
A structured experiment of test-driven development

Boby Georgea,*, Laurie Williamsb,1

aDepartment of Computer Science, Virginia Polytechnic Institute and State University, Falls Church, VA 22043, USA
bDepartment of Computer Science, North Carolina State University, Raleigh, NC 27695-8207, USA

Abstract

Test Driven Development (TDD) is a software development practice in which unit test cases are incrementally written prior to code

implementation. We ran a set of structured experiments with 24 professional pair programmers. One group developed a small Java program

using TDD while the other (control group), used a waterfall-like approach. Experimental results, subject to external validity concerns, tend to

indicate that TDD programmers produce higher quality code because they passed 18% more functional black-box test cases. However, the

TDD programmers took 16% more time. Statistical analysis of the results showed that a moderate statistical correlation existed between time

spent and the resulting quality. Lastly, the programmers in the control group often did not write the required automated test cases after

completing their code. Hence it could be perceived that waterfall-like approaches do not encourage adequate testing. This intuitive

observation supports the perception that TDD has the potential for increasing the level of unit testing in the software industry.

q 2003 Elsevier B.V. All rights reserved.

Keywords: Software engineering; Test driven development; Extreme programming; Agile methodologies

1. Introduction

Test Driven Development (TDD) [2], a software

development practice used sporadically for decades [10,

14], has gained added visibility recently as a practice of

Extreme Programming (XP) [1]. The practice involves the

implementation of a system starting from the unit test cases

of an object. Writing test cases and implementing that object

or object methods, triggers the need for other objects/

methods. An important rule in TDD is: ‘If you can’t write a

test for what you are about to code, then you shouldn’t even

be thinking about coding’ [6].

An object is the basic building block of Object-Oriented

Programming. Unless objects are designed judiciously,

dependency problems, such as tight coupling of objects and

fragile super classes (inadequate encapsulation) can creep

in. These problems could result in a large complex code

base that compiles and runs slowly. XP originator Kent

Beck asserts, “Test-first code tends to be more cohesive and

less coupled than code in which testing isn’t a part of the

intimate coding cycle” [3]. TDD proponents argue that

reduced coupling occurs because the practice guides them to

the building of objects that are actually needed (to pass test

cases based on the requirements) rather than building

objects that are thought to be needed (due to possible

improper understanding of requirements). Moreover, TDD

enables continuous regression testing, which improves code

quality [2].

Software practitioners can be concerned about the lack of

upfront design in TDD and the need to make design

decisions at every stage. This concern necessitates the need

to empirically analyze and quantify the effectiveness of this

practice.

The research outlined in this paper empirically examines

the following two hypotheses:

1. The TDD practice will yield code with superior external

code quality when compared with code developed with a

waterfall-like practice. External code quality will be

assessed based on the number of functional, black-box

test cases passed.

2. Programmers who practice TDD will develop code faster

than programmers who develop code with a more

traditional waterfall-like practice. Programmers’ pro-

ductivity will be measured by the time (hours) to

complete the development.

To investigate these hypotheses, research data were

collected from three sets of structured experiments con-

ducted with professional programmers.

0950-5849/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2003.09.011

Information and Software Technology 46 (2004) 337–342

www.elsevier.com/locate/infsof

1 Tel.: þ1-919-513-4151.

* Corresponding author. Tel.: þ1-703-893-0180.

E-mail addresses: boby@vt.edu (B. George), williams@csc.ncsu.edu

(L. Williams).

http://www.elsevier.com/locate/infsof


2. Background and related work

In this section, we first describe the TDD practice. Then,

we describe two empirical studies of TDD.

2.1. Test-driven development

The TDD practice starts with thoughts on how to test the

required functionality. After writing automated test cases

that generally will not even compile, the programmers write

implementation code to pass these test cases. The work is

kept within programmer’s intellectual control; as the

programmer is continuously making small implementation

decisions and increasing functionality at a relatively

consistent rate. All of the test cases that exist for the entire

program must successfully pass before new code is

considered fully implemented. Hence it is perceived, with

a degree of confidence, that the new code will not introduce

a fault or mask a fault in the current code base. Another

thumb rule in TDD is that whenever a software defect is

found, unit test cases are added to the test suite prior to

fixing the code.

The following is a theoretical analysis on the professed

shortcomings and benefits of TDD.

2.1.1. Shortcomings

Lack of design. Sometimes, practitioners who utilize

TDD begin development with some design activities.

However, TDD often does not include any upfront design.

Hence the applicability of the later approach is limited by

the comprehension capacity of programmers’ minds.

Further, practitioner van Deursen asserts that the TDD

philosophy of having zero to very little design works, only

when (1) the team has a good understanding of code base,

(2) the code is in good shape [21]. He further asserts that the

practice can suffer from lack of conceptual integrity [21]

(note that Brooks contends that conceptual integrity is the

most important consideration in system design [4]). Finally,

van Deursen asserts that the practice’s overall philosophy is

high risk/high return: if TDD works it can lead to time and

cost saving, but if it fails, then there is no normal defense as

with explicit design and documentation [21].

Researchers have noted that over a period of time, the

techniques and notations developed for software design

have been integrated into the implementation process. Such

integration has tended to blur, if not confuse, the distinction

between design and implementation [9,19]. The TDD

practice also blurs the distinct phases of program develop-

ment (design, code, and test). Since the implementation

process, focuses more on how the elements need to be

implemented and less on the logical structure, it can be

argued that faithful adoption of TDD might result in missing

the macro or complete picture of the software.

Applicability of practice. Some codes are inherently hard

to test using TDD (for example GUIs [3]). Further, the TDD

practice requires considerable effort to be expended on

writing mock test objects. Additionally, since no formal

documentation takes place, the rationale behind important

decisions is not documented and can get lost.

Reliance on refactoring. TDD utilizes refactoring and

rigorous testing to achieve code understanding and to

manage code complexity. The second law of software

evolution states “As a large program is continuously

changed, its complexity, which reflects deteriorating

structure, increases unless work is done to maintain or

reduce it” [15]. Refactoring is essential for maintaining or

reducing complexity in TDD-developed code.

Skill level. Writing test cases for hard-to-test code

requires a high level of experience and determination

from programmers. Average programmers might lack the

required level of experience, resulting in code without

proper test cases or documentation [21]. Further, prac-

titioners have reported that maintaining test assets requires

special skills [21,22].

2.1.2. Benefits

Program comprehension. Studies indicate that about half

of programmers’ task during software maintenance is

involved in understanding code [7]. The TDD approach

helps in program comprehension because it encourages

programmers to explain their code using test cases and code

itself, rather than by using descriptive words. Secondly, it

ensures that the test cases are up to date. However, the

practice does have the paradox that to understand one piece

of code, the reader has to go through another piece of code

(test code) and the code itself, a good rendering of the

measure twice, cut once principle.

Efficiency. TDD proponents believe that the fine

granularity of the test-then-code cycle gives continuous

feedback to programmer. With TDD, faults are identified

quickly as new code is added to the system; hence the source

of the problem is more easily determined. Based on prior

research [17,23], we think that the efficiency of fault/defect

removal and the corresponding reduction in the debug time

compensate for the additional time spent writing and

executing test cases.

Test assets. TDD enables testability. The use of the TDD

practice drives programmers to write code that is automati-

cally testable, such as having functions/methods returning a

value that can be checked against expected results. The

automated unit test cases written with TDD are valuable

assets to the project. Subsequently, when the code is

enhanced or maintained, running the automated unit tests

may be used to identify newly introduced defects and to

control the uniformity over several releases of the product,

i.e. for regression testing.

Reducing defect injection. Hamlet and Maybee assert

that debugging and software maintenance are often

perceived as a low-cost activity in which a working code

defect is patched to alter its properties, and specifications

and designs are neither examined nor updated [12].

Unfortunately, such fixes and small code changes may be

B. George, L. Williams / Information and Software Technology 46 (2004) 337–342338



nearly 40 times more error prone than new development

[13], and often new faults are injected during debugging and

maintenance. The suite of automated test cases are used as a

fine-granularity, low-level regression test. By continuously

running these automated test cases, one can find out whether

a change breaks the existing system.

2.2. Related research

Recently, researchers have started to conduct studies on

the effectiveness of the TDD practice. Two such studies are

related to our work. These are now described.

University of Karlsruhe experiment. Müller and Hagner

[18] conducted a structured experiment comparing TDD

with waterfall (code then test) programming. The exper-

iment, conducted with 19 graduate students, measured the

effectiveness of TDD in terms of (1) development time, (2)

resultant code quality and (3) understandability. The

researcher divided the experiment subjects into two groups,

TDD and control, with each group solving the same task.

The task was to complete a program in which the

specification was given along with the necessary design

and method declarations. The students completed the body

of the necessary methods. The researchers set up the

programming in this manner to facilitate objective and

randomized automated acceptance testing for their analysis.

The TDD group wrote all test cases prior to starting any

implementation code. The control group students wrote

automated test cases after completing the code. The

experiment occurred in two phases, an implementation

phase (IP) followed by an acceptance test phase (AP). After

IP, the students were made aware of the acceptance test

cases they did not pass. They then were given the

opportunity to correct their code. The researchers found

no difference between the groups in overall development

time. The TDD group had lower reliability after the IP phase

and higher reliability after the AP phase. However, the TDD

groups had statistically significant fewer errors when code

was reused. Based on these results, the researchers

concluded that writing programs in test-first manner neither

leads to quicker development nor provides an increase in

quality. The understandability of the TDD programs was

higher, measured in terms of proper reuse of existing

interfaces.

IBM case study. A TDD case study was run with an IBM

software development team [17,23]. This IBM group has

been developing device drivers for over a decade. They have

one legacy product which has undergone seven releases

since late 1998. This legacy product was used as the

baseline in the case study. In 2002, the group developed

device drivers on a new platform. In the case study, the

seventh release on the legacy platform was compared with

the first release on the new platform. Because of its

longevity, the legacy system handles more classes of

devices on more platforms with more vendors than the

new system. The legacy software was an adequate

comparison for providing insight into the performance of

the TDD methodology.

In the legacy product, the IBM team historically had used

only ad hoc testing techniques. For the new platform, they

created 2400 automated unit test cases after they had

completed UML class and sequence diagrams. The team

realized about a 40% reduction in function verification test

defect density (defects/line of code) of new/changed code

when compared with an experienced team who used an ad

hoc testing approach for the legacy product. They achieved

this result with no discernable impact to programmer

productivity. As usual, empirical concerns with case studies

involve the internal validity of the research, or the degree of

confidence and generalization in a cause–effect relationship

between factors of interest and the observed results [5].

3. Research approach

Our experimental trial results [11] with professional

programmers add to the family of TDD experiments.

3.1. Experiment details

We ran experimental trials with eight-person groups of

programmers at three companies (John Deere, RoleModel

Software, and Ericsson). In each of the experimental trials,

the programmers were randomly assigned to one of two

groups: TDD and control. All programmers used the

pairprogramming practice [24]. Each pair was asked to

develop a bowling game application (adapted from an XP

episode [16]) according to a set of requirements. The control

group pairs used a conventional design-develop-test (similar

to waterfall) [20] approach. Participants were asked to turn

in their programs upon completing the activities as outlined.

Then, their projects were assessed.

It was presumed that professional programmers would

write code to handle all error conditions gracefully.

However, our first trial results indicated that the pairs

determined their implementation was complete when they

could pass our specified acceptance test cases. Therefore, in

the latter two trials, the experiment conditions were

modified. All the programmers were asked to handle error

conditions gracefully and were not provided acceptance test

cases. Additionally, in the second two trials, the control

group programmers were asked to write automated test

cases after development.

The effectiveness of TDD was analyzed based on the

time taken to develop and on the results of black-box

functional testing. The quality of the test cases written by

TDD programmers was measured using code coverage

analysis. We supplemented our findings with survey data on

the perceptions the participants had about TDD practice.

B. George, L. Williams / Information and Software Technology 46 (2004) 337–342 339



3.2. External validity

An important consideration in empirical research design

is external validity, that is, the ability of the experimental

results to apply to the world outside the research situation.

The strength of our results is that the experiment was done

with practitioners in their own working environment.

However, there are five important limitations that restrict

the external validity of our experiment.

† Our sample size was relatively very small (six TDD

pairs, six control group pairs).

† As stated in Section 3.1, after reviewing the results of the

first trial, we modified the experiment instructions for the

trials that followed. Unfortunately, only one control

group pair actually wrote any worthwhile automated test

cases, despite the fact that they were specifically

instructed to do so.

† All programmers worked in pairs. John Deere and

RoleModel had used the pair programming practice in

their day-to-day development, and Ericcson was intro-

duced to the practice. Although not required in TDD, pair

programming was used to accommodate the objective of

experiment (to evaluate the effectiveness of TDD in the

day-to-day development environment). Therefore, our

results apply to the combination of TDD with pair

programming.

† The application used in the evaluation process was very

small (typical size of the code was 200 LOC).

† The subjects of the experiments had varying experience

with TDD (from novice to expert). The third set of

professional programmers had only 3 weeks of experi-

ence with TDD and pair programming before the

experiment. Hence, it is conceivable that the TDD and

pair programming approaches were not stabilized with

these subjects.

4. Experiment results

We now provide the results of our quantitative and

qualitative analysis.

4.1. Quantitative analysis

The external code quality and productivity differences

between the TDD and the control group were analyzed and

quantified. Additionally, the test coverage of the TDD pairs

was examined. However, the validity of the results must be

considered within the context of the limitations discussed in

Section 3.2.

4.1.1. External code quality

We developed 20 black-box test cases to evaluate the

external code quality of professional programmers’ code.

The test cases validated the degree to which requirement

specifications were implemented and the robustness of the

code. The TDD pairs’ code passed approximately 18% more

test cases than the control group pairs. Fig. 1 shows the box

plot for the test cases passed. In the box plot, the edges of the

box mark the 25th and 75th percentiles, while the horizontal

line at the center of box marks the median of distribution.

The median value for the TDD programmers’ code is higher

than of the control group programmers’ median.

A hypothesis of this research was that the TDD practice

would yield code with superior external code quality. Based

on the data analysis conducted, the experimental findings

are supportive that the TDD practice yields code with

superior external code quality.

4.1.2. Productivity

As shown in Fig. 2, on average the TDD pairs took

approximately 16% more time to develop the application

than the control group pairs. The medians of the two groups

are nearly equal. However, the upper range value is higher

for the TDD programmers.

An important consideration in this analysis is that the

control pairs were asked to write test cases after they

developed code. However, only one group wrote any

worthwhile test cases. This resulted in an uneven compari-

son of the time taken and hence a limitation to this study.

There are benefits resulting from the test cases created by

the TDD programmers. First, the TDD pairs produced test

assets along with the implementation code. Second, the code

developed is testable.

It was hypothesized that programmers who practice TDD

will be more productive, as measured by the time to

complete a program. However, contrary to our hypothesis,

the experiment results showed that the TDD programmers

took approximately 16% more time than the control group

programmers.

Fig. 1. Box plot for test cases passed.

B. George, L. Williams / Information and Software Technology 46 (2004) 337–342340



4.1.3. Correlating productivity and quality

On average, the TDD pairs produced higher quality code.

However, they took longer time, on average, to complete

this work. On analyzing the results of all 12 pairs, we found

a moderate correlation between the time spent and the

resulting quality. The two-tailed Pearson correlation had a

value of 0.661, which was significant at the 0.019 level. This

analysis indicates that the higher quality may be the result of

the increased time taken by the TDD pairs and not solely

due to the TDD practice itself.

4.1.4. Code coverage

We analyzed code coverage as an indication of the

quality of the test cases written by TDD programmers. The

industry standard for coverage is in the range 80–90%,

although ideally the coverage should be 100% [8]. As

shown in Fig. 3, on average the TDD programmers

surpassed the industry standards in all the three types of

code coverage. The TDD programmers’ test cases achieved

a mean of 98% method, 92% statement and 97% branch

coverage. The testing tool used, JUnit, cannot test the main

method (of Java code), and hence the main method was

excluded from code coverage analysis. Including the main

method into the code coverage analysis would have lowered

the TDD programmers’ coverage results.

4.2. Qualitative analysis

A survey was conducted to the 24 professional

programmers. The survey, administrated before the exper-

iment, consisted of nine close-ended questions. The nine

close-ended questions were aimed at eliciting the program-

mers’ opinion on three main concerns:

(1) How productive is the practice for programmers?

(2) How effective is the practice?

(3) How difficult is the practice to adopt?

A reliability analysis was performed to determine

whether it was statistically valid to aggregate the

responses of the nine questions into the stated three

concerns, using the Cronbach’s Coefficient Alpha test.

The alpha test measures the level of consistency of survey

responses. This provides an indication on whether the

individuals answered all of the questions within the

subscale similarly, to aggregate the nine questions into

the said concerns. All the survey responses were statistical

significant at the 0.01 level ðp , 0:01Þ; indicating that the

aggregation was valid. The statistical significance of each

response was then evaluated using the Spearman’s Rho

test. The results of the survey are found below in Table 1.

(Note: the results of only eight of the nine questions is

displayed because two of the closed ended questions

addressed the same area.)

Based on survey comments, it can be concluded that

programmers generally feel that TDD is effective in terms of

code quality and improves programmers’ productivity.

However, getting into TDD mindset is difficult. Lastly,

some programmers expressed concerns about the increase in

development time needed to write the test cases.

Fig. 2. Box plot of time taken by programmers.

Fig. 3. Box plot of code coverage.

Table 1

Survey results

Concern/subconcerns % Agree

Productivity—aggregate 78

Facilitates better requirements 88

Reduces debugging effort 96

Reduces development time 50

Effectiveness—aggregate 80

Yields higher code quality 92

Promotes simpler design 79

Is noticeably effective 71

Difficulties in adoption—aggregate 40

Getting into TDD mindset 56

Lack of upfront design a hindrance 23

B. George, L. Williams / Information and Software Technology 46 (2004) 337–342 341



5. Conclusions and future work

A series of experiments were conducted to examine the

TDD practice. Specifically, the following hypotheses were

tested and corresponding conclusions were obtained, subject

to the limitations of the study:

† TDD practice appears to yield code with superior

external code quality, as measured by conformance to a

set of black-box test cases, when compared with code

developed with a more traditional, waterfall-like model

practice.

† The experiment results showed that TDD programmers

took more time (16%) than control group programmers.

However, the variance in the performance of the teams

was large and these results are only directional.

Additionally, the control group pairs did not primarily

write any worthwhile automated test cases, making the

comparison uneven.

† On an average, survey results indicate that, 80% of the

professional programmers thought TDD was an effective

practice and 78% believed the practice improves

programmers’ productivity. The survey results are

statistically significant.

† Survey results also indicated that TDD practice facili-

tates simpler design and that lack of upfront design is not

a hindrance. However, for some, transitioning to the

TDD mindset is difficult.

Further controlled studies on a larger scale in industry

and academia could strengthen or disprove these findings.

Acknowledgements

We wish to thank the software programmers at John

Deere, RoleModel, and Ericsson who participated in this

research. We would also like to thank the North Carolina

State University Software Engineering research group for

their helpful suggestions on this paper. This research was

funded in part by AT and T.

References

[1] K. Beck, Extreme Programming Explained: Embrace Change,

Addison-Wesley, Reading, MA, 2000.

[2] K. Beck, Test Driven Development: By Example, Addison-Wesley,

Reading, MA, 2002.

[3] K. Beck, Aim, fire, IEEE Software 18 (2001) 87–89.

[4] F.P. Brooks, The Mythical Man-Month, Addison-Wesley, Reading,

MA, 1995.

[5] D.T. Campbell, J.C. Stanley, Experimental and Quasi-experimental

Design for Research, Houghton Mifflin Co, Boston, 1963.

[6] D. Chaplin, Test first programming, TechZone (2001).

[7] T.A. Corbi, Program understanding challenge for the 1990s, IBM

Systems Journal 28 (1989) 294–306.

[8] S. Cornett, Code Coverage Analysis, Bullseye Testing Technology,

2002.

[9] B. Foote, J. Yoder, Big ball of mud, presented at Fourth Conference

on Patterns Languages of Programs, Monticello, Illinois, September

1997

[10] D. Gelperin, W. Hetzel, Software quality engineering, presented at

Fourth International Conference on Software Testing, Washington,

DC, June 1987

[11] B. George, Analysis and quantification of test driven development

approach, MS Thesis, in Computer Science, North Carolina State

University, Raleigh, NC, 2002

[12] D. Hamlet, J. Maybee, The Engineering of Software, Addison-

Wesley, Boston, 2001.

[13] W.S. Humphrey, Managing the Software Process, Addison-Wesley,

Reading, MA, 1989.

[14] C. Larman, V. Basili, A history of iterative and incremental

development, IEEE Computer 36 (2003) 47–56.

[15] M.M. Lehman, L. Belady, Program Evolution: Processes of Software

Change, Academic Press, London, 1985.

[16] Agile Software Development: Principles, Patterns and Practices by

Robert C. Martin, Upper Saddle River, Prentice Hall, 2003.

[17] E.M. Maximilien, L. Williams, Assessing test-driven development at

IBM, presented at International Conference of Software Engineering,

Portland, OR, 2003

[18] M.M. Muller, O. Hagner, Experiment about test-first programming,

presented at Empirical Assessment In Software Engineering EASE

’02, Keele, April 2002

[19] D.E. Perry, A.L. Wolf, Foundations for the study of software

architecture, ACM SIGSOFT 17 (1992) 40–52.

[20] W.W. Royce, Managing the development of large software systems:

concepts and techniques, presented at IEEE WESTCON, Los

Angeles, CA, 1970

[21] A. van Deursen, Program comprehension risks and opportunities in

Extreme Programming, CWI, Amsterdam, SEN-R0110, ISSN 1386-

369X, 2001

[22] A. van Deursen, L. Moonen, A. vandenBergh, G. Kok, Refactoring

test code, presented at XP 2001, 2001

[23] L. Williams, E.M. Maximilien, M. Vouk, Test-driven development

as a defect-reduction practice, presented at IEEE International

Symposium on Software Reliability Engineering, Denver, CO,

2003

[24] L.A. Williams, The Collaborative Software Process, Department of

Computer Science, Salt Lake City, UT, 2000.

B. George, L. Williams / Information and Software Technology 46 (2004) 337–342342


	A structured experiment of test-driven development
	Introduction
	Background and related work
	Test-driven development
	Related research

	Research approach
	Experiment details
	External validity

	Experiment results
	Quantitative analysis
	Qualitative analysis

	Conclusions and future work
	Acknowledgements
	References


