Nearest Neighbor Queries in a Mobile
Environment

George Kollios!, Dimitrios Gunopulos?, and Vassilis J. Tsotras?

! Polytechnic University
Dept. of Computer and Information Science
Six MetroTech Center
Brooklyn, NY 11201-3840, USA
gkollios@db.poly.edu
2 University of California, Riverside
Department of Computer Science and Engineering
Riverside, CA 92521, USA

dg@cs.ucr.edu, tsotras@cs.ucr.edu

Abstract. Nearest neighbor queries have received much interest in re-
cent years due to their increased importance in advanced database ap-
plications. However, past work has addressed such queries in a static
setting. In this paper we consider instead a dynamic setting where data
objects move continuously. Such a mobile spatiotemporal environment
is motivated by real life applications in traffic management, intelligent
navigation and cellular communication systems. We consider two ver-
sions of nearest neighbor queries depending on whether the temporal
predicate is a single time instant or an interval. For example: “find the
closest object to a given object o after 10 minutes from now”, or, “find
the object that will be the closest to object o between 10 and 15 min-
utes from now”. Since data objects move continuously it is inefficient to
update the database about their position at each time instant. Instead
our approach is to employ methods that store the motion function of
each object and answer nearest neighbor queries by efficiently searching
through these methods.

1 Introduction

A spatiotemporal database system manages data whose geometry changes over
time. There are many applications that create such data, including global change
(as in climate or land cover changes), transportation (traffic surveillance data,
intelligent transportation systems), social (demographic, health, etc.), and multi-
media (animated movies) applications. In general one could consider two spatial
attributes of spatiotemporal objects which are time dependent, namely: posi-
tion (i.e., the object’s location inside some reference space) and extent (i.e., the
area or volume the object occupies in the reference space)[8]. Depending on the
application, one or both spatial attributes may change over time. Examples in-
clude: an airplane flying around the globe, a car traveling on a highway, the land
covered by a forest as it grows/shrinks over time, or an object that concurrently

moves and changes its size in an animated movie. For the purposes of this paper
we concentrate on applications with objects which change position over time
but whose extent remains unchanged. Hence for our purposes we represent such
objects as points moving in some reference space (“mobile points”).

The usual assumption in traditional database management systems is that
data stored in the database remains constant until explicitly changed by an
update. For example, if a price field is $5, it remains $5 until explicitly up-
dated. This model is appropriate when data changes in discrete steps, but it
is inefficient for applications with continuously changing data [20]. Consider for
example a database keeping the position of mobile objects (like automobiles).
The primary goal of this database is to correctly represent reality as objects
move. Since objects move continuously updating the database about each ob-
ject’s position at each unit of time is clearly an inefficient and infeasible solution
due to the prohibitively large update overhead. Updating the database only at
few, representative time instants limits query accuracy.

A better approach is to abstract each object’s position as a function of time
f(t), and update the database only when the parameters of f change (for exam-
ple when the speed or the direction of a car changes). Using f(¢) the database
can then compute the position of the mobile object at any time in the future
(under the current knowledge about the motion characteristics of the database
objects). Storing the motion function minimizes the update overhead, but it
also introduces many novel problems since the database is not directly storing
data values but functions to compute these values. Motion databases have re-
cently attracted the interest of the database community. There is already a GIS
system [2] that supports tracking and querying mobile objects. In the research
front, [20-22,8, 6] present Spatio-Temporal models and languages for querying
the locations of such objects. Recently, [16] presents access methods for indexing
mobile objects; the focus is on spatiotemporal range queries for objects moving
in one and two dimensions. For example: “find the objects that will be inside a
given query region P after 10 minutes from now”.

In this paper we concentrate instead on answering nearest neighbor queries
among the future locations of mobile objects. An example of such a spatio-
temporal query is: “Report the object that will be the closest to an object o
after 10 minutes from now”. Since object 0 moves and it’s motion information is
known, the above query is equivalent to finding the object (except from object o)
which will be the closest to position P after 10 minutes from now, where P is the
position o will be in 10 minutes. Note that the answer to this query is tentative
in the sense that it is computed based on the current knowledge stored in the
database about the mobile objects’ future motion functions. If this knowledge
changes, the same query would produce a different answer.

We also examine nearest neighbor queries where instead of a time instant,
an interval predicate in future is given as in: “Report the object that will be the
closest to object o between 10 and 20 minutes from now”. We will answer this
query by reducing it to a combination of range queries and the above simple
nearest neighbor queries.

We are not interested in providing new indices specifically designed for neigh-
bor queries, as such would be of limited usefulness. In practice, neighbor queries
are addressed by using traditional selection based indices (R-trees etc.) and mod-
ifying the search algorithm so that neighbor queries are also answered. We will
follow the same approach here, thus utilizing the indexing techniques we have
proposed in [16] and adapting them for neighbor searching.

As the number of mobile objects in the applications we consider (traffic
mounitoring, mobile communications, etc.) can be rather large we are interested
in external memory solutions. While in general an object could move anywhere
in the 3-dimensional space using some rather complex motion, we limit our
treatment to objects moving in 1-dimensional space (a line) and whose location
is described by a linear function of time. There is a strong motivation for such an
approach based on the real-world applications we have in mind: straight lines are
usually the faster way to get from one point to another; cars move in networks of
highways which can be approximated by connected straight line segments on a
plane; this is also true for routes taken by airplanes or ships. In addition, solving
this simpler problem may provide intuition for addressing the more difficult
nearest neighbor query among objects moving in 2- or 3-dimensional space.

2 Problem Description

We consider a database that keeps track of mobile objects moving on a finite
line segment. We model the objects as points that move with a constant velocity
starting from a specific location at a specific time instant. Using this information
we can compute the location of an object at any time in the future for as long
as its movement characteristics remain the same. Thus, an object started from
location yg at time tg with velocity v (v can be positive or negative) will be in
location yo + v(t — to) at time ¢ > ty. Objects are responsible to update their
motion information, every time when the speed or direction changes. When an
object has reached the line segment limits, it has to issue an update. Such update
can be either a deletion (the object is removed from the collection) or a reflection
(direction and possibly speed change). Finally, we allow to insert a new object
or to delete an existing one anywhere in the line segment, eg. the system is
dynamic.

We first examine nearest neighbor queries described by a tuple (yq,%,) as
in: “Report the object that will be closer to the point y, at the time instant
ty (where tpo, < t4)”. Section 3 describes two geometric representations of the
problem, the primal plane (where object trajectories are represented as long
lines in the time-position plane) and the dual plane (where a trajectory becomes
a point). Two dual plane transformations are examined (Hough-X and Hough-
Y). We present efficient algorithms for answering near neighbor queries in the
primal and dual planes in section 4. A performance study appears in section 5. In
section 6 we examine the nearest neighbor query with a time interval predicate
(“Report the object that will be closer to the point y, during the time interval
[t1g,t2q] (Where tho0 < t14)”). We also discuss how our 1-dimensional results

can be extended to apply on a limited 2-dimensional case, where the objects are
restricted to moving in a given collection of line segments (like roads comprising a
highway system). We call this the 1.5 dimensional case and discuss it in section
7. Finally, related work appears in section 8, while section 9 summarizes our
findings and presents problems for future research.

3 Geometric representations

First, we partition the mobile objects into two categories, the objects with low
speed v &~ 0 and the objects with speed between a minimum v,,;, and maximum
speed Up,q.. We consider here the “moving” objects, eg. the objects with speed
greater than v,,;,. The case of static or almost static objects can be solved using
traditional approaches and we don’t discuss this issue further.

The problem is to index the mobile objects in order to efficiently answer
nearest neighbor queries over their locations into the future. The location of
each object is described as a linear function of time, namely the location y;(%)
of the object o; at time ¢ is equal to v;(t — t;,) + yi,, where v; is the velocity
of the object and y;, is its location at t;,. We assume that the objects move
on the y—axis between 0 and y,,,, and that an object can update its motion
information whenever it changes. We treat an update as a deletion of the old
information and an insertion of the new one. As in [16] we describe two geometric
representations of the problem.

3.1 Space-time representation

In this representation we plot the trajectories of the mobile objects as lines in the
time-location (¢, y) plane. The equation of each line is y(t) = vt+a where v is the
slope (the velocity in our case) and a is the intercept, that can be computed by
the motion information. In fact a trajectory is not a line but a semi-line starting
from the point (y;,t;). However since we ask queries for the present or for the
future, assuming that the trajectory is a line does not affect the correctness of
the answer. Figure 1 shows a number of trajectories in the plane.

The query is expressed as a point (y4,t,) in the 2-dimensional space. The
answer is the object that corresponds to the line that is closer to this point at
the time ¢,. So we have to consider the distance of the trajectories to the query
point along the line ¢t = ¢,. For example in Figure 1 the answer to the nearest
neighbor query is the object og.

3.2 The dual space-time representation.

Duality is a transform frequently used in the computational geometry literature;
in general it maps a hyper-plane h from R? to a point in R? and vice-versa. The
duality transform is useful because it allows to formulate a problem in a more
intuitive manner.

Oy

btatatels g ta t

Fig. 1. Trajectories and query in (¢,y) plane.

In our case we can map a line from the primal plane (¢,y) to a point in the
dual plane. In Figure 2, line [and point p are transformed to point {* and line
p*. There is no unique duality transform, but a class of transforms with similar
properties. Sometimes one transform is more convenient than another.

a\ p
el

Fig. 2. Duality transform of a line and a point.

Consider a dual plane where one axis represents the slope of an object’s
trajectory and the other axis its y-intercept®. Thus the line with equation y(t) =
vt+a is represented by the point (v, a) in the dual space (this is called the Hough-
X transform in [14]). While the values of v are between —v,,4, and vp,q,, the
values of the intercept are depended on the current time. If the current time is
tnow then the range for a is [~ Vmaz X tnow, Ymaz + Umaz X tnow)-

The query is transformed to a line in the dual space. This line is the dual of
the query point (t,,y,), thus it has the equation: Q;: a = —vt, + y, (Figure 3).
Next we show the following lemma:

! The y-intercept is defined as the point where a given line intersects the y-axis.
Similarly t-intercept is the point where a line intersect the t-axis.

Lemma 1. The nearest neighbor to the query point (t4,y,), is the object whose
dual point is closest to the line that is the dual of the query point.

Proof. Assume a query point (s1,¢;) and an object with trajectory y = viz+a;.
The distance of this object to the query point at the time 1 is D = |v1t1+a1 —s1],
and it is computed along the line ¢ = ¢;. In the dual plane the same distance has
to be computed along the line v = v;. If the Euclidean distance of the object to
the query line in the dual space is d, then it is easy to show that D = dcos(8),
where 6 is the slope of the query line. O

Thus we can use the Euclidean distance to compute the nearest neighbor in
the dual space, although this is not true for the primal space.

YaN

Vmin Vmax \V4

@

Fig. 3. Data objects and query in the Hough-X dual plane.

Note that the dual representation has the problem that the values of the
intercept are unbounded. A simple solution to this problem is presented in [16].

To solve the problem we use our assumption that when an object crosses a
border it issues an update (i.e. it is deleted or reflected). Combining this assump-
tion with the minimal speed, we can assure that all objects have updated their
motion information at least once during the last T)crioq time instants, where
Tperiod = Z:‘l—“: We can then use two distinct index structures. The first index
stores all objects that have issued their last update in the period [0, Tperiod]-
The second index stores objects that have issued their last update in the inter-
val [Tperiod; 2 period)- Each object is stored only once, either in the first or in
the second index. Before time T}y i0q, all objects are stored in the first index.
However, every object that issues an update after Tperioq is deleted from the
first index and it is inserted in the second index. The intercept of the first index
is computed by using the line ¢ = 0 and for the second index using the line
t = Tyerioa- Thus we are sure that the intercept will always have values between
0 and vpap X Tperiod- To query the database we use both indices. After time
2T perioa We know that the first index is empty and all objects are stored in the

second index, since every object have issued at least one update from Tyerioa t0
2T perioa- At that time we remove the empty index and we initiate a new one with
time period [2Tperiod, 3T period). We continue in the same way and every Tperiod
time instants we initiate a new index and we remove an empty one. Using this
method the intercept is bounded while the performance of the index structures
remain asymptotically the same as if we had only one structure.

Another way to represent a line y = vt + a, is to write the equation as
t = %y — . Then we can map this line to a point in the dual plane with
coordinates n = 1+ and b = —% (Hough-Y in [14]).

4 Algorithms to answer nearest neighbor queries

An obvious approach would be to check all the objects and return the closest to
the query point. However this method is inefficient since the number of mobile
objects can be large. Hence, we discuss methods that avoid a linear scan on the
data set by using index structures. For each representation we present possible
indices and methods to use these indices for nearest neighbor search.

4.1 Using traditional methods

In the space-time representation we can use a Spatial Access Method (SAM) to
index the lines or line segments. Possible methods include R-tree and Quadtree
based indices. Then we can use the algorithms proposed by Hjaltason and Samet
[12] or by Roussopoulos at. al. [17] to find the lines that are closer to the query
point. These algorithms work for any hierarchical index structure which uses
recursive partitioning. Note that in [5] it was shown that the algorithm in [12]
is the optimal algorithm for nearest neighbor search, in the sense that we ac-
cess the smallest number of pages to answer a nearest neighbor query, given an
underlying index structure. The main idea of these algorithms is to traverse the
hierarchical structure in a top-down fashion and keep for every visited partition
a list of subpartitions ordered by their distance to the query point. We then
visit the subpartitions in sorted order. We can prune some subpartitions, when
the minimum distance of these partitions to the query point is larger than the
distance of an already found object. In [12], a global priority queue is used to
keep both the subpartitions and the objects found up to know in a sorted order.
It is obvious that we can use the above algorithms to process our query, since
these algorithms work for any type of objects. The only difference is the way we
compute the distance of the objects to query point. We don’t use the Euclidean
distance but the distance along the line ¢ = ¢,.

The main problem of this approach is that there are no efficient index struc-
tures for indexing lines or very large line segments. In case of hierarchical meth-
ods with overlapping partitions, like R-tree[11] or R*-tree[4], the overlapping
is extensive, resulting in a very poor query performance. On the other hand,
methods that partition the data space into disjoin cells and use clipping(like
PMR-quadtree[18] or R+-tree[19]), will have a very high space consumption (in
our case probably superlinear).

4.2 Using kd-tree methods in the dual

There is a large number of access methods that have been proposed to index
point data[10]. All these structures were designed to address orthogonal range
queries, eg. queries expressed as multidimensional hyper-rectangles. However,
most of them can be used to answer nearest neighbor queries as well.

We use this approach to answer the nearest neighbor query in the dual Hough-
X space (Figure 3). An index structure based on kd-trees is used to store the dual
points. In our experiments we used the hB'/-tree [9]. Next a traversal algorithm
similar to the algorithm presented in [12] is used to find the answer. The only
difference here is that we compute the distance of the regions or the data points
to the line that represents the query in the dual space and not to a point.

4.3 Using B+-trees in the dual

n
Yvmin
Uimax o
|
by b2 t q b

Fig. 4. Query in the Hough-Y dual plane.

A different approach is based on the query approzimation method presented
n [16]. Consider the Hough-Y dual plane and a query line in that plane with
equation: b = —y,n + t,. We assume that the b coordinate is computed using a
general horizontal line with equation y = y,., where y, is a value between 0 and
Ymaz (note that the t-axis is the line y = 0). We can use an one dimensional data
structure (B+-tree) to index the dual points using only the b coordinate. The
query line is mapped to an 1-dimensional range on this structure, for example in
the Figure 4 the range is (b1, by) where by = t,— % and by = t, — % Now
we can use this structure to answer the nearest neighbor query. Note however
that the size of the range query is proportional to |y, — y,|. So, we can decrease
the size of this range if we keep ¢ index structures at equidistant y,.’s (see Figure
5). While we can still get the correct answer with ¢ = 1 using some limited
replication (small ¢ > 1) we get better performance.

Ymax|

)2

Y1

Yo

Fig. 5. Using three indices to store a moving object.

All ¢ indices contain the same information about the objects, but use different
y»’s. The i-th index stores the b coordinates of the data points using y = === x,
1 =0,..,c— 1. However the index that is closer to the query point has a smaller
range to search, and therefore we expect that the query time to process the
nearest neighbor query will be smaller. In Figure 6 we describe an algorithm that
is used to answer the nearest neighbor query using the above one dimensional
structures.

1. Choose the structure that is the closest to the query point.

2. Find the range (b1, b2) where the query is mapped. Find the closest object to the query
point y, inside this range. This is the nearest neighbor (NN) so far.

3. Start visiting the previous and the next pages and update the NN if necessary. Stop
condition: check if it is possible to find a nearest point than the current NN in the next
pages using vmin and in the previous pages using the v,mq.. Stop when this is not possible.

Fig. 6. Algorithm to compute the nearest neighbor for mobile objects

5 A Performance Study

We present initial results for the nearest neighbor query, comparing the 1-
dimensional structures, the kd-tree method and a traditional R-tree based ap-
proach. First we describe the way experimental data is generated. At time t = 0
we generated the initial locations of N mobile points uniformly distributed on
the terrain [0,1000]. We varied N from 100k to 500k. The speeds were generated
uniformly from v, = 0.16 t0 Ve, = 1.66 and the direction randomly positive
or negative.? Then all points start moving. When a point reaches a border simply

? Note that 0.16 miles/min is equal to 10 miles/hour and 1.66 miles/min is equal to
100 miles/hour.

T
hB-tree ——

1500 - e T

1400 |- €=6 - 4
c=8 -

1300 |- R*-tree with lines -&-—- -

Avg. I/Q’s per Query

o | | | | | |
100 150 200 250 300 350 400 450 500
Number of Moving Objects (in thousands)

Fig. 7. Query Performance for Nearest Neighbor Queries.

it changes its direction. At each time instant we choose 200 objects randomly
and we randomly change their speed and/or direction. We generate 10 different
time instants that represent the times when queries are executed. At each such
time instant we execute 200 nearest neighbor queries, where the y-coordinate is
chosen uniformly between 0 and 1000 and the time instant between t,,, and
tnow + 60. We run the above scenario using a particular access method for 2000
time instants.

To verify that indexing mobile objects as line segments is not efficient, we
stored the trajectories in an R*-tree. We fixed the page size to 4096 bytes.
All methods had page capacity equal to 340 except the R-tree where the page
capacity was 204. We consider a simple buffering scheme for the results we
present here. For each tree we buffer the path from the root to a leaf node, thus
the buffer size is only 3 or 4 pages. For the queries we always clear the buffer pool
before we run a query. An update is performed when the motion information of
an object changes.

In Figure 7 we present the results for the average number of I/O’s per nearest
neighbor query. The approximation method used ¢ = 4,6 and 8 B+-trees. As
anticipated, the line segments method with R*-trees has the worst performance.
Also, the approximation method outperforms the hB™ -tree.

In Figures 8 and 9 we plot the space consumption and the average number of
I/0O’s per update respectively. We did not report the update performance for the
R*-tree method because it was very high (more than 90 I/O’s per update). The
update and space performance of the h B -tree is better than the other methods
since its objects are stored only once and better clustered than the R*-tree. The
update performance of the hB''-tree and the approximation approach remain
constant for different number of mobile objects. The space of all methods is
linear to the number of objects. The approximation approach uses more space

19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

T
hB-tree ——
c=4 -+--

c=6 -@--
C=8 -

Avg. number of Pages

o | | | | | |
100 150 200 250 300 350 400 450 500
Number of Moving Objects (in thousands)

Fig. 8. Space Consumption.

due to the use of ¢ observation indices. There is a tradeoff between ¢ and the
query/update performance.

6 Nearest Neighbor Queries with time interval predicate

Another interesting nearest neighbor query is a query where a time interval is
given instead of a time point. This time interval and the trajectory of the query
object create a line segment in the space-time plane. The answer to the query
is the object that comes closest to the query object during this time interval,
or equivalently to the query line segment. Note that this problem is important
only in a spatiotemporal environment. For example in Figure 10, o4 is the query
object and [t14,%24] the time interval. The answer to this query are the objects
05 and og, since at some point during the time interval, these objects have zero
distance from the query object. However if we ask for the three nearest neighbors,
then the objects o7 belongs also to the result. A method to answer the query is
to find first the lines that intersect the query line segment. If there is no such
line, then we run two nearest neighbor queries, one on each of the two ends of the
line segment and keep the best answer. This is correct because the trajectories
of the mobile objects are straight lines. In particular we can show that the time
where an object is closer to the query object, has to be one of the time instants
t14 O tag, if the trajectories of the mobile objects have no common point during
the query interval [t14, toq].

In the primal plane we can modify the existing algorithms for query points
and find the lines closest to the line segment. However the performance of these
methods will be at least as bad as the case for query point.

In the dual plane we can use the method described above. The query to find
the lines that intersect the query line segment is a non-orthogonal range query.
To answer this query we can use the methods proposed in [16]. If no answer is

50 T T T T T T T
40 e
30 *

Avg. I/0's per Update

o | | | |
100 150 200 250 300 350 400 450 500
Number of Moving Objects (in thousands)

Fig. 9. Update Performance.

found, the we run two nearest neighbor queries for the time instants ¢; and ¢,
and keep the closest object.

f totatet, gt tig t2q Time

Fig. 10. Data objects and query with time interval predicate.

7 The 1.5-dimensional case

There is an interesting restricted version of the general 2-dimensional problem
where our 1-dimensional algorithms can be easily extended. We consider objects
moving in the plane but their movement is restricted on using a given collection
of line segments (routes, roads) on the finite terrain. Due to its restriction, we
call this case the 1.5-dimensional problem. There is a strong motivation for such

an environment: in many applications objects (cars, airplanes etc.) move on a
network of specific routes (highways, airways).

The 1.5-dimensional problem can be reduced to a number of 1-dimensional
problems. In particular, we propose representing each predefined route as a se-
quence of connected (straight) line segments. The positions of these line segments
on the terrain are indexed by a standard spatial access method (SAM). Given
that the number of routes is usually much smaller than the number of objects
moving on them, and that each route can be approximated by a small number
of straight lines, maintaining such an index is straightforward (in addition, new
routes are added rather infrequently.)

Indexing the objects moving on a given route is an 1-dimensional model and
will use techniques from the previous section. Given a Nearest Neighbor query for
a given two-dimensional point, we identify first the route that passes closest to
the point. We could use the spatial access method and traditional NN techniques
[12,17] for finding this route (line segment) as the collection of routes is rather
static. Once the route that passes closest to the query point is identified, we
find the Nearest Neighbor of the query point among the objects on that route.
This object must also be the nearest point to the orthogonal projection of the
query point on the route line. To find it, we take the orthogonal projection of
the query point onto the route, and solve the one dimensional problem of finding
the Nearest Neighbor of the projection among the points on the route. Let d be
the distance of the nearest neighbor on the closest route and the query point.

Thus we obtain an upper bound, d, on the distance of the true nearest neigh-
bor point to the query. Clearly we have to consider only the points that are on
routes that are closer than d to the query time. To find those routes we perform
a range query on the SAM data structure we use to keep all routes. This will
return all routes with L, distance from the query point less than d. We sort the
routes according to distance from the query point and find the nearest neighbor
to the query point on each route, updating the global nearest point when a closer
point is found. We terminate this process if the distance of the next route to be
considered is larger than the nearest point found so far.

8 Related Work

There is a lot of work on the Nearest Neighbor problem in spatial domains.
However this work has concentrated on the static case, where points or objects
remain in a fixed location.

Roussopoulos et al [17] give an R-tree based algorithm to find the point
closest to the query point. Hjaltason and Samet [12] give a different algorithm
based on Quadtrees. These algorithms can be extended to handle moving points,
where the trajectory of a point is modeled by a line, but this straightforward
modification does not work very well, as our experimental results show.

In both of the previous approaches the points are stored in external memory.
Recent work on the Nearest Neighbor problem is mainly on main memory al-
gorithms and for the high-dimensional setting. Both the exact nearest neighbor

problem [15] and the approximate nearest neighbor problem [13] [3] have been
considered. These algorithms however have either query times that are expo-
nential to the dimensionality of the space, or require more than linear space. In
addition these approaches cannot be easily modified to find the closest point to
a line (instead of a point).

We also note that computational geometry work on arrangements is very
relevant in our setting. The trajectories of the n points in the time-space plane
define an arrangement, that is a partition of the plane into convex regions. A
point y, at time ¢, will be in the interior of one of these regions. To find the
line that is closest to it, we have to find the lines that form the boundary of the
convex region the point is in, and examine them only. It can be shown that this
can be done in O(logn) time. However the arrangement of the lines takes O(n?)
time to compute, in the main memory model, and also requires O(n?) space to
keep [1].

9 Summary and Future Work

In this paper we present efficient external memory data structures to solve the
nearest neighbor problem in the setting of points that move with constant veloc-
ity. The queries we want to answer are of the form: given a point y, and a time
instant ¢, find the point that is closest to y, at the time ¢, or, given a (mov-
ing) point y,, and a time interval, find the point that come closest to y, during
this time interval. We consider mainly the one dimensional case, and extend out
results to the 1.5-dimensional case.

We plan to work on the nearest neighbor problem when the points move in
two dimensional space. The main problem in two dimensions is that the trajec-
tories of the points are lines in three-dimensional space, and therefore taking the
duality transformation does not help. Since we are using the Euclidean norm,
we cannot solve the problem separately in the x-axis and y-axis and combine the
results either. Many points may be closer to the query point in the x-coordinate
or the y-coordinate than the the nearest point, and yet have larger Euclidean
distances.

Another area for future work is giving an algorithm for the join operation,
that is, find for all points the nearest neighbor at a query time.

10 Acknowledgement

We were introduced to the problems of indexing moving points by Ouri Wolfson
at the 1997 Dagstuhl Seminar on Temporal Databases. The authors would like
to thank O. Wolfson, C. Faloutsos and V.S. Subrahmanian for many helpful
discussions. We would also like to thank G. Evangelidis for the hB-tree code.

References

1. P. Agarwal and M. Sharir. Arrangements and their applications. in Handbook of
Computational Geometry, (J. Sack, ed.), North Holand, Amsterdam.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

ArcView GIS. ArcView Tracking Analyst. 1998.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Wu. An optimal
algorithm for approximate nearest neighbor searching. Journal of the ACM, to
appear.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An Ef-
ficient and Robust Access Method For Points and Rectangles. In Proc. ACM-
SIGMOD International Conference on Management of Data, pages 322-331, At-
lantic City, May 1990.

S. Berchtold, C. Bohm, D. Keim, H.-P. Kriegel. A Cost Model For Nearest
Neighbor Search in High-Dimensional Data Space. In Proc. 16th ACM-PODS,
pp. 78-86, 1997.

. J. Chomicki and P. Revesz. A Geometric Framework for Specifying Spatiotem-

poral Objects. Proc. 6th International Workshop on Time Representation and
Reasoning, May 1999.

D. Comer. The Ubiquitous B-Tree. Computing Surveys, 11(2):121-137, June
1979.

M. Erwig, R.H. Guting, M. Schneider and M. Vazirgianis. Spatio-temporal Data
Types: An Approach to Modeling and Querying Moving Objects in Databases.
In Proc. of ACM GIS Symposium ’98.

G. Evangelidis, D. Lomet, and B. Salzberg. The hB”-tree: A Modified hB-tree
Supporting Concurrency, Recovery and Node Consolidation. In Proc. 21st Inter-
national Conference on Very Large Data Bases, Zurich, September 1995, pages
551-561.

V. Gaede and O. Gunther. Multidimensional Access Methods. ACM Computing
Surveys, 30(2):170-231, 1998.

A. Guttman. R-Trees: A Dynamic Index Structure For Spatial Searching. In
Proc. ACM-SIGMOD International Conference on Management of Data, pages
47 57, Boston, June 1984.

G. R. Hjaltason and H. Samet. Ranking in Spatial Databases. In Proc. 4th Int.
Symp. on Spatial Databases, pp. 83-95, 1995.

P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing
the Curse of Dimensionality. In Proc.30th ACM-STOC, pp. 604-613, 1998.

H. V. Jagadish. On Indexing Line Segments. In Proc. 16th International Confer-
ence on Very Large Data Bases, pages 614 625, Brisbane, Queensland, Australia,
August 1990.

J. Kleinberg. Two Algorithms for Nearest-Neighbor Search in High Dimensions.
In Proc. 29th ACM-STOC, pp. 599-608, 1997.

G. Kollios, D. Gunopulos and V.J. Tsotras. On Indexing Mobile Objects. In
Proc. 18th ACM-PODS, 1999.

N. Roussopoulos; S. Kelley, F. Vincent. Nearest Neighbor Queries. In Proc.
ACM-SIGMOD Int. Conf. on Management of Data, pages 71-79, June 1992.

H. Samet. The Design and Analysis of Spatial Data Structures., Addison-Wesley,
Reading, MA, 1990.

T. Sellis, N. Roussopoulos and C. Faloutsos. The R+-Tree: A Dynamic Index
for Multi-Dimensional Objects. In Proc. 13rd International Conference on Very
Large Data Bases, pages 507-518, Brighton, England, September 1987.

A. P. Sistla, O. Wolfson, S. Chamberlain, S. Dao. Modeling and Querying Moving
Objects. In Proc. 13th IEEE International Conference on Data Engineering,
pages 422-432, Birmingham, U.K, April 1997.

21.

22.

O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, G. Mendez. Cost and Imprecision
in Modeling the Position of Moving Objects. In Proc. 14th IEEE International
Conference on Data Engineering, pages 588-596, Orlando, Florida, February 1998.
O. Wolfson, B. Xu, S. Chamberlain, L. Jiang. Moving Objects Databases: Issues
and Solutions In Proceedings of the 10th International Conference on Scientific
and Statistical Database Management. Capri, Italy, July 1998.

