive, utilize a high-throughput format, 
enable the testing of many samples simultaneously and allow the detection of a series of 
different agents in the same assay tube. This review is designed to give the reader a 
greater understanding of the exciting applications of molecular beacons in DNA, RNA and 
protein studies.
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Molecular beacons
Molecular beacons are single-stranded oligonu-
cleotide detector probes that form a stem-and-
loop structure [1]. The loop portion of the mole-
cule is a probe sequence that is complementary
to a predetermined target sequence and the stem
is formed by the annealing of complementary
arm sequences that are present on either side of
the probe sequence (FIGURE 1). A fluorophore is
covalently attached to the end of one arm and a
nonfluorescent quencher is covalently attached
to the end of the other arm. In the absence of
target, the stem keeps the fluorophore and the
quencher in close proximity to each other, pre-
venting fluorescence. However, when molecular
beacons bind to their target they undergo a con-
formational change that restores the fluorescence
of the internally quenched fluorophore. These
probes are called ‘molecular beacons’ because
they emit a fluorescent signal only when
hybridized to target molecules.

Universal quencher for multiplex 
detection assays
The reason for including the hairpin stem in
molecular beacons was to obtain probes that
only fluoresce when bound to their targets.

However, the hairpin structure also enables the
use of a wide variety of differently colored fluoro-
phores [2]. In the hairpin conformation, the
fluorophore and quencher are so close to each
other that the direct transfer of energy is possible.
Therefore, the quencher – usually the nonfluo-
rescent chromophore dabcyl – can quench any
fluorophore (FIGURE 2). This quenching is inde-
pendent of the overlap between the emission
spectrum of the fluorophore with the absorption
spectrum of the quencher. The mechanism of
quenching is therefore different from fluores-
cence resonance energy transfer (FRET), since in
FRET there is a relationship between spectral
overlap and quenching efficiency. Using several
different molecular beacons, each designed to
detect a different target and each labeled with a
differently colored fluorophore, multiple targets
can be distinguished in the same solution. The
color of the fluorescence that develops in the
assay indicates which targets are present and the
intensity of each color indicates how many target
molecules are present.

Enhanced specificity for SNP detection
The hairpin stem of molecular beacons also
enhances specificity [2,3]. When conventional
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linear oligonucleotides are used as hybridization probes, the dif-
ference in stability between a single nucleotide mismatched
hybrid and a perfectly complementary hybrid is rather small [4].
When a molecular beacon binds to its target sequence, the for-
mation of the probe–target hybrid occurs at the expense of the
stem hybrid. Molecular beacons can be designed in such a way
that over a wide range of temperatures only perfectly comple-
mentary probe–target hybrids are sufficiently stable to force
open the stem hybrid. Mismatched probe–target hybrids do
not form, except at substantially lower temperatures [3,5,6].
Therefore, a relatively wide range of temperatures exists in
which perfectly complementary probe–target hybrids elicit a
fluorogenic response, while mismatched molecular beacons
remain dark. Consequently, assays using molecular beacons
robustly discriminate targets that differ from one another by as
little as a single nucleotide substitution.

Real-time monitoring of PCR
As target nucleic acids are rare components of biological samples,
molecular beacons are best used in conjunction with target
amplification, such as for real-time detection of amplification
products in PCR. Molecular beacons have been used in numer-
ous studies to detect SNPs [5–20], DNA, RNA and pathogens [21–

34]. Molecular beacons can also be used in assays that employ iso-
thermal nucleic acid amplification schemes, such as strand dis-
placement amplification [35], nucleic acid sequence-based ampli-
fication [36–40] and rolling circle amplification [41]. Since
nonhybridized molecular beacons are dark, it is not necessary to
isolate the probe–target hybrids to determine the number of
amplicons synthesized during an assay. Molecular beacons are
added to the assay mixture prior to carrying out amplification
and fluorescence is measured in real time during PCR.

There are several platforms available for performing real-time
PCR analyses. These range from ultra-rapid, air-heated thermal
cyclers, where PCR is performed in glass capillaries (LightCy-
cler, Roche Diagnostics Corporation, IN, USA), to tube-based
and microtiter plate-based systems, such as the PRISM 7700
Sequence Detection system (Applied Biosystems, CA), the iCy-
cler IQ (Bio-Rad, CA), the SmartCycler (Cepheid, CA) and the
Mx4000 (Stratagene, CA). Different techniques are available to
monitor real-time amplification of a gene of interest. The
amplification process can be monitored using nonspecific dou-
ble-stranded ds-DNA binding dyes and specific detector
probes. Dyes, such as SYBR Green (Molecular Probes, OR,
USA) produce enhanced fluorescence signals upon binding to
dsDNA duplexes. Although dsDNA-binding dyes are a simple,
fast and inexpensive way of monitoring amplicon production,
the major disadvantage of the method is that the dye binds
nonspecifically to all dsDNA such that primers dimers and
nonspecific amplification products cannot be distinguished
from the amplicon of interest. To overcome the problems
encountered with the dsDNA-binding dyes different probe-
based techniques have been developed, e.g., adjacent probes
[42], TaqMan™ probes [43], molecular beacons [1] and Scorpion
primers [44]. With adjacent probes, a donor fluorophore on one

probe is brought into close proximity to an acceptor fluoro-
phore on a second probe when both probes hybridize to adja-
cent regions on a target molecule. The donor fluorophore is
excited by the light source of the instrument and energy is
transferred from the donor to the acceptor, producing a
decrease in the fluorescence of the donor and an increase in the
fluorescence of the acceptor. TaqMan probes consist of a probe
sequence labeled at one end with a donor fluorophore and at
the other end with an acceptor fluorophore. In the unhybrid-
ized state, fluorescence is quenched by the FRET mechanism.
Upon hybridization of the probe to the target sequence during
PCR, the 5´-nuclease activity of Taq polymerase cleaves the
probe; and the resulting separation of the fluorophore from the
quencher produces an increase in the fluorescence of the donor
and a decrease in the fluorescence of the acceptor. Scorpion
primers consist of an oligonucleotide primer covalently linked
to a molecular beacon moiety that is attached to the 5´-end of
the primer by a linker that prevents the copying of the molecu-
lar beacon sequence. The molecular beacon moiety contains a
probe sequence that hybridizes to a complementary sequence
known to occur in the product strand that results from the
extension of the scorpion primer. Just as in conventional molec-
ular beacons, the fluorescence of a fluorophore at the 5´-end of
the molecular beacon moiety is quenched by the close proxim-
ity of a quencher at the 3´-end, unless the probe sequence binds
to the target sequence in the extended strand. In all these differ-
ent systems – including molecular beacons – the hybridization
probe sequences are chosen to be complementary to a target
sequence within the expected amplicon, so they are highly
unlikely to bind false amplicons or primer-dimers, thus
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Figure 1.Figure 1.Figure 1.Figure 1.    Principle of operation of molecular beacons Principle of operation of molecular beacons Principle of operation of molecular beacons Principle of operation of molecular beacons [1]. . . . Free 
molecular beacons are nonfluorescent because the hairpin stem keeps the 
fluorophore close to the quencher. When the probe sequence in the hairpin 
loop hybridizes to its target, forming a rigid double helix, a conformational 
change occurs that removes the quencher from the vicinity of the 
fluorophore, thereby restoring fluorescence.
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enhancing the specificity of the assay. Compared to other detec-
tor probes, the use of molecular beacons in homogeneous assays
has two main advantages. Firstly, they enable truly multiplex
detection assays, since molecular beacons can be labeled in any
desired color [32]. Moreover, the hairpin structure of molecular
beacons enables the probes to be significantly more specific
than corresponding linear probes [2]. Recently, Foy and Parkes
reviewed the different homogenous DNA-based technologies
for genetic testing in the clinical laboratory [45] and Marras
reviewed the characteristics and applications of different artifi-
cial hybridization probes [46]. In the remainder of this review
the design of molecular beacon assays and different diagnostic
applications will be discussed.

Design of molecular beacon assays
In order to successfully monitor PCR reactions, molecular bea-
cons should be designed so that they are able to hybridize to
their targets at the annealing temperature of the PCR, whereas
the free molecular beacons should stay closed and be nonfluo-
rescent at these temperatures. This can be ensured by choosing
the length of the probe sequence and the length of the arm
sequences appropriately. The length of the probe sequence
should be such that it will dissociate from its target above the
annealing temperature of the PCR. The melting temperature of
the probe target-hybrid can be predicted using the ‘percent-
GC’ rule, which is available in most probe design programs.
The prediction should be made for the probe sequence alone
before adding the stem sequences. In practice, the length of the
probe sequence is usually between 15–30 nucleotides.

After selecting a probe sequence, two complementary arm
sequences should be added on either side of the probe
sequence. In order to ensure that the molecular beacons remain
closed in the absence of targets, the stem should be stable at the
anneal temperature of the PCR. Since the stem forms by an
intramolecular hybridization event, its melting temperature can
not be predicted by the percent-GC rule. Instead, a DNA fold-
ing program (such as the Zuker folding program) should be uti-
lized to predict its melting temperature [101]. Usually the stems
are 5–7 nucleotides long. This folding program also indicates
whether the chosen molecular beacon sequence will form an
unwanted secondary structure, such as an extremely long stem

or a structure that does not keep the fluorophore and quencher
in close proximity, in which case the sequences of the arm
should be changed.

The primers used with molecular beacons in PCR reactions
should be designed to produce a relatively short amplicon, in
general less then 150 base-pairs. These shorter amplicons pro-
duce brighter fluorescent signals because molecular beacons are
better able to compete with the complementary strands for
binding to the target strands when the amplicons are shorter.

Molecular beacons are very versatile. The general design can be
altered to fit specific applications. For instance, the shorter the
loop sequence (18–21 nucleotides), the better able the molecular
beacon is to discriminate SNPs in the target strand. On the other
hand, longer probe sequences (25–30 nucleotides) can be used to
ensure that probe–target hybrids that contain mismatches are sta-
ble at the annealing temperature of the PCR. For example, this
enables detection of different subtypes of a retrovirus that may
contain one or two nucleotide substitutions.

Before performing the real-time PCR experiments it is very
important to characterize the molecular beacons. To check the
purity of the molecular beacon preparation, the extent to
which its fluorescence increases upon binding to its oligonu-
cleotide target should be measured. Molecular beacons should
have signal-to-background ratios above 20. Poor signal-to-
background ratios are caused by the presence of uncoupled
fluorophores in the preparation or by the presence of oligonu-
cleotides that have a fluorophore but do not have a quencher.
The molecular beacon synthesis and purification is very crucial
for the production of high quality probes and subsequently, for
high quality real-time PCR experiments [102]. 

Multiplex detection of four different pathogenic retroviruses
Multiplex molecular beacon detection assays have been
described in a number of studies [2,6,29,32,47]. A study describing
the multiplex detection of four different retroviruses will be dis-
cussed more in detail below.

To demonstrate the use of molecular beacons in extremely sen-
sitive, high-throughput, clinical tests, an assay for the simultane-
ous detection of four retroviruses in blood samples and in tissues
for transplantation has been developed [29]. A multiplex PCR
assay was developed that uses four differently colored, mismatch-
tolerant, molecular beacons for the simultaneous detection of
amplicons generated from unique sequences found in the four
different retroviruses. The assay contained four compatible sets
of PCR primers that are specific for the gag gene of HIV-1, the
env gene of HIV-2, the tax gene of HTLV-I and the pol gene of
HTLV-II. The primers were chosen so that they would not inter-
act with each other and their target sequences would be unique
to each retrovirus, highly conserved and present in most clinical
subtypes. The HIV-1-specific, fluorescein-labeled molecular bea-
con was designed to detect HIV-1 subtypes A, B, C, D, F and G.
The HIV-2-specific, tetrachlorofluorescein-labeled molecular
beacon was designed to detect HIV-2 subtypes A, D and SD.
The HTLV-I-specific, tetramethylrhodamine-labeled molecular
beacon was designed to detect all HTLV-I subtypes and the

Figure 2. Fluorogenic response of differently colored molecular beacons Figure 2. Fluorogenic response of differently colored molecular beacons Figure 2. Fluorogenic response of differently colored molecular beacons Figure 2. Fluorogenic response of differently colored molecular beacons 
to the addition of target.to the addition of target.to the addition of target.to the addition of target. A solution of each molecular beacon was placed in 
a pair of test tubes [2]. The molecular beacons contained (left to right) 
coumarin (blue), EDANS (blue-green), fluorescein (green), Lucifer (yellow), 
tetramethylrhodamine (orange) and Texas (red). All molecular beacons 
contained dabcyl as a quencher. Complementary single-stranded 
oligonucleotides were added to the left tube of each pair and the tubes were 
illuminated with a broad-wavelength ultraviolet lamp.
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HTLV-II-specific, rhodamine-labeled molecular beacon was
designed to detect HTLV-II subtypes A and B. FIGURE 3 shows
that the individual retroviruses could be distinguished from one
another in a multiplex format. Four reactions carried out in par-
allel were initiated with 100,000 molecules of one of the four ret-
roviral DNAs. Each reaction contained all four molecular bea-
cons and all four primer pairs. The only significant fluorescence

that appeared in the course of amplification reactions carried out
in each assay tube was fluorescence from the molecular beacon
that was complementary to the sequence of the expected ampli-
con (FIGURE 3). No significant fluorescence developed in a control
assay that did not contain any template DNA. These results
demonstrate that each molecular beacon is specific for its
intended target amplicon.

Figure 3. Real-time detection of four different retroviral DNAs in a multiplex format Figure 3. Real-time detection of four different retroviral DNAs in a multiplex format Figure 3. Real-time detection of four different retroviral DNAs in a multiplex format Figure 3. Real-time detection of four different retroviral DNAs in a multiplex format [39]. Four assays were carried out in sealed tubes, each initiated 
with a different retroviral DNA. Each reaction contained four sets of PCR primers specific for unique HIV-1, HIV-2, HTLV-I and HTLV-II nucleotide sequences 
and four molecular beacons, each specific for one of the four amplicons and labeled with a differently colored fluorophore. Fluorescence from the 
fluorescein-labeled molecular beacon (HIV-1) is plotted in red, fluorescence from the tetrachlorofluorescein-labeled molecular beacon (HIV-2) is plotted in 
green, fluorescence from the tetramethylrhodamine-labeled molecular beacon (HTLV-I) is plotted blue and fluorescence from the rhodamine-labeled 
molecular beacon (HTLV-II) is plotted in orange.
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To evaluate the ability of the assay to detect a rare retroviral
DNA in the presence of an abundant retroviral DNA, five reac-
tions were initiated with 105 molecules of HTLV-I DNA and
either 105, 104, 103, 102 or 101 molecules of HIV-2 DNA and
a sixth reaction did not contain any template DNA. The results
show that both a fluorescent signal from tetramethylrhodamine
(indicative of the presence of HTLV-I amplicons) and a fluores-
cent signal from tetrachlorofluorescein (indicative of the pres-
ence of HIV-2 amplicons) developed in every assay, except in
the control reaction, which did not contain any template DNA
(FIGURE 4). The results show that the number of thermal cycles
required for a significant tetramethylrhodamine signal to
develop from 100,000 HTLV-I target molecules was unaffected
by the number of HIV-2 target molecules and the number of
thermal cycles required for a significant tetrachlorofluorescein
signal to develop was indicative of the number of HIV-2 target
molecules, irrespective of the presence of a relatively large
number of HTLV-I target molecules.

The sensitivity of the multiplex assay was compared with the
sensitivity of an extremely sensitive, conventional PCR assay in
which the retroviral amplicons were analyzed by gel-electro-
phoresis, transferred to a membrane and identified by hybridiza-
tion with a radioactively labeled probe. Serial dilutions contain-
ing 70,000, 7000, 700, 70, 7 and 0 molecules of HTLV-I DNA
were used as template for both assays. Both assays were suffi-
ciently sensitive to detect even seven molecules of HTLV-I
DNA. However, the homogenous multiplex assay was much
easier to perform and required only 3 h to complete, whereas the
conventional assay required 3 days. Moreover, the homogenous
assay could detect four different types of retroviruses and the use
of a closed-tube format eliminates the risk of contaminating the
laboratory with escaped amplicons.

Genotyping SNPs
To test the ability to specifically identify polymorphisms in a
nucleic acid population, Marras et al. developed a multiplex
molecular beacon-PCR assay [6]. Four different target DNA tem-
plates were prepared that were identical, except that the nucle-
otide at one position was either adenosine, cytidine, guanosine
or thymidine. One pair of PCR primers was used that generate
amplicons from any of the four templates. Four differently
colored molecular beacons were designed, each of which pos-
sessed a probe sequence that was perfectly complementary to the
target sequence within one of the four templates. The molecular
beacons designed for this assay formed perfectly complementary
probe–target hybrids whose melting temperature was about
13ºC higher than the melting temperature of probe–target
hybrids that contain one of the three possible mismatched base-
pairs. Four different PCR assays were carried out, each initiated
with one of the four different target DNA templates. Each assay
contained the same set of primers and a mixture of the four dif-
ferently colored molecular beacons. The results show that only
one of the four differently colored molecular beacons in each
reaction formed probe–target hybrids during the course of the
amplification (FIGURE 5). Only the molecular beacon possessing

the perfectly complementary probe sequence formed a stable
hybrid. Thus, the color of the fluorescence that developed in
each reaction identified the variant nucleotide that was present
in the target. The results of this assay indicate that molecular
beacons can be designed for use in PCR reactions that are suffi-
ciently specific to distinguish sequence differences as small as a
single nucleotide substitution.

The capability of molecular beacons to detect SNPs has been
confirmed in many studies. For genotyping alleles, two molecular
beacons are used, one specific for the wild type allele and labeled
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Figure 4. Detection of a rare retroviral target in the presence of an Figure 4. Detection of a rare retroviral target in the presence of an Figure 4. Detection of a rare retroviral target in the presence of an Figure 4. Detection of a rare retroviral target in the presence of an 
abundant retroviral target abundant retroviral target abundant retroviral target abundant retroviral target [39][39][39][39]. . . . Five multiplex assays were initiated 

with 105 molecules of HTLV-I DNA and either 105, 104, 103, 102, or 101 

molecules of HIV-2 DNA; and a sixth multiplex assay, which served as a 
control, did not contain any template DNA. Each assay contained four 
sets of PCR primers and four differently colored molecular beacons. The 
top panel shows the fluorescence from the tetramethylrhodamine-
labeled molecular beacons, which is due to the synthesis of HTLV-I 
amplicons; and the bottom panel shows the fluorescence from the 
tetrachlorofluorescein-labeled molecular beacons, which is due to the 
synthesis of HIV-2 amplicons. The number of molecules of each retroviral 
DNA that were originally present in each assay tube is indicated to the 
right of each curve.
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with a green fluorophore and the other specific for the mutant
allele and labeled with a red fluorophore. The appearance of
green fluorescence during amplification indicates homozygous
wild types, red fluorescence indicates homozygous mutants and
both green and red fluorescence indicates heterozygotes
(FIGURE 6). Molecular beacons have been used to genotype, e.g.,
methylenetetrahydrofolate reductase gene mutations [5,16] human
chemokine receptor mutations [8–10], Factor V Leiden mutation
[7], hereditary hemochromatosis gene mutations [18], drug resist-
ance mutations in malarian parasites [17] and drug resistance
mutations in Mycobacterium tuberculosis [11,12,32]. Usually the
mutations are detected in real time during amplification but they
can also be detected after amplification [15]. In side-by-side com-
parisons, the specificity of molecular beacons has proven superior
to probes that rely on 5´-nucleolytic cleavage activity of DNA

polymerase [14]. This high specificity allows the detection of a
small proportion of mutant DNA in the presence of abundant
wild type DNA [13].

Self-reporting molecular beacon arrays
Today’s development of molecular technologies includes the
production of DNA microarrays. Current microarrays for
large-scale genotyping are laboratory-based research tools. Fur-
ther refinement of the techniques is necessary to produce a
robust, automatable, reliable and user-friendly diagnostic tool.
In different studies molecular beacons have been immobilized
on solid surfaces [48–51]. Steemers et al. developed a randomly
ordered fiberoptic gene array for rapid, parallel detection of
unlabeled DNA targets with surface immobilized molecular
beacons. Different molecular beacon-coated microsperes are
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Figure 5. Multiplex detection of single-nucleotide variations in real-time polymerase chain reactions Figure 5. Multiplex detection of single-nucleotide variations in real-time polymerase chain reactions Figure 5. Multiplex detection of single-nucleotide variations in real-time polymerase chain reactions Figure 5. Multiplex detection of single-nucleotide variations in real-time polymerase chain reactions [6].... Four different molecular beacons were 
present in each reaction: the fluorescence intensity of the molecular beacons specific for the target sequence containing a guanosine in the variable 
position is plotted in blue, the fluorescence of the thymidine-specific molecular beacons is plotted in green, the fluorescence of the adenosine-specific 
molecular beacons is plotted in orange and the fluorescence of the cytidine-specific molecular beacon is plotted in red. The nucleoside at the site of 
variation in the template DNA used to initiate each amplification reaction is indicated at the top of each panel. The color of the fluorescence that developed 
in each reaction tube identified the variant nucleotide. No fluorescence developed in a control reaction that did not contain template DNA.
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randomly distributed in an array of wells etched in a 500 µm
diameter optical imaging fiber. Different genomic cystic fibro-
sis-related targets were detected by positional registration and
fluorescence response monitoring using an optical encoding
scheme and an imaging fluorescence microscope system. The
advantages of this approach are that the array is self reporting
and the hairpin structure of the probe ensures high specificity.
In addition, the use of multiple microspheres possessing copies
of each probe decreases the chance of both false-negatives and
false-positives.

RNA detection in living cells
In biological studies and recent antisense research, it has been
shown that in living cells it is extremely difficult to demonstrate
hybridization between an antisense oligonucleotide and its
mRNA target. Molecular beacons are ideal probes for use in liv-
ing cells because they are dark when not hybridized and
become fluorescent when they bind to their target, eliminating
the need to remove nonhybridized probes. They have been
introduced into living cells by liposome delivery for the visuali-
zation of human basic fibroblast growth factor mRNA in
human trabecular cells of the eye [52] and by microinjection for
the detection of specific mRNAs in K562 human leukemia cells
[53]. In the latter study molecular beacons were designed to
hybridize to an endogenous vav mRNA, which encodes an
important hematopoietic cell signaling protein and to the
highly expressed housekeeping gene β-actin. Both studies dem-
onstrate that mRNA can be visualized and localized in cells. A
potential drawback to using deoxyribonucleotide probes in liv-
ing cells is that they can be digested by cellular nucleases.

Probes that are synthesized from 2´-O-methyl ribonucleotides
have been shown to behave differently in living cells than do
probes synthesized from deoxyribonucleotides, in that they can-
not be cleaved by cellular nucleases and do not promote the
cleavage of target RNA by cellular ribonuclease H when they
form probe–target hybrids. In a recent study by Moolenaar et al.,
2´-O-methyl RNA molecular beacons were compared with linear
2´-O-methyl RNA probes for the visualization of RNA in living
cells. Although they demonstrated an improved specificity of the
2´-O-methyl RNA molecular beacons compared to 2´-O-methyl
RNA linear probes in vitro, they could not confirm the beneficial
properties of molecular beacons in living cells. However, as has
been elegantly shown in study by Sokol et al. when the appropri-
ate controls are used molecular beacons enable visualization and
localization of mRNA in living cells [53]. Molecular beacons
could find a broad application in studying RNA processing,
trafficking and folding in living cells.

Molecular beacons in protein studies
Recently, molecular beacons have been used for studying pro-
tein–DNA interactions [55–63]. Protein recognition was first
realized using an E. coli single-stranded DNA binding protein
(SSB) [57]. Using molecular beacons it was possible to detect
SSB at a concentration as low as 2 x 10-10 M using a conven-
tional spectrophotometer. A molecular beacon probe has also
been used for detailed binding studies of the enzyme lactate
dehydrogenase [55]. In these two studies proteins are used that
bind nonspecifically to single-stranded DNA. In a study on the
characterization of the interaction between αCP2 and the
untranslated region of collagen _1 (I) RNA, molecular beacons
were used to examine _CP2–DNA interactions [58]. They dem-
onstrated that molecular beacons were suitable for detecting
protein–nucleotide interactions in a high-throughput format.
In two studies aptamer molecular beacons have been developed
for the specific detection of proteins [62,63]. Similar to regular
molecular beacons, aptamer beacons form a nonfluorescent
conformation when free in solution and undergo a conforma-
tional reorganization as they bind to their ligand that permits
them to fluoresce brightly. In the first study, an aptamer beacon
was developed to specifically detect the Tat protein of HIV. In
the second study, an antithrombin aptamer was converted into
an aptamer beacon by adding nucleotides to the 5´-end, which
were complementary to nucleotides at the 3´-end of the
aptamer. In the absence of thrombin, the aptamer beacon is in
the stem-loop structure. In the presence of thrombin, the
aptamer beacons form a ligand-binding structure in which the
fluorophore is far away from the quencher, restoring fluores-
cence. Since virtually any aptamer can potentially be converted
to an aptamer beacon, aptamer beacons can be sensitive tools
for the detection of proteins and other chemical compounds.

Summary & conclusions
During the last few years, molecular beacons technology has
proven to be widely effective for different types of genetic anal-
ysis. Multiplex assays that utilize molecular beacons have been
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FIGURE 6. Principle of genotyping with molecular beacons [8]. with DNA 
from homozygous wild type individuals only the wild type molecular 
beacons hybridize to the amplicons, generating green fluorescence, 
whereas the mutant molecular beacons retain their stem-and-loop 
structure and do not produce a fluorescent signal. with DNA from 
heterozygous individuals, both molecular beacons hybridize to the 
amplicons, generating both green and red fluorescence. with DNA from 
homozygous mutant individuals, only the mutant molecular beacons 
hybridize to the amplicons, generating red fluorescence, whereas the wild 
type molecular beacons remain dark
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developed to detect and quantify DNA, RNA, infectious agents
and for the discrimination of genetic alleles. Moreover, the use
of molecular beacons is not limited to assays that employ PCR.
They have been successfully used in assays that employ isother-
mal nucleic acid amplification schemes. More recently, molecu-
lar beacons have been used to detect RNAs in living cells, to
analyze proteins and to develop self-reporting microarrays.

Expert opinion
Practical clinical assays should be simple, fast, inexpensive, sensi-
tive, utilize a high-throughput format that enables the testing of
many samples simultaneously and, ideally, allow the detection of a
series of different agents in the same assay tube. Molecular bea-
cons enable all of these advantageous properties. The use of a uni-
versal quencher in molecular beacons enables multiple targets to
be distinguished in the same solution. The extraordinary specifi-
city of molecular beacons enables the development of assays that
robustly identify SNPs. A very important advantage of homoge-
nous assays is that tubes remain closed during the monitoring of
fluorescence, thereby eliminating the risk of carryover contamina-
tion and the generation of false-positive results. The development
of a reliable molecular beacon assay is depending on the purity of
the synthesized molecular beacons and the molecular beacon
design. The molecular beacon preparation should be of good
quality and therefore, the extent to which the fluorescence of a
molecular beacon increases upon binding to its target should
always be measured before a real-time PCR experiment is per-
formed. This ‘signal-to-background ratio’ depends primarily on
the purity of the molecular beacon preparation. The presence of
uncoupled fluorophores in the molecular beacon preparation or
the presence of oligonucleotides that have a fluorophore but do
not have a quencher cause poor signal-to-background ratios and
should not be used in the real-time PCR assay. Although the gen-
eral design of molecular beacons is straightforward and easy, to
design molecular beacons for optimal allele-discriminating per-
formance at a particular temperature, some experience is needed.
Therefore, it would be desirable to know how to predict the ther-
modynamic behaviour of a probe from its nucleotide sequence
and to have a computer algorithm that can automatically select a
nucleotide sequence with desired characteristics. This will be espe-
cially important in the design of high-density molecular beacon
arrays, which may contain thousands of different immobilized
fluorescent probes. The availability of such a computer algorithm
for molecular beacon design will make the technology even more
accessible for use in many different applications. The use of
molecular beacons is not limited to assays that employ PCR,
which require temperature cycling but can also be used in assays
that employ isothermal nucleic acid amplification schemes, such
as, strand displacement amplification, nucleic acid sequence-based
amplification and rolling-circle amplification. These assays do not
require a thermal cycler, so they can be carried out in laboratories
with limited resources. No matter which amplification scheme is
employed, the addition of molecular beacons to enable multiple
target detection will improve the reliability, speed and ease of use
of diagnostic clinical assays.

Five-year view
Although molecular beacons have been shown to be perfectly
suited for multiplex homogenous genetic analysis, currently
DNA chips adapt readily to the parallel format required to screen
many samples for many mutations simultaneously. The microar-
ray-based technology for analyzing SNPs is at the moment under
intensive development. Improvement is needed to enhance the
specificity of the arrays and moreover, to create a system for label-
free detection of the hybridization signals. Since molecular bea-
cons are much more specific than corresponding linear probes
that are currently used in genotyping microarrays, molecular bea-
cons are perfectly suited to# enhance the specificity of array-
based hybridization, making the identification of the presence or
absence of a mutation unequivocal. The self-reporting capacity
of molecular beacons enables the detection of hybridization with-
out labeling the targets, making the system more user-friendly,
robust and suitable for diagnostic applications.

In the near future, the enormous amount of data that will be
generated by RNA-expression arrays has to be confirmed by an
independent technique. Although Northern blot technology is
still a reliable technique, real-time PCR will be needed for the
detailed investigation of candidate genes indentified by the
RNA-expression arrays. Using real-time molecular beacon
PCR, the expression of candidate genes can be studied easily
and accurately in many different tissues or cell types to deter-
mine the clinical relevance of the pattern of differential gene
expression found with the array.

Aptamer beacons are expected to become a sensitive tool for
detecting proteins and other chemical compounds. Aptamers
have been previously been immobilized without significant loss
of activity and it should similarly be possible to immobilize
multiple aptamer beacons to generate chip arrays that directly
signal the presence of individual proteins. The use of aptamer
beacons to create biosensors for proteomics applications is a
very exiting field of research.

Key issues

•  The extraordinary specificity of molecular beacons enables 
unequivocal identification of SNPs.

•  The use of a universal quencher in molecular beacons enables 
the detection of many different targets in the same assay 
tube.

•  Molecular beacon design is very versatile and can be altered 
to fit specific applications.

•  Molecular beacons can be used as detector probe in 
homogenous genetic assays and when immobilized on a solid 
surface a highly-specific, self-reporting microarray can be 
developed.

•  In addition to application in molecular diagnostic assays, 
molecular beacons have been successfully used to detect 
specific RNAs in living cells and moreover, aptamer beacons 
have been developed for the specific detection of proteins.
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