
BLIND SEPARATION OF REAL WORLD AUDIO SIGNALS USINGOVERDETERMINED MIXTURESAlex Westner and V. Michael Bove, Jr.MIT Media Laboratory20 Ames StreetCambridge, MA 02142, USAwestner@media.mit.edu, vmb@media.mit.eduABSTRACTWe discuss the advantages of using overdetermined mix-tures to improve upon blind source separation algo-rithms that are designed to extract sound sources fromacoustic mixtures. A study of the nature of room im-pulse responses helps us choose an adaptive �lter archi-tecture. We use ideal inverses of acquired room impulseresponses to compare the e�ectiveness of di�erent-sizedseparating �lter con�gurations of various �lter lengths.Using a multi-channel blind least-mean-square algo-rithm (MBLMS), we show that, by adding additionalsensors, we can improve upon the separation of signalsmixed with real world �lters.1. INTRODUCTIONHumans have the ability to focus their attention onany one sound in an environment �lled with many dif-ferent sounds. Digital audio systems, as well, wouldbene�t from having this ability (termed by E. CollinCherry in 1953 as the \cocktail-party e�ect."[3]); somepotential applications include: instrument separationin a multitrack recording studio, speaker separation ina videoconferencing session, and audio stream segrega-tion for a wearable audio computer [14]. In this work,we attempt to improve upon the extraction of acous-tic sound signals by studying overdetermined mixtures,where we have more microphones than sound sources.These applications all have in common the task ofsource separation. Furthermore, we do not know be-forehand what the sounds are or how they are mixedtogether, so we must exclusively use the sound mixturesthemselves to extract out the original sound sources, aprocess commonly known as blind source separation [7].When using conventional source separation algo-rithms, we assume that the original signals are mixedThis work has been supported by the Digital Life Consortiumat the MIT Media Laboratory.

together instantaneously [7]. Two microphones in aroom, however, will record an acoustic sound at twodi�erent propagation delays. In addition, the micro-phones will pick up several delayed and modi�ed copiesof the original sound source, as it re
ects o� of wallsand objects in the room. The reverberation and ab-sorption characteristics of a room can be modeled asa �nite impulse response (FIR) �lter and convolvedwith the original sound source to simulate the signalrecorded by a microphone [11].Several researchers have extended blind source sep-aration algorithms to cope with delayed and convolvedsources [15, 8, 9, 4]; most of these algorithms have onlyimplemented NxN con�gurations, using N sensors toseparate out N sources. (Lambert [8] implemented anMxN example with more sensors than sources.)Researchers often use beamforming microphone ar-rays when recording sounds in a reverberant environ-ment. Beamforming arrays target their sound cap-ture toward a desired spatial area, improving uponthe signal-to-noise ratio (SNR) of the sounds recordedfrom that region. The delay and sum beamformingalgorithm time-aligns the signals recorded by each sen-sor in the array and then adds them together. Thus,signal components emanating from a desired locationcombine coherently, while components from other loca-tions combine incoherently. This increases the gain ofthe desired signal over the undesired noise; the SNR isa monotonically increasing function of the number ofsensors [13].In an e�ort to take advantage of the SNR gainsthat microphone arrays can achieve, we propose to ex-tend current blind sound source separation algorithmsto that of the overdetermined case, where we havemoresensors than sources. We begin with a study of the na-ture of room impulse responses to help us choose anadaptive �lter architecture. We then use the ideal in-verses of acquired room impulse responses to comparethe e�ectiveness of di�erent-sized separating �lter con-To appear in Proc. ICA'99, Jan 11-15, Aussois, France 1 c
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�gurations of various �lter lengths. Finally, using amulti-channel blind least-mean-square (MBLMS) algo-rithm, we show that, by adding additional sensors, wecan improve the blind separation of signals mixed withreal world �lters.2. ROOM IMPULSE RESPONSESThe most e�cient way to experiment with real worldsignals is to generate them by taking a clean soundsource (i.e. close-miked speech in a dry room) and con-volving it with a known impulse response of a room. Byusing arti�cially generated mixtures, we know what themixing �lters are and we can use them to determinehow long our separating �lters need to be to achievegood results. In addition, we can more easily performa quantitative analysis on our results.Using the system designed by Bill Gardner and KeithMartin [5], we took impulse response measurements ofa 3.5m x 7m x 3m conference room. Two and a halfwalls of the room are covered with whiteboards, onewall is covered with a projection screen and a large ta-ble sits in the middle of the room. A large projectorand a lighting grid (to which the microphones are at-tached) hang from the ceiling. See Figure 1 for a photoof the room, and Alex Westner's thesis [16] for a moredetailed diagram of the room layout.

Figure 1: There are eight microphones hanging fromthe lighting grid in the conference room.Based upon the orientation of the lighting grid, weconstructed two linear microphone arrays, each withfour elements. The microphones within each array arespaced about a half-meter apart from one another, assuggested by Dan Rabinkin et. al. [13] in optimumsensor placement.We collected 8 impulse responses from 24 di�erentlocations around the room. To ensure that we would

capture the full response of the room, we set the acqui-sition software to compute responses of approximately750ms. After downsampling the data to a samplingrate of 11.025kHz, this equates to a 8,192-point re-sponse (See Figure 2).
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Figure 2: A typical room impulse response.A strong characteristic low-frequency murmur, anartifact of the room con�guration, dominates the im-pulse response. Following the example of Rabinkinet. al. [12], we applied a 200Hz high-pass �lter to theimpulse responses to remove this \room mode noise."The resulting impulse response is both aurally and vi-sually cleaner (See Figure 3). It is perfectly acceptableto �lter the impulse response before convolving it withthe source; it has the same e�ect as �ltering a signalrecorded directly from the room itself.
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should be larger than all other samples, and the re-sponse should decay rapidly [10]. In terms of blindseparation algorithms, this means that we will be un-able to use a feedback �lter con�guration, like the onesuggested by Kari Torkkola [15], since they are onlycapable of inverting minimum phase �lters [6].3. INVERTING ROOM IMPULSERESPONSESWe can model the problem of blind separation of realworld audio signals by forming an FIR polynomial ma-trix, A(t), whose elements are the room impulse re-sponses that, when convolved with a vector of soundsources s(t), will generate a vector of mixed signals,x(t): x(t) = A(t) � s(t)The goal is to determine W (t), the inverse of A(t),which we can use to convolve with x(t) to yield esti-mates, u(t), of the original sources:u(t) =W (t) � x(t)As described in Russell Lambert's thesis [8], we canapply standard scalar matrix algorithms to invert FIRpolynomial matrices. The following shows how to in-vert a 2x2 FIR matrix A.A = � a11 a12a21 a22 �The inverse to A is:W = A�1 = 1:a11 � a22 � a12 � a21 � a22 �a12�a21 a11 �In the overdetermined case, however, A(t) is not asquare matrix. Therefore, we need to do a pseudoin-verse to �nd W (t). The pseudoinverse of a matrix issimply inv(AHA) �AH , where AH denotes the Hermi-tian transpose.Figure 4 shows a block diagram of how to obtainW (t) from A(t). To speed computation, we transformA(t) into the frequency domain by applying an FFTto each �lter in the matrix. This allows us to multiply�lters together instead of having to convolve them inthe time domain. After computing the pseudoinverse,we move back into the time domain by applying anIFFT to each �lter in the pseudoinverse matrix. SinceA(t) contains non-minimum phase �lters, its inversewill be anti-causal. Therefore, we then need to rotatethe leading weights of the time-domain inverse to themiddle of the �lters. Finally, to \clean up" the edges ofthe �lters, we apply a Hanning window to the shifted,time-domain inverse, W (t).
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WINDOWFigure 4: A block diagram of how to invert an overde-termined room impulse response matrix.4. IDEAL UNMIXING FILTERSWe experimented with four di�erent �lter con�gura-tions for the blind separation and deconvolution of twosound sources, and for each con�guration, we used un-mixing �lters of various lengths. The experiment pro-ceeded as follows.First, we generated acoustic sound mixtures by con-volving clean sound sources (downloaded from DominicChan's web site [2]) with a matrix of room impulse re-sponses. Using the appropriate impulse responses andsources, we created two sets of mixtures: for one set,we put a source in channel 1 and nothing in channel2, and for the other set, we put a source in channel2 and nothing in channel 1. By processing the twomixtures separately, it was easier to determine the re-sultant SNR's.Using the procedure described in the previous sec-tion, we determined the separating matrix by invertingthe mixing matrix. To vary the �lter lengths, we ap-plied an L-point Hanning window (centered around thepeak of each �lter) to the 8,192 tap unmixing �lters,where L is the desired �lter length. We then convolvedthe separating matrix with the mixture vectors to getan estimate of the original sources. We obtained sep-aration SNR measurements by computing how muchthe channels with the sources bled into the channelswithout the sources.Figure 5 shows one unmixing �lter from each of thefour con�gurations that we tested. We can make twoimportant observations by visually comparing these un-mixing �lters. Most importantly, notice how dense the3



2x2 unmixing �lter is compared to the other three.Each 2x2 unmixing �lter clearly requires more infor-mation to separate the mixtures than the other threecon�gurations.
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Figure 5: Unmixing �lters for a 2x2, 4x2, 6x2, and 8x2con�guration. Filter lengths of 8,192 taps were used togenerate these �lters.Secondly, the range in amplitude of the unmixing�lters decrease as the number of sensors in the con�gu-ration increase. This can be explained by the fact thateach unmixing �lter in an MxN con�guration addsM modi�ed copies of a mixed signal to produce theoutput. Therefore, the more copies that are addedtogether, the lower the amplitude for each copy. Animportant corollary of this observation follows: whenusing a blind deconvolution algorithm, (most of) theweights are initialized to zero. It is, therefore, bene�-cial if the slowly-adapting �lters do not need to reachsuch high amplitudes to converge upon a solution.The SNR measurements, listed in Table 1, clearlyshow the bene�ts of using overdetermined mixtures toseparate acoustic sound mixtures. To obtain the data,we ran several trials for each �lter con�guration and�lter length, using di�erent source locations and dif-ferent combinations of sound sources. We observed nobias for any particular source location or type of soundused, so we averaged our results based on the �ltercon�guration and �lter length.As expected, longer unmixing �lter lengths yieldbetter separation. As we shortened the �lter lengthsto 256 and 128 taps, the separating �lters began toseverely distort the signals, therefore making these SNRmeasurements invalid.More signi�cant to this work, however, is that us-ing more microphones yields better separation. With�lter lengths of 1,024 points, for example, using 8 mi-

8192 4096 2048 1024 512 256 1288x2 36.9 33.4 24.6 16.4 8.6 3.3 5.16x2 33.0 28.4 21.8 13.0 3.3 -3.0 1.24x2 28.9 24.9 13.4 4.2 2.0 -2.4 6.82x2 15.8 13.8 8.2 4.0 0.6 -1.2 -3.4Table 1: SNR measurements: boldface numbers showgood, consistent separation (based on listening to theoutputs); italicized SNR values are invalid due to signaldistortion. All values are in dB.crophones instead of 2 or 4 provides an additional 12dBof separation. Since it is generally more di�cult for ablind separation and deconvolution algorithm to adaptto longer �lters, these results encourage us to use overde-termined mixtures whenever possible.5. OVERDETERMINED BLINDSEPARATIONSome of the more commonly used blind separation anddeconvolution adaptation rules are constrained to onlyhandling square matrices of �lters [1]. For our ex-periment, we used the multichannel blind least-mean-square algorithm (MBLMS) described by Lambert [8].The MBLMS algorithm attempts to minimize thecost function J where u is the estimated output and gis the Bussgang nonlinearity that uses prior knowledgeof the probability density function (pdf) of the sources.J = tr Ef(u� g)(u� g)HgThe weight update equation is determined from thecost function, where x is the mixture of sources:@J@W = @J@u @u@W = @J@ux�@J@u = (u� g)W =W + �(u� g)x�We ran the algorithm on the four di�erent �ltercon�gurations used in the previous section, using trun-cated and windowed room impulse responses as ourmixing �lters. Figure 6 shows one of these responses.We set the algorithm to learn 512-tap �lters, and weused 200,000 gamma-distributed (speech-like) randomsamples.We used a Multichannel Intersymbol Interference(ISI) performance metric to determine how close thelearned unmixing �lters were to a scaled and/or per-muted identity FIR matrix [8]:4
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ISIi = PjPk jsij(k)j2 �maxj;kjsij(k)j2maxj;kjsij(k)j2where sij are the �lter elements of the mixing matrix,W convolved with the separating matrix, A. The ISIconverges to zero for a perfectly learned unmixing ma-trix. Figure 7 shows a comparison plot of the ISI mea-surements as the algorithm ran through all the samplepoints for each con�guration.
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8x2Figure 7: ISI measurements obtained from the MBLMSalgorithm for four di�erent �lter con�gurations.The plots show that the MBLMS algorithm per-forms signi�cantly better when the number of sensorsare increased.
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