
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006 2919

System-Level Buffer Allocation for
Application-Specific Networks-on-Chip

Router Design
Jingcao Hu, Member, IEEE, Umit Y. Ogras, Student Member, IEEE, and Radu Marculescu, Member, IEEE

Abstract—In this paper, a novel system-level buffer planning
algorithm that can be used to customize the router design in
networks-on-chip (NoCs) is presented. More precisely, given the
traffic characteristics of the target application and the total budget
of the available buffering space, the proposed algorithm automat-
ically assigns the buffer depth for each input channel, in different
routers across the chip, such that the overall performance is
maximized. This is in deep contrast with the uniform assignment
of buffering resources (currently used in NoC design), which can
significantly degrade the overall system performance. Indeed, the
experimental results show that while the proposed algorithm is
very fast, significant performance improvements can be achieved
compared to the uniform buffer allocation. For instance, for a
complex audio/video application, about 80% savings in buffering
resources, can be achieved by smart buffer allocation using the
proposed algorithm.

Index Terms—Buffer sizing, design automation, low power,
networks-on-chip (NoCs), optimization.

I. INTRODUCTION

W ITH THE recent advances in the semiconductor tech-
nology, it is possible for designers to integrate on a

single chip tens of Intellectual Property (IP) blocks together
with large amounts of embedded memory. This richness of the
computational resources (CPU or DSP cores, video processors,
etc.) places tremendous demands on the communication re-
sources as well. Additionally, the shrinking feature size in the
deep submicrometer (DSM) technologies makes interconnect
delay and power consumption the dominant factors in the op-
timization of modern systems. Interconnect optimization under
DSM effects is complicated because of the worsening effects
due to crosstalk, electromagnetic interference, etc. [31].

The NoC approach was proposed as a promising solution
to these complex on-chip communication problems [4], [10],
[15], [21]. For the NoC architecture, the chip is divided into a

Manuscript received March 1, 2005; revised July 5, 2005 and November 23,
2005. This work was supported in part by the National Science Foundation
(NSF) under Grant CCR-00-93104 and in part by Marco Gigascale Systems
Research Center (GSRC). This paper was recommended by Associate Editor
R. Gupta.

J. Hu was with the Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA 15213-3890 USA. He is now with
Tabula, Inc., Santa Clara, CA 95054 USA (e-mail: jhu@tabula.com).

U. Y. Ogras and R. Marculescu are with the Department of Electrical and
Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-
3890 USA (e-mail: uogras@ece.cmu.edu; radum@ece.cmu.edu).

Digital Object Identifier 10.1109/TCAD.2006.882474

Fig. 1. (a) NoC implementing a 2-D mesh topology. (b) Typical on-chip router
architecture.

set of interconnected blocks (or nodes) where each node can be
a general-purpose processor, a DSP, a memory subsystem, etc.
Fig. 1(a) shows an example of an NoC implementation where
nodes are connected using a simple two-dimensional (2-D)
mesh topology. A router is embedded within each node with the
objective of connecting it to its neighboring nodes [a typical on-
chip router for a 2-D mesh NoC is shown in Fig. 1(b)]. As such,
instead of routing design-specific global wires, the internode
communication can be achieved by routing packets.

Compared to a standard data macro network, an on-chip
network is by far more resource limited. To minimize the im-
plementation cost, the on-chip network should be implemented
with very little area overhead. This is especially important
for those architectures composed of nodes designed at a fine
level of granularity. The input buffers in a typical on-chip
router [highlighted in Fig. 1(b)] take a significant portion of

0278-0070/$20.00 © 2006 IEEE

2920 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

the silicon area of the NoC [18], [30]; consequently, their size
should be carefully minimized. On the other hand, the raw
performance of a NoC is drastically impacted by the amount
of buffering resources it can use, especially when the network
becomes congested. Moreover, since the traffic characteristics
vary significantly across different applications, the buffering
resources have to be judiciously allocated to each input channel
to match the specific communication patterns that characterize
various applications. The uniform distribution of buffering re-
sources, although straightforward and widely used in current
NoC designs, fails to achieve this objective; this leads to poor
performance and/or excessive use of the silicon area. To address
such issues, the contributions of this paper are twofold.

1) We propose an efficient algorithm that optimizes the allo-
cation of buffering resources across different router chan-
nels while matching the communication characteristics
of the target application. More precisely, given the total
available buffering space, the arrival rates between differ-
ent communicating IP pairs, and other relevant architec-
tural parameters (e.g., routing algorithm and arbitration
delay), our algorithm automatically decides the buffer
depth for every input channel in each on-chip router.
As an example, referring to Fig. 1, instead of uniformly
assigning the buffer size to be four units for each and
every input channel, we may assign the size of the “east
input buffer” in the router located at tile (1,2) to be six
units while keeping the size of the “south input buffer” in
the router located at tile (2,2) to be one unit. This buffer
sizing can be done based on the communication charac-
teristics of the target application, such that the overall
network performance is maximized. For a complex au-
dio/video application, such an application-specific buffer
customization allows us to achieve the same performance
level as a straightforward implementation, which assigns
the buffer size uniformly across the chip but using around
80% less buffering resources. Besides area savings, this
reduction in buffer size is also important from a power
dissipation perspective.

2) We propose a novel analytical model that can be used
to quickly analyze and detect the potential performance
bottlenecks in different router channels. This is accom-
plished by solving a set of nonlinear equations derived
from detailed queuing models. This analytical model lies
at the very heart of the algorithm for allocating buffer
resources. The main advantage of using this analyti-
cal approach as opposed to straightforward simulation
is the ability to quickly analyze the impact of various
application-specific communication patterns on the over-
all system’s performance.

The remaining part of this paper is organized as follows: In
Section II, we give a brief review of the relevant work. The
problem of buffer allocation for NoCs is then described in
Section III. Following that, in Section IV, an efficient heuristic
is proposed to solve this problem. The basic idea is to iteratively
add more buffering resources to the router channel identified
as being the performance bottleneck. Experimental results in

Section V show that significant performance improvements
can be achieved while satisfying the same total buffering
space budget, compared to uniform buffer allocation. Finally,
we summarize our contribution and suggest directions for
future work.

II. RELATED WORK

NoC design typically targets a specific application or a
limited class of applications. Thus, the NoC architecture can be
customized for each specific application to achieve best energy,
performance, and cost tradeoffs [4], [22]. In [19] and [27], the
authors show the benefits of the network topology customiza-
tion on the system area, power, and latency. The authors of [17]
and [24] investigate the topological mapping of IPs onto the
NoC architectures for bandwidth and communication energy
savings.

The work presented in this paper follows a different direction
by addressing the customized application-specific allocation
of buffer resources to different channels in each router. To
the best of our knowledge, our work is the first in providing
an efficient way to solve the buffer space allocation problem
for NoC designs. Traditional work on performance evaluation
in parallel computing uses either time-consuming simulation
(e.g., [7] and [14]) or provides analytical models for limited
traffic conditions (typically uniform models) [2], [8]. The as-
sumption of uniform traffic makes sense in general-purpose
parallel computing as the interconnect architecture needs to
support a wide spectrum of applications. However, such an
assumption may not be appropriate for NoC designs; NoCs
are typically designed for specific applications and thus exhibit
very specific traffic patterns.

Adve and Vernon [1] model a wormhole-based [9] mesh
network as a closed queuing network and use approximate
mean value analysis to calculate the average packet latency un-
der arbitrary source–destination probabilities. However, these
analytical models apply only to networks with infinite buffers
(e.g., [2] and [8]) and/or single-flit buffers [1]. As such, they
cannot be used for buffer allocation in which the effect of
arbitrary, but finite, buffer size has to be explicitly modeled.

The network calculus method [5] introduced by Le Boudec
and Thiran uses max–min algebra to derive some useful prop-
erties of macro networks. Particularly related to this paper,
it can be used to compute the minimal buffer size required
given a maximal peak rate or even some more complex arrival
traffic pattern. However, one main problem in applying the
network calculus to on-chip network is that the bound derived
by the network calculus can be very loose. Although this may
not be a serious problem for macro networks (which typically
have much larger buffer sizes), this limitation makes network
calculus not suitable for on-chip networks in which the buffer
sizes are typically very small.

From a different perspective, the design issue of efficient
buffering structure for on-chip NoC has been addressed [13],
[30]. In [13], custom-made hardware first-in-first-out (FIFO) is
used in favor of RAMs due to performance and area consider-
ations. In [30], the implementation structure of the buffer for
Proteo NoCs is presented. However, neither of them addressed

HU et al.: SYSTEM-LEVEL BUFFER ALLOCATION FOR APPLICATION-SPECIFIC NoC ROUTER DESIGN 2921

the problem of customizing buffer sizes to match the applica-
tion traffic under consideration.

Chandra et al. [6] investigated the impact of interconnect
FIFO sizing on interconnect throughput. However, the research
in that paper focuses on single-source single-sink interconnect,
thus cannot be directly applied to the buffer size allocation
problem addressed in this paper, as the impacts of traffic merg-
ing, splitting, etc., have to be considered. Moreover, the results
provided in [6] are based on time-consuming simulation. Such
an approach is not suitable in buffer size allocation problem
addressed in this paper as the solution space that we need to
explore explodes as a function of problem size.

III. PROBLEM OF ROUTER BUFFER

ALLOCATION FOR NOCS

Simply stated, given the communication probability profile
between each communicating pair of IPs and the total budget
of buffering resources that the designer is allowed to use, the
problem we need to solve is to find the “buffer depth assign-
ment for each input channel,” across all the on-chip routers,
such that the communication performance is maximized. If the
performance is measured in terms of average packet latency,
then maximizing the performance means, in fact, minimizing
the end-to-end packet latency.

Next, we review the network platform and the traffic mod-
els that are relevant to our algorithm. We then formalize the
problem and illustrate the significance of finding a good solu-
tion to it.

A. System Characterization

1) Platform Characterization: The system under considera-
tion is composed of n× n tiles interconnected by a 2-D mesh
network. Because of its simplicity, the choice of a 2-D mesh as
the underlying NoC architecture serves only as an example for
our algorithm.1 We further assume that deterministic routing
(e.g., dimension-ordered routing [25]) is used to direct the
packets across the network instead of adaptive routing because
of the resource limitations, as well as the out-of-order packet
delivery problem associated with the adaptive routing. More
precisely, store-and-forward or virtual cut-through [20] routing
is assumed to be used for the network. Thus, in our analysis, a
packet can be treated as a basic/atomic unit since it will always
be transmitted or buffered as an indivisible entity.

For the sake of simplicity, we assume that all the packets
in the network have a fixed size. Thus, in the absence of
packet contention, the service time of each packet in a router
(measured as the time span from the moment when the packet
arrives at the header of the input channel of the router to
the time it takes to receive it by the input channel of the
downstream router) is fixed and can be accurately calculated.

1The algorithm can be extended for arbitrary topologies and sizes as it will
be explained later.

More precisely, the service time per packet (S) in a router
without contention can be calculated as follows:

S = TAD + TSEL + TARB + TCB + TLINK. (1)

In (1), TAD, TSEL, and TARB are the delays of the address de-
coding, routing path selection, and crossbar arbitration, respec-
tively. These parameters are usually independent of the packet
length. On the other hand, TCB and TLINK model the delays
in the crossbar and link traversal, respectively; they are usually
proportional to the packet size. Note that S in (1) represents the
delay of a packet being transmitted across the router when there
are no other packets present (i.e., no congestion). To calculate
the real network delay, queuing/blocking delay should be also
included; this will be further described in Section IV-A. We
also note that different router architectures may lead to different
delay models (e.g., [28]), but this will not change the flow of our
buffer allocation algorithm.

We assume that the on-chip routers have the structure
shown in Fig. 1(b). Each input controller has a separate buffer
(typically implemented using registers for performance rea-
sons) that buffers the input packets before delivering them to
the output channels. Each such input buffer in the router can
have a different depth. This can be easily implemented, for
instance, at the instantiation phase through a parameterized
design methodology. When a new packet is received, the ad-
dress decoder processes the incoming packet and sends the
destination address to the channel controller; this controller
determines which output channel the packet should be delivered
to. Once the router has made the decision on which direction
the data should be routed to, the channel controller sends the
connection request to the “crossbar arbiter” to set up a path to
the corresponding output channel.

The actual use of the input buffer is regulated through a
backpressure mechanism. Under this scheme, a packet is held
in the buffer until the downstream router has enough empty
space available (in the corresponding input buffer) such that
network will not drop any packet in transit. This is extremely
important for NoC architectures where implementing advanced
end-to-end protocols may not be possible. Once a packet arrives
at an input buffer, it will be served on a first-come-first-served
(FCFS) manner.

Without loss of generality, we assume that the buffer size is
measured in multiples of packet size. More specifically, let size
of a packet be SP bytes; then, the size of any input buffer must
be m× SP, where m is a positive integer. We also assume the
size of the “local input” buffer [the input channel that accepts
packets from the router’s local processing element (PE), see
Fig. 1(a)] to be infinite. As discussed later in this paper, this
is a reasonable assumption since the PE can also use its local
memory (which is usually much larger compared to router
buffers) to store input packets. Due to this assumption, the size
of local input buffer will not be explicitly considered anymore
in our allocation process.

The crossbar arbiter maintains the status of the current
crossbar connection and determines whether or not to grant
connection permission to the channel controller. When there are
multiple input channel controller requests for the same available

2922 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

TABLE I
PARAMETER NOTATION

output channel, the crossbar arbiter also uses the FCFS policy
to decide which input channel gets the access, such that the
starvation at a particular channel can be avoided.
2) Traffic Characterization: Similar to most previous work

on interconnection network performance evaluation, the traffic
pattern of a given application is modeled assuming that each PE
injects packets with a “Poisson” distribution. More specifically,
let (x, y) be the location of the tile at the intersection of column
x and row y of the NoC as shown in Fig. 1(a); this means that
for the PE located at (x, y), the packet injection is modeled with
a Poisson input rate ax,y . Moreover, we assume that any packet
injected in the network is independent. For a packet generated
by PE at (x, y), the probability that the packet is delivered to
the PE at (x′, y′) is represented by dx′,y′

x,y .
The average packet latency (L) is used as the metric for

NoC communication performance. Similar to previous work,
we assume that the packet latency spans the instant when the
packet is created, to the time when the packet is delivered
to the destination node, including the queuing time spent at
the source. We also assume that the packets are consumed
immediately once they reach their destination nodes. Although
this is a simplified model, we feel that such simplifications
are necessary to provide an analytical solution to the buffer
allocation problem.

B. Problem Formulation

For convenience, we summarize the basic parameters in
Table I.2 With these notations, the problem of router buffer

2Some of the parameters will be explained later in more detail.

Fig. 2. Router sizes with different FIFO capacity per input channel. X-axis
gives the FIFO capacity for each input channel. Y -axis gives the router size in
number equivalent gates.

allocation for performance maximization under total buffering
space constraints can be formulated as follows:

Given:
Total available buffering space B
Application communication characteristics ax,y and dx′,y′

x,y

Architecture specific packet servicing time S and routing
function R

Determine:
Buffer size lx,y,dir for each input channel that minimizes
the average packet latency L, i.e.,

min(L) s.t.
∑

∀x

∑

∀y

∑

∀dir

lx,y,dir ≤ B. (2)

C. Significance of the Problem

To reduce the NoC implementation cost and power dissi-
pation, small on-chip routers are definitely needed. To better
understand the main consumers of resources, we prototyped an
on-chip router based on the architecture shown in Fig. 1(b) [18].
The router supportsXY routing with FCFS crossbar arbiter and
uses a 0.16-µm technology. In this design, each input port has
a fixed link width of 32 bits. The FIFOs are implemented using
registers for good performance/power efficiency.3

Fig. 2 shows the area of the router as a function of FIFO size.
The X-axis represents the FIFO capacity as number of words
(a word is equal to 32 bits in this plot), whereas the Y -axis gives
the area of router in equivalent gates. As we can see, increas-
ing the FIFO capacity significantly increases the router area.
For instance, increasing the FIFO size in each input channel
from two to three words leads to an increase of total router
area by 30%.

The layout of the router with each channel having uniformly
assigned an FIFO size of four words is provided in Fig. 3, where

3More specifically, the IP DW_fifo_s2_sf from Synopsys DesignWare Foun-
dation library is instantiated as our FIFO modules in this design.

HU et al.: SYSTEM-LEVEL BUFFER ALLOCATION FOR APPLICATION-SPECIFIC NoC ROUTER DESIGN 2923

Fig. 3. Router layout with FIFO capacity of four words. Area taken by FIFO
is highlighted in yellow (light) color.

Fig. 4. System performance with different FIFO capacities.

the area occupied by FIFOs is highlighted. As expected, the
FIFO takes a significant part of the total area, as has also been
observed by other researchers (e.g., [29]). Thus, to minimize
the implementation overhead of NoC, an effective approach is
to reduce the overall use of the buffering space in the routers.

In general, the more buffering resources become available,
the better the performance gets. To show the impact of the FIFO
capacity on the communication performance, we simulated a
4 × 4 NoC system under different traffic patterns when the
FIFO capacity changes. Each simulation is first run for a warm-
up period of 2000 cycles. After that, performance data are
collected after chunks of 20 000 packets are sent. A cycle-
accurate interconnection network simulator (“Nets”) was im-
plemented in C++. Nets supports 2-D mesh networks with
packet routing; it has been designed to be easily customized to
simulate different designs under various traffic patterns. Since
many factors (e.g., routing path selection delay and crossbar
arbitration delay) have a significant impact on the NoC per-
formance, Nets models them accurately with the actual values
taken from the prototype router design.

Fig. 4 shows a typical latency/throughput plot under different
communication loads and FIFO sizes. The simulated traffic
pattern is “hot spot,”4 where the PEs located at tiles (1,0) and
(2,2) [see Fig. 1(a)] are the ones chosen as hot spots. The impact
of the buffer size on the average packet latency is obvious from
Fig. 4. More specifically, when the network becomes congested,
increasing the buffer size helps in reducing the average packet
latency. For instance, under the injection rate of 0.203 packets

4The hot spot traffic is explained in Section V.

Fig. 5. Histogram for 1000 different random buffer configurations.

per clock cycle, the average packet latency of the system with
a uniform buffer size of two is 2061 clock cycles (point A in
Fig. 4), whereas the average packet latency for a uniform buffer
size of three is only 68 clock cycles (point B in Fig. 4).

On the other hand, increasing “uniformly” the capacity of
every FIFO in every on-chip router may not be the most effec-
tive way to use the silicon area. Because of the heterogeneity of
the traffic pattern in most application-specific NoCs, it makes
sense to allocate more buffering resources only to the heavy
loaded channels. The main idea is that the more “important”
channels get allocated larger FIFOs compared to other less
important channels.

Indeed, it turns out that customizing the buffer size individu-
ally can improve the overall system performance significantly.
To illustrate this idea, we arbitrarily select the system in which
each input channel has a uniform buffer size of 4 × SP and use it
as an example to see how much performance improvement can
we gain by judicious buffer allocation. We note that the routers
at the border of the NoC may have fewer input channels (for
instance, the routers in the bottom row do not need south input
channel). Thus, there are in fact only 48 channels, and the total
buffering space used is thus 4 × SP × 48 = 192 × SP (i.e.,
B = 192). We randomly generate 1000 solutions, all of them
using a size of 192 × SP buffering space. Each configuration
is then simulated under the injection rate of 0.212 packets/s.
The performance is shown as a histogram in Fig. 5.

As we can see, the solutions vary significantly in terms of
average packet latency, despite the fact that all of them use
exactly the same total amount of buffering space. Another
interesting thing to note is that, among the 1000 random gener-
ated solutions, the best solution ever found has average packet
latency of 66 clock cycles, which is significantly better than
the performance of the system having every buffer uniformly
assigned of size 4 × SP, whose average packet latency is as high
as 614 clock cycles. (There is a factor of 10 difference between
the two latency values.)

On the other hand, 1000 random solutions represent only
a small portion of the entire solution space; thus, the optimal
solution may perform even better than the best solution shown
above. Indeed, by applying our buffer allocation algorithm,
the system generated by the algorithm has an average packet
latency of as low as 33 clock cycles at the injection rate of

2924 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

0.212 packets per cycle. We need to note that the performance
of the system with the customized FIFO buffers performs even
better than the system with uniform FIFO capacity of 8 × SP,
which has an average packet latency of 39 clock cycles at this
injection rate. Consequently, by customizing the buffer size, we
can actually implement a system that has better performance but
uses only half of the buffering resources compared to a system
with FIFO size uniformly assigned to 8 × SP. This fully justifies
the approach we take for FIFO size customization.

As a side note, we would like to point out that, compared
to uniform buffer size allocation, we expect significant leakage
energy savings as a by-product for the systems having the buffer
sizes customized. The reason is that by allocating the buffer
size according to the traffic pattern of the target application, the
total buffering resources used in the system can be significantly
reduced without degrading its performance. Since the total leak-
age power is proportional to the total buffering space, the sys-
tem customized by buffer size allocation should thus consume
less leakage power. However, since this paper focuses mainly
on the buffer allocation problem for performance optimization,
the energy issues are not addressed explicitly hereafter.

Obviously, the only way to find exactly the best solution
is by enumerating and simulating all the possible solutions.
Unfortunately, the solution space increases combinatorially
with the network size and total buffer budget; therefore, the
enumeration of the solution space is too expensive to afford,
especially since we need to simulate each solution to evaluate
the system performance. Thus, we propose next an efficient
analytical heuristic.

IV. SOLVING THE ROUTER BUFFER

ALLOCATION PROBLEM

In this section, we present a novel buffer allocation algorithm
that starts from the minimum buffer size configuration (where
each input channel has a buffer size of only one packet) and
iteratively increases the buffer size of the bottleneck channels
until the specified value of the buffer budget is reached.

A. Router/Channel Analytical Models

The main part of the algorithm implements a technique
for detecting the performance bottleneck among the different
router channels. More specifically, given the current buffer size
configuration, the algorithm tries to identify the channels where
adding extra buffering space leads to the maximum improve-
ment in performance. One way to guide this process would
be to simulate the system implementing such a configuration
and then profile the simulation results. Unfortunately, despite
its flexibility, the simulation approach suffers from extremely
long simulation times. Since we need to evaluate the system
for every possible buffer configuration, the evaluation based on
direct simulation is simply impossible to afford.

In the following, we propose a novel analytical model that
can be used to quickly analyze the current buffer size config-
uration and detect the performance bottlenecks in the router
channels; this is done by solving a series of nonlinear equations
derived from queuing models. The basic idea is that, given the
system configuration (which includes the traffic pattern, the

Fig. 6. Queuing model of a router.

routing delay, and the size of each FIFO in the current solution),
the algorithm detects the FIFO that has the highest probability
to be in the “full state.” The channel that owns this particular
FIFO becomes the real performance bottleneck in the current
configuration, and thus, its size should be increased.

We point out that to facilitate the analysis and make the
problem manageable, the model needs to rely on some approxi-
mations. Nonetheless, as supported by our experimental results
in Section V, the model we propose subsequently does provide
an efficient solution for bottleneck channel identification.

To solve this problem analytically, we resort to the theory
of finite queuing networks [16]. The basic element in the
model is an M/M/1/K finite queue (the first two “M” mean
that the customer arrival time and server’s service time follow
exponential distributions, “1” tells that the queue has one server
to provide the service, and, finally, “K” represents the capacity
of the queue). In this case, the channel Cx,y,dir is modeled as
a finite queue of length lx,y,dir, with the arrival rate λx,y,dir,
served by one server with service rate µx,y,dir. Both interarrival
and service times are independent and identically distributed,
following exponential distributions.

With this model, we can further develop the queuing model
of a router as shown in Fig. 6. The five bubbles in the left-
hand side represent the five channels of Rx,y [i.e., the router
placed at tile (x, y)], with N , E, W , S, and L representing the
directions of north, east, west, south, and local, respectively.
On the right-hand side, the upper four bubbles represent the
four corresponding input channels in router Rx,y’s neighboring
routers, and the bottom bubble represents the output channel to
Rx,y’s local PE (PEx,y). These five bubbles on the right side
give all the queues that the packets in Rx,y can possibly go to
during the next time step and thus directly affect the calculation
of the parameters related to Rx,y .5

Now, let us consider, for instance, the north input channel at
routerRx,y. This channel is represented asCx,y,N in Fig. 6. As-
suming the network is not overloaded (i.e., λx,y,dir < µx,y,dir),
then the arrival rate of Cx,y,N can be calculated using the
following equation:

λx,y,N =
∑

∀j,k

∑

∀j′,k′

aj,k × dj′,k′

j,k ×R(j, k, j′, k′, x, y,N). (3)

5To make the figure more readable, only the most relevant connections and
parameters are explicitly shown in Fig. 6.

HU et al.: SYSTEM-LEVEL BUFFER ALLOCATION FOR APPLICATION-SPECIFIC NoC ROUTER DESIGN 2925

Fig. 7. Queuing model of a channel.

In (3), the routing function R(j, k, j′, k′, x, y,N) equals 1 if
the packet from PEj,k to PEj′,k′ uses the channel Cx,y,N ; it
equals 0, otherwise. Note that we assume a deterministic
routing algorithm; thus, the function of R(j, k, j′, k′, x, y,N)
can be predetermined. Also, because the traffic flow is prede-
termined, the parameters pW

x,y,N , pE
x,y,N , pS

x,y,N , pN
x,y,N , and

pLO
x,y,N can be precalculated. (We use LO to represent the “local

output” direction; thus, pLO
x,y,N gives the probability of a packet

in Cx,y,N to be delivered to PEx,y).
Now, the only unknown parameter for channel Cx,y,N is its

service rate µx,y,N . Once the value of µx,y,N is determined, the
blocking probability of Cx,y,N (i.e., the probability of Cx,y,N

to be in full state) can be calculated using the finite M/M/1/K
queuing model with the following equations [16]:

ρx,y,N =
λx,y,N

µx,y,N
(4)

bx,y,N =
1 − ρx,y,N

1 − ρlx,y,N+1
x,y,N

× ρlx,y,N

x,y,N . (5)

The calculation of µx,y,N is not trivial, as it depends not
only on the router’s service delay [as shown in (1)] but also
on probabilities of a packet being routed to each downstream
channel and whether or not the downstream channels are full.
For instance, if the packet is to be delivered eastward and the
west input channel of router Rx,y,N ’s immediate east neighbor
(i.e., Cx+1,y,W) is full, then the packet has to wait in channel
Cx,y,N .

We derive the following models to take into consideration
such effects. For the sake of simplicity, we assume next that the
packet size is fixed and a link can transmit a packet within one
clock cycle. This assumption can be relaxed to arbitrary packet
sizes provided that the buffer is always allocated as an integer
number of packet size and the network uses store-and-forward
or virtual cut-through so that each packet can be treated as an
atomic entity.

As shown in Fig. 7, we derive the queuing model observed
by an input channel (in our example, Cx,y,N) by separating out
the remaining part into two distinct queues. The bubble labeled
with S models the delay involved in router service delay (1),
whereas the five bubbles on the right-hand side model the delay
of the packet to be accepted by each downstream input channels
(Fig. 7).

Now, let us consider the behavior of a downstream channel
and use Cx+1,y,W as an example. It can accept a new packet
during the next clock cycle provided that it still has available

Fig. 8. Reduced model of a channel.

space in its FIFO, whereas no packet can be accepted when its
FIFO is full. Thus, we can use the reciprocal of the blocking
probability to approximate the service rate that can be provided
to the upstream router. More specifically, the “effective service
rate” observed byCx,y,N is approximated as 1/bx+1,y,W . Since
the total arrival rate to channel Cx+1,y,W is λx+1,y,W , if we
approximate the service provided by Cx+1,y,W to its upstream
router as an M/M/1 queue, the expected number of packets in
the queue to be delivered to channel Cx+1,y,W can then be
calculated as [16]

Nx+1,y,W =
λx+1,y,W

1
bx+1,y,W

− λx+1,y,W

. (6)

On the other hand, based on Little’s formula [16]

Nx+1,y,W = λx+1,y,W × wx+1,y,W . (7)

Now, replaceNx+1,y,W in (6) with the right-hand side of (7).
The average waiting time for entering the FIFO of Cx+1,y,W

can then be approximated as

wx+1,y,W =
1

1
bx+1,y,W

− λx+1,y,W

. (8)

Note that the contention delay over the link between the
on-chip routers is also taken into consideration in (8). On the
other hand, wx+1,y,W should also be the average waiting time
observed by a packet in the channel Cx,y,N if it is to be
delivered eastward to Cx+1,y,W . To facilitate the analysis, we
now assume that Cx,y,N has an equivalent separate eastward
queue without competing with other input channels. The arrival
rate of this queue is then pE

x,y,N × λx,y,N . If this virtual queue
should provide the same average latency packet, then its service
rate µ̄E

x,y,N must satisfy the following equation, again based on
Little’s formula:

wx+1,y,W =
1

µ̄E
x,y,N − pE

x,y,N × λx,y,N
. (9)

Substituting wx+1,y,W in (8) with the right-hand side of (9),
we can calculate the equivalent service rate of this virtual queue
(µ̄E

x,y,N) by

µ̄E
x,y,N =

1
bx+1,y,W

− λx+1,y,W + pE
x,y,N × λx,y,N . (10)

The average service contributed by all five downstream chan-
nels can now be calculated by the following equation:

µ̄x,y,N = pN
x,y,N× µ̄N

x,y,N + pE
x,y,N× µ̄E

x,y,N + pW
x,y,N

× µ̄W
x,y,N + pS

x,y,N× µ̄S
x,y,N + pLO

x,y,N× µ̄LO
x,y,N . (11)

With this representation of µ̄x,y,N , the model in Fig. 7 can be
further reduced as shown in Fig. 8.

2926 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Fig. 9. Buffer allocation algorithm flow.

The next step to further simplify the model is merging the
two queues as shown in the dashed box in Fig. 8.6 Thus, the
average queue length of Cx,y,N can be approximated by

qx,y,N =
λx,y,N

µx,y,N − λx,y,N
. (12)

On the other hand, if we treat the two queues in the dashed
box as two independent M/M/1 queues, then the average queue
length of Cx,y,N should be equal to the sum of the length of
these two queues, i.e.,

qx,y,N =
λx,y,N

1/S − λx,y,N
+

λx,y,N

µ̄x,y,N − λx,y,N
. (13)

Combining (12) and (13) together, we have

µx,y,N = λx,y,N +
1

1
1/S−λx,y,N

+ 1
µ̄x,y,N−λx,y,N

. (14)

At this point, we have described the relation between the
channel service rate µ and the channel blocking probability b
[by combining (10), (11), and (14)]. By performing similar
derivations for all input channels, we can finally build a series of
equations that describe the system’s behavior. When given other
parameters (i.e., routing function R(j, k, j′, k′, x, y,dir), ax,y ,
dx′,y′

x,y , S, and lx,y,dir), these equations can be solved together
by a nonlinear equation solver to determine the important
parameters related to the system performance (such as µx,y,dir

and bx,y,dir). This is described next.

B. Buffer Allocation Algorithm

We propose an efficient greedy algorithm to solve this prob-
lem based on the aforementioned analytical model. The flow of
algorithm is shown in Fig. 9.

Given the architecture parameters (such as the routing algo-
rithm, delay parameters, etc.) and the application parameters
(ax,y and dx′,y′

x,y), the “system analyzer” (written in C++)

6Think of the dashed box in Fig. 8 as a server serving the packet in Cx,y,N

with the rate of µx,y,N .

automatically generates the system equations for all the routers
using the above modeling technique and writes the equations
to a Matlab script file. At the same time, it also generates
the initial buffer configuration that assigns the buffer in all the
used channels (λx,y,dir �= 0) to be one packet large. Next, the
“equation solver” is used to solve the given equations and
determine bx,y,dir for each input channel. Currently, in our tool
flow, the fsolve utility from Matlab is used as the nonlinear
equation solver.

In the next step, the channel with the largest bx,y,dir is
selected as the bottleneck channel, and the size of its buffer
(lx,y,dir) is incremented by one packet. The previous proce-
dure is repeated until the total buffering space used in all
the channels across the chip reaches the buffer limit B (i.e.,∑

∀x

∑
∀y

∑
∀dir lx,y,dir = B).

Let C be the number of channels participating in channel
buffer allocation and F (C) be the complexity of the nonlinear
solver used in solving the equations. Then the theoretical “com-
plexity” of the buffer allocation algorithm is O(B × F (C)), as
it will invoke the solver for O(B) iterations. Although simple
in nature, the algorithm performs extremely well in allocat-
ing buffering resources, as demonstrated by the experimental
results.

Please note that, instead of the simple greedy algorithm intro-
duced here, other more sophisticated algorithms (e.g., genetic
algorithm, branch, and bound) can also used to solve the buffer
allocation problem by leveraging our analytical model.

V. EXPERIMENTAL RESULTS

A. Evaluations Under Uniform and Nonuniform
Random Traffic

In this first set of experiments, we applied our algorithm to
applications with random traffic models [7], [14]. In addition,
we also tested our algorithm with different routing schemes, as
well as different buffering resource budget values (B).

Table II shows the average packet latency comparison
between the NoCs with uniformly allocated FIFO buffers
(denoted by “UNoC” hereafter) and systems that benefit from
customized buffer allocation (denoted by “CNoC”). All the

HU et al.: SYSTEM-LEVEL BUFFER ALLOCATION FOR APPLICATION-SPECIFIC NoC ROUTER DESIGN 2927

TABLE II
PACKET LATENCY (CYCLES) COMPARISON USING RANDOM TRAFFIC

PATTERNS (XY ROUTING, MESH TOPOLOGY, 4 × 4 NOC)

NoCs reported in Table II are composed of 4 × 4 tiles and use
XY routing. (In short, for 2-D mesh networks, theXY routing
first routes packets along the X-axis. Once the packets reach
the column where lies the destination tile, they are then routed
along the Y -axis). Two traffic patterns7 used in this evaluation
are uniform and hot spot. Under the uniform traffic pattern, a PE
sends a packet to any other node with equal probability. Under a
hot spot traffic pattern, one or more nodes are chosen to receive
an extra proportion of traffic in addition to the regular uniform
traffic.

Referring to Table II, both “1hotspot-1” and “1hotspot-2”
have only one hot spot, which is located at PE2,2 and PE0,1,
respectively (see Fig. 1). “2hotspot” and “3hotspot” are the
hot spot traffic patterns that have two and three hot spots,
respectively, with the hot spots’ location arbitrarily selected
across the chip. For each traffic pattern, we set the packet
injection rate such that the system with uniform FIFO allocation
works close to its critical point (i.e., close to the bending point
in Fig. 4).

The second column in Table II shows the average packet
latency of the UNoC where each input channel has a FIFO
size of two packets (thus, the total buffering resource used is
B = 96, i.e., 48 links times 2), whereas each number in the last
column (CNoC) shows the performance of an NoC customized
under the corresponding traffic pattern using the exact same
amount of 96 total buffering space. As we can see, except for
the uniform traffic pattern, significant performance improve-
ments are observed by allocating the buffer sizes according to
the corresponding application traffic pattern.

For a uniform traffic pattern, our allocation algorithm distrib-
utes the buffering space uniformly across all the input channels.
The reason for this interesting result is that under uniform
traffic, the XY routing happens to spread the packets almost
evenly across the mesh. Since the total buffering space is very
tight (on average, each channel only gets a buffer size of two),
allocating the buffering space uniformly appears to best match
the traffic pattern. Also reported in the third column of Table II
is the average packet latency of the UNoC where each input
channel has a FIFO size of three (B = 144 = 48 × 3). Under
all these traffic patterns, UNoC with B = 144 always performs
better than CNoC with B = 96. However, note that UNoC
with B = 144 requires 50% more buffering space compared to
CNoC with B = 96.

We also evaluated the gain of using our buffer allocation
algorithm by applying it to a set of randomly generated bench-

7The evaluation results using other network sizes and other random traffic
patterns are consistent but not reported here due to space limitations.

TABLE III
PACKET LATENCY (CYCLES) COMPARISON USING TGFF-GENERATED

APPLICATIONS (XY ROUTING, MESH TOPOLOGY, 4 × 4 NOC)

TABLE IV
PACKET LATENCY (CYCLES) COMPARISON USING RANDOM TRAFFIC

PATTERNS (XY ROUTING, MESH TOPOLOGY, 4 × 4 NOC)

marks. Each of these six benchmarks (named tgff0–tgff5 in
Table III) is first generated using Task Graphs for Free (TGFF)
[12] and then scheduled onto a 4 × 4 NoC architecture. The
communication rates between different tiles are then estimated
based on the scheduling results. The performance comparison
between CNoC and UNoC are shown in Table III using the
same notational convention of Table II.

Compared to Table II, Table III shows more improvement
after applying the customized buffer allocation for these bench-
marks. This is due to the fact that the traffic patterns used in
Table III are more heterogeneous than the random traffic pat-
terns in Table II. In fact, for all these test cases in Table III, the
NoCs with customized buffer allocation (CNoC with B = 96)
performs even better than NoCs with uniform buffer alloca-
tion (UNoC with B = 144), which uses 50% more buffering
resources.

To see the impact of the total available buffering space (B),
we applied the algorithm with the limit of total buffering space
B = 192. Thus, each input channel in the corresponding UNoC
has a size of four; the results are shown in Table IV. Compared
to Table II, the packet injection rate has been increased to
make the optimization really necessary and the results more
interesting.

Again, in this case, CNoC performs much better than UNoC
(B = 192) under the same buffering constraints. Moreover,
the increase in the buffering space budget offers more flexi-
bility and a finer control in buffer allocation, which enables
the generation of better configurations even for the uniform
traffic pattern. In fact, except for the uniform traffic, CNoC
performs even better than UNoC (B = 240). This means that
by customizing the FIFO size according to the traffic pattern,
the proposed algorithm is able to generate systems with much
better performance while using 20% less buffering resources
compared to systems with uniformly assigned FIFO sizes.

Fig. 10 shows how the buffer size in each router channel
looks like after buffer allocation using the 1hotspot-1 traffic
pattern as an example. Due to limited space, only the results
for the north and south input channels of each router are shown

2928 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Fig. 10. Traffic load and buffer space distribution using hotspot traffic 1hotspot-1 as an example.

TABLE V
PACKET LATENCY (CYCLES) COMPARISON USING RANDOM TRAFFIC

PATTERNS (XY ROUTING, MESH TOPOLOGY, 6 × 6 NOC)

in Fig. 10. The top half of Fig. 10 shows the traffic load of cor-
responding input channels, whereas the bottom half shows the
allocated buffer sizes of the corresponding input channels. As
we can see, the allocated buffer sizes vary significantly across
different channels, and the correlation between the channel load
and its allocated buffer size can be clearly identified.

To study the scalability effects, we also applied our buffer
allocation algorithm to NoCs with different sizes. All the NoCs
reported in Table V are composed of 6 × 6 tiles and use
XY routing. Thus, the columns with B = 480 correspond
to NoCs with an average input channel buffer size of four,
whereas the column with B = 600 corresponds to NoCs with
an average input channel buffer size of five. Again, a significant
performance improvement is achieved by application-specific
buffer allocation.

B. Evaluation for Other Topologies and Routing Schemes

As an example showing that the proposed algorithm can be
applied to NoCs with arbitrary topologies, we applied it to
NoCs implementing a “torus” topology. Reported in Table VI
are the results of buffer allocation on 2-D 4 × 4 torus NoCs.
Compared to the corresponding 4 × 4 mesh NoCs, the 4 ×
4 torus NoCs have 16 extra links that are used to connect the
boundary routers. Thus, the total buffering space budget (B in
Table VI) is adjusted to be 128 for NoCs with an average FIFO
size of two and 192 for NoCs with an average FIFO size of
three, respectively. As shown in Table VI, a significant per-
formance improvement is achieved through application-specific
buffer size customization.

TABLE VI
PACKET LATENCY (CYCLES) COMPARISON USING RANDOM TRAFFIC

PATTERNS (XY ROUTING, TORUS TOPOLOGY, 4 × 4 NOC)

To show that our algorithm can be used for NoCs with other
deterministic routing algorithms as well, we applied it to NoCs
with odd–even fixed (“OE-fixed”) routing. OE-fixed is indeed a
deterministic version of odd–even [7] routing. Odd–even rout-
ing belongs to the category of adaptive routing. To be deadlock
free, an efficient adaptive routing needs to prohibit “at least
one turn” in each of the possible routing cycles. In addition,
it should not prohibit more turns than necessary to preserve
the adaptiveness [14]. Proposed in [7], odd–even routing is
developed by restricting the locations where some types of turns
can take place such that the algorithm remains deadlock free.
More precisely, the odd–even turn model is governed by the
following two rules:

Rule 1. Any packet is not allowed to take an east-to-north
turn at any nodes located in an even column, and it is not
allowed to take a north-to-west turn at any modes located
in an odd column.
Rule 2. Any packet is not allowed to taken an east-to-
south turn at any nodes located in an even column, and it
is not allowed to take a south-to-west turn at any nodes
located in an odd column.

All the turns that satisfy the Rules 1 and 2 are considered
legal in the odd–even routing; this leaves the router some
adaptiveness in choosing the routing paths for a specific packet.
More precisely, depending on the location and a packet’s source
and destination address, the packet can be routed to multiple
directions.

HU et al.: SYSTEM-LEVEL BUFFER ALLOCATION FOR APPLICATION-SPECIFIC NoC ROUTER DESIGN 2929

TABLE VII
PACKET LATENCY (CYCLES) COMPARISON USING RANDOM TRAFFIC

PATTERNS (OE-FIXED ROUTING, MESH TOPOLOGY, 4 × 4 NOC)

The deterministic OE-fixed routing is developed by remov-
ing the minimum odd–even’s adaptiveness. For instance, in
odd–even routing, if a packet with a given source and desti-
nation can be routed to both directions dir1 and dir2, it will
always be routed to dir1 in OE-fixed. Obviously, since the turns
allowed in OE-fixed are a subset of odd–even, OE-fixed is thus
also free from deadlock.

As we can see from Table VII, significant performance im-
provement is again achieved by performing application-specific
buffer size customization. It is interesting to note that, unlike
in XY routing, in this case, CNoC performs much better
compared to UNoC (B = 96) under uniform traffic. The reason
is that OE-fixed routing does not spread the traffic evenly across
the mesh under uniform pattern, which makes uniform buffer
allocation unsuitable.

Both of the above routing algorithms (i.e., XY and OE-
fixed) belong to deterministic routing, which is indeed a spe-
cial form of “oblivious” routing [32]. In oblivious routing,
a system of optional paths is chosen “in advance” for every
source–destination pair, and every packet for that pair must
travel along one of these optional paths. Deterministic routing is
thus a subset of oblivious routing since in deterministic routing,
every source–destination pair has only one routing path. In what
follows, we applied our algorithm to NoC with an oblivious
routing scheme (named “OE-split” as described next) to show
that the proposed buffer allocation algorithm also works under
oblivious routing.

Similar to OE-fixed, OE-split is also developed based on
minimum odd–even routing to ensure freedom from deadlock.
In particular, if a packet with a given source and destination
can be routed to both directions dir1 and dir2, it will have equal
probability8 to be routed to dir1 and dir2 in OE-split regardless
of the current network condition. Since these optional routing
paths for every source–destination pair and the probability of
taking them can be precalculated, our algorithm can be applied
to such systems without any modification.

The results of applying buffer allocation to 4 × 4 mesh
NoCs using OE-split routing are shown in Table VIII. Similar
to the results presented for the NoCs using the OE-fixed routing
(Table VII), a significant performance improvement is achieved
here through buffer allocation as well. This shows that our
proposed buffer allocation approach can also be successfully
applied to NoCs using oblivious routing.

8Note that since the OE-split serves only as an example to show that
our algorithm can be applied to oblivious routing. Thus, the probability of
taking different directions was determined arbitrarily (with equal probability for
each possible direction). A more sophisticated oblivious routing can carefully
determine the probability to minimize congestion.

TABLE VIII
PACKET LATENCY (CYCLES) COMPARISON USING RANDOM TRAFFIC

PATTERNS (OE-SPLIT ROUTING, MESH TOPOLOGY, 4 × 4 NOC)

Finally, we would like to point out that the proposed algo-
rithm is also very fast. Take the buffer allocation for a 4 ×
4 NoC with XY routing and B = 192 as an example (this
corresponds to the data in the second and fourth columns in
Table IV). The “run time” for generating the buffer allocation
for each traffic pattern is less than 30 s, when running on a
desktop with a Pentium-4 2.8-GHz processor.

C. Evaluations Under Realistic Traffic Conditions

We also evaluated the performance of our algorithm by
applying it to applications that mimic real-world traffic. In
particular, two realistic traffic scenarios were investigated. The
first scenario (described in Section V-C1) includes a set of
applications derived from “E3S” benchmark suites [11], as well
as an audio–video benchmark by profiling a video/audio appli-
cation. For the second scenario (described in Section V-C2),
we use realistic bursty traffic pattern from a real video applica-
tion to evaluate how the proposed buffer allocation algorithm
performs under non-Poisson traffic pattern.
1) Evaluations Using E3S and Audio–Video Benchmark:

Three benchmark applications are collected, namely “auto-
indust,” “telecom,” and “audio–video.” Both auto-indust and
telecom are retrieved from E3S benchmark suites, which con-
tain 24 and 30 tasks, respectively. The audio–video bench-
mark includes a video encoder/decoder pair and an audio
encoder/decoder with a total of 40 tasks. For each benchmark,
we manually assigned its tasks onto a 4 × 4 NoC. As an
example, Fig. 11, shows the mapped communication task graph
for our audio–video benchmark with the communication vol-
ume between different tasks derived through simulation using
real video and audio clips as inputs. The communication rates
between any two tiles are then set to be proportional to the
communication volume between these two tiles.

In our analysis and simulation, packets are generated with
exponential distributions, which may not always be true in
reality. However, since the packet rates between different tiles
are assigned to be proportional to the total communication
volume between the two tiles, this model still has a good
value in characterizing the heterogeneous traffic nature for the
chosen benchmarks. Moreover, since the proposed buffer size
allocation makes all decisions locally (i.e., we only compare
pairs of channels to determine which one has a higher blocking
rate), the error caused by the approximations (in the modeling
of the traffic and the queuing analysis approach itself) can be
controlled.

We customized next the NoC for each benchmark using a
buffer budget B = 96; the performance comparison is shown
in Table IX.XY routing is assumed in all these applications.

2930 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Fig. 11. Mapped communication task graph for audio–video benchmark on a 100-MHz NoC. Communication volumes shown in the figure have a unit of 10 kB,
which represents the average communication volume between different tasks in 1 s.

TABLE IX
PACKET LATENCY (CYCLES) COMPARISON USING REALISTIC TRAFFIC

PATTERNS (XY ROUTING, MESH TOPOLOGY, 4 × 4 NOC)

Comparing Table IX with Table II, it is clear that the buffer
allocation is even more beneficial for these benchmarks. Indeed,
compared to the random traffic patterns in Table II, the traffic
patterns for these benchmarks are much more unbalanced (for
instance, some of the channels have even a load of zero), which
makes the idea of application-specific buffer allocation more
attractive. As we can see, CNoC (B = 96) performs better
than UNoC (B = 144) in all these cases. In fact, to achieve
an equivalent or shorter packet latency as CNoC (B = 96), the
average buffer length for a UNoC should be increased to 11,
11, and 10, respectively. This means that, to achieve the same
performance as a NoC with customized buffer allocation, the
NoC implementation with uniformly distributed buffer size will
need to consume 4.5, 4.5, and 4 times more buffering spaces,
respectively.
2) Evaluations Using Bursty Traffic: To show the benefits

of the buffer allocation approach on real applications, we
applied the proposed algorithm to a 4 × 4 NoC configuration
that exhibits bursty traffic patterns generated by long traces
extracted from simulating a real video application. On top
of this bursty video traffic, we also added bursty traffic that
represents another application, sporadic in nature, that may
coexist with the main video application on the same NoC
platform in practice. Indeed, while the video application is the
one that runs continuously and represents the main challenge
for the network, we may occasionally have other applications

(e.g., encryption) that appear and disappear in the system at
different timescales. Nevertheless, considering such occasional
applications is important since they add an extra workload to
the network and make the traffic pattern the most complex one
can consider.

The proposed buffer allocation algorithm is used to cus-
tomize the buffer sizes of the NoC. Both the UNoC with an
average buffer size of 2 × SP and the CNoC with the same
amount of total buffering resources were then simulated using
the same traffic trace. Simulation results show that UNoC has
an average packet latency of 878.12 clock cycles, whereas
CNoC has an average packet latency of only 76.79 clock cycles;
this represents about one order of magnitude savings, which
basically come from smarter buffer allocation alone. This result
shows that the proposed buffer allocation algorithm is indeed
beneficial for real-world applications characterized by non-
Poisson traffic patterns.

D. Comparison With a Heuristic Algorithm

Since there is currently no other algorithm available for
buffer size allocation in NoCs, we compared our algorithm with
a simple heuristic algorithm. Given the total buffering space B,
the heuristic algorithm simply allocates the buffer size of each
input channel to be linearly proportional to the traffic load
of that channel. Mathematically, bx,y,dir ∝ λx,y,dir. In what
follows, we use “LPNoC” to denote the NoC whose buffer
size is allocated using this heuristic algorithm (“LP” stands for
linearly proportional).

Table X shows the average packet latency comparison be-
tween UNoC, CNoC, and LPNoC under random traffic patterns
with a total buffering space budget B = 192. As we can see,
LPNoC is able to achieve a better packet latency compared to
UNoC with the same amount of buffering space, whereas CNoC

HU et al.: SYSTEM-LEVEL BUFFER ALLOCATION FOR APPLICATION-SPECIFIC NoC ROUTER DESIGN 2931

TABLE X
PACKET LATENCY (CYCLES) COMPARISON USING RANDOM TRAFFIC

PATTERNS (XY ROUTING, MESH TOPOLOGY, 4 × 4 NOC)

always outperform LPNoC. This again shows the effectiveness
of our proposed approach.

VI. LIMITATIONS AND EXTENSIONS

In this section, we summarize some basic assumptions we
made in developing the approach presented in this paper. We
also discuss the implications of such assumptions and possible
extensions.

A. Switching Technique

In this paper, we assume that store-and-forward or virtual
cut-through switching is used in the NoC. Thus, in our analysis,
a packet is treated as a basic and atomic unit since it is always
transmitted or buffered as an indivisible entity.

Wormhole switching is another popular switching technique
[9], and it can be more suitable for implementing NoCs com-
pared to store-and-forward and virtual cut-through switching.
However, due to the inherent complexity involved in the per-
formance analysis for NoCs with wormhole switching, it is not
straightforward to directly extend the approach presented in this
paper to address the buffer allocation problem for NoCs with
wormhole switching. More precisely, for NoCs with wormhole
switching, a new analytical model needs to be derived, as it is
necessary to treat each flit (instead of a packet) as a separate
“customer” in the queuing model. Moreover, the header flit and
the payload flits can no longer be treated independently because
the delivery of these flits are tightly coupled.

Nonetheless, we believe that the results presented in this
paper can serve as a first step toward addressing the general
buffer allocation problem. In addition, the approach developed
in this paper also has its practical impact considering that some
real-world NoC designs do use or support virtual cut-through
switching (e.g., [3], [26], and [29]).

B. Traffic Model

Our approach is based on queuing theory with the assump-
tion that the packets generated in each PE follow a Poisson
distribution. Although this assumption may not hold for some
applications, we believe that the use of the Poisson traffic model
is still meaningful due to the following considerations:

1) While Poisson-based models are not necessarily accurate
in modeling “all” applications, they can be used as a good
approximation for quite a few classes of applications.
In fact, the Poisson models are the “only” mathemati-
cal models where knowing just a single parameter (i.e.,
the lambda that characterizes the distribution) is enough

to derive quite sophisticated performance models. This
model parsimonity made the Poisson models widely used
in performance analysis, and there are tons of papers in
very diverse application domains that are based on this
stochastic assumption. Although more accurate models
may be available for some particular applications, such
models are usually very complicated and likely to be-
have poorly for some applications compared to Poisson
models.

2) From a different perspective, although better modeling
accuracy can be achieved with some sophisticated models
for certain application domains, such models are usu-
ally very difficult to use in analyzing the system in a
“global” manner. Taking the multimedia application as an
example, traffic models based on theory of “self-similar”
or “long-range dependent” stochastic process have been
introduced to SoC design [33]. However, such a model
can only be applied locally for the system performance
analysis, whereas the model we propose in this paper can
be used to analyze the system in a global fashion; this
is critical for allocating the buffer sizes where all the
buffering resources (not only a critical buffer) need to
be correctly provisioned. In fact, a sophisticated analysis
like the one presented in [33] can be successfully applied,
after the Markovian analysis based on Poisson models
has been completed. In other words, once we provision
all the buffering resources based on this approximate (but
global) model, we can refine the analysis by focusing only
a certain buffer, which may be critical for the design at
hand and use a more sophisticated model.

3) Last but not least, the class of non-Markovian models
used in performance analysis (particularly, in buffer siz-
ing) is much less explored and familiar compared to
the standard Markovian models. For instance, even for
video traffic, which is notoriously bursty, it is arguably
true that one should always use other models (e.g., long-
range dependence model) instead of Poisson models.
For instance, in a recent book by Park and Willinger
entitled Self-Similar Network Traffic And Performance
Analysis (Wiley, 2000), there are authors who provide
tangible theoretical and practical evidence showing that
the Markovian models may be actually sufficient in mod-
eling very sophisticated traffic effects if used in a smart
manner (e.g., through hierarchical use and modulation).
See Section 12.4 on pp. 306–316, for instance, in the
above-mentioned book, for a detailed discussion.

Thus, without claiming that the model we use in this paper is
bullet proof, we argue that the real issue is actually more related
to the actual use of these models rather than the models per se.
Given the tractability of the Poisson models, as well as the fact
that this paper is only the starting point of future efforts in this
direction, we believe that their use in this paper is quite justified.

C. Local Buffer Sizes

As discussed in Section III-A1, we assume the size of the
local input buffer (i.e., the input channel that accepts incoming
packets from the router’s local PE) to be infinite. To achieve

2932 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Fig. 12. Packet latency (cycles) comparison between UNoC and CNoC with
finite local PE input buffers using an audio–video benchmark (XY routing,
mesh topology, 4 × 4 NoC).

accurate results, the local buffer size at each PE needs to be
taken into account. However, detailed PE models are highly
application dependent and can vary significantly across differ-
ent applications. On the other hand, reasonably large buffers at
each PE may behave closely to a system with infinite buffering
resources. Since for most applications the buffering resources
at each PE are typically much larger than those available in the
routers, it is reasonable to make the above assumption. Also,
from a theoretical standpoint, this assumption makes this paper
more interesting since, this way, we can derive an analytical
solution for general NoC systems instead of providing mostly a
design paper focused on a specific solution that is applicable to
only one specific application.

Nevertheless, we show below how our buffer allocation algo-
rithm performs on a NoC system with limited local input buffers
using the audio–video benchmark presented in Section V-C1.
In Fig. 12, we compare the performance of UNoCs and CNoCs
under different local PE input buffer sizes. Similar to the ex-
periment in Section V-C1, B is chosen to be 96 for both UNoC
and CNoC such that each input channel in each channel has
an average buffer size of two packets. As we can see, once the
local PE input buffer size has reached a certain threshold (for
this particular example, this threshold is about 9× SP and 3 ×
SP for UNoC and CNoC, respectively), increasing the local PE
input buffer has no impact on the packet latency. Meanwhile,
the packet latency of CNoC consistently outperforms that of
UNoC with a significant margin, across different local PE input
buffer sizes. This shows that our buffer allocation algorithm is
indeed useful for NoCs with finite local PE input buffer sizes.

D. Extension for General Topologies and Other
Routing Algorithms

Clearly, depending on the topologies and the routing algo-
rithms an NoC system designer chooses, the traffic pattern
across the network can vary significantly. Thus, the buffer
allocation algorithm has to take into the consideration these two
factors to achieve the best results.

In this paper, we applied our proposed approach to two
topology examples: 2-D mesh and torus, as well as two different

routing algorithms: namely XY and OE-fixed. It is important
to note that our approach can be applied to arbitrary topologies,
as well as any deterministic routing algorithms. The choice of
the two topologies and routing algorithms is mainly justified by
their popularity in many NoC design projects [10], [21], [23].

On the other hand, due to the interaction among topologies,
routing algorithms, and buffer sizes of each channel, decisions
on which topology to choose, which routing algorithm to adopt,
and how to allocate the buffer size have to be made in parallel
if the utmost optimality is needed. This, however, remains to be
done as future work.

VII. CONCLUSION AND FUTURE WORK

We have shown that, to minimize the implementation costs
and maximize the NoC performance, the buffering size of
each input channel has to be carefully allocated to match the
application traffic characteristics. An efficient greedy algorithm
was proposed, which automatically allocates the buffering re-
sources to different NoC channels, such that the communication
performance is maximized while satisfying the total buffering
resource budget.

The choice of a 2-D mesh network as the underlying NoC
architecture serves mostly as an example. Indeed, our algo-
rithm can be extended to arbitrary topologies by adapting the
analytical models in Section IV-A accordingly to the target
topology. Moreover, although we have evaluated our algorithm
only for NoCs with XY , OE-fixed, and OE-split routing, the
approach is general enough to be applied to other deterministic
and oblivious routing schemes since, in these cases, the arrival
rate of each channel can still be calculated as shown in (3).

We plan to advance this research in several directions. One
possible direction is to extend this approach to NoCs that
support adaptive routing. The main challenge comes from the
difficulty involved in the calculation of the arrival rate for
each channel as multiple routing paths are possible in adaptive
routing. Another important extension is to accommodate NoCs
with wormhole switching. Finally, we are working on a field-
programmable gate array prototype and plan to use it for
accurate evaluation of the effectiveness of the buffer allocation
algorithm.

REFERENCES

[1] V. S. Adve and M. K. Vernon, “Performance analysis of mesh interconnec-
tion networks with deterministic routing,” IEEE Trans. Parallel Distrib.
Syst., vol. 5, no. 3, pp. 225–246, Mar. 1994.

[2] A. Agarwal, “Limits on interconnection network performance,” IEEE
Trans. Parallel Distrib. Syst., vol. 2, no. 4, pp. 398–412, Oct. 1991.

[3] T. A. Bartic, J.-Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest,
S. Vernalde, and R. Lauwereins, “Highly scalable network on chip for
reconfigurable systems,” in Proc. Int. Symp. Syst.-on-Chip, Nov. 2003,
pp. 79–82.

[4] L. Benini and G. De Micheli, “Networks on chips: A new SoC paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[5] J.-Y. L. Boudec and P. Thiran, Network Calculus, vol. 2050. New York:
Springer-Verlag, 2001.

[6] V. Chandra, A. Xu, H. Schmit, and L. Pileggi, “An interconnect channel
design for high performance integrated circuits,” in Proc. DATE Conf.,
Feb. 2004, pp. 1138–1143.

[7] G. Chiu, “The odd-even turn model for adaptive routing,” IEEE Trans.
Parallel Distrib. Syst., vol. 11, no. 7, pp. 729–738, Jul. 2000.

[8] W. J. Dally, “Performance analysis of k-ary n-cube interconnection net-
works,” Computer, vol. 39, no. 6, pp. 775–785, Jun. 1990.

HU et al.: SYSTEM-LEVEL BUFFER ALLOCATION FOR APPLICATION-SPECIFIC NoC ROUTER DESIGN 2933

[9] W. J. Dally and C. L. Seitz, “The torus routing chip,” Distrib. Comput.,
vol. 1, no. 3, pp. 187–196, 1986.

[10] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” in Proc. DAC, Jun. 2001, pp. 684–689.

[11] R. P. Dick, Embedded System Synthesis Benchmarks Suites (e3s).
[Online]. Available: http://www. ece.northwestern.edu/~dickrp/e3s/

[12] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for
free,” in Proc. Int. Workshop Hardware/Software Codesign, Mar. 1998,
pp. 97–101.

[13] J. Dielissen, A. Radulescu, K. Goossens, and E. Rijpkema, “Concepts and
implementation of the Philips network-on-chip,” in Proc. IP-Based SoC
Design, Nov. 2003.

[14] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” 25 Years
ISCA: Retrospectives and Reprint, pp. 441–450, 1998.

[15] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg,
and D. Lindqvist, “Network on a chip: An architecture for billion tran-
sistor era,” in Proc. IEEE NorChip Conf., Nov. 2000, pp. 166–173.

[16] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research,
6th ed. New York: McGraw-Hill, 1995, ch. 15, pp. 661–732.

[17] J. Hu and R. Marculescu, “Energy- and performance-aware mapping
for regular NoC architectures,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 24, no. 4, pp. 551–562, Apr. 2005.

[18] ——, “DyAD—Smart routing for networks-on-chip,” in Proc. DAC,
Jun. 2004, pp. 260–263.

[19] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, “xPipesCompiler:
A tool for instantiating application-specific NoCs,” in Proc. DATE Conf.,
Feb. 2004, pp. 884–889.

[20] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer
communication switching technique,” Comput. Netw., vol. 3, no. 4,
pp. 267–286, Sep. 1979.

[21] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J. Soininen, M. Forsell,
K. Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology,” in Proc. Symp. VLSI, Apr. 2002, pp. 105–112.

[22] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An architecture and
compiler for scalable on-chip communication,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 12, no. 7, pp. 711–726, Jul. 2004.

[23] J. Liang, S. Swaminathan, and R. Tessier, “aSOC: A scalable, single-
chip communications architecture,” in Proc. IEEE Int. Conf. Parallel
Architectures and Compilation Tech., Oct. 2000, pp. 37–46.

[24] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto noc architectures,” in Proc. DATE Conf., Feb. 2004, pp. 896–901.

[25] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques
in direct networks,” Computer, vol. 26, no. 2, pp. 62–76, Feb. 1993.

[26] V. Nollet, T. Marescaux, and D. Verkest, “Operating-system controlled
network on chip,” in Proc. DAC, Jun. 2004, pp. 256–259.

[27] U. Y. Ogras and R. Marculescu, “‘It’s a small world after all’: NoC perfor-
mance optimization via long link insertion,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. (Special Section on Hardware/Software Codesign and
System Synthesis), vol. 14, no. 7, pp. 693–706, Jul. 2006.

[28] L. Peh and W. J. Dally, “A delay model for router micro-architectures,”
IEEE Micro, vol. 21, no. 1, pp. 26–34, Jan./Feb. 2001.

[29] E. Rijpkema, K. G. Gossens, A. Radulescu, J. Dielissen, J. van
Meerbergen, P. Wielage, and E. Waterlander, “Trade offs in the design
of a router with both guaranteed and best-effort services for networks on
chip,” in Proc. DATE Conf., Mar. 2003, pp. 294–302.

[30] I. Saastamoinen and J. N. M. Alho, “Buffer implementation for proteo
networks-on-chip,” in Proc. Int. Symp. Circuits and Syst., May 2003,
pp. 113–116.

[31] Semiconductor Association, The International Technology Roadmap for
Semicondutors (ITRS), 2004.

[32] L. G. Valiant, “A scheme for fast parallel communication,” SIAM J.
Comput., vol. 11, no. 2, pp. 350–361, May 1982.

[33] G. Varatkar and R. Marculescu, “On-chip traffic modeling and synthesis
for mpeg-2 video applications,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 12, no. 1, pp. 108–119, Jan. 2004.

Jingcao Hu (S’01–M’05) received the B.S. and M.S.
degrees in electronics engineering from Tsinghua
University, Beijing, China, in 1998 and 2000, respec-
tively, and the Ph.D. degree in electrical and com-
puter engineering from Carnegie Mellon University,
Pittsburgh, PA, in 2005.

His current research focuses on logic synthesis and
on-chip communication design methodologies.

Dr. Hu has received a Best Paper Award from
the Design Automation and Test in Europe (DATE)
Conference in 2003.

Umit Y. Ogras (S’00) received the B.S. degree in
electrical engineering from Middle East Technical
University, Ankara, Turkey, in 2000 and the M.S.
degree in electrical engineering from Ohio State
University, Columbus, in 2002. He is currently work-
ing toward the Ph.D. degree with the Department
of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA.

His research focuses on communication-centric
design methodologies for nanoscale systems-on-
chip, with a special interest on networks-on-chip
communication architectures.

Radu Marculescu (S’94–M’98) received the Ph.D.
degree in electrical engineering from the University
of Southern California, Los Angeles, in 1998.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University, Pittsburgh, PA.
His current research focuses on developing design
methodologies and software tools for system-on-a-
chip design, on-chip communication, and ambient
intelligence.

Dr. Marculescu is a member of the Association for
Computing Machinery. He is a recipient of the National Science Foundation’s
CAREER Award (2001) in the area of design automation of electronic systems.
He has received the 2005 Transactions on Very Large Scale Integration Systems
(T-VLSI) Best Paper Award from the IEEE Circuits and Systems (CAS)
Society, two Best Paper Awards from the Design Automation and Test in
Europe (DATE) Conference in 2001 and 2003, and a Best Paper Award from
Asia and South Pacific Design Automation Conference (ASP-DAC) in 2003.
He was also awarded the Carnegie Institute of Technology’s Ladd Research
Award in 2002.

