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ABSTRACT

We discuss the advantages of using overdetermined mix-
tures to improve upon blind source separation algo-
rithms that are designed to extract sound sources from
acoustic mixtures. A study of the nature of room im-
pulse responses helps us choose an adaptive filter archi-
tecture. We use ideal inverses of acquired room impulse
responses to compare the effectiveness of different-sized
separating filter configurations of various filter lengths.
Using a multi-channel blind least-mean-square algo-
rithm (MBLMS), we show that, by adding additional
sensors, we can improve upon the separation of signals
mixed with real world filters.

1. INTRODUCTION

Humans have the ability to focus their attention on
any one sound in an environment filled with many dif-
ferent sounds. Digital audio systems, as well, would
benefit from having this ability (termed by E. Collin
Cherry in 1953 as the “cocktail-party effect.”[3]); some
potential applications include: instrument separation
in a multitrack recording studio, speaker separation in
a videoconferencing session, and audio stream segrega-
tion for a wearable audio computer [14]. In this work,
we attempt to improve upon the extraction of acous-
tic sound signals by studying overdetermined mixtures,
where we have more microphones than sound sources.

These applications all have in common the task of
source separation. Furthermore, we do not know be-
forehand what the sounds are or how they are mixed
together, so we must exclusively use the sound mixtures
themselves to extract out the original sound sources, a
process commonly known as blind source separation [7].

When using conventional source separation algo-
rithms, we assume that the original signals are mixed

This work has been supported by the Digital Life Consortium
at the MIT Media Laboratory.

To appear in Proc. 1CA’99, Jan 11-15, Aussois, France 1

together instantaneously [7]. Two microphones in a
room, however, will record an acoustic sound at two
different propagation delays. In addition, the micro-
phones will pick up several delayed and modified copies
of the original sound source, as it reflects off of walls
and objects in the room. The reverberation and ab-
sorption characteristics of a room can be modeled as
a finite impulse response (FIR) filter and convolved
with the original sound source to simulate the signal
recorded by a microphone [11].

Several researchers have extended blind source sep-
aration algorithms to cope with delayed and convolved
sources [15, 8, 9, 4]; most of these algorithms have only
implemented NXN configurations, using N sensors to
separate out N sources. (Lambert [8] implemented an
MXN example with more sensors than sources.)

Researchers often use beamforming microphone ar-
rays when recording sounds in a reverberant environ-
ment. Beamforming arrays target their sound cap-
ture toward a desired spatial area, improving upon
the signal-to-noise ratio (SNR) of the sounds recorded
from that region. The delay and sum beamforming
algorithm time-aligns the signals recorded by each sen-
sor in the array and then adds them together. Thus,
signal components emanating from a desired location
combine coherently, while components from other loca-
tions combine incoherently. This increases the gain of
the desired signal over the undesired noise; the SNR is
a monotonically increasing function of the number of
sensors [13].

In an effort to take advantage of the SNR gains
that microphone arrays can achieve, we propose to ex-
tend current blind sound source separation algorithms
to that of the overdetermined case, where we have more
sensors than sources. We begin with a study of the na-
ture of room impulse responses to help us choose an
adaptive filter architecture. We then use the ideal in-
verses of acquired room impulse responses to compare
the effectiveness of different-sized separating filter con-

© ICA '99



figurations of various filter lengths. Finally, using a
multi-channel blind least-mean-square (MBLMS) algo-
rithm, we show that, by adding additional sensors, we
can improve the blind separation of signals mixed with
real world filters.

2. ROOM IMPULSE RESPONSES

The most efficient way to experiment with real world
signals is to generate them by taking a clean sound
source (i.e. close-miked speech in a dry room) and con-
volving it with a known impulse response of a room. By
using artificially generated mixtures, we know what the
mixing filters are and we can use them to determine
how long our separating filters need to be to achieve
good results. In addition, we can more easily perform
a quantitative analysis on our results.

Using the system designed by Bill Gardner and Keith
Martin [5], we took impulse response measurements of
a 3.5m x 7m x 3m conference room. Two and a half
walls of the room are covered with whiteboards, one
wall is covered with a projection screen and a large ta-
ble sits in the middle of the room. A large projector
and a lighting grid (to which the microphones are at-
tached) hang from the ceiling. See Figure 1 for a photo
of the room, and Alex Westner’s thesis [16] for a more
detailed diagram of the room layout.

Figure 1: There are eight microphones hanging from
the lighting grid in the conference room.

Based upon the orientation of the lighting grid, we
constructed two linear microphone arrays, each with
four elements. The microphones within each array are
spaced about a half-meter apart from one another, as
suggested by Dan Rabinkin et. al. [13] in optimum
sensor placement,.

We collected 8 impulse responses from 24 different
locations around the room. To ensure that we would

capture the full response of the room, we set the acqui-
sition software to compute responses of approximately
750ms. After downsampling the data to a sampling
rate of 11.025kHz, this equates to a 8,192-point re-
sponse (See Figure 2).
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Figure 2: A typical room impulse response.

A strong characteristic low-frequency murmur, an
artifact of the room configuration, dominates the im-
pulse response. Following the example of Rabinkin
et. al. [12], we applied a 200Hz high-pass filter to the
impulse responses to remove this “room mode noise.”
The resulting impulse response is both aurally and vi-
sually cleaner (See Figure 3). It is perfectly acceptable
to filter the impulse response before convolving it with
the source; it has the same effect as filtering a signal
recorded directly from the room itself.
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Figure 3: A high-pass filtered impulse response.

Upon visual inspection of the room impulse response,
we can see that it is non-minimum phase. In gen-
eral, for a filter to be minimum phase, the first sample



should be larger than all other samples, and the re-
sponse should decay rapidly [10]. In terms of blind
separation algorithms, this means that we will be un-
able to use a feedback filter configuration, like the one
suggested by Kari Torkkola [15], since they are ounly
capable of inverting minimum phase filters [6].

3. INVERTING ROOM IMPULSE
RESPONSES

We can model the problem of blind separation of real
world audio signals by forming an FIR polynomial ma-
trix, A(¢), whose elements are the room impulse re-
sponses that, when convolved with a vector of sound
sources s(t), will generate a vector of mixed signals,

z(t):
z(t) = A(t) * s(t)

The goal is to determine W (t), the inverse of A(t),
which we can use to convolve with z(t) to yield esti-
mates, u(t), of the original sources:

u(t) = W(t) * z(t)

As described in Russell Lambert’s thesis [8], we can
apply standard scalar matrix algorithms to invert FIR
polynomial matrices. The following shows how to in-
vert a 2x2 FIR matrix A.

The inverse to A is:

W=A4"1=

1 a22 —ai2
11 * (22 — A12 * A2] —a21 a1

In the overdetermined case, however, A(t) is not a
square matrix. Therefore, we need to do a pseudoin-
verse to find W(t). The pseudoinverse of a matrix is
simply inv(A7 A) x A” where A” denotes the Hermi-
tian transpose.

Figure 4 shows a block diagram of how to obtain
W(t) from A(t). To speed computation, we transform
A(t) into the frequency domain by applying an FFT
to each filter in the matrix. This allows us to multiply
filters together instead of having to convolve them in
the time domain. After computing the pseudoinverse,
we move back into the time domain by applying an
IFFT to each filter in the pseudoinverse matrix. Since
A(t) contains non-minimum phase filters, its inverse
will be anti-causal. Therefore, we then need to rotate
the leading weights of the time-domain inverse to the
middle of the filters. Finally, to “clean up” the edges of
the filters, we apply a Hanning window to the shifted,
time-domain inverse, W (t).
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Figure 4: A block diagram of how to invert an overde-
termined room impulse response matriz.

4. IDEAL UNMIXING FILTERS

We experimented with four different filter configura-
tions for the blind separation and deconvolution of two
sound sources, and for each configuration, we used un-
mixing filters of various lengths. The experiment pro-
ceeded as follows.

First, we generated acoustic sound mixtures by con-
volving clean sound sources (downloaded from Dominic
Chan’s web site [2]) with a matrix of room impulse re-
sponses. Using the appropriate impulse responses and
sources, we created two sets of mixtures: for one set,
we put a source in channel 1 and nothing in channel
2, and for the other set, we put a source in channel
2 and nothing in channel 1. By processing the two
mixtures separately, it was easier to determine the re-
sultant SNR's.

Using the procedure described in the previous sec-
tion, we determined the separating matrix by inverting
the mixing matrix. To vary the filter lengths, we ap-
plied an L-point Hanning window (centered around the
peak of each filter) to the 8,192 tap unmixing filters,
where L is the desired filter length. We then convolved
the separating matrix with the mixture vectors to get
an estimate of the original sources. We obtained sep-
aration SNR measurements by computing how much
the channels with the sources bled into the channels
without the sources.

Figure 5 shows one unmixing filter from each of the
four configurations that we tested. We can make two
important observations by visually comparing these un-
mixing filters. Most importantly, notice how dense the



2x2 unmixing filter is compared to the other three.
Each 2x2 unmixing filter clearly requires more infor-
mation to separate the mixtures than the other three
configurations.
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Figure 5: Unmizing filters for a 222, 4z2, 62, and 8z2
configuration. Filter lengths of 8,192 taps were used to
generate these filters.

Secondly, the range in amplitude of the unmixing
filters decrease as the number of sensors in the configu-
ration increase. This can be explained by the fact that
each unmixing filter in an M XN configuration adds
M modified copies of a mixed signal to produce the
output. Therefore, the more copies that are added
together, the lower the amplitude for each copy. An
important corollary of this observation follows: when
using a blind deconvolution algorithm, (most of) the
weights are initialized to zero. It is, therefore, benefi-
cial if the slowly-adapting filters do not need to reach
such high amplitudes to converge upon a solution.

The SNR measurements, listed in Table 1, clearly
show the benefits of using overdetermined mixtures to
separate acoustic sound mixtures. To obtain the data,
we ran several trials for each filter configuration and
filter length, using different source locations and dif-
ferent combinations of sound sources. We observed no
bias for any particular source location or type of sound
used, so we averaged our results based on the filter
configuration and filter length.

As expected, longer unmixing filter lengths yield
better separation. As we shortened the filter lengths
to 256 and 128 taps, the separating filters began to
severely distort the signals, therefore making these SNR
measurements invalid.

More significant to this work, however, is that us-
ing more microphones yields better separation. With
filter lengths of 1,024 points, for example, using 8 mi-

8192 | 4096 | 2048 | 1024 | 512 | 256 | 128

8x2 [ 36.9 | 33.4 | 24.6 | 16.4 | 86 | 3.3 | 5.1

6x2 | 33.0 | 28.4 | 21.8 | 13.0 | 3.3 | -3.0]| 1.2

4x2 | 28.9 | 24.9 | 134 | 4.2 20| -2.4 | 6.8

2x2 | 15.8 | 13.8 | 8.2 40 | 06 | -1.2 | -3.4

Table 1: SNR measurements: boldface numbers show
good, consistent separation (based on listening to the
outputs); italicized SNR values are invalid due to signal
distortion. All values are in dB.

crophones instead of 2 or 4 provides an additional 12dB
of separation. Since it is generally more difficult for a
blind separation and deconvolution algorithm to adapt
to longer filters, these results encourage us to use overde-
termined mixtures whenever possible.

5. OVERDETERMINED BLIND
SEPARATION

Some of the more commonly used blind separation and
deconvolution adaptation rules are constrained to only
handling square matrices of filters [1]. For our ex-
periment, we used the multichannel blind least-mean-
square algorithm (MBLMS) described by Lambert [8].

The MBLMS algorithm attempts to minimize the
cost function J where u is the estimated output and g
is the Bussgang nonlinearity that uses prior knowledge
of the probability density function (pdf) of the sources.

J=tr E{(u—g)(u—g)"}

The weight update equation is determined from the
cost, function, where z is the mixture of sources:

9J _9J ou _9dJ
oW~ dudw  ou
0]
ou

*

(u—g)

W =W + u(u — g)z*

We ran the algorithm on the four different filter
configurations used in the previous section, using trun-
cated and windowed room impulse responses as our
mixing filters. Figure 6 shows one of these responses.
We set the algorithm to learn 512-tap filters, and we
used 200,000 gamma-distributed (speech-like) random
samples.

We used a Multichannel Intersymbol Interference
(ISI) performance metric to determine how close the
learned unmixing filters were to a scaled and/or per-
muted identity FIR matrix [8]:
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Figure 6: A shortened room impulse response used in
MBLMS algorithm. The sampling rate was 11.025kHz.
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where s;; are the filter elements of the mixing matrix,
W convolved with the separating matrix, A. The ISI
converges to zero for a perfectly learned unmixing ma-
trix. Figure 7 shows a comparison plot of the IST mea-
surements as the algorithm ran through all the sample
points for each configuration.
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Figure 7: ISI measurements obtained from the MBLMS
algorithm for four different filter configurations.

The plots show that the MBLMS algorithm per-
forms significantly better when the number of sensors
are increased.

6. CONCLUSION

Much of the work done so far in the blind separation
of real world audio signals has been centered around
square mixtures, where N sensors are used to sepa-
rate N sources. We have examined room impulse re-
sponses (and their inverses) and compared blind sep-
aration and deconvolution results from different filter
configurations (using an MBLMS algorithm). The re-
sults reported in this work encourage us to extend these
blind separation algorithms to handle the overdeter-
mined case.
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