
Nearest Neighbor Queries in a MobileEnvironmentGeorge Kollios1, Dimitrios Gunopulos2, and Vassilis J. Tsotras21 Polytechnic UniversityDept. of Computer and Information ScienceSix MetroTech CenterBrooklyn, NY 11201-3840, USAgkollios@db.poly.edu2 University of California, RiversideDepartment of Computer Science and EngineeringRiverside, CA 92521, USAdg@cs.ucr.edu, tsotras@cs.ucr.eduAbstract. Nearest neighbor queries have received much interest in re-cent years due to their increased importance in advanced database ap-plications. However, past work has addressed such queries in a staticsetting. In this paper we consider instead a dynamic setting where dataobjects move continuously. Such a mobile spatiotemporal environmentis motivated by real life applications in tra�c management, intelligentnavigation and cellular communication systems. We consider two ver-sions of nearest neighbor queries depending on whether the temporalpredicate is a single time instant or an interval. For example: \�nd theclosest object to a given object o after 10 minutes from now", or, \�ndthe object that will be the closest to object o between 10 and 15 min-utes from now". Since data objects move continuously it is ine�cient toupdate the database about their position at each time instant. Insteadour approach is to employ methods that store the motion function ofeach object and answer nearest neighbor queries by e�ciently searchingthrough these methods.1 IntroductionA spatiotemporal database system manages data whose geometry changes overtime. There are many applications that create such data, including global change(as in climate or land cover changes), transportation (tra�c surveillance data,intelligent transportation systems), social (demographic, health, etc.), and multi-media (animated movies) applications. In general one could consider two spatialattributes of spatiotemporal objects which are time dependent, namely: posi-tion (i.e., the object's location inside some reference space) and extent (i.e., thearea or volume the object occupies in the reference space)[8]. Depending on theapplication, one or both spatial attributes may change over time. Examples in-clude: an airplane
ying around the globe, a car traveling on a highway, the landcovered by a forest as it grows/shrinks over time, or an object that concurrently

moves and changes its size in an animated movie. For the purposes of this paperwe concentrate on applications with objects which change position over timebut whose extent remains unchanged. Hence for our purposes we represent suchobjects as points moving in some reference space (\mobile points").The usual assumption in traditional database management systems is thatdata stored in the database remains constant until explicitly changed by anupdate. For example, if a price �eld is $5, it remains $5 until explicitly up-dated. This model is appropriate when data changes in discrete steps, but itis ine�cient for applications with continuously changing data [20]. Consider forexample a database keeping the position of mobile objects (like automobiles).The primary goal of this database is to correctly represent reality as objectsmove. Since objects move continuously updating the database about each ob-ject's position at each unit of time is clearly an ine�cient and infeasible solutiondue to the prohibitively large update overhead. Updating the database only atfew, representative time instants limits query accuracy.A better approach is to abstract each object's position as a function of timef(t), and update the database only when the parameters of f change (for exam-ple when the speed or the direction of a car changes). Using f(t) the databasecan then compute the position of the mobile object at any time in the future(under the current knowledge about the motion characteristics of the databaseobjects). Storing the motion function minimizes the update overhead, but italso introduces many novel problems since the database is not directly storingdata values but functions to compute these values. Motion databases have re-cently attracted the interest of the database community. There is already a GISsystem [2] that supports tracking and querying mobile objects. In the researchfront, [20{22,8, 6] present Spatio-Temporal models and languages for queryingthe locations of such objects. Recently, [16] presents access methods for indexingmobile objects; the focus is on spatiotemporal range queries for objects movingin one and two dimensions. For example: \�nd the objects that will be inside agiven query region P after 10 minutes from now".In this paper we concentrate instead on answering nearest neighbor queriesamong the future locations of mobile objects. An example of such a spatio-temporal query is: \Report the object that will be the closest to an object oafter 10 minutes from now". Since object o moves and it's motion information isknown, the above query is equivalent to �nding the object (except from object o)which will be the closest to position P after 10 minutes from now, where P is theposition o will be in 10 minutes. Note that the answer to this query is tentativein the sense that it is computed based on the current knowledge stored in thedatabase about the mobile objects' future motion functions. If this knowledgechanges, the same query would produce a di�erent answer.We also examine nearest neighbor queries where instead of a time instant,an interval predicate in future is given as in: \Report the object that will be theclosest to object o between 10 and 20 minutes from now". We will answer thisquery by reducing it to a combination of range queries and the above simplenearest neighbor queries.

We are not interested in providing new indices speci�cally designed for neigh-bor queries, as such would be of limited usefulness. In practice, neighbor queriesare addressed by using traditional selection based indices (R-trees etc.) and mod-ifying the search algorithm so that neighbor queries are also answered. We willfollow the same approach here, thus utilizing the indexing techniques we haveproposed in [16] and adapting them for neighbor searching.As the number of mobile objects in the applications we consider (tra�cmonitoring, mobile communications, etc.) can be rather large we are interestedin external memory solutions. While in general an object could move anywherein the 3-dimensional space using some rather complex motion, we limit ourtreatment to objects moving in 1-dimensional space (a line) and whose locationis described by a linear function of time. There is a strong motivation for such anapproach based on the real-world applications we have in mind: straight lines areusually the faster way to get from one point to another; cars move in networks ofhighways which can be approximated by connected straight line segments on aplane; this is also true for routes taken by airplanes or ships. In addition, solvingthis simpler problem may provide intuition for addressing the more di�cultnearest neighbor query among objects moving in 2- or 3-dimensional space.2 Problem DescriptionWe consider a database that keeps track of mobile objects moving on a �niteline segment. We model the objects as points that move with a constant velocitystarting from a speci�c location at a speci�c time instant. Using this informationwe can compute the location of an object at any time in the future for as longas its movement characteristics remain the same. Thus, an object started fromlocation y0 at time t0 with velocity v (v can be positive or negative) will be inlocation y0 + v(t � t0) at time t > t0. Objects are responsible to update theirmotion information, every time when the speed or direction changes. When anobject has reached the line segment limits, it has to issue an update. Such updatecan be either a deletion (the object is removed from the collection) or a re
ection(direction and possibly speed change). Finally, we allow to insert a new objector to delete an existing one anywhere in the line segment, eg. the system isdynamic.We �rst examine nearest neighbor queries described by a tuple (yq; tq) asin: \Report the object that will be closer to the point yq at the time instanttq (where tnow � tq)". Section 3 describes two geometric representations of theproblem, the primal plane (where object trajectories are represented as longlines in the time-position plane) and the dual plane (where a trajectory becomesa point). Two dual plane transformations are examined (Hough-X and Hough-Y). We present e�cient algorithms for answering near neighbor queries in theprimal and dual planes in section 4. A performance study appears in section 5. Insection 6 we examine the nearest neighbor query with a time interval predicate(\Report the object that will be closer to the point yq during the time interval[t1q ; t2q] (where tnow � t1q)"). We also discuss how our 1-dimensional results

can be extended to apply on a limited 2-dimensional case, where the objects arerestricted to moving in a given collection of line segments (like roads comprising ahighway system). We call this the 1.5 dimensional case and discuss it in section7. Finally, related work appears in section 8, while section 9 summarizes our�ndings and presents problems for future research.3 Geometric representationsFirst, we partition the mobile objects into two categories, the objects with lowspeed v � 0 and the objects with speed between a minimum vmin and maximumspeed vmax. We consider here the \moving" objects, eg. the objects with speedgreater than vmin. The case of static or almost static objects can be solved usingtraditional approaches and we don't discuss this issue further.The problem is to index the mobile objects in order to e�ciently answernearest neighbor queries over their locations into the future. The location ofeach object is described as a linear function of time, namely the location yi(t)of the object oi at time t is equal to vi(t � ti0) + yi0 , where vi is the velocityof the object and yi0 is its location at ti0 . We assume that the objects moveon the y�axis between 0 and ymax and that an object can update its motioninformation whenever it changes. We treat an update as a deletion of the oldinformation and an insertion of the new one. As in [16] we describe two geometricrepresentations of the problem.3.1 Space-time representationIn this representation we plot the trajectories of the mobile objects as lines in thetime-location (t; y) plane. The equation of each line is y(t) = vt+a where v is theslope (the velocity in our case) and a is the intercept, that can be computed bythe motion information. In fact a trajectory is not a line but a semi-line startingfrom the point (yi; ti). However since we ask queries for the present or for thefuture, assuming that the trajectory is a line does not a�ect the correctness ofthe answer. Figure 1 shows a number of trajectories in the plane.The query is expressed as a point (yq ; tq) in the 2-dimensional space. Theanswer is the object that corresponds to the line that is closer to this point atthe time tq. So we have to consider the distance of the trajectories to the querypoint along the line t = tq . For example in Figure 1 the answer to the nearestneighbor query is the object o6.3.2 The dual space-time representation.Duality is a transform frequently used in the computational geometry literature;in general it maps a hyper-plane h from Rd to a point in Rd and vice-versa. Theduality transform is useful because it allows to formulate a problem in a moreintuitive manner.

Y

t 2 3t 4t

y1

3y

y4

2

4

1

max

2y

y

o

o

o

3

t1 tt t
5 6 q

yq

o

oo5 6

y5

y6

tFig. 1. Trajectories and query in (t; y) plane.In our case we can map a line from the primal plane (t; y) to a point in thedual plane. In Figure 2, line l and point p are transformed to point l� and linep�. There is no unique duality transform, but a class of transforms with similarproperties. Sometimes one transform is more convenient than another.
t

p

l

a

v

y a

v

l*

p*

Fig. 2. Duality transform of a line and a point.Consider a dual plane where one axis represents the slope of an object'strajectory and the other axis its y-intercept1. Thus the line with equation y(t) =vt+a is represented by the point (v; a) in the dual space (this is called the Hough-X transform in [14]). While the values of v are between �vmax and vmax, thevalues of the intercept are depended on the current time. If the current time istnow then the range for a is [�vmax � tnow; ymax + vmax � tnow].The query is transformed to a line in the dual space. This line is the dual ofthe query point (tq ; yq), thus it has the equation: Ql: a = �vtq + yq (Figure 3).Next we show the following lemma:1 The y-intercept is de�ned as the point where a given line intersects the y-axis.Similarly t-intercept is the point where a line intersect the t-axis.

Lemma 1. The nearest neighbor to the query point (tq ; yq), is the object whosedual point is closest to the line that is the dual of the query point.Proof. Assume a query point (s1; t1) and an object with trajectory y = v1x+a1.The distance of this object to the query point at the time t1 isD = jv1t1+a1�s1j,and it is computed along the line t = t1. In the dual plane the same distance hasto be computed along the line v = v1. If the Euclidean distance of the object tothe query line in the dual space is d, then it is easy to show that D = d cos(�),where � is the slope of the query line. utThus we can use the Euclidean distance to compute the nearest neighbor inthe dual space, although this is not true for the primal space.
V

a

vmin v max

yq

o

o

o

o

oo

6

5

4

2

3

1

QlFig. 3. Data objects and query in the Hough-X dual plane.Note that the dual representation has the problem that the values of theintercept are unbounded. A simple solution to this problem is presented in [16].To solve the problem we use our assumption that when an object crosses aborder it issues an update (i.e. it is deleted or re
ected). Combining this assump-tion with the minimal speed, we can assure that all objects have updated theirmotion information at least once during the last Tperiod time instants, whereTperiod = ymaxvmin . We can then use two distinct index structures. The �rst indexstores all objects that have issued their last update in the period [0; Tperiod].The second index stores objects that have issued their last update in the inter-val [Tperiod; 2Tperiod]. Each object is stored only once, either in the �rst or inthe second index. Before time Tperiod, all objects are stored in the �rst index.However, every object that issues an update after Tperiod is deleted from the�rst index and it is inserted in the second index. The intercept of the �rst indexis computed by using the line t = 0 and for the second index using the linet = Tperiod. Thus we are sure that the intercept will always have values between0 and vmax � Tperiod. To query the database we use both indices. After time2Tperiod we know that the �rst index is empty and all objects are stored in the

second index, since every object have issued at least one update from Tperiod to2Tperiod. At that time we remove the empty index and we initiate a new one withtime period [2Tperiod; 3Tperiod]. We continue in the same way and every Tperiodtime instants we initiate a new index and we remove an empty one. Using thismethod the intercept is bounded while the performance of the index structuresremain asymptotically the same as if we had only one structure.Another way to represent a line y = vt + a, is to write the equation ast = 1v y � av . Then we can map this line to a point in the dual plane withcoordinates n = 1v and b = �av (Hough-Y in [14]).4 Algorithms to answer nearest neighbor queriesAn obvious approach would be to check all the objects and return the closest tothe query point. However this method is ine�cient since the number of mobileobjects can be large. Hence, we discuss methods that avoid a linear scan on thedata set by using index structures. For each representation we present possibleindices and methods to use these indices for nearest neighbor search.4.1 Using traditional methodsIn the space-time representation we can use a Spatial Access Method (SAM) toindex the lines or line segments. Possible methods include R-tree and Quadtreebased indices. Then we can use the algorithms proposed by Hjaltason and Samet[12] or by Roussopoulos at. al. [17] to �nd the lines that are closer to the querypoint. These algorithms work for any hierarchical index structure which usesrecursive partitioning. Note that in [5] it was shown that the algorithm in [12]is the optimal algorithm for nearest neighbor search, in the sense that we ac-cess the smallest number of pages to answer a nearest neighbor query, given anunderlying index structure. The main idea of these algorithms is to traverse thehierarchical structure in a top-down fashion and keep for every visited partitiona list of subpartitions ordered by their distance to the query point. We thenvisit the subpartitions in sorted order. We can prune some subpartitions, whenthe minimum distance of these partitions to the query point is larger than thedistance of an already found object. In [12], a global priority queue is used tokeep both the subpartitions and the objects found up to know in a sorted order.It is obvious that we can use the above algorithms to process our query, sincethese algorithms work for any type of objects. The only di�erence is the way wecompute the distance of the objects to query point. We don't use the Euclideandistance but the distance along the line t = tq.The main problem of this approach is that there are no e�cient index struc-tures for indexing lines or very large line segments. In case of hierarchical meth-ods with overlapping partitions, like R-tree[11] or R*-tree[4], the overlappingis extensive, resulting in a very poor query performance. On the other hand,methods that partition the data space into disjoin cells and use clipping(likePMR-quadtree[18] or R+-tree[19]), will have a very high space consumption (inour case probably superlinear).

4.2 Using kd-tree methods in the dualThere is a large number of access methods that have been proposed to indexpoint data[10]. All these structures were designed to address orthogonal rangequeries, eg. queries expressed as multidimensional hyper-rectangles. However,most of them can be used to answer nearest neighbor queries as well.We use this approach to answer the nearest neighbor query in the dual Hough-X space (Figure 3). An index structure based on kd-trees is used to store the dualpoints. In our experiments we used the hB� -tree [9]. Next a traversal algorithmsimilar to the algorithm presented in [12] is used to �nd the answer. The onlydi�erence here is that we compute the distance of the regions or the data pointsto the line that represents the query in the dual space and not to a point.4.3 Using B+-trees in the dual
t b

n

vmin

1/v max

1/

qbb1 2

Q l

Fig. 4. Query in the Hough-Y dual plane.A di�erent approach is based on the query approximation method presentedin [16]. Consider the Hough-Y dual plane and a query line in that plane withequation: b = �yqn+ tq. We assume that the b coordinate is computed using ageneral horizontal line with equation y = yr, where yr is a value between 0 andymax(note that the t-axis is the line y = 0). We can use an one dimensional datastructure (B+-tree) to index the dual points using only the b coordinate. Thequery line is mapped to an 1-dimensional range on this structure, for example inthe Figure 4 the range is (b1; b2) where b1 = tq� yq�yrvmin and b2 = tq� yq�yrvmax . Nowwe can use this structure to answer the nearest neighbor query. Note howeverthat the size of the range query is proportional to jyq � yrj. So, we can decreasethe size of this range if we keep c index structures at equidistant yr's (see Figure5). While we can still get the correct answer with c = 1 using some limitedreplication (small c > 1) we get better performance.

t

y

maxy

b

b

b

0

1

2

y

y0

1

2y

o

Fig. 5. Using three indices to store a moving object.All c indices contain the same information about the objects, but use di�erentyr's. The i-th index stores the b coordinates of the data points using y = ymaxc �i,i = 0; ::; c� 1. However the index that is closer to the query point has a smallerrange to search, and therefore we expect that the query time to process thenearest neighbor query will be smaller. In Figure 6 we describe an algorithm thatis used to answer the nearest neighbor query using the above one dimensionalstructures.1. Choose the structure that is the closest to the query point.2. Find the range (b1; b2) where the query is mapped. Find the closest object to the querypoint yq inside this range. This is the nearest neighbor (NN) so far.3. Start visiting the previous and the next pages and update the NN if necessary. Stopcondition: check if it is possible to �nd a nearest point than the current NN in the nextpages using vmin and in the previous pages using the vmax. Stop when this is not possible.Fig. 6. Algorithm to compute the nearest neighbor for mobile objects5 A Performance StudyWe present initial results for the nearest neighbor query, comparing the 1-dimensional structures, the kd-tree method and a traditional R-tree based ap-proach. First we describe the way experimental data is generated. At time t = 0we generated the initial locations of N mobile points uniformly distributed onthe terrain [0; 1000]. We varied N from 100k to 500k. The speeds were generateduniformly from vmin = 0:16 to vmax = 1:66 and the direction randomly positiveor negative.2 Then all points start moving. When a point reaches a border simply2 Note that 0:16 miles/min is equal to 10 miles/hour and 1:66 miles/min is equal to100 miles/hour.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

100 150 200 250 300 350 400 450 500

Av
g.

 I/
O

’s
pe

r Q
ue

ry

Number of Moving Objects (in thousands)

hB-tree
c=4
c=6
c=8

R*-tree with lines

Fig. 7. Query Performance for Nearest Neighbor Queries.
it changes its direction. At each time instant we choose 200 objects randomlyand we randomly change their speed and/or direction. We generate 10 di�erenttime instants that represent the times when queries are executed. At each suchtime instant we execute 200 nearest neighbor queries, where the y-coordinate ischosen uniformly between 0 and 1000 and the time instant between tnow andtnow + 60. We run the above scenario using a particular access method for 2000time instants.To verify that indexing mobile objects as line segments is not e�cient, westored the trajectories in an R*-tree. We �xed the page size to 4096 bytes.All methods had page capacity equal to 340 except the R-tree where the pagecapacity was 204. We consider a simple bu�ering scheme for the results wepresent here. For each tree we bu�er the path from the root to a leaf node, thusthe bu�er size is only 3 or 4 pages. For the queries we always clear the bu�er poolbefore we run a query. An update is performed when the motion information ofan object changes.In Figure 7 we present the results for the average number of I/O's per nearestneighbor query. The approximation method used c = 4; 6 and 8 B+-trees. Asanticipated, the line segments method with R*-trees has the worst performance.Also, the approximation method outperforms the hB� -tree.In Figures 8 and 9 we plot the space consumption and the average number ofI/O's per update respectively. We did not report the update performance for theR*-tree method because it was very high (more than 90 I/O's per update). Theupdate and space performance of the hB� -tree is better than the other methodssince its objects are stored only once and better clustered than the R*-tree. Theupdate performance of the hB� -tree and the approximation approach remainconstant for di�erent number of mobile objects. The space of all methods islinear to the number of objects. The approximation approach uses more space

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

100 150 200 250 300 350 400 450 500

Av
g.

 n
um

be
r o

f P
ag

es

Number of Moving Objects (in thousands)

hB-tree
c=4
c=6
c=8

R*-tree

Fig. 8. Space Consumption.due to the use of c observation indices. There is a tradeo� between c and thequery/update performance.6 Nearest Neighbor Queries with time interval predicateAnother interesting nearest neighbor query is a query where a time interval isgiven instead of a time point. This time interval and the trajectory of the queryobject create a line segment in the space-time plane. The answer to the queryis the object that comes closest to the query object during this time interval,or equivalently to the query line segment. Note that this problem is importantonly in a spatiotemporal environment. For example in Figure 10, o4 is the queryobject and [t1q ; t2q] the time interval. The answer to this query are the objectso5 and o6, since at some point during the time interval, these objects have zerodistance from the query object. However if we ask for the three nearest neighbors,then the objects o7 belongs also to the result. A method to answer the query isto �nd �rst the lines that intersect the query line segment. If there is no suchline, then we run two nearest neighbor queries, one on each of the two ends of theline segment and keep the best answer. This is correct because the trajectoriesof the mobile objects are straight lines. In particular we can show that the timewhere an object is closer to the query object, has to be one of the time instantst1q or t2q , if the trajectories of the mobile objects have no common point duringthe query interval [t1q ; t2q].In the primal plane we can modify the existing algorithms for query pointsand �nd the lines closest to the line segment. However the performance of thesemethods will be at least as bad as the case for query point.In the dual plane we can use the method described above. The query to �ndthe lines that intersect the query line segment is a non-orthogonal range query.To answer this query we can use the methods proposed in [16]. If no answer is

0

10

20

30

40

50

100 150 200 250 300 350 400 450 500

Av
g.

 I/
O

’s
pe

r U
pd

at
e

Number of Moving Objects (in thousands)

hB-tree
c=4
c=6
c=8

Fig. 9. Update Performance.found, the we run two nearest neighbor queries for the time instants t1 and t2and keep the closest object.

Time

Y

t 2 3t 4t

y1

3y

y4

2

4

1

max

2y

y

o

o

o

3

t1 tt t
5 6

o

oo5 6

y5

y6

o
7

2qt1q

y7

t7Fig. 10. Data objects and query with time interval predicate.7 The 1.5-dimensional caseThere is an interesting restricted version of the general 2-dimensional problemwhere our 1-dimensional algorithms can be easily extended. We consider objectsmoving in the plane but their movement is restricted on using a given collectionof line segments (routes, roads) on the �nite terrain. Due to its restriction, wecall this case the 1.5-dimensional problem. There is a strong motivation for such

an environment: in many applications objects (cars, airplanes etc.) move on anetwork of speci�c routes (highways, airways).The 1.5-dimensional problem can be reduced to a number of 1-dimensionalproblems. In particular, we propose representing each prede�ned route as a se-quence of connected (straight) line segments. The positions of these line segmentson the terrain are indexed by a standard spatial access method (SAM). Giventhat the number of routes is usually much smaller than the number of objectsmoving on them, and that each route can be approximated by a small numberof straight lines, maintaining such an index is straightforward (in addition, newroutes are added rather infrequently.)Indexing the objects moving on a given route is an 1-dimensional model andwill use techniques from the previous section. Given a Nearest Neighbor query fora given two-dimensional point, we identify �rst the route that passes closest tothe point. We could use the spatial access method and traditional NN techniques[12, 17] for �nding this route (line segment) as the collection of routes is ratherstatic. Once the route that passes closest to the query point is identi�ed, we�nd the Nearest Neighbor of the query point among the objects on that route.This object must also be the nearest point to the orthogonal projection of thequery point on the route line. To �nd it, we take the orthogonal projection ofthe query point onto the route, and solve the one dimensional problem of �ndingthe Nearest Neighbor of the projection among the points on the route. Let d bethe distance of the nearest neighbor on the closest route and the query point.Thus we obtain an upper bound, d, on the distance of the true nearest neigh-bor point to the query. Clearly we have to consider only the points that are onroutes that are closer than d to the query time. To �nd those routes we performa range query on the SAM data structure we use to keep all routes. This willreturn all routes with Linf distance from the query point less than d. We sort theroutes according to distance from the query point and �nd the nearest neighborto the query point on each route, updating the global nearest point when a closerpoint is found. We terminate this process if the distance of the next route to beconsidered is larger than the nearest point found so far.8 Related WorkThere is a lot of work on the Nearest Neighbor problem in spatial domains.However this work has concentrated on the static case, where points or objectsremain in a �xed location.Roussopoulos et al [17] give an R-tree based algorithm to �nd the pointclosest to the query point. Hjaltason and Samet [12] give a di�erent algorithmbased on Quadtrees. These algorithms can be extended to handle moving points,where the trajectory of a point is modeled by a line, but this straightforwardmodi�cation does not work very well, as our experimental results show.In both of the previous approaches the points are stored in external memory.Recent work on the Nearest Neighbor problem is mainly on main memory al-gorithms and for the high-dimensional setting. Both the exact nearest neighbor

problem [15] and the approximate nearest neighbor problem [13] [3] have beenconsidered. These algorithms however have either query times that are expo-nential to the dimensionality of the space, or require more than linear space. Inaddition these approaches cannot be easily modi�ed to �nd the closest point toa line (instead of a point).We also note that computational geometry work on arrangements is veryrelevant in our setting. The trajectories of the n points in the time-space planede�ne an arrangement, that is a partition of the plane into convex regions. Apoint yq at time tq will be in the interior of one of these regions. To �nd theline that is closest to it, we have to �nd the lines that form the boundary of theconvex region the point is in, and examine them only. It can be shown that thiscan be done in O(logn) time. However the arrangement of the lines takes O(n2)time to compute, in the main memory model, and also requires O(n2) space tokeep [1].9 Summary and Future WorkIn this paper we present e�cient external memory data structures to solve thenearest neighbor problem in the setting of points that move with constant veloc-ity. The queries we want to answer are of the form: given a point yq and a timeinstant tq, �nd the point that is closest to yq at the time tq , or, given a (mov-ing) point yq , and a time interval, �nd the point that come closest to yq duringthis time interval. We consider mainly the one dimensional case, and extend outresults to the 1.5-dimensional case.We plan to work on the nearest neighbor problem when the points move intwo dimensional space. The main problem in two dimensions is that the trajec-tories of the points are lines in three-dimensional space, and therefore taking theduality transformation does not help. Since we are using the Euclidean norm,we cannot solve the problem separately in the x-axis and y-axis and combine theresults either. Many points may be closer to the query point in the x-coordinateor the y-coordinate than the the nearest point, and yet have larger Euclideandistances.Another area for future work is giving an algorithm for the join operation,that is, �nd for all points the nearest neighbor at a query time.10 AcknowledgementWe were introduced to the problems of indexing moving points by Ouri Wolfsonat the 1997 Dagstuhl Seminar on Temporal Databases. The authors would liketo thank O. Wolfson, C. Faloutsos and V.S. Subrahmanian for many helpfuldiscussions. We would also like to thank G. Evangelidis for the hB-tree code.References1. P. Agarwal and M. Sharir. Arrangements and their applications. in Handbook ofComputational Geometry, (J. Sack, ed.), North Holand, Amsterdam.

2. ArcView GIS. ArcView Tracking Analyst. 1998.3. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Wu. An optimalalgorithm for approximate nearest neighbor searching. Journal of the ACM, toappear.4. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An Ef-�cient and Robust Access Method For Points and Rectangles. In Proc. ACM-SIGMOD International Conference on Management of Data, pages 322{331, At-lantic City, May 1990.5. S. Berchtold, C. Bohm, D. Keim, H.-P. Kriegel. A Cost Model For NearestNeighbor Search in High-Dimensional Data Space. In Proc. 16th ACM-PODS,pp. 78-86, 1997.6. J. Chomicki and P. Revesz. A Geometric Framework for Specifying Spatiotem-poral Objects. Proc. 6th International Workshop on Time Representation andReasoning, May 1999.7. D. Comer. The Ubiquitous B-Tree. Computing Surveys, 11(2):121{137, June1979.8. M. Erwig, R.H. Guting, M. Schneider and M. Vazirgianis. Spatio-temporal DataTypes: An Approach to Modeling and Querying Moving Objects in Databases.In Proc. of ACM GIS Symposium '98.9. G. Evangelidis, D. Lomet, and B. Salzberg. The hB� -tree: A Modi�ed hB-treeSupporting Concurrency, Recovery and Node Consolidation. In Proc. 21st Inter-national Conference on Very Large Data Bases, Zurich, September 1995, pages551{561.10. V. Gaede and O. Gunther. Multidimensional Access Methods. ACM ComputingSurveys, 30(2):170-231, 1998.11. A. Guttman. R-Trees: A Dynamic Index Structure For Spatial Searching. InProc. ACM-SIGMOD International Conference on Management of Data, pages47{57, Boston, June 1984.12. G. R. Hjaltason and H. Samet. Ranking in Spatial Databases. In Proc. 4th Int.Symp. on Spatial Databases, pp. 83-95, 1995.13. P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removingthe Curse of Dimensionality. In Proc.30th ACM-STOC, pp. 604-613, 1998.14. H. V. Jagadish. On Indexing Line Segments. In Proc. 16th International Confer-ence on Very Large Data Bases, pages 614{625, Brisbane, Queensland, Australia,August 1990.15. J. Kleinberg. Two Algorithms for Nearest-Neighbor Search in High Dimensions.In Proc. 29th ACM-STOC, pp. 599-608, 1997.16. G. Kollios, D. Gunopulos and V.J. Tsotras. On Indexing Mobile Objects. InProc. 18th ACM-PODS, 1999.17. N. Roussopoulos, S. Kelley, F. Vincent. Nearest Neighbor Queries. In Proc.ACM-SIGMOD Int. Conf. on Management of Data, pages 71-79, June 1992.18. H. Samet. The Design and Analysis of Spatial Data Structures., Addison-Wesley,Reading, MA, 1990.19. T. Sellis, N. Roussopoulos and C. Faloutsos. The R+-Tree: A Dynamic Indexfor Multi-Dimensional Objects. In Proc. 13rd International Conference on VeryLarge Data Bases, pages 507-518, Brighton, England, September 1987.20. A. P. Sistla, O. Wolfson, S. Chamberlain, S. Dao. Modeling and Querying MovingObjects. In Proc. 13th IEEE International Conference on Data Engineering,pages 422-432, Birmingham, U.K, April 1997.

21. O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, G. Mendez. Cost and Imprecisionin Modeling the Position of Moving Objects. In Proc. 14th IEEE InternationalConference on Data Engineering, pages 588-596, Orlando, Florida, February 1998.22. O. Wolfson, B. Xu, S. Chamberlain, L. Jiang. Moving Objects Databases: Issuesand Solutions In Proceedings of the 10th International Conference on Scienti�cand Statistical Database Management. Capri, Italy, July 1998.

