
Web-Based Specification and Integration of Legacy Services

Ying Zou Kostas Kontogiannis

Dept. of Electrical & Computer Engineering
University of Waterloo

Waterloo, ON, N2L 3G1, Canada

Abstract

With the explosive growth of the Internet,
businesses of all sizes aim on applying network-
wide solutions to their IT infrastructures,
migrating their legacy business processes into
web-based environments, and establishing their
own on-line services. To facilitate process and
service integration, a complete and information
rich service description language, is essential for
server processes to be specified and for client
processes to be able to locate services that are
available in Web-enabled remote servers.

Within the context of emerging technologies,
such as XML, Internet, and Web-enabled
application servers, we propose an architecture
that allows for the migration of legacy services to
distributed environments. The architecture is
based on legacy component wrapping, a service
description language that allows for the
specification of services at higher levels of
abstraction than the standard Interface Description
Languages (IDLs), and on techniques that support
service registration and dynamic service
localization.

1 Introduction

Tremendous changes are taking place in the
business world today due to the frequent
occurrence of new computer technologies.
Modern software systems must conform to
requirements, such as flexibility, adaptability,
time to market, and continued business process
reengineering. Driven by these requirements, the
migration and integration of legacy systems

towards new platforms and operating
environments provides an effective strategy for
organizations to maintain their competitive edge
[1]. Organizations, which integrate new
development with the existing legacy systems,
will have a higher success rate, and optimal cost,
for the implementation of client/server
applications. [1].

As Internet technologies become the
mainstream, the focus of Web-based activities is
shifting from information retrieval and customer-
to-business transactions, to a more dynamic
model [8], which integrates business services and
business process models, across corporate
Intranets, and the Internet. Towards this objective,
multi-tier architectures, networking, and
distributed object technologies have made
possible for organizations to deploy complex
software applications in such distributed Web-
based environments.

In this paper, we present an architecture and a
methodology that allow for the description,
registration, and integration of existing stand-
alone services into Web-based environments.

In the core of the system lies a service
description language that provides standard, and
well-understood information about the interfaces,
and the functionality of the offered services at a
higher level of abstraction than CORBA IDLs .
The purpose of this work is to provide interface
descriptions for software components, which are
much richer in content than IDL descriptions with
respect to the information they provide to a
binder. In this context, XML provides a flexible
and extensible formalism to represent component
interfaces in a more powerful way than IDL.
Component interface information can be

abstracted and presented in the XML format,
without the need of specific knowledge of the
inner-workings if the OMG IDL or Java JNI.

A service registration tool allows for services
to be easily registered with the environment, using
a service repository. Finally, a search engine can
effectively locate services according to specific
search criteria, allowing thus for service location
transparency.

This paper is organized as follows. Section 2
provides an overview of enabling technologies.
Section 3 discusses a layered architecture for
Web-based service integration. Section 4 presents
a service description language. Sections 5 and 6
present issues related to service registration and
localization. Section 7 and 8 present applications
of the proposed model. Section 9 provides a
discussion and pointers to future work.

2 Enabling Technologies

2.1 Distributed Software Component

With the advances in networking, the software
components [18] are moving from the desktop
paradigm towards enterprise-wide, distributed,
network-centric environments. In this context, a
distributed component possesses the following
characteristics [19]:

• An explicit and well-defined interface
defining the services it provides;

• An explicit specification for describing the
behavior and usage of the component, the
required execution environments, and the
location of the component;

• Software independence from its clients by
encapsulating implementation details;

• Communication with binders for registering
with the clients via the Internet, Intranets or
Extranets;

• Means for remote access and remote
invocation of services, and finally;

• Provision for run-time dynamic component
configuration.

The major middle-ware technologies,
including CORBA, RMI, Enterprise JavaBeans,
and DCOM, meet the above requirements and
provide the integration environment for
distributed software components.

2.2 Distributing Software Component on
the Web

OMG IDL is a key component of the CORBA
standard and is recommended as the software
interface specification due to its language,
platform, and vendor independence. It supports
the basic specification for distributed components,
such as the operations and attributes provided by
the component. However, IDL can not describe
all of the information, such as, the pre/post-
conditions, and semantic descriptions of
functionality, of the distributed component. For
example, the server component may match
perfectly to the client request by the signatures in
the IDL interface, but probably, the functionality
of the offered service may not be the best sought
by the client process. Moreover, IDLs do not
provide any additional information about the
server’s external dependencies such as, the call-
back invocation of a client’s method. Although
IDL is human-readable in terms of its syntax, it is
a type of program level specification and can be
compiled into executable code. The description
for the functionality of the interface can be
indicated in the comments, but it is not easy for an
algorithmic process to derive such information
from IDL syntax or free-style IDL comments
alone.

XML is another key technology that is widely
used as distributed standard format for data
representation, data integration, data storage, and
message exchanging. XML files can be
transferred via HTTP on the Web, and provide a
machine understandable and human readable
syntax, which allows the developers to define
their own tags in different domains [20], [21]. In
this context, XML tags can be used to define the
configuration information and provide the
semantic specification for distributed software
components. As a result, the combination of XML
and CORBA IDL can facilitate the specification
and localization of distributed services over Web-
based environments.

3 Architecture for Web-Based
Service Integration

The Web-based service integration architecture
focuses on the use of the Web as an open
infrastructure where services and tasks can be
defined, composed, and enacted in a fully custo-

Web Clients
 (PDA, Network Computer, Java Applications, or CORBA Applications)

Web Server

Application Server

Service
Management

Service
Localization

Service
Composition &

Inocation

Legacy
Comoponents

CORBA Server

Back-End
Services

Service DataBase

Request &
Response

Figure 1: Overall Architecture

mizable way.
As services can be scattered virtually

everywhere on the Web, we need a global
infrastructure, which enables software
components that have been developed
independently, be integrated with each other in
order to facilitate complex business tasks.

This paper proposes an open, multi-tier
infrastructure, where a service can publish itself,
and easily to be integrated with other legacy
components and services. The proposed
architecture is illustrated in Figure 1. The first
layer (top) consists of a wide range of Web
clients, including Web browsers for handheld and
embedded systems, or Java/Pure CORBA based
applications running on fully loaded desktops.
The second layer relates to Web and application
servers that intercept and dispatch client service
requests. The application server has been widely
adopted as the runtime environment of choice for
integrating heterogeneous applications. The Web
server captures the requests from Web clients and
directs the requests to the application server. The
third layer of the architecture relates to the
underlying services that are added to the
application server, including Service
Management, Service Localization, and Service
Composition & Invocation.

Service Management maintains a database of
the descriptions of the available services. It
enables the independently developed and
deployed services to dynamically register their
description information in a repository. The

Service Management module provides a
repository for the client processes to use in order
to locate available services and compose them for
the completion of elaborate business tasks. A
service description language provides a
customizable way to represent distributed services
with enriched information.

The Service Localization module is
responsible for selecting the required services
among many available ones, according to the
criteria set by the client process. The service
localization enables the clients to search the
service by functionality, signatures, performance,
or customizability.

Finally, the Service Composition &
Invocation module provides a framework and a
scripting language for processes to be
dynamically configured, in order to invoke and
compose remote services. This module serves as
an integrator that allows back-end services and
legacy systems to be composed seamlessly.

In order to enable the integration of legacy
applications in a Web-based environment, the
CORBA standard is adopted. The standard allows
for legacy applications to be encapsulated in
remote objects using wrapper classes and behave
as distributed components. This wrapping
technology allows clients in virtually any software
or hardware platform to invoke remote legacy
components in their native operating
environments. The legacy application is resident
on the CORBA server, which acts as the gateway
for the integration. Such a framework provides
system support for the invocation and integration
of legacy back-end services from any remote
client.

3.1 A Layered Service Integration Model

The three-tier architecture (shown in Figure 2) is
instrumental for the implementation of the
proposed architecture. From an implementation
point of view, the standard three tier-architecture
can be seen as a composition of four layers [11]
namely: a) presentation layer (Web client); b)
content layer (Web server); c) application layer
(application server); and d) back-end data and
services layer. The Web server is responsible to
accept HTTP requests from Web clients, and
deliver them to the application server, while the
application server is in charge of locating the
services and returning responses back to the Web
server. On the other hand, a thin client in the pre-

Contents

Servlet

Enterprise
JavaBeans

Back-end
Services

Web
Browser

Web
Server

HTTP

Reque
st

HTTP

Response

C
ontent

R
equest

C
ontent

R
esponse

R
equest

R
esponse

Servlet

Reques
t

HTML
Output

Reques
t

Respons
e

Req
uest

Res
pon

se

Databases

Request

Response

Application Server

Presentation
Layer

Content
Layer

Application
Layer

Data and
Service
Layer

Figure 2: Control Flows in Three-Tier
Architecture

sentation layer has little or no application logic. It
sends the request via HTTP to the web server for
an interactive view of the static and dynamic
information (Figure 2).

To provide the static information required,
the Web server can maintain a content repository,
or a file system, where the information-based
resources are stored and serve as static HTML
pages. Upon receiving a request from the client,
the Web server retrieves the requested document
from the content repository and sends it to the
client. In this case, the client entirely relies on the
Web server. Programming languages, such as
Java, and scripting languages, like CGI, can be
used to access the database.

To provide the dynamic information
generated by software services, the Web server
needs to constantly interact with the application
server. A servlet provides the dynamic HTML
content to clients. When the Web server receives
the request for a servlet, it re-directs the client’s
request along with the parameters to the
application server, which loads the servlet and
runs it. Servlets not only have all the features of
Java like automatic memory management,
advanced networking, multithreading, and so
forth, but also enterprise connectivity in the form
of JNI (Java Native Interface), JDBC, EJBs, RMI,
and CORBA. Servlets can initiate invocations to
back-end services, other servlets, or to the
Enterprise JavaBeans [12].

Once the servlets are deployed on an
application server, they can be accessed from any
other Web server. This can be achieved provided
that the HTML client page contains the URL of
the servlet with the correct name, type,
parameters, and initial values embedded in the
HTML <form> tags. The combination of EJBs
and Servlets, CORBA objects and Servlets, and
RMI objects and Servlets, can be used to invoke
back-end services accessed by the Web thin
clients via HTTP connections.

However, CORBA and Enterprise Java Beans
are not a panacea for all problems that may arise
when integrating services in a distributed
environment. Nevertheless, they serve as valuable
building blocks for implementing, deploying, and
integrating applications over a diverse range of
platforms and operating environments.

3.2 Legacy Services

 Within the context of legacy software re-
engineering, it is important as a first step, to
analyze the legacy software in order to recover its
major functional components that may implement
specific business logic. Reverse engineering
techniques that allow for the identification of such
components have been investigated in depth by
the research community and have been also
presented in other related projects within IBM
CAS [13, 14]. Once specific legacy components
have been identified through the use of program
analysis, their behavior can be specified in terms
of well-defined object oriented interfaces and
wrappers. The primary reason for using wrappers
is to shorten the “time-to-market” in migrating
components from centralized systems to the Web,
and ease the distributed component integration
process. In the context of our research, we adopt
the wrapping technology in order to assist the
migration of the identified components into a
heterogeneous Web-enabled distributed
environment. We select CORBA as the
infrastructure environment of choice. A CORBA
object wrapper acts as an interface adapter, which
adapts the identified services into the proposed
architecture and provides a consistent interface to
the registered services and other identified legacy
components. In addition, the object wrapper can
be applied to make the necessary functionality of
a legacy service available to remote clients (i.e. by
automatically registering its description into a
service repository).

Run-time Properties

General Properties

Manufacturer Information

Service Definition

Functional Description

Compile-time Properties

Service Interface Properties

Interface Definition

Service Type

Figure 3: Key Elements of Service Specification

4 Service Description Language

In this section, we present a prototype service
description language that provides a standard
format to represent, register, and store information
related to remote services. To facilitate the
integration of back-end services, a meta level
description language is essential to effectively
locate registered services. The meta-level
description of the software services can be
published at the same time as the distributed
objects are deployed onto the application servers,
or some time later when the enterprise would like
to make its software services available.

4.1 Structure of Service Description
Language

 Generally, a service can be represented in a multi-
faceted way, by specifying, for example, vendor,
run time requirements, compile time
requirements, method signatures, as well as, pre-
and post-conditions. Each of these aspects is
denoted as a Service Description Fact. Different
Description Facts specify different properties of
the services.

 In our work, the specification of the software
services is divided into two layers: General
Properties and Service Interface Properties as
illustrated in Figure 3. Each layer contains
specific information at different levels of
abstraction.

To enable a service binder to locate the
requested service with high precision and recall

levels, the General Properties should contain facts
that relate to such aspects as general service
definition, manufacture information, run-time and
compile-time properties, signatures, version
numbers, implementation language, and
functional descriptions. For example, for a
CORBA wrapped service object, it is important to
specify the ORB agent address, which is
responsible for invoking the requested CORBA
object by the name and URL address of the
object.

The Functional Description Fact category
provides the syntactic properties, describing the
service’s constraints, features, and functionality. It
includes both abstract and detailed service
descriptions. The abstract description provides
high-level service descriptions in terms of
keywords, types, and signatures.

For the purpose of Web-based service
integration, it is important to disclose the interface
of the distributed components (Web service) to
client processes. Similarly, the Service Interface
layer specifies the interface of the registered
components. As stated earlier, there are different
technologies to implement the back-end services,
such as servlets, EJBs, and CORBA. Each type of
back-end services can be registered by its own
specific interface description. For making servlets
available, to Web clients, the inputs can be
embedded in HTML forms, which contain the
specifications of input data types as well as, the
names of parameters and their allowable values.
An example service description template is
illustrated in Figure 4 under the <ServletML>
XML tag. For the EJBs, the back-end services can
be composed of several beans (session beans, or
entity beans) in one jar file. Each bean has its own
home interface and remote interface. When a
service is implemented by the CORBA standard,
it may include several CORBA IDL interfaces as
encapsulated in the CORBA IDL “module” name
scope. For the interface within CORBA and EJB
components, it is necessary to declare the
available methods, parameters, types of method
parameters, and return values. To reduce the
complexity in definition of service description
language, we can inherit the interface from EJBs
and CORBA IDL by inserting them under the
<EJBML> tag and <CORBAML> tag
respectively.

Such specifications supply rich information
that describe the characteristics of the available
software services, and make it easier for client

<?xml verstion="1.0"?>
<SDL>
<GeneralInfo>
 <ServiceDef>
 <ServiceName> <!-- Specify service ID and name -- >
 </ServiceName>
 <ServiceCatalog><!--Specify service category-->
 </ServiceCatalog>
 <URL > <!-- Specify service URL linke -->
 </URL>
 <VersionNumber /> <!--Specify version number-->
 </ServiceDef>
 <Manufacturer> <!-- Specify vendor information-->
 </Manufacturer>
 <RunTimeEnv> <!-- Specify run-time environments-->
 <OSs>

<OS name="" version=""/>
 </OSs>
 </RunTimeEnv>
 <CompileTimeEnv> <!-- Specify compile time environments-->
 </CompileTimeEnv>
 <Funcationality>

<!-- Specify abstract and detailed information -->
<!-- about service funcationality-->

 </Functionality>
</GeneralInfo>
<ServiceInterface>
 <Types>
 <!--Lists the Types of components inside the service interface. -->
 </Types>
 <ServletML>
 <!--Lists the servlet interface -->
 <Parameters>

<Parameter>
 <Name /><Type /><Value />
</Parameter>

 </Parameters>
 </ServletML>
 <EJBML> <!--Specify the EJBs interface -->
 </EJBML>
 <CORBAML> <!--Specify the CORBA interface -->
 </CORBAML>
</ServiceInterface>
</SDL>

Figure 4: Overall Structure of Service
Description Language

processes to locate, understand and invoke the
various services. XML provides a natural way to
represent the specification of software services
using the hierarchy relationship inherent in its
tags. It’s also important to follow the same
template or format to express this information, so
that registered services and tools can inter-operate
using the same application language. Each service
description fact has each own DTD. An example
Service Description template is illustrated in
Figure 4, where information such as service name,
service ids, possible URL locations, functionality
descriptions, and component signatures is
denoted.

4.2 Extensible Service Description
Language

The extensibility of the service description
language is crucial in order to represent hetero-

<?xml version="1.0"?>
<!ELEMENT newTags (newTag)+>
<!ELEMENT newTag (startingPoint, tagDef)>
<!ELEMENT startingPoint (#PCDATA)>
<!ELEMENT tagDef
 (tagName, attList*, containedTags*)>
<!ELEMENT tagName (#PCDATA, tagContent*)>
<!ELEMENT attrList (attr)+>
<!ELEMENT tagContent (#PCDATA)>
<!ELEMENT containedTags (tagDef+, group)>
<!ELEMENT group (group* | tagName*)>
<!ATTLIST group groupName CDATA #REQUIRED>
<!ATTLIST group groupType (SEQ|OR) #IMPLIED >
<!ATTLIST group groupOccurs

(once|optonal|requried) #IMPLIED>
<!ATTLIST tagDef occurs

(once|optional|required) #REQUIRED>
<!ATTLIST attr attrName CDATA #REQUIRED>
<!ATTLIST attr attrType CDATA #REQUIRED>
<!ATTLIST attr attrValue CDATA #IMPLIED>

Figure 5: A DTD Specification for Adding New
Service Descriptions and Content.

geneous services in a customizable way. For
example, new service categories can be added or
existing service descriptions can be modified.
Figure 4 illustrates a collection of default facts
that specify a service. The prototype defines a
DTD, which is used to extend the service
description. The DTD specifies the syntax for
adding new facts or modifying existing facts (i.e.
service descriptions). Such a DTD specification is
illustrated in Figure 5. New Service Description
facts can be added by using the newTag element
contained in the newTags element.

With the fact specification DTD, the addition
of new facts is uniquely identified and inserted in
a way that maintains the syntactic validity of the
description. In Figure 6, the addition of a Run-
time environment fact is illustrated. In this
example, the new fact is inserted under the
GeneralInfo element with the tag name of
RunTimeEnv. RunTimeEnv element can occur
once under GeneralInfo element. It contains an
OSs element, which specifies the operating
systems that can deploy the service. The OSs
element can occur once or more times, and it can
have sub-tag OS element. OS element has the
attributes such as its name and the version number
of each required operating system. As specified,
OS elements can occur one or more times in the
description document, as specified by the
corresponding DTD.

<?xml version="1.0"?>
<!DOCTYPE newTags SYSTEM "patSpec.dtd">
<newTags>
 <newTag>
 <startingPoint>SDL.GeneralInfo</startingPoint>
 <tagDef occurs="once">
 <tagName>RunTimeEnv</tagName>
 <containedTags>

 <tagDef occurs="required">
 <tagName>OSs</tagName>
 <containedTags>
 <tagDef occurs="required">
 <tagName> OS </tagName>
 <attList>
 <att attrName="name" attrType="CDATA" />

 <att attrName="version" attrType="CDATA" />
 </attList>
 </tagDef>

 </containedTags>
 </tagDef>

</containedTags>
 </tagDef>
 </newTag>
</newTags>

Figure 6: Run Time Environment Fact
Definition.

Similarly, new content can be easily
introduced into existing service descriptions,
under the tag <ServiceCatalog> (Figure 4).

4.3 Service Repository

Within the context of this paper, service
descriptions and fact specifications (DTDs)
require a database for the persistent storage of the
XML encoded service interface description. To
keep the database management simple and to
achieve flexibility in the service description, we
use one table to index the service ID and the
corresponding XML service description. Each fact
of service description is stored in a table. The
primary key of these tables is a service ID
generated during service registration. The DTD of
each fact is stored in the DTD repository within
the same database.

The Service Management module (shown in
the Figure 1) is responsible for maintaining the
service database. It can insert a new service
description, delete, and modify an existing one.
For this work, we use the IBM DB2 XML
extender to map XML Service Descriptions to
DB2 tables. In general, the service manager
retrieves from the database table the whole XML
document by using traditional SQL queries. When
a service is registered, the service manager can
check for duplicate definitions, generate the

Figure 7: Service Specification Fact List

service ID, and insert the description into the
database. The Service Management Module is
implemented by Enterprise Java Beans, which
provide the necessary support for distributed
transactions.

5 Service Registration

For the service registration, we have designed a
Web based interface to serve as a service
registration and authoring tool. The interface
allows for the user to specify the service
description by filling in forms in an HTML Web
interface, as shown in Figure 7. The service
description, conforming to the DTD in Figure 5, is
generated automatically from the information
provided by the user.

As mentioned earlier, in order to provide
maximum customizability, the service description
language is separated into independent facts.
Moreover, the environment allows for new facts
and new content to be added at anytime. The user
interface is generated dynamically according to
available facts and the DTD of each fact. This
interface allows the user to select the required
facts by filling the generated forms. Some facts
are indispensable for newly created service descri-

Figure 8: Service Description Interface

ptions, such as Service Definition. After
submission, the Web Interface will create an
HTML form as shown in Figure 8, where the user
can add more information about the newly
registered service.

6 Service Localization

A prototype service localization mechanism has
also been designed to locate distributed software
services much like a search engine locates content
(data) in Web pages.

The system can provide two ways for clients
to localize services, either via a Web HTML
Interface, or dynamically, at run-time via an XML
formatted document.

The design of the query language aims to
provide the user as many features as possible for
specifying the services being sought. Currently,
the Description Facts offered (shown in Figure 4)
allow the user to search for services according to
specific criteria such as service categories,
functionality, implementation techniques, and
operating platforms. The grammar for the query
language is defined in terms of a DTD as shown
in Figure 9. The root element for this DTD is the
searchSpec element, which can include zero or
more children, such as service ID, service location

<?xml version="1.0" ?>
<!ELEMENT searchSpec (ID*, location*, category*, implBy*, platforms*,
funcDsc*, vendor*, version*, timeLimit*)>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT location (#PCDATA)>
<!ELEMENT category ((keyword, (AND | OR)*)+ | (NOT, keyword)*)>
<!ELEMENT implBy ((keyword, (AND | OR)*)+ | (NOT, keyword)*)>
<!ELEMENT platforms ((keyword, (AND | OR)*)+ | (NOT, keyword)*)>
<!ELEMENT funcDsc ((keyword, (AND | OR)*)+ | (NOT, keyword)*)>
<!ELEMENT vendor (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT timeLimit (#PCDATA)>
<!ELEMENT keyword (#PCDATA)>
<!ELEMENT AND (keyword | AND | OR | NOT)*>
<!ELEMENT OR (keyword | AND | OR | NOT)*>
<!ELEMENT NOT (keyword | AND | OR | NOT)*>

Figure 9: DTD for Service Localization Query

Figure 10: Web Interface for Search Query

and service category. The Web interface of the
service search engine is designed for the HTTP
users, as shown in Figure 10. After submission,
the search criteria composed in the XML format is
sent to the Service Localization module.

By extracting the requirements from the
query specification, the service localization
module looks up the service database. If multiple
results meet the search criteria, the available
services can be listed and ranked according to
performance, response time from the server, or
cost. Since service description is encoded in
XML, the search locator has been implemented
using the XML DOM (Document Object Model)

API and incorporating search logistics, such as
exact search, sub-string search, precedence
search, and stemming.

7 Application Example

Once a software component has been extracted
from a legacy system, or has been built as a new
component, its interface can be extracted and
represented in XML as illustrated in Figure 11.
The CORBA IDL and wrapper generators can be
applied to automatically generate the service
wrapper from the XML-based specification. A
CORBA server source file is responsible to
register the distributed objects with the CORBA
ORB agent. At the same time, it can automatically
send its description information in XML form to
the service management module [22] via CORBA
IIOP.

The generated CORBA IDL, wrapper files,
and server files can be compiled into binary
executable code. The CORBA objects are running
on the CORBA server and waiting for the clients’
requests. The CORBA objects can accept the
requests via CORBA IIOP. IBM WebSphere
Application Server Enterprise Edition
incorporates Component Broker, a C++ ORB
implementation, and provides the integration
environment for CORBA objects, Enterprise
JavaBeans, and Java Servlet [23].

When the CORBA client object sends its
service request to the service repository which
acts as a binder, the service can be located
according to its formal (i.e. signature, version
number, service id), or informal (i.e. performance,
service cost, network latency to access the
service) characteristics. The clients can search via
the binder for available services via the service
localization interface and obtain detailed
information about the requested service. In the
current state of implementation, the Web
integration architecture allows the CORBA
objects to be invoked directly via TCP/IP. To
invoke the distributed object directly through a
CORBA agent, the client needs to install the
required run-time environments. By installing an
ORB implementation in the local machine, the
client process can send requests to the remote
CORBA object by the DII [24] with the IDL
repository ID and the remote ORB agent‘s URL
address.

Future steps of our work will focus on
accepting servlet requests on behalf of HTTP
users, and provide a full Web integration
environment for building virtual agencies that can
integrate Web-based services dynamically.

7.1 Representation of Legacy Services

To wrap a legacy service, the first step is to
determine its interface. The interface description
allows the implementation details inside the
component to be hidden from its external clients.
Moreover, the interface defines a set of properties
and behaviors that represent a component’s API.
Properties of interface are represented in terms of
attributes, which can be accessed by accessors and
mutators.

In general, the interface of a software
component may contain the information related to
data types, references to external specifications
that point to related components, descriptions of
public attributes and methods, and return types
and parameters that specify input and output.
The representation of a component interface can
be independent of a specific programming
language, making thus possible for wrapping
technology to integrate software components into
heterogeneous operating platforms and
environments. OMG IDL provides such a
language-independent interface description for
distributed CORBA components. IDL compilers
can be used to generate proxies and skeleton
stubs. However, in order to generate automatically
wrappers that encapsulate back end-services, a
specialized IDL compiler is required.

The XML interface representation of a
software component consists of several
aggregated elements, such as data type
definitions, interface operation definitions, and
interface data member definitions. The data type
definition publishes the types other than the
defined interface for the purpose of invoking
interface methods. The interface data member
definition declares the accessor and mutator
methods associated with a data member. Such an
example specification for a component extracted
from the AVL GNU tree libraries, is illustrated in
Figure 11. Such specification aims on automatic
generation of OMG IDL and CORBA wrapper.
This specification became part of the service
interface properties under <CORBAML> in
Figure 7. Furthermore, with the XML
specification, additional information can be easily

Figure 11: XML Representation of Component
Interface

encoded, such as the self-description information,
URL address, pre- and post-conditions, and
performance characteristics for the component.
Such information introduces new functionality to
wrappers, and can be used at the run-time by a
binder to efficiently locate a service in a
transparent way to the client.

7.2 CORBA Object Wrapping

As a software migration case study we considered
the migration of the AVL GNU tree libraries. The
new migrant AVL tree libraries [13], [14] can be
considered as a collection of distributed
components, that consist of several classes.
Therefore, the interface for the AVL tree
component consists of several sub interfaces that
correspond to wrapper classes. The wrappers
implement message passing between the calling
and the called objects, and redirect method
invocations to the actual component services. The
concrete process to accomplish wrapping is
accomplished in terms of three major steps.

module AVL{

interface corba_ubi_btRoot;
interface corba_ubi_btNode;
interface corba_SampleRec;

typedef char corba_ubi_trBool;

interface corba_SampleRec{
void putName(in string val);
string getName();
void putNode(in corba_ubi_btNode val);
corba_ubi_btNode getNode();
long getDataCount();
void putDataCount(in long aval);

};

interface corba_ubi_btNode {
void putBalance(in char val);
char getBalance();
long Validate();
//......

};

interface corba_ubi_btRoot{
corba_ubi_trBool ubi_avlInsert(
 in corba_ubi_btNode NewNode,

 in corba_SampleRec ItemPtr,
 in corba_ubi_btNode OldNode);

//
};
};

Figure 12: AVL Component Interface Definition

class wrapper_ubi_btRoot :
public _sk_AVL :: _sk_corba_ubi_btRoot

{
private:

ubi_btRoot& _ref;
CORBA::Boolean _rel_flag;
char *_obj_name;

public:
wrapper_ubi_btRoot(

ubi_btRoot& _t,
const char *obj_name=(char*)NULL,
CORBA::Boolean _r_f=0):_ref(_t);

~wrapper_ubi_btRoot();
ubi_btRoot* transIDLToObj(AVL::corba_ubi_btRoot_ptr obj);
void putRoot(AVL::corba_ubi_btNode_ptr val);
AVL::corba_ubi_btNode_ptr getRoot();
AVL::corba_ubi_trBool ubi_avlInsert(

AVL::corba_ubi_btNode_ptr NewNode,
AVL::corba_SampleRec_ptr ItemPtr,
AVL::corba_ubi_btNode_ptr OldNode);

void Prune();
//Other methods are eliminated.
};

Figure 13: An Example Wrapper Class

The first step focuses on the specification of
components in CORBA IDL as shown in Figure
12.

The second step deals with the CORBA IDL
compiler to translate the given IDL specification

into a language specific (e.g. C++), client-side
stub classes and server-side skeleton classes.
Client stub classes and server skeleton classes are
generated automatically from the corresponding
IDL specification. The client stub classes are
proxies that allow a request invocation to be made
via a normal local method call. Server-side
skeleton classes allow a request invocation
received by the server to be dispatched to the
appropriate server-side object. The operations
registered in the interface become pure virtual
functions in the skeleton class.

The third step focuses on wrapper classes that
are generated and implemented as CORBA
objects, directly inheriting from the skeleton
classes. The wrapper classes encapsulate the
standalone C++ object by reference, and incarnate
the virtual functions by redirecting them to the
encapsulated C++ class methods. The new
functionality of the legacy object can be added in
the wrapper class as long as the method name is
registered in the interface. The wrapper class can
be generated automatically, by the proposed high-
level XML-based interface description.

For example, the ubi_btRoot class is one of the
classes identified within the AVL tree component.
The wrapper_ubi_btRoot inherits from the
skeleton class sk_AVL::_sk_corba_ubi_btRoot,
which is generated from the CORBA IDL to C++
compiler (Figure 13). The wrapper class,
wrapper_ubi_btRoot, encapsulates a reference of
ubi_btRoot class as shown in Figure 14.
When a client invokes a method through CORBA,
it passes the parameters with data types registered
in the IDL interface to the server side object. The
wrapper classes need to translate the CORBA IDL
specific data types from the client calls to the data
types used by the encapsulated C++ classes.
Figure 14 illustrates the transformation from the
CORBA specific type such as
corba_ubi_btRoot_ptr to the ubi_btRoot used in
the corresponding C++ method. In the same way,
the wrapper classes convert the returned values
from the C++ class to the CORBA IDL specific
data type, which is the wrapper class. In such a
way, the wrapper object not only allows the client
send requests to the legacy object, but also allows
for the legacy object to return its result back to the
clients. Since IDL does not support overloading
and polymorphism, each method and data field
within the interface should have a unique
identifier. If the polymorphic and overloaded
methods occur in one class, it is necessary to re-

ubi_btRoot* wrapper_ubi_btRoot :: transIDLToObj(
AVL::corba_ubi_btRoot_ptr obj)

{
 if (CORBA::is_nil(obj)) return NULL;

// set up the data members of _ref object.
// these data members are primary data types.
_ref.putCount(obj->getCount());
_ref.putFlags(obj->getFlags());

//translate the ubi_btNode to corba_ubi_btNode_ptr
//by wrapper class rootWrap
ubi_btNode *rootImpl= new ubi_btNode();
if (rootImpl==NULL)return NULL;
wrapper_ubi_btNode rootWrap(*rootImpl,

_obj_name);

//translate corba_ubi_btNode_ptr type returned from
//obj->getNode() to ubi_btNode * by transIDLToObj()
// in wrapper object rootWrap.
_ref.putRoot(rootWrap.transIDLToObj(

obj->getRoot()));

//......
 return &_ref;
}

Figure 14: Example for Object Type Translation

name these methods by adding the prefix or suffix
to the original name when they are registered in
the interface, avoiding changing the identified
objects. This “naming” technique allows unique
naming conventions throughout the system,
without violating code style standards. The
wrapper classes are responsible to direct the
renamed overloaded and polymorphic methods to
the corresponding client code.

If the polymorphic and overloaded methods
occur in the inheritance relationship, we can take
advantage of C++ upcast feature, that is, to only
register the sub-class in the component interface,
and upcast the sub-class to its super class when
the polymorphic or overloading methods in a
super class are invoked.

7.3 Automatic Generation of OMG IDL
and CORBA Wrapper

Once the interface is defined, the process of
generating CORBA wrappers is similar to each of
identified components. Therefore, automatic
generation of wrappers and IDL specifications is
feasible by providing the information about each
interface, such as, signatures, renamed operation
name for the overloaded method.

C++ to IDL Data Type Mapping

In the XML interface specification, the signatures
are indicated in terms of C++ types. Specifically,
the IDL generator module, reads the XML script
and converts the interface descriptions to IDL
types, conforming to the mapping rules of the
OMG IDL specification, and writes IDL style
interface in a new file.

The complete mapping of basic data types is
given in [17]. For example, C++ “long” is
mapped into IDL “long”, C++ “char *” to IDL
“string”. Due to the platform independence of
OMG IDL, some of basic C++ data types are not
specified, such as “int”, which is 16 bits in MS-
DOS and Win3.1, but is 32 bits in Win32. For the
identified component, we assume it works under a
32 bit operating system.

CORBA C++ to Native C++ Data Type
Mapping

CORBA C++ stubs are generated from IDL
compilers. Usually the CORBA C++ stubs are
prefixed with the CORBA namespace. To invoke
the methods in the C++ code, parameters are
passed from CORBA C++ wrapper objects to
native C++ classes. Since the primary data types
are passed by value, the parameters can be
directly passed into native C++ operations,
according to the same mapping rules from C++ to
IDL. For the complex data types, such as class,
string, array, the parameters are passed by
reference. The signatures of such types in wrapper
classes are defined by pointers. In this case, the
IDLToObj() method is added into to CORBA
wrapper object and accomplish the translation
from a CORBA C++ wrapper pointer to a native
C++ class pointer.

IDL and Wrapper Code Generation

According to the XML component interface
representation, the wrapper IDL interface is
generated, by denoting the <Interface> tag in the
XML specification (Figure 11). Then, externally
visible operation identifiers are extracted from the
children elements under the <Operation>
elements including operation name, return type
and parameters’ names and their corresponding
types. Meanwhile, C++ to IDL type conversion is
automatically performed. In addition, the type
definition information indicated under <typedef>
element is added on the top of the IDL file. Other

global variables are defined as well. The result
IDL interface is shown in Figure 12.

The CORBA wrapper header file, which
declares a wrapper class in CORBA C++, is
created in the same way. The signatures of
parameters are mapped from CORBA C++ types
to native C++ types. The operations in the IDL
interface correspond to the public methods in the
CORBA wrapper. Moreover, methods as well as,
class constructor and destructor specifications
along with their body code are added into the
class interface declaration, as shown in Figure 13.

The wrapper function bodies are generated in
a separated file, which provides the
implementation to each of methods. According to
the “srcClass” attribute (Figure 11) value in the
<Operation> tag and “srcMethod” attribute value
in <OpName> tag, the wrapper re-directs the
invocation of its public operations to the
corresponding source methods in the encapsulated
source C++ object. At the same time, the wrapper
generator provides the “connecting” code, which
is responsible to translate the CORBA IDL
specific data type to the native C++ data type, and
vice versa.

Most of CORBA IDL compilers provide the
generation of a “tie” class from the IDL
specification. Tie classes behave as wrappers,
which simply call the corresponding methods in
the encapsulated class. Moreover, they do not
provide any functionality to translate the CORBA
IDL specific data type to the native C++ data
type. The code only works, when the parameters
are basic data types. For a complex data type, they
can not convert it to a native C++ pointer that can
be recognized by the legacy code. In this context,
the tie class is too simple to address the
requirements for legacy code wrapping. The
proposed XML-based interface description of the
software components, and its corresponding
wrapper generation module overcome this
problem.

Essentially, the wrapper acts as a façade: it
offers clients a single, simple interface to the
underlying objects. It glues together the CORBA
distributed capabilities and the standalone
components. Moreover, new functionality can be
added to the wrapper based on the XML
representation (i.e. emitting run-time information
and getting the location of a component in a
transparent to the client way). It is notable that the
object wrappers are housed within the CORBA

Figure 15: Overall Service Composition
Architecture

server infrastructure, providing location
transparency for the back-end services.

8 Customizing the Service
Integration Process

In this section, we discuss how the proposed
system fits within the context of a larger system
that allows for service integration and process
enactment. In particular, the system presented
here relates to the Service Repository and Remote
Service modules as illustrated in the service
composition architecture diagram depicted in
Figure 15. This service composition architecture
is based on the component wrapping, a script-
based transaction language, and a script
enactment engine [25].

In this way, distributed components located
virtually everywhere in the world, can be
combined on as required basis, forming thus
collaborative systems. This integration can occur
dynamically by allowing general service
properties, functionality and, signatures of
components be specified in the service description
language, and be registered with the service
repository and the binder. Client processes can
search via the binder, for available distributed
components in a same manner as a search engine
would be used to locate information resources on
the Internet. After meeting the search

requirements, the client process can invoke the
identified services without necessarily
downloading all the components to the local client
machine. On-going work [25] focuses on the
invocation of services that is based on scripts
encoded in XML, and is enacted using the Event-
Condition-Action (ECA) paradigm [15], by which
the multiple requests can be dynamically
customized in the client side using a rule-based
approach. The overall proposed architecture is
under development in collaboration with IBM
Canada, Center for Advanced Studies, and is
illustrated in Figure 15. The core of the system is
the Rule Engine Servlet, which accepts triggering
events from the Web server. Once the premises
(events and conditions) of specific ECA rules are
satisfied, the requested service (action) by the rule
is localized and invoked. Upon completion,
services (actions) produce new events that may
trigger new ECA rules. Potential deadlocks and
loops are detected by building a rule dependency
graph for a given script [16].

The customization of the transaction and
integration logic required by various processes to
complete complex tasks, open new opportunities
in Web-enabled e-Commerce and e-Business
environments. In this sense, business partners can
customize their business transaction process
models to fit specific needs or, specific contract
requirements. This customization is transparent to
third parties and, provides means to complete
business transactions accurately and on-time.
Organizations can enter the e-Business area by
building and deploying extensible and
customizable services over the Internet using
existing software components that are readily
available as services over the Internet. Moreover,
virtual agencies that provide a wide range of
services can be formed by integrating existing
functionality and content over the Web. For
example, a virtual travel agency can be formed,
by composing in a customized manner, services
that are readily available in various travel related
Internet Web sites. Moreover, client processes
may post requests to the virtual agency. The
agency can enact its transaction logic (scripts) in
order to integrate and compose data and services
from a wide spectrum of sites. In this scenario,
data about pricing, availability and, travel related
special offers, can be fetched by various sites,
processed by the agency and presented to the
client in a customized and competitive for the
agency way.

9 Conclusion

In this paper, we presented a prototype system
that allows for the specification and the migration
of software services into distributed Web-based
environments. With the aid of a service
description language, automatic CORBA wrapper
generation, service registration, and service
localization can be achieved in a transparent to the
client way.

In this context, we are especially interested in
Web-based platforms because the Web is
becoming the common denominator for accessing
and presenting information over the Internet,
Intranets and, Extranets. Moreover, the Web
provides the deployment platform for many new
enabling technologies such as CORBA, RMI and,
EJBs.

As a result, this web-based service integration
infrastructure allows for the reuse of the existing
software components, shortens the time to
architect new applications, and eases the
enterprise integration of business operations. This
prototype system is currently under development
at IBM Canada, Center for Advanced Studies.

Acknowledgments

We would like to thank Bill O’Farrel, Steven
Perelgut and Joe Wigglesworth of IBM CAS,
Evan Mamas and Richard Gregory of the
University of Waterloo as well as, all the
anonymous reviewers for their valuable
suggestions, comments, and insights.

About the Authors

Ying Zou is a Ph.D candidate at the Electrical and
Computer Engineering Department, University of
Waterloo. Her research interests include
distributed object technology, software re-
engineering. Kostas Kontogiannis is an Assistant
Professor at Electrical and Computer Engineering
Department, University of Waterloo. His research
interests include software re-engineering,
software migration, software reuse and knowledge
based software engineering.

References

[1] Umar, Amjad, “Application (Re)Engineering:
Building Web-Based Applications and

Dealing with Legacies”, Prentice Hall PTR,
1997.

[2] RamPrabhu, Robert Abarbanel, “Enterprise
Computing: The Java Factor”, Computer,
P115, June 1997 IEEE.

[3] Walter Brenner, Rüdiger Zarnekow, and
Harmut Wittig, “Intelligent Software Agents:
Foundations and Applications”, Springer-
Verlag Berlin Heidelberg 1998.

[4] Alan R. Williamson, “Java Servlets By
Example”, Manning Publications Co., 1999.

[5] Victor Lesser, et al. “Resource-Bounded
Searches in an Information Marketplace”,
IEEE Internet Computing, March/April 2000.

[6] Tuomas Sandholm and Qianbo Huai,
“Nomad: Mobile Agent System for an
Internet-Based Auction House”, IEEE
Internet Computing, March/April 2000.

[7] Ying Zou, Kostas Kontogiannis, “Localizing
and Using Services in Web-Enabled
Environments”, 2nd International Workshop
for Web Site Evolution, Switzerland, 2000.

[8] “Business-to-Business e-Commerce with
Open Buying on the Internet”,
http://www.ibm.com/iac/papers/obi-
paper/intro.html .

[9] “Gaining Competitvie Advantage in the
Supply Chain: IBM Solution for Business
Integration”, http://www-
4.ibm.com/software/info/ti/issues/scm.html

[10] Ronald Bourret, “XML and Databases”,
http://www.informatik.tu-
darmstadt.de/DVS1/staff/bourret/xml/XMLA
ndDatabases.html

[11] Paul Dreyfus, “The Second Wave: Netscape
on Usability in the Services-Based Internet”,
IEEE Internet Computing, March/April 1998.

[12] Joqquin Picon, et al, “Enterprise JavaBeans
Development Using VisualAge for Java”,
http://www.redbooks.ibm.com.

[13] Prashant Patil, Ying Zou, Kostas
Kontogiannis and John Mylopoulos,
“Migration of Procedural Systems to
Network-Centric Platforms”, CASCON’99,
Toronto, 1999.

[14] Kostas Kontogiannis, Prashant Patil,
“Evidence Driven Object Identification in
Procedural Code”, STEP’99, Pittsburgh,
Pennsylvania, 1999.

[15] Richard Gregory, Kostas Kontogiannis,
“Requirements for a Distributed Tool
Integration System”,
http://www.swen.uwaterloo.ca/~rwgregor.

[16] George Koulouris et.al “Distributed Systems:
Concepts and Design”, Addison-Wesley,
Second Edition, 1996.

[17] Michi Henning, Steve Vinoski, “Advanced
CORBA Programming with C++”, Addison-
Wesley, 1999.

[18] Clemens Szyperski, “Component Software:
Beyond Object-Oriented Programming”, Addison-
Wesley, 1998.

[19] Cynthia Della Torre Cicalease, Shmuel
Rotenstreich, “Behavioral Specification of
Distributed Software Component Interfaces”,
Computer, July 1999 IEEE.

[20] “CORBA and XML; Conflict or Cooperation?”,
http://www.omg.org, 1999.

[21] Mark Elenko, Mike Reinertsen, “XML &
CORBA”, http://www.omg.org, 1999.

[22] Addreas Vogel, Madhavan Rangarao,
“Programming with Enterprise JavaBeans,
JTS and OTS: Building Distributed
Transactions with Java and C++”, Jon Wiley
& Sons, Inc, 1999.

[23] “Using VisualAge for Java Enterprise
Version 2 to Develop CORBA and EJB
Applications”,
http://www.redbooks.ibm.com.

[24] “Programmer’s Guide: Visibroker for C++”,
Inprise Corporation.

[25] W. Ku et.al. “End-to-end E-commerce
Application Development Based on XML
Tools”, IEEE Data Engineering, Vol. Vol. 23,
No.1, pp. 29-36.

