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19 What About Wavelets? 821 Introduction1.1 Multiscale computationDespite their dizzying speed, modern supercomputers are still incapable of han-dling many most vital scienti�c problems. This is primarily due to the scale gap,which exists between the microscopic scale at which physical laws are given andthe much larger scale of phenomena we wish to understand.This gap implies, �rst of all, a huge number of variables (e.g., atoms or grid-points), and even a much larger number of interactions (e.g., one force betweenevery pair of atoms). Moreover, computers simulate physical systems by movingone variable at a time; as a result, each such move must be extremely small,since a larger move would have to take into account all the motions that shouldin parallel be performed by all other variables. Such a computer simulation isparticularly incapable of moving the system across large-scale energy barriers ,which can each be crossed only by a large, and unknown, simultaneous motionof very many variables.This type of computational obstacles makes it impossible, for example, tocalculate the properties of nature's building blocks (elementary particles, atomicnuclei, etc.) from a certain known underlying theory | and thereby to con�rmthe theory itself. Likewise, such obstacles are the main bottleneck in the drive tocomputerize chemistry : to replace expensive experiments with computer simula-tions, yielding detailed understanding of molecular structures and interactions,creating the ability to design materials and processes, with enormous potentialbene�ts for medicine, biotechnology, agriculture, material sciences, industrialprocessing, etc. Similar scale-born slowness factors and barriers, multiplyingeach other, plague many other engineering and scienti�c endeavors. All wouldbe greatly facilitated if unlimited computing power were available | or if muchbetter algorithms could be devised.Just building ever faster machines will not do, in fact. With current com-putational methods the needed amount of computer processing often increasestoo steeply with the rise in problem size, so that no conceivable computer willbe adequate. Completely new mathematical approaches are needed.Past studies have demonstrated that all scale-born complexities can be ef-fectively overcome, or drastically reduced, by multiscale (\multi-resolution",\multilevel", \multigrid", etc.) algorithms.Indeed, any many-variable problem de�ned in the physical space can havean approximate description at any given length scale of that space: a contin-uum problem can be discretized at any given resolution; average motions of amany-particle system can be represented at any given characteristic length; etc.The multiscale algorithm recursively constructs a sequence of such descriptionsat increasingly larger (coarser) scales, and combines local processing (relaxationof equations, simulation of statistical relations, etc.) at each scale with vari-4



ous inter-scale interactions. Typically, the evolving solution (or the simulatedequilibrium) on each scale recursively dictates the equations (or the Hamilto-nian) on coarser scales while supplying large-scale corrections to the solutions(or con�gurations) on �ner scales. In this way large-scale changes are e�ectivelycalculated on coarse grids, based on information previously gathered from �nergrids.As a result of such multilevel interactions, the �ne scales of the problemcan be employed very sparingly, and sometimes only at special and/or repre-sentative small regions. Moreover, the inter-scale interactions can eliminate allkinds of scale-associated di�culties, such as: slow convergence (in minimiza-tion processes, PDE solvers, etc.); critical slowing down (in statistical physics);ill-posedness (e.g., of inverse problems); large-scale attraction basin traps (inglobal optimization and statistical simulations); con
icts between small-scaleand large-scale representations (e.g., in wave problems); numerousness of long-range interactions (in many body problems or integral equations); numerousnessof long-range (non-local) eigenfunctions (e.g., in quantum chemistry); the needto produce many �ne-level solutions (e.g., in optimal control) or very many�ne-level independent samples (in statistical physics); etc. Also, the evolvinglarge-scale equations bring out the large-scale dynamics, or the macroscopicequations, of the physical system, which is often the very objective of the entirecalculation.Since the local processing (relaxation, etc.) in each scale can be done in par-allel at all parts of the domain (e.g., at all cells of a given lattice), the multiscalealgorithms, based on such processing, are ideal for implementation on massivelyparallel computers. Indeed, many problems cannot be e�ciently solved by suchcomputers without employing a multiscale procedure. For example, to fully par-allelize a time-dependent calculation (i.e., to compute for earlier and later timessimultaneously), a multiscale (multigrid) algorithm must be used (see Sec. 3.1).Often, a combination of several multiscale approaches can bene�t one par-ticular problem in many di�erent ways (see examples in Secs. 4.3, 9 and 14.2below. Also the di�erent multiscale algorithms discussed in Secs. 11, 12 and13 are all parts of solving the same \grand challenge" problem of elementaryparticles).Multilevel computation has evolved into a discipline by itself, having its owninternal development, gradually increasing our understanding of the many typesof multiscale interaction, their modes of operation and domains of application.Various underlying relations and algorithmic ideas are carried back and forthbetween widely varying types of problems.1.2 Do you need multiscale algorithms?A multiscale computation is usually considerably more complicated than themore common algorithms. Also, for small problems it is often more expensive.So when do you need to go into this extra trouble? The most obvious andimportant sign for such a need is that you have a computational bottleneck asso-ciated with the increasing \size" of the problem. If the computational cost rises5



more than linearly with the number of variables, or if the number of variablesis so large that even linear-scaling algorithms would be too expensive, then amultiscale approach, or a combination of several multilevel procedures, may wellbe the answer.To be sure, not every di�cult computational task can be usefully multi-scaled. Intractable, undecidable and other impossible problems typical to theo-retical computer science (see for example [101]) cannot be e�ciently solved byany algorithm. Interestingly, however, these are mostly man-made problems.The computational tasks in natural sciences and engineering are not of thistype. Their complexity usually results from a multitude of variables (particles,picture elements, a discretized function, etc.), most of which are usually po-sitioned in some low dimensional spaces. The experience is that all problemsof this type can bene�t from multiscaling, which yields either low-complexity(normally linear-scaling) solvers or \macroscopic equations", i.e., the means forlarge-scale coarse simulations, derived from computations in just small �ne-scalewindows. The various sections of this review gives many examples of both thesepossibilities.Note also that some problems can bene�t from multiscaling because this isthe best way to formulate the problem, or some parts of it (see Sec. 18.1).1.3 The present surveyThe present report has been written as a thorough updating and modi�cationof [38], many parts of which had previously appeared in [35]. The �rst chap-ters summarize important recent techniques, and some less known older ones,in the �eld of multigrid PDE solvers, assuming a general familiarity with itsbasic elements. (For introductory books, see [67] and [153]; or at least readthe \Elementary acquaintance with multigrid" in [24]; see also the basic insightdescribed in Sec. 17 below.) Some algorithms and concepts are explained inmore details than others, mainly because they are more recent. Later chaptersintroduce a variety of other �elds of multiscale computation, including fast ma-trix multiplication, integral and integrodi�erential equations, statistical physics,chemistry, image processing and tomography.In particular, the report surveys the main ideas, current developments andfuture perspectives in the following directions.1. New top-e�ciency multigrid methods for steady-state 
uid dynamics atall Mach and Reynolds numbers, and other non-elliptic stationary PDEsystems (see Sec. 2 below).2. Multilevel approaches to time-dependent partial-di�erential equations,emphasizing a fast method for solving an implicit-time-step system ofequations (sometimes faster than an explicit time step), and parallel pro-cessing and grid adaptation across both space and time (see Sec. 3).3. Grid adaptation techniques exploiting multigrid structures and creating aone-shot solver-adaptor (Sec. 6.1). Similar techniques for treating prob-6



lems in unbounded domains , costing essentially the same as in boundeddomains.4. Direct multigrid solvers for inverse problems, including system identi�ca-tion (e.g., impedance tomography; see in Sec. 16.2) and data assimilation(in atmospheric simulations | Sec. 4), showing multiple bene�ts of sev-eral kinds of multiscaling employed in one problem. The solution of anill-posed problem can often cost far less than its well-posed counterpart.5. Optimal control: Feedback control via very fast updating of open-loopsolutions, based on their multiscale representations (Sec. 5).6. Optimal location of singularities of PDE systems (e.g., �nding the minimal-total-energy location of the nucleons in electronic structure calculations),integrated into a one-shot multigrid solver (Sec. 9.1).7. Top-e�ciency multigrid algorithms for highly inde�nite (e.g., standingwave) problems, featuring ray equations (geometrical optics) at the limitof large scales with wave equations at small-scale regions where ray for-mulations break down (Sec. 7).8. Multigrid solvers for the Dirac equations arising in quantum �eld theory(Sec. 11).9. Compact multiresolution representation of the inverse matrix of a dis-cretized di�erential operator; fast updating of the inverse matrix and ofthe value of the determinant upon changing an arbitrary term in the ma-trix itself; with application to the QCD fermionic interaction (Sec. 12).10. Collective multiscale organization of eigenbases and O(N logN) calcula-tion of N eigenfunctions of a di�erential operator, e.g., the Schr�odingeroperator in condensed-matter electronic-structure calculations (Sec. 9.2).11. Calculation of the N roots of the secular equation in O(N) operations.12. Multiscale Monte-Carlo algorithms for eliminating both the critical slow-ing down and the volume factor in increasingly advanced models of sta-tistical physics (Sec. 13).13. Multigrid Monte-Carlo approaches for solving the high-dimensional (seve-ral-particle) Schr�odinger equation by real-time path integrals (Sec. 18).14. Introducing multiscale computations to many-particle (macromolecule ormany-small-molecule) calculations, including fast evaluation of forces, fastconvergence to ground states, fast Monte Carlo simulations and large timesteps, with application to molecular mechanics (Sec. 14); a new approachto molecular dynamics, based on stochastic implicit time steps (Sec. 14.8).15. Multigrid methods for fast dense-matrix multiplications, integral trans-forms and for integro-di�erential equations, on adaptable grids, with ap-plications to tribology (Sec. 10). 7



16. Multiscale methods for the fast evaluation and inversion of the Radontransform and other line-integral transforms (Sec. 16.1); applications tomedical tomography and radar reconstruction.17. Multiscale algorithms for early vision tasks such as surface reconstruction,edge and �ber detection (Sec. 15.1) and segmentation (Sec. 15.2).18. Multilevel clustering and other graph algorithms (Sec. 15.3).19. Rigorous quantitative theory for predicting the performance of multigridsolvers (Sec. 8).20. New e�cient, general and accurate approaches for coarsening algebraicsystems of equations, yielding very e�cient and general algebraic-multigrid(AMG) solvers, as well as a general technique for numerical homogeniza-tion (Sec. 17).21. Multilevel strategies for solving global optimization problems that harbormany local minima and nested multiscale attraction basins, including mul-tilevel approaches for formulating fuzzy optimization problems (Sec. 18).22. Some thoughts about wavelets (Sec. 19).2 Steady-State Fluid Dynamics2.1 Objective: textbook multigrid e�ciencyAn e�cient multigrid algorithm for steady-state incompressible viscous 
owsin two dimensions appeared already in 1972 [18], a relatively e�cient multigridsolver for a compressible inviscid transonic 
ow was demonstrated in 1975 [145],and a fully e�cient solver for a system of several coupled di�erential equations,characteristic to computational 
uid dynamics (CFD), was presented already in1978 [40]. However, in the decades that followed, the development in this areahas not been fully satisfactory. In particular, the e�ciency of solvers for non-elliptic steady-state systems (such as Euler and high-Reynolds Navier-Stokesequations) has lagged several orders of magnitude behind the ideal e�ciencythat had been attained for general elliptic systems. Although the main rea-sons for this ine�ciency have also been understood for a long time (see forexample [22]), the recommended cures seemed complicated, and code develop-ers opted for partial e�ciency. The leading multigrid method has been basedon multi-stage pseudo-time-stepping relaxation schemes [105], [104]. Althoughsuch schemes can be optimized to damp high-frequency errors [157], the result-ing algorithms are still relatively slow, because some intermediate (neither high-frequency nor very smooth) \characteristic components" cannot adequately bereduced by coarse grids (cf. [22], [64]). Other multigrid solvers were based on in-complete LU decomposition (ILU) and related relaxation schemes [159], [155],[144]. While such schemes give excellent results in some cases, they cannot8



cure the aforementioned trouble of characteristic components in general tran-sonic 
ows, especially in three dimensions. (Also, much of the e�ciency of ILUschemes depends on their sequential marching, hence the performance on mas-sively parallel machines will drastically diminish.) The same is true for othermethods (e.g., based on defect corrections) which seem not even to identify thatbasic trouble.More generally, all these attempted solution methods have failed to decom-pose the solution process into separate treatments of each factor of the PDEprincipal determinant, and therefore did not identify, let alone treat, the sepa-rate di�culties associated with each such factor. The fact is that, in a typicalCFD problem, each of these factors may have di�erent ellipticity measures (someare uniformly elliptic, others are non-elliptic at some or all of the relevant scales)and a di�erent set of characteristic surfaces, requiring for top e�ciency di�erentrelaxation/coarsening procedures.Thus, the objective of the recent work has been to develop and demon-strate methods that solve non-elliptic steady-state problems in general, andhigh-Reynolds stationary 
ow problems in particular, at the same \textbookmultigrid e�ciency" attained for uniformly elliptic systems. This means, typ-ically, to obtain an O(h2) approximation to the di�erential solution on a gridwith meshsize h at a cost of just few (less than 10) \minimal work units", thisunit being the amount of operations involved in the simplest discretization ofthe di�erential problem on the meshsize-h grid. The methods, again as in theelliptic case, will allow local re�nements (cf. Sec. 6.1) and high degree of parallelprocessing. (For general remarks about time-dependent problems, see Sec. 3).2.2 Problem decompositionAs shown in the past (see [24], [28] and [64]), to obtain that \textbook" multigride�ciency for any discretized partial di�erential system of equations (PDE), itis necessary and usually (with proper boundary treatment) also su�cient toattain that e�ciency for each factor of the PDE principal determinant. Eachsuch factor is a scalar di�erential operator of �rst or second order, so its e�cientsolution is a vastly simpli�ed task. The way for separating the factors is by adistributed (and possibly also weighted) relaxation scheme in which to eachfactor there corresponds a \ghost" discrete function. The latter can be directlyrelaxed for its corresponding factor, dictating a resulting pattern of changes tobe distributed to the actual discrete functions (see details in [24, x3.7] and alsoin [163], and examples in Secs. 17{20 of [24]). To obtain the top e�ciency,the relaxation of each ghost function should incorporate an essential part of ane�cient multigrid solver for its corresponding operator: sometimes this is justthe relaxation part of that solver, sometimes this may even be the entire solver(applied at some proper subdomain).For the incompressible Euler and Navier-Stokes equations, the relevant fac-tors are the Laplace and the convection (or convection-di�usion) operators. Theformer's multigrid solver is classical; the latter's can be based on downstreamrelaxation [64], with additional special procedures for recirculation 
ows [65],9



[166]. Indeed, incorporating such procedures into the relaxation schemes for theappropriate ghost functions yields very e�cient solvers for incompressible 
owseven at high Reynolds numbers and at second-order accuracy [64]. The sameprocedures will also yield e�cient solvers for compressible 
ows at low Machnumbers, where the relevant factors are similar.The most important remaining factor of 
ow systems for which no generaladequate multigrid solver has been developed until recently is the \full potential"operator (u@x + v@y + w@z)2 � a2� ; (2:1)where (u; v; w) is the 
ow velocity vector and a is the speed of sound. Thisoperator appears as a factor in the principal determinant of the 3-D compressibleEuler equations. Its Mach number is the ratio M = (u2 + v2 + w2)1=2=a.In the deep subsonic case (M � :7, say) the operator (2.1) is uniformlyelliptic, hence a usual multigrid V -cycle, employing red/black Gauss-Seidelrelaxation at all levels, yields top-e�ciency solvers. When M approaches 1,however, the operator becomes increasingly anisotropic, and classical multigridalgorithms severely degrade, due to the above-mentioned di�culty with charac-teristic components. (An exception is the case where the anisotropy directionsare aligned with grid directions. For example, if u2 + v2 � w2, full e�ciencycan still be obtained by employing z-plane block relaxation).In the deep supersonic case (e.g.,M � 1:3) the full potential operator is uni-formly hyperbolic (with the stream direction serving as the time-like direction),and an e�cient solver can be obtained using downstream relaxation, marchingin the time-like direction. If the equations are of higher-order and/or not strictlyupstream, a predictor-corrector marching can provide the same approximationorder, hence fast convergence of smooth components; this has been shown bydetailed experiments and mode analyses [78]. This procedure no longer worksas M drops toward 1, since the Courant number associated with this time-likemarching approaches in�nity.Thus, the most di�cult situation for solving the full potential operator isthe near sonic regime (:7 � M � 1:3, say), especially in the (usual) case ofnon-alignment (e.g., when the grid is Cartesian and no velocity component isconsistently much larger than the others). No \classical" multigrid approachwould attain good e�ciency in this case. A new approach has recently beendeveloped, based on a piecewise semi-coarsening and some rules for adding arti-�cial dissipation at the coarser levels. To understand this, note �rst that in thegeneral scheme for solving, e.g., the Euler equations, the solution of (2.1) is onlya relaxation step, and it is enough to con�ne this step to one subdomain at atime (whose size, however, is not O(h) but O(1)). Without loss of generality wecan therefore limit the discussion to the case that throughout this subdomainthe velocity is, e.g., vertically-inclined (i.e., w2 � :3(u2 + v2), say). In thiscase, the multigrid solver of (2.1) will use horizontal semi-coarsening (coarsen-ing only in the x and y direction), possibly together with vertical line relaxation.(This z-line relaxation is actually not needed on the �nest levels, but may berequired after several levels of semi-coarsening.) With this semi coarsening, the10



inherent cross-characteristic numerical dissipation at the coarse level is smallerthan at the �ne one (opposite to their relation upon full coarsening); we cantherefore stably add arti�cial dissipation terms at the coarse level so that itstotal cross-characteristic dissipation matches the local �ne-level average.The resulting algorithm can fully exploit massively parallel processing. Itcan be extended to other non-elliptic operators, including the convection op-erator. (The aforementioned approach for the convection operator, based ondownstream relaxation, is not fully e�cient on massively parallel machines.)Extensive numerical tests have been performed with the linear full-potentialequation: �rst in 2D, then in 3D, starting with constant-coe�cients, then vari-able. In 2D we have also carried out comprehensive half-space FMG modeanalyses (cf. [24, x7.5]), achieving full agreement with the numerical tests. Theresults reported in [41], [42], [77] and [78] show that at any Mach number thealgorithm can always attains the \textbook" e�ciency.2.2.1 Comment on semi-coarsening schemesInstead of the piecewise semi-coarsening described above, another possibility isto use just one global semi-coarsening, but of one of the following two types(preferably the second).A. Total semi-coarsening . By this we mean (e.g., in 2D) that each coarsergrid is formed by omitting every other line from the next �ner grid (every othervertical line as well as every other horizontal line), but on the remaining lines(the coarse-grid lines) leave all the �ne-grid points (not just the intersections ofthe coarse-grid lines).B. Variable-direction semi-coarsening . Here the coarser grid for each levelis a subset of the total-semi-coarsening grid for that level. Simply omit fromthe latter all unnecessary points in regions where semi-coarsening at only oneparticular direction is needed (as in various anisotropic and non-elliptic cases,like those discussed above).2.3 A road mapA group at NASA/Langley has launched a multi-year program aimed at achiev-ing \textbook" multigrid e�ciency for 
ows at all Mach and Reynolds numbers,using the general approach described above [151], [152].A road map for further development has been assembled in the form of adetailed table called \Barriers to Achieving Textbook Multigrid E�ciency inCFD". It lists every foreseen kind of computational di�culty for achieving thatgoal, together with the possible ways for resolving the di�culty, their currentstate of development, and references [36].Included in the table are staggered and nonstaggered, conservative and non-conservative discretizations of viscous and inviscid, incompressible and com-pressible 
ows at various Mach numbers, as well as a simple (algebraic) turbu-lence model and comments on chemically reacting 
ows. The listing of asso-ciated computational barriers involves: non-alignment of streamlines or sonic11



characteristics with the grids; recirculating 
ows; stagnation points; discretiza-tion and relaxation on and near shocks and boundaries; far-�eld arti�cial bound-ary conditions; small-scale singularities (meaning important features, such as thecomplete airplane, which are not visible on some of the coarse grids); large gridaspect ratios; boundary layer resolution; and grid adaptation.3 Time-Dependent Di�erential ProblemsIn the numerical solution of time-dependent problems, to allow large time stepsand/or fully adaptable discretization (cf. Sec. 3.2), implicit time steps must beused, hence a system of equations must be solved at each time step. Multigridsolvers for such systems are usually similar to but simpler than their steady-statecounterparts, because these systems are easier than the steady-state equations,in various ways: they have better ellipticity measures (due to the time term);they do not involve the di�culties associated with recirculation (in 
ow prob-lems); and they each come with a good �rst approximation (from the previoustime step). A simple \F cycle" at each time step (e�ectively an FAS-FMG al-gorithm for the solution increment , i.e., its departure from the previous-timesolution) should solve the equations much below the incremental discretizationerrors (the errors added in the current time step). Hence, the errors accumu-lated over time due to the solver are generally much below the accumulateddiscretization errors [49].It is generally true that fully e�cient multigrid methods for the steady-stateequations directly yield also at-least-as-e�cient methods for time-accurate inte-grations, where the work per implicit time step is just comparable to the work ofan explicit time step. Moreover, in various cases (e.g., parabolic equations withsteady or smoothly-varying-in-time forcing terms), the work can be substan-tially smaller than that of an explicit time step. This is due to the smoothnessof solution increments (solution changes from a previous time or solution depar-tures from a simple convection). Such smoothness is typically established awayfrom the immediate neighborhood of oscillatory initial or boundary conditions.It implies that the high-frequency part of the solution changes slowly. Hencethe multigrid solver applied at each time step needs to actually visit the �nestlevels only once per many time steps, provided that the �ne-to-coarse correction�2hh is carried from each such visit to subsequent time steps [95], [100].3.1 Parallel processing in space-timeA unique feature of multigrid solvers is the possibility to apply parallel pro-cessing across space and time, i.e., to process simultaneously earlier and latertime steps, whereas single-level solvers must proceed sequentially in time. (Thisunique feature is discussed in [21, x3.10], [27, x11] and elaborated in [156].)To achieve that, time is treated just as another space coordinate, and thewhole problem is solved by an FMG (full multigrid) algorithm, starting with acoarse grid in both space and time, proceeding to �ner levels, with one (some-12



times two) cycles at each level. At �ne levels, where most of the computationalwork is spent, all the processes (relaxation and inter-grid transfers) can employmany processors in parallel, each one working in its own space-time subdomain.This of course makes it possible to use e�ciently (i.e., at a given arithmetic tocommunication ratio) a larger number of parallel processors than can be usedwhen parallelization is done only across space (marching sequentially in time).Depending on the number of processors, available storage, etc., the abovealgorithm will often be applied not to the entire time evolution, but to one(large) time interval at a time. (A more sophisticated multilevel time windowingis described in Sec. 4.2 below).3.2 Grid adaptation in space-timeSimultaneous space-time multigridding also yields a very e�cient way for gen-eral space-time grid adaptation, where both the spatial meshsize and the timestep can be adapted | locally in both space and time. Just as in the case ofpure spatial (i.e., steady-state) problems, the multigrid environment can provideconvenient 
exible structures, where discrete equations need be derived only foruniform grids (facilitating economic high-order discretizations and parallelizableand vectorizable processing), while only negligible geometric information needbe stored. The multigrid algorithm also provides local re�nement criteria andone-shot self-adaptive solvers; see Sec. 6.1 below.4 Inverse Problems. Atmospheric Data Assimi-lationA direct partial di�erential problem involves an interior di�erential equationand a set of initial/boundary conditions which stably determines a unique so-lution. An inverse problem is one in which the di�erential equation and/or theinitial/boundary conditioned are not fully given and instead the results of aset of solution observations (measurements) are known. the latter may containerrors, and even without errors the problem is usually ill-posed: the known datamay be approximated by widely di�erent solutions.In this chapter we use the problem of atmospheric data assimilation to illus-trate the many ways in which multiscale computation can bene�t the solutionof inverse PDE problems. Other problems of this type are discussed in Secs. 5and 16.2 below.4.1 Background and objectivesA major di�culty in weather prediction is the need to assimilate into the so-lution of the atmospheric 
ow equations a continuously incoming stream ofdata from measurements carried out around the globe by a variety of devices,with highly varying accuracy, frequency, and resolution. Current assimilationmethods require much more computer resources than the direct solution of the13



atmospheric equations. The reason is the full 4-D coupling: Any measurement,at any place and time, should in principle a�ect the solution at any other placeand time, thus creating a dense NsNt �NsNt matrix of in
uence, where Ns isthe huge number of gridpoints representing the 3-D atmosphere and Nt is thelarge number of time steps spanning the full period over which large-scale at-mospheric patterns are correlated. As a result, not only are current assimilationmethods very slow, but they are also based on highly questionable compromises,such as: ignoring the all-important spatially or temporally remote correlationsof large-scale averages; limiting control to only the initial value of the 
ow atsome arbitrarily chosen initial time, instead of controlling the numerical equa-tions at all times; and assimilating only the data from one time interval at atime, without fully correlating with other intervals.The objective is to develop multiscale methods that can avoid all these com-promises, and can assimilate the data into the multigrid solver of the direct 
owequations at small extra cost, i.e., using extra computer time smaller than thatrequired by the direct solver by itself.This is considered possible because: (1) Large scale averages can inexpen-sively be assimilated on the correspondingly coarse levels of the multigrid solver(coarse in both space and time). (2) Deviations from any large-scale averagemust be assimilated on some �ner scale, but their correlation on that scale islocal. (3) The measurements (with their representativeness errors) are gener-ally less accurate and in most regions less resolved than the numerical 
owitself, hence their assimilation should not be done at the �nest numerical level.(The overall solver of an ill-posed inverse problem can sometimes cost even farless than the solver of a corresponding well-posed problem, because ill-de�nedhigh-frequencies need not be calculated: see Sec. 16.2.)4.2 Multiscale 4D assimilationSince the atmospheric data assimilation problem involves full 4D couplings,both forward and backward in time, it is proposed to use one full-multigrid(FMG) algorithm for the entire 4D problem (but possibly with the storage-saving windowing described below). This algorithm would be like a usual FMGsolver for the direct 4D atmospheric equations, except that at each stage, oneach level excluding the �nest ones, the relaxation of the solution variable willbe accompanied by relaxation of the control variables �(x) at that level (seethe nature of �(x) in Sec. 4.3 below). Thus, in essence, large-scale averages ofthe solution will be assimilated on correspondingly coarse grids (coarse in bothspace and time).The levels at which �(x) will be adjusted will depend on the local density ofthe measurements, their accuracy and their distance from regions where detailsof the solution are of interest.Windowing . Should the 4D solution require too much storage, it is possibleto reorganize it in multiscale windows, marching in time, without much loss ofe�ciency. That is, only a certain window (time slice) of the �nest grid need bekept in memory at a time. Having relaxed over it, residuals are then transferred14



from this window to the coarser grids. On returning from the coarser gridsmore relaxation is made on the �nest grid, now in a somewhat advanced window(shifted forward in time, but partly overlapping its predecessor) and so on. Atthe coarser levels, on increasingly coarser grids, increasingly wider (in real time,but poorer in gridpoints) windows are kept and advanced in a similar manner.The domain covered by each coarse-grid window always strictly contains allthe �ner ones. The coarsest windows extend very far in time, especially intothe past; as far indeed as there exist data whose large-scale averages are stillcorrelated to the solution at the time of the current �nest window. At timeswhere a coarse window exists while the next �ner one has already been removed,the coarse-level equations can still retain the FAS-multigrid �ne-to-coarse (�)corrections (static or modi�ed), thus still maintaining the �ne-level accuracy ofcoarse-level features (cf. the \frozen �" technique in [23, x15] and in [95]).Some of the �nest windows may be local not only in time but also in space,e�ecting local re�nements at regions of greater human interest and/or regionsrequiring higher resolution for mathematical and physical reasons (sea straits,islands, mountains, etc.).4.3 Multiple bene�ts of multiple multiscale techniquesOur studies have uncovered many di�erent ways in which multiscale computa-tional methods can contribute to data assimilation problems (and similarly toother inverse problems). The following is the full list | brought as an exampleof what a \full multiscaling" of a problem may involve.1. Implicit nonlinear time steps. At the level of the underlying directCFD equations, fast multigrid solvers make it possible to use implicit-time-stepdiscretizations at full e�ciency (see the general approach to time dependentproblems in Sec. 3 above, and multigrid methods for shallow water and three-dimensional atmospheric models in [11], [10], [9], [164], [165], [117], [118] and[133]). This entails not only unconditional linear stability, but also avoidance ofbad e�ects associated with linearized time steps (in which one would use fullyimplicit equations, but based on linearization around the previous-time-stepsolution) [9]. The unconditional stability is important for the multiscale dataassimilation processes, enabling work on various temporal and spatial scales,unconstrained by various Courant numbers.2. Local re�nements are well known to be greatly facilitated by the multigridalgorithm, as also hinted in the algorithm description above. The multiscaleenvironment simultaneously provides convenient 
exible structures, re�nementcriteria and one-shot self-adaptive solvers; cf. Secs. 3.2 and 6.1.3. Space + time parallel processing . Still at the level of the direct CFDequations (but similarly also at the level of the inverse (data assimilation) prob-lem), multiscaling is a necessary vehicle to obtain parallel processing not onlyacross space at each time step, but also across time (see Sec. 3.1 above).4. One-shot solution of inverse problems. Normally, inverse problems aresolved by a sequence of direct solutions (e.g., direct multigrid solutions), throughwhich an iterative adjustment is made to the control parameters (the inverse-15



problem unknowns). For example, in the adjoint method for atmospheric dataassimilation, a direct solver of the 
ow equations (marching forward in time) isfollowed by an adjoint solution (backward in time) that gauges the �rst deriva-tives of the data-�tness functional with respect to the initial values (the 
owvariables at the initial time). These derivatives then drive some adjustmentsof the initial values, from which another direct 
ow solution is next calculated,and so on. Many iterations are needed for this process to converge. In multigridsolvers, by contrast, one can integrate the adjustment of the inverse parametersinto the appropriate stages of only one direct-problem solver (see Sec. 4.2 aboveand Secs. 5, 9.1 and 16.2 below. This general approach has been described in[23, x13] and [24, x13], with more details in [27, x8.2] and full development in[150], [2], [3]).5. One-shot continuation. The assimilation problem is highly nonlinear,hence a good starting guess for the solution is important. A general way to ob-tain such an initial guess is by continuation (embedding), in which the problemis embedded in a sequence of problems, each requiring another application of thesolver (using the previous-problem solution as the initial guess). In multigridsolvers, however, the continuation can often be integrated into just one FMGsolver (see [23, S 8.3.2] or in [24]). For example, at the coarser stages of theFMG algorithm more arti�cial viscosity (and/or more regularization, and/or asmaller coe�cient of Dt in the continuity equation) can be used, then graduallybe taken out as the algorithm proceeds to �ner levels. This makes the solutionmuch easier in the �rst stages, from which it is then continuously dragged intothe desired neighborhood. Such FMG continuation devices are often natural.For example, larger arti�cial viscosity would quite naturally be introduced oncoarse grids, even without aiming at continuation. A natural continuation isalso supplied by the inverse covariance matrix S (see below), which would besmaller on coarser FMG levels due to larger discretization-error estimates.6. Full 
ow control. In most data assimilation approaches (such as theadjoint method described above), the control parameters (the parameters thatcan be changed to obtain �tness of solution to observations) are only the initialvalues of the solution. This makes it impossible to bene�t from the details(the oscillating components) of the observations at time far removed from theinitial time, because those details at those times are ill-determined by the initialvalues. Instead of controlling just initial values, one should really control theentire numerical solution. Namely, the control parameters �(x) is a vector-valued grid function that at each point x gives the deviations in satisfying theset of 
ow equations. The objective function (the error functional that shouldbe minimized) has the general formE = �TS�+ dTWd; (4:1)where � = �(x) is the vector of all control parameters, d = �d(y)� is thevector of deviations of the solution u from the observation u0 (i.e., d(y) =(P 0u)(y) � u0(y), where P 0 is a projection from the solution space (x) to theobservation space (y)), and S and W are (positive-de�nite) weight matrices. In16



a crude approximation, one can take these matrices to be diagonal, where thediagonal inverse S(x; x)�1 is (a very rough estimate of) the expected squareerror in the equation at x, which is the sum of the local discretization error(conveniently estimated by the \� correction" of the FAS multigrid solver; see[24, x8.4]) and the local modeling errors (errors in the physical assumptionsembodied in the equations). The diagonal inverse W (y; y)�1 is (a very roughestimate of) the expected square error in the measurement u0(y), including inparticular the \representativeness error" (accidental deviation at the point ofmeasurement from the relevant local average). More precisely, S and W shouldbe corresponding general (not necessarily diagonal) inverse covariance matrices(in which case the discussion at Item 8 below is relevant).A detailed Fourier analysis by Rima Gandlin, comparing full-
ow controlwith initial-value control in a model case of 1D + time wave equations, hasdemonstrated the great advantage of the former [90].So extensive control parameters can only be handled by a multiscale treat-ment. Moreover, using the methods described above the solution is expectednot to be expensive, especially since the control parameters �(x) need not becontrolled at the �nest computational levels; on such levels �(x) can simply beinterpolated from the coarser levels and kept unchanged during the relaxation(cf. Item 9 below).7. Unlimited correlation range. In conventional assimilation methods, eachcontrol value interacts with a limited range of measurements: measurementsat a restricted (e.g., 6 hours) time interval and sometimes only at con�neddistances. However, it is clear that large-scale averages of the dynamic variablesinteract at much larger ranges. Multiscale data assimilation makes it possible tocorrelate solution and measurements at any desired distance in space and time,since correlations at increasingly larger distances are calculated on increasinglycoarser grids.8. E�cient representation of direct and inverse covariance. There are anumber of ways to derive or estimate covariance matrices and various simpli�-cation assumptions are made. However, the real covariance matrices (especiallythe model error covariance) are actually dense (not sparse), and thus involvehuge (N2sN2t , in principle) amount of information. Even when the matrix issparse, its inverse, used in (4.1), is certainly dense. The only e�cient way ofrepresenting, let alone computing, such huge dense matrices and their inverses isa multiscale representation, based on their asymptotic smoothness. This wouldbe similar to the methods described in Secs. 10 and 14.3 below and in [66] forcalculating integral transforms, many-body interactions, solutions to integro-di�erential equations, and Kalmen �ltering, all involving n � n dense matriceswhose complexity (the amount of computer operations required to perform amultiplication by either the matrix or its inverse) is reduced to O(n) by multi-scale techniques.To achieve such a low complexity it is of course necessary to assume the co-variance matrices to be reasonably smooth. Namely, if the errors at two points, xand y, remote from each other, are correlated at all, their correlation is assumedto vary like g1(x)g2(y)G(x; y), where G(x; y) is asymptotically smooth (meaning17



that up to a certain order, p-order derivatives of G(x; y) are not larger thanO(jx � yj�p+q), q being a �xed small integer). Such assumptions seem veryreasonable in practice, and are certainly more accurate than neglecting distanterror correlation altogether. They can also be weakened in various ways and stillbene�t from multiscale processing. (For example, it may be enough to assumeat each point x smoothness for variations in only some directions, although thecomplexity may then rise to O(n logn). The processing in such cases would beakin to those in [43] and [55].)9. Improved regularization. First, the multiscale solver described aboveis likely to require much less regularization than conventional solvers since themain ill-posedness in the problem is the long term and long range in
uence of�ne-scale oscillations, while the multiscale large-scale interactions are mediatedby coarse grids, omitting these oscillations. Secondly, attractive regularizationdevices are o�ered by the multiscale processing. For example, statistical theoriesof the atmospheric equations yield the relative expected energy at di�erentscales. In a multiscale processing this can be used to properly penalize anyexcessive local energy at every scale, yielding an excellent regularization scheme(which could not even be formulated in uniscale processing). Generally, themultiscale data assimilation need not be governed by one all-embracing objectivefunction, but can employ a collection of di�erent directives at di�erent scales.(Cf. Item 12 below).10. Fast assimilation of new data. Normally, new observation data keeparriving and need to be assimilated into an already partly existing approximatesolution; i.e., the new data should usually both modify the previous solutionand extend it into a new time interval. The multiscale solver is particularlysuitable for the task: The new data normally does not a�ect the h{f details ofthe solution in much older times; also, these details are normally no longer ofinterest. Hence, increasingly older times can participate in the new processingon increasingly coarser levels (still maintaining the �ne-to-coarse � correctionspreviously computed for them). This exactly �ts into the windowing algorithmabove (Sec. 4.2). The resulting ease of assimilating new pieces of data maywell facilitate a continuous assimilation policy , with new data being assimilatedmuch more often than today.11. Multiscale organization of observation data. Either for the purposesof the multiscale assimilation procedure, or for a variety of other procedures, itis very useful to organize the observation data in a multiscale structure. Thismay simply mean pointers from a multiscale hierarchy of uniform grids into theset of data, with �ner uniform levels introduced only where there are still morethan a couple of observations per grid cell. Such data structures are commonlyused to facilitate regional computations of all kinds. Beyond this, it is possibleto replace many observations by their average at some larger scale, serving as akind of macro-observation, its associated error estimate being of course reducedby standard rules of statistics. This can be repeated, to obtain still-larger-scalerepresentations. Such structures may save much storage, and provide directlythe needs of the multiscale assimilation algorithms.12. Scale-dependent data types. Instead of simple averaging, the macro-18



observations just mentioned can be formed from the �ne-scale data in a varietyof other, often more meaningful, ways. In particular, �ne-scale waves should berepresented on coarse scales by their slowly-varying amplitude. Indeed, at largedistances the wave phase is ill-posed, while its amplitude is still meaningful.(Cf. the techniques in Sec. 7 below).5 Feedback Optimal ControlWe consider a dynamical system that involves a vector x of state functions anda vector u of control functions, both being functions of time (and possibly alsoof space), governed by the initial-value ODE (or PDE)dxdt = F (x; u) ; B0x(t = 0) = b0 ; (5:1)where F and B0 are vectors of known functions (or spatial operators). Theoptimal control problem is to �nd the control u for which this dynamical systemminimizes a given objective functional J(x; u) under various constraints, suchas target-time (T ) conditions of the type B1x(t = T ) = b1. In the feedbackoptimal control problem it is assumed that new initial conditions Box(t) arecontinuously fed from the controlled device at all times 0 � t < T , requiringcontinuous updating of the control u. Fast numerical updates are required forreal-time control.In a usual approach to the feedback problem, the dynamical system is ap-proximated by a linear-quadratic regulator (LQR), in which F (x; u) = Ax + uand J(x; u) = R jCx(t)j2(jCx(t)j2 + ju(t)j2)dt, where A and C are linear opera-tors on a suitable Hilbert space H, x 2 H and u 2 U � H. Provided the systemis stabilizable and C renders it detectable, there exists a unique nonnegativesolution K to the Ricatti equation(A�K +KA�K2 + C�C)x = 0 ; 8x 2 H ; (5:2)and u(t) = �Kx(t) yields the desired feedback. In most cases this approach isvery ine�cient, either because the LQR approximation should be iterated manytimes, and/or because of the non-sparseness of the (discretized) operator K, andthe resulting high dimensionality of the Ricatti equation.Our approach, by contrast, is based on a fast multigrid solver for the open-loop (i.e., not feedback) optimal control problem, installed in a multiscale waythat allows super-fast (essentially local) updates upon feedbacks.The multigrid open-loop solver is very e�cient by itself, a one-shot solverfor the nonlinear (non-LQR) problem. In fact, for various actual problems, itcan share many of the potential bene�ts listed in Sec. 4.3 above. The super-fastupdates are based on the observation that, upon changing the initial conditions,the change in the solution is increasingly smoother at times increasingly farfrom the initial. (In various actual problems, the sense of this smoothness hasto be carefully understood.) This makes it possible for the multigrid re-solving19



algorithm to re-process its �ne grids only at the very early times, while atlater times only coarse levels are re-processed, with FAS �ne-to-coarse defectcorrections being frozen there (cf. [23, x15].) More precisely, at increasinglylater times, any given multigrid level (a given timestep and, when relevant,spatial meshsize) need be re-processed increasingly more rarely. As a result,the computational cost of re-resolving is equivalent to only local re-processing(essentially just few steps near the initial time) of the full solver. This willusually be far less expensive than applying K (even just once, and even assumingthe Riccati equations has already been solved).We have tested this approach on several toy F-16 maneuvering problems(given to us by Dr. Meir Pachter of the Air Force Institute of Technology atWright Patterson Air Force Base.) The linear dynamics includes 3 state andone control functions. Both quadratic and non-quadratic objectives were tested,including the L1 norm (the maximum absolute value) of one of the state func-tions.The open-loop optimal control problem, which in this case is a two-pointboundary value ODE system with 7 unknown functions, has been discretizedby second-order �nite di�erences on a staggered grid and solved by an FMGalgorithm. Just two V (1; 1) multigrid cycles per grid proved enough to producea solution with algebraic errors much smaller than (only few percent of) thediscretization errors. In the case of the L1 objective, a continuation processhas been integrated into this FMG solver, approaching L1 by Lp, with p = 2mat the m-th FMG level. Each of the relaxation sweeps included one red/blackpass for each of the 7 ODEs, some of the passes being of the Gauss-Seidel type,the others | Kacmarz type. For some of the toy problems the principal part ofthe ODE system was scale dependent, producing boundary layers and requiringtwo di�erent discretization schemes, one at �ne levels the other at coarse levels,each with its own corresponding relaxation scheme.The feasibility of the super-fast solution updates upon feedbacks has beenestablished in our tests by monitoring the �ne-to-coarse (�) corrections. When� is appropriately scaled (divided by proper solution values available to thecoarse-level re-solver) its values (excluding a couple of them near the initialtime) turn out to change very little upon changing the initial conditions. Thisshows that � can be frozen, so that re-solving can be restricted to coarse levels,as expected.6 Adaptable Grids and PDE Solvers on Unboun-ded Domains6.1 The multigrid solver + adaptorA very substantial saving in the number of degrees of freedom needed by adiscretization of a PDE to attain a given accuracy can be obtained by employingvarious forms of local grid adaptation. The multigrid solver, in its nonlinear FASform, yields a particularly 
exible and e�cient framework for that purpose, with20



some additional bene�ts. The general description of this framework has beengiven elsewhere [19, xx7{9], [23, x9], [24, x9] or [6], so we only summarize themain points.Local re�nements are created by adding local patches of �ner uniform gridsover desired parts of a domain covered by a \parent" coarse grid. (The systemis recursive: each of the \child" patches may itself contain smaller subdomainsover which \grandchildren" patches of a further re�nement are set). Each �ne-patch solution supplies a certain defect correction to the equations of its parent(coarse) grid, thereby enforcing there the �ne-grid accuracy. This is a naturalpart of the FAS multigrid solver (which introduces anyway coarser grids over�ner ones to accelerate convergence, using in the process the same �ne-to-coarsedefect corrections). Hence, the multigrid solver solves the resulting compos-ite discretization with the same e�ciency (per degree of freedom) as solvinguniform-grid equations. This composite structure is very 
exible and can behighly non-uniform, while all its discrete equations are still written in terms ofuniform grids. This makes it simple and inexpensive to use high-order approxi-mations, while storing only a negligible amount of geometrical information. Alsoin this way no unintended grid anisotropy is introduced (in contrast to othergrid generation or grid transformation methods, in which such anisotropies doenter, causing considerable complications for the multigrid solver).The �ne-to-coarse defect correction also yields, as a byproduct, precise adap-tation criteria: a defect correction larger than a natural threshold indicates thata further local re�nement is needed. Moreover, an automatic self-adaptationprocess can be integrated into the so-called \full multigrid" (FMG) solver: asthe latter proceeds to increasingly �ner levels, it can also decides (using theseadaptation criteria) where those �ner levels should be, thereby yielding a one-shot solver/adaptor .It is also possible for each of the local grid patches to have its own localcoordinate system. For example, in 
ow problems, the coordinate system may �twall boundaries (or more generally: stream lines), facilitating the introductionof highly anisotropic grids in boundary layers (or particularly �ne cross-streammeshsizes). In electronic structure calculations (cf. Sec. 9), a local patch at theatomic core can use spherical symmetry, as appropriate for core electrons.An important feature of this adaptation is that often the calculation withinthe local-re�nement patch can be done once for all : Although the solutionin the patch changes when the parent-grid solution changes, the �ne-to-coarsedefect corrections usually change very little. At most one more short \visit"to the patch (e.g., one more relaxation sweep at the �ner level) toward theend of the calculation will normally be needed to update the defect corrections.Alternatively, one can calculate apriori the approximately linear dependence ofthe defect corrections on the local parent-grid values.6.2 PDE solvers on unbounded domainsAs pointed out in [19, x7.1], problems in unbounded domains can be solved bya multigrid structure employing increasingly coarser grids on increasingly larger21



domains, using an FAS multigrid solver. The structure is essentially the sameas described above (Sec. 6.1). We have embarked on a detailed study of howthis should be done: At what rate should the domains increase with increasedmeshsize? What is the largest needed domain? What interpolation is needed atinterior boundaries (boundaries of a grid h embedded in a larger domain coveredby grid 2h)? What multigrid algorithm should be applied?For the Poisson equation �u = F we have developed, in collaboration withJe�rey S. Danowitz, theoretical answers to these questions, then tested themnumerically. Using general grid optimization equations (see [19, x8.1] or [24,x9.5] or [24, x9.3]) and the known smoothness properties of the solution, onecan calculate how far out one must use a certain meshsize to maintain a cer-tain accuracy. For example, one can �nd that if the domain of interest (out-side which F = 0) has diameter d0 and if the desired accuracy inside thatdomain would be obtained (had its boundary values been given) by a second-order discretization and a grid with meshsize h0, then the diameter of eachcoarser grid h (h = 2h0; 4h0; : : :) should only satisfy d(h) � d0(h=h0)2=3 andd(h) � d(h=2) + Ch logh0. Without signi�cantly departing from the desiredaccuracy one can cover a domain (the coarsest-grid domain) with diameter R,spending only O(logR) gridpoints, so R can easily be taken so large as to ad-mit small enough boundary-condition errors. Employing a suitable version ofthe �-FMG algorithm [24, x9.6], it has been shown that the accuracy-to-workrelation typical to multigrid solvers of the bounded -domain problem can in thisway be obtained for the unbounded domain, where accuracy is in terms of ap-proaching the di�erential solution. The same can be obtained for higher-orderdiscretizations (with another exponent in the �rst d(h) inequality).7 Wave/Ray Multigrid MethodsThe aim is to develop advanced and general numerical tools for computing wavepropagation on scales much larger than the wavelength, when there may alsoexist interactions with special smaller-scale inhomogeneities where ray represen-tations (geometrical optics) would break down. Such tools can revolutionize im-portant computations, such as: radar cross sections; wave propagation throughdispersive media; seismic wave characteristics resulting from various types ofexplosion zones; generation and control of acoustic noise; electronic waves incondensed matter; etc.We have developed two basic approaches relevant to the problem. One isa general multiscale solver for integral equations with oscillatory kernels [29],which is a very e�cient way to solve wave propagation in homogeneous (andsome piecewise homogeneous) media by replacing the di�erential equations withboundary integral equations. Multiscale ray representations �rst appeared inthis work.The other approach is a fast multigrid solver for the highly inde�nite di�er-ential equations of stationary waves in a domain containing many wavelengths,with radiation boundary conditions. The basic idea of this work had been stated22



long ago (see, e.g., [20, x3.2], and more details in [30]), but important algorith-mic aspects had still to be worked out.The model equation we use is the Helmholtz equation�u(x) + k2u(x) = f(x) : (7:1)Traditional multigrid solvers are not e�ective for this problem, because some\characteristic" components (i.e., those with wavelength close to 2�=k) are non-local (their size is determined by conditions many meshsizes away) exactly onall those grids which are �ne enough to approximate such components.On each of its levels, the new solver represents the solution asu(x) =Xj Aj(x) exp �i'j(x)� : (7:2)At the highest (�nest) level this sum includes just one term and 'j(x) � 0, sothe representation includes just one function | the desired solution | and theequation for it is the usual �ve-point �nite-di�erence discretization of (7.1). In-creasingly lower levels of the solver employ on the one hand increasingly coarsergrids of x to discretize each amplitude Aj(x) and each eikonal 'j(x), and, onthe other hand, correspondingly �ner sets of \momenta" (i.e., more terms j inthe above sum). The interaction between these levels has been shown to yield asolver (for the discrete equations given at the highest level) which is as e�cientas the best traditional multigrid solvers for de�nite elliptic systems. The radi-ation boundary conditions are naturally enforced at the lowest level, where therepresentation essentially coincides with geometrical optics (ray representation,appropriate for scales much larger than the wavelength).Details of the one-dimensional solver and a preliminary version of the two-dimensional solver were given in [122]. The current version of the two-dimensio-nal solver, together with numerical results, is described in detail in [51]; itsaccuracy is analyzed in [52].An important feature of the solver is the alignment of the grid on whichAj(x) is discretized with the propagation direction of the corresponding eikonal(the direction of r'j(x)), its meshsize growing (upon coarsening) faster in thatdirection than in the perpendicular directions. Speci�cally, if J is the number ofterms in the summation (7.2) at a given multigrid level, then the propagation-direction meshsize for that level is O(J2k�1), while the perpendicular-directionone is O(Jk�1). Incidentally, such oriented grids should have also been employedin [25], reducing the order of complexity stated there to the same one as in thenon-oscillatory case (with an additional O(logn) factor in the case of integraltransforms or integral equations de�ned on a curved manifold of codimension1, e.g., a boundary).A �nite-element representation akin to (7.2) appears in [5] and [124], butonly on one level, and without the above-mentioned grid alignment. Unlike thatrepresentation, the present one can be used to bridge the entire gap betweenthe wave discretization needed at small subdomains and the ray discretizationneeded at the large outer regions, thus producing fully e�cient fast solver, aswell as the basis for the development described next.23



7.1 Future plans: variable coe�cients, local re�nementsand di�ractionThe plan is to develop the solver for the variable-coe�cient case k = k(x), andto advance a new setting where only geometrical optics is used in most of thedomain, while the wave equations, as well as intermediate levels with represen-tations of the type (7.2), are just introduced at special restricted subdomainswhere geometrical optics breaks down.Geometrical optics can certainly be used throughout large regions where k(x)is either a constant or has a small relative change per wavelength. Although inthe latter case the rays are curved, they can still be followed by Snell's law, ormore generally by marching solutions of the eikonal equation (see, e.g., [160]).Discontinuities in k(x) can also be accommodated by geometrical optics, em-ploying the usual rules of re
ection and refraction, as long as the surfaces ofdiscontinuity have curvature radii large compared with the wavelength (assum-ing the number of repeated re
ections is not too large).The pure geometrical optics approach will typically break down in smallerregions (e.g., neighborhood of fast changes in k(x) or large-curvature surfacesof discontinuity). It is proposed to introduce, in such regions, nested localre�nements structured in the usual FAS-multigrid manner (see Sec. 6.1). The�ner levels will generally use representations of the type (7.2), the �ner the levelthe smaller the number of terms in the summation, eventually yielding a directdiscretization of (7.1) on su�ciently �ne grids in small subdomains; see moredetails in [51, x10].E�ectively this will produce ray dynamics in the large, with relations be-tween rays modi�ed by the �ner grids in the small special regions (around anaperture, corners, edges, a radar target, etc.), yielding a general numerical toolfor computing di�raction (the rays produced by small-scale disturbances; cf.[111]).8 Rigorous Quantitative Analysis of MultigridSince the early days of multigrid development, the \local mode analysis" (LMA),based on heuristic local Fourier decomposition of the error function, has been thechief tool for the practical design, precise quantitative understanding, and evendebugging, of the various multigrid processes. Although rigorously justi�ed invery special cases only, the easily computable predictions of that analysis haveturned out to be precise for quite general PDE boundary value problems dis-cretized on uniform grids with quite general domains and boundary conditions.In several important cases, however, the predicted LMA convergence factorswere not obtained, presumably due to the in
uence of boundaries, which areusually not accounted for by the local analysis; domains with reentrant cornersare a notorious example.A general rigorous framework for the local mode analysis on one hand, andfor the treatment of boundaries on the other hand, has appeared [28], [32].24



For general linear elliptic PDE systems with piecewise smooth coe�cientsin general domains discretized by uniform grids, it has been proved that, in thelimit of small meshsizes, the convergence factors predicted by LMA are indeedobtained (provided the multigrid cycle is supplemented with a proper processingat and near the boundaries). That processing, it is proved, costs negligibleextra computer work. Apart from mode analysis, a Coarse Grid Approximation(CGA) condition has been introduced which is both necessary and su�cient forthe multigrid algorithm to work properly.Unlike most other multigrid theories, convergence factors thus proven arenot just qualitative; they are quantitatively sharp: they are exactly obtained (orarbitrarily closely approached) by the worst local mode.The assumptions made by the theory are shown to be, in a sense, the weakestpossible. Except for its stability, no assumption is made about the relaxationscheme: whether it is good or bad is not assumed , but calculated .The �rst part of this work [32] studies the L2 convergence in one cycle, forequations with constant coe�cients. In the second part, extensions are discussed(in the form of comments) to variable coe�cients, to block relaxation schemes,to many cycles (asymptotic convergence), to more levels with arbitrary cycletypes (V;W , etc.), and to FMG algorithms. Various error norms and theirrelations to the orders of the inter-grid transfer operators are analyzed. Globalmode analysis, required to supplement the local analysis in various border cases,is developed, and practical implications of the analysis, including practical waysfor constructing and debugging multigrid solvers, are generally reviewed. Amajor emphasis is on the importance and practicality of adding partial (local)relaxation passes to the multigrid algorithm (cf. [19, App. A.9]): Theory andpractice show that multigrid e�ciency is greatly enhanced by adding specialrelaxation steps at any local neighborhood exhibiting unusually large residuals.9 Many Eigenfunction Problems: ElectronicStructuresSome important scienti�c problems involve the computation of a large numberof eigenfunctions of a partial di�erential operator. As an important exam-ple of such problems we consider here the Kohn-Sham equation, of the Den-sity Functional Theory (DFT) [116], central to ab-initio condensed-matter andquantum-chemistry calculations of electronic structures. (For surveys of theDFT equations and their current multigrid solvers see [13], [17].) The Kohn-Sham N -eigenfunction equation is:�� n(r) + V (r) n(r) = �n n(r); r 2 R3; (n = 1; : : : ; N); (9:1)where 2N is the number of electrons in the system (or their number per period,in the case that V is a periodic function) which can be very large. Actually,the \e�ective potential" V depends on the eigenfunctions  n and the nuclear25



positions through the relationV (r) = Vnc + Vel + Vxc; Vnc = � NaXi=1 2Zijr �Rij ; Vel = Z 2�(r0)dr0jr � r0j : (9:2)Here Na is the number of atoms in the system, Ri and Zi are the position andcharge of the i-th nucleon, �(r) is the electronic density de�ned by�(r) = NXn=1 j n(r)j2; (9:3)and Vxc(r) is the so-called exchange and correlation potential, describing theaverage e�ects of exchange and correlation derived from the theory of the elec-tron gas. In the local density approximation, Vxc(r) depends only on �(r) andpossibly on the gradient (r�)(r).Fast multigrid eigenproblem solvers have been developed before [57], but theab-initio problem includes new traits and di�culties that call for new multiscaletechniques, such as in the following list:(1) Singularities. The nuclear potential energy harbors a singularity at eachatomic nucleus (if pseudo-potential is not used). The multigrid solver (unlikeFourier methods) allows local re�nements that would remove the global inaccu-racies associated with such singularities: see Sec. 6.1 above. Note that the localpatches of �ner grid levels can supply once-for-all (or seldom-updated) \defectcorrections" that can act like, and indeed replace the use of, pseudopotentials.Even with pseudopotentials, local re�nements around nuclei, as well as high-order discretization everywhere, are necessary for e�ciency, since high accu-racies are required for predicting the energy di�erences that govern chemicalprocesses. Because of the neighborhood of the singularity, conservative dis-cretization is needed [6], which is especially tricky for high-order discretizationat grid interfaces (the boundaries of any level of local re�nement); see [12], wherethe FAS conservative discretization of [6] is extended to high-order schemes inthree dimensions, and applications to quantum chemistry are discussed.(2) Unbounded or very-large-scale domains can e�ciently be treated bymultigrid solvers which employ increasingly coarser grids at increasingly largerdistances from the region(s) of interest (cf. Sec. 6.2 above). In particular, forelectronic problems involving isolated molecules, the meshsize in the vacuumaway from the molecules can grow; it can grow so fast that the total computa-tional work is dominated by the work near (up to several inter-atomic distancesaway) from the nuclei.Similarly, in problems with extended, essentially periodic structures, devi-ations from the periodic-structure solution due to defects or surfaces can bedescribed on increasingly coarser grids at increasing distances from the defector surface, while for extended amorphous material, increasingly coarser gridscan be used at increasingly greater distances from the subdomain of interest.(This cannot be done without the new multiscale structure proposed in Sec. 9.2below). 26



(3) Self-consistency . The dependence of the potential function V on thetotal electronic charge distribution � introduces a nonlinearity into the prob-lems, which usually requires many iterative applications of a linear solver. FASmultigrid procedures can directly solve nonlinear problems, as e�ciently as solv-ing their linear counterparts [19], [23], [24]. The development of such one-shotsolvers for the Schr�odinger operator depends on the ability to update the self-consistent potential as the solution changes on the coarse grids. This is alsorelated to the following issue.(4) Multi-integrations are required in calculating the potential (e.g., theHartree potential). This can be performed fast by solving auxiliary Poissonequations. Solving them by multigrid would facilitate the needed interactionbetween the coarse-level moves of this Poisson solver and the coarse-grid updatesto the self-consistent potential in the eigenproblem solver (see #3 above).(5) External optimization. In solving the electronic problem the nuclei areassumed �xed (the Born-Oppenheimer approximation), but one actually needsto �nd the nuclei positions for which the electronic-solution energy togetherwith the inter-nucleus potential yield the minimal total energy. This externaloptimization would normally be done iteratively, requiring solving the electroniceigenproblem many times. Again, a one-shot multigrid solver + optimizer canand should be developed, incorporating suitable nucleus moves into each of thelevels of the multigrid electronic solver. A model study reported below (Sec. 9.1)has shown the feasibility of this approach and the exact multigrid techniquesrequired for its full e�ciency.(6) Multitude of eigenfunctions. Even with a multigrid solver, the cost ofcalculating a large number N of eigenfunctions (N being the number of elec-trons in the system) may grow proportionally to N3 (employing discretizationswith O(N) degrees of freedom), since each eigenfunction is represented sepa-rately and may need to be orthogonalized with respect to all others to ensuretheir distinction. A theoretical study and tests with 1D model problems, re-ported in Sec. 9.2 below, indicate that for periodic problems (the usual typein condensed matter calculations), it may be possible to reduce the complexityto O(Ng logN log 1� ), by employing a multiscale collective representation of theeigenmodes. Here � is the desired accuracy and Ng is just the number of gridpoints per periodicity cell required for adequately resolving the various featuresof the potential function V (x).(7) Highly oscillatory functions, such as the orbitals of high-energy electrons,would normally require dense grids, and would not allow e�ective multigridsolvers, because of the corresponding high inde�niteness of their equation. Themultiscale approach described in Sec. 9.2 below e�ectively deals also with thisdi�culty.(8) Multiscale structures may o�er improved non-local representations forthe exchange correlation potential. This aspect is largely unexplored. Cer-tain non-local exchange-correlation operators can be translated into a systemof Poisson equations, which (like the Hartree potential in #4 above) augmentthe Kohn-Sham system, yielding a larger PDE system that is simultaneouslysolvable by a multigrid algorithm. 27



Of all the scaling di�culties listed above, several (those numbered 1, 2, 3, 4,and partly also #5) have been dealt with in other contexts (similar di�cultiesin other �elds). So, once multigrid solvers are introduced, the technique fortreating these di�culties will already be at hand. We have therefore focusedour attention mainly on #5 (see Sec. 9.1) and #6 and #7 (see Sec. 9.2).9.1 Model problem for external optimizationA simpli�ed model problem for the external optimization is the minimization ofthe two-dimensional two-atom total energyminz=(z1;z2)2D �E(z) + �(z)� ; (9:4)where E(z) models the (\external") repulsive energy between ions located at(0; 0) and at (z1; z2), and �(z) is the corresponding electronic energy, modeledby the eigenvalue of the equation���+ V (x; z)� (x) = � (x) ; x = (x1; x2) 2 D : (9:5)We chose V (x; z) that models the Coloumbic potential at x of the two-ion sys-tem, D = [0; 1]� [0; 1], and  was required to satisfy periodic boundary condi-tions on D (having chosen V and E also with this periodicity).The Euler equations for minimizing (9.4) under the constraint (9.5) can besimpli�ed (since the Lagrange multiplier coincides with  ) to the system ofequations (9.5){(9.7), where h ;  i = 1 ; (9:6)@E@zi +� ; @V@zi � = 0 ; (i = 1; 2) : (9:7)The eigenproblem (9.5){(9.7) was solved by a classical FAS multigrid eigen-solver [57]. The main point of the research was to �nd out how to include Eq.(9.7) and where to adjust z in the course of this solver. Since (9.7) is a globalequation and z is a \global" unknown (unlike  (x) it cannot be smoothed), itis enough to treat both of them at the coarsest level, where all the discreteequations can simply be solved simultaneously for all the unknowns, since theirnumber is small. This would be fully e�cient, provided a suitable \�ne-to-coarsecorrection" for Eq. (9.7) is recursively calculated at each coarsening step, see[23, x5.6], except that in the FAS scheme the residual transfer is replaced by the�2hh �ne-to-coarse correction; see [23, x8.2].The main �nding of this research, done in collaboration with Ron Kaminsky,was that in the above situation (and for similarly \localized" global unknowns,whose movements may not be resolved on some of the coarse grids), a lineardependence on the global unknowns should be introduced into �2hh ; see detailsin [35, x6.1]. The linear terms are important in the cases where the functions@V=@zi are not resolved well enough on the coarse level to yield there the correctdependence of h ; (@V=@zi) i on variations in z. This generally happens when28



V has a singularity (or a particularly large local variation on the scale of thegrid h) which moves with z. Fortunately, exactly in such cases, it is enough tocalculate �2hh in a small neighborhood of the singularity.With this simple change, the one-shot solver for the external optimizationproblem (9.2){(9.4) has attained essentially the same convergence factors as insolving Poisson equation, costing only a fraction more.This can straightforwardly be generalized to any number of unknown pointlocations (e.g., nuclei) in terms of which a PDE is formulated along with acorresponding number of additional \global" conditions, such as (9.7). At coarselevels where the separation between two such points becomes smaller than themeshsize, new equations can be formulated for their collective motion (keepingconstant the position of one relative to the other).9.2 O(N logN) calculation of N eigenfunctionsWhat is the amount of calculation needed to calculate the N lowest eigenfunc-tions of a di�erential operator discretized on Ng gridpoints? A usual multigrideigensolver [57] would need O(N2Ng) operations, since each eigenfunction needsto be orthogonalized with respect to each other. Under favorable conditions,these orthogonalizations can be performed on the coarse grids [73], [74], possiblyreducing the cost to O(NNg). However, all of these methods are adequate onlyfor N su�ciently small, N � Ng. For large N , with eigenfunctions featuringvariations on the scale of the grid, coarser grids cannot be used in such \naive"ways. For large eigenvalues the eigenproblem is highly inde�nite, hence methodsakin to those in Sec. 7 above should be used for coarsening.A new approach (pointed out in [30]) is being developed for calculating Neigenfunctions of a di�erential operator discretized on Ng gridpoints in O(Ng logN log 1" ) computer operations, " being the accuracy. This approach is based onthe observation that \neighboring" eigenfunctions are distinguishable from eachother only at large enough scales, and hence, in suitable representations, onecan use a common description of their details at �ner scales, and progressivelyseparate them out only on increasingly coarser grids. The core procedure isindeed similar in structure to multigrid algorithms developed for wave equations(see Sec. 7 above). (Recent \linear scaling" methods in electronic structurecalculation, reviewed in [85] and [91], are based on a localization assumption,typically solving a localized problem in O(NN 2̀) operations, where N` is thenumber of atoms in the localization radius. The new approach would solve sucha problem in O(N logN`) operations.)The feasibility of obtaining the O(Ng logN) e�ciency has �rst been demon-strated by Oren Livne for one-dimensional problems [119], [120]. Moreover, thatwork has also shown that the developed multiscale eigenbasis (MEB) structurecan be used to expand a given function in terms of the N eigenfunctions, againat the cost of just O(Ng logN) operations. This has been extended to gen-eral 1D linear di�erential operators . It constitutes a vast generalization of theFast Fourier Transform (FFT), whose basis functions are the eigenfunction ofdiscretized di�erential operators with constant coe�cients, periodic boundary29



conditions with 2` uniformly spaced gridpoints. The new O(N logN) expansionis in terms of the eigenfunctions of a general operator with general boundaryconditions and a general number of gridpoints. Also, summations like (9.3),with N terms summed at each of Ng gridpoints, are performed at the sameO(Ng logN) cost.To be sure, these algorithms have been based on formulations unique to theone-dimensional case. In particular, in 1D it has been possible to avoid solv-ing highly inde�nite boundary-value problems, thus skipping the more involvedmechanism required for coarsening such problems (see Sec. 7). The extension tohigher dimensions (discussed in [120, x6]) is far from trivial, and intimately re-lated to the extension of the wave/ray multigrid methods to variable coe�cients(see Sec. 7.1) and to general matrices (see Sec. 17.2.2).A work related to the computation of the eigenvalue of a matrix and thefast updating of the singular-value decomposition of matrices is reported in Sec.10.2 below.10 Matrix Multiplication, Integral Transformsand Integrodi�erential EquationsMultilevel algorithms have been developed for the fast evaluation of integraltransforms, such asGu(x) = Z
G(x; y)u(y)dy ; 
 � Rn ; x 2 
0 � Rn ; (10:1)and for the solution of corresponding integral and integro-di�erential equations.They exploit in various ways the smoothness properties of the kernel G(x; y).For an M � N evaluation (i.e., x being discretized with M gridpoints, y withN) of either the transform or its inverse to a certain accuracy �, these al-gorithms require O�(M + N) log 1� � operations in the case of the Gaussian�G(x; y) = exp(�(x � y)2=r2)� or the potential-type �G(x; y) = jx � yj��or G(x; y) = log jx � yj� transforms, and O�(M + N) log(min(M;N)) log 1� �operations in the case of the Fourier �G(x; y) = exp(ixy)� or the Laplace�G(x; y) = exp(�xy)� transforms, for example. More generally, the algorithmsyield fast matrix multiplication rules for dense matrices that include large low-rank submatrices. (See [53], [29], [158] and references in [158]). The same al-gorithms can also be used for the fast �O(N log 1� )� summation of all the forcesthat N particles exerts on each other (see Sec. 14.3 below).10.1 Adaptive grids. Integrodi�erential equationsIn their original form, the fast algorithms for evaluating (10.1) for potential-typekernels relied for their e�ciency on the (asymptotic) smoothness of the discretekernel (the matrix) and thereby on grid uniformity. However, in actual applica-tions, e.g., in contact mechanics [158], in many cases large solution gradients as30



well as singularities occur only locally, and consequently a substantial increaseof e�ciency can be obtained by using nonuniform grids.A new discretization and evaluation algorithm has been developed more re-cently in collaboration with Kees Venner. It relies on the (asymptotic) smooth-ness of the continuum kernel only, independent of the grid con�guration. (Asym-ptotic smoothness roughly means that G(x; y) is smooth except possibly nearx = y; cf. [29].) This will facilitate the introduction of local re�nements, wher-ever needed. Also, the new algorithm is faster: for a d-dimensional problem onlyO(sd+1) operations per gridpoint are needed, where s is the order of discretiza-tion and d is the dimension. See [62], [63]: Numerical results were obtained fora model problem in which u has a singularity where its derivative is unbounded.It has been demonstrated that with the new fast evaluation algorithm on anon-uniform grid one can restore the regular work to accuracy relation (whereaccuracy is measured in terms of approximating the continuum transform), i.e.,obtain the same e�ciency as for the case without a singularity.In combination with a multigrid solver, the fast evaluation algorithm alsoyields a fast solver for integral and integrodi�erential equations [53], [158]. Themain special feature of this multigrid solver is the distributive relaxation: acombination of several local changes to the solution is introduced at a time,such that the e�ect of the changes on the integral equation at any far point isnegligible (due to the asymptotic smoothness of the kernel). A full multigrid(FMG) solver can be organized so that all its evaluations of integrals of the form(10.1), except for one, use reduced accuracy, hence costing much less. The costof such a solver is only a fraction above the cost of just one (fast) evaluation ofthe involved integral transform.The plan is to develop a multigrid solver for integro-di�erential equations dis-cretized on adaptive grids, based on the new discretization and evaluation algo-rithm. As previously developed for PDE systems (see Sec. 6.1), self-adaptationcriteria based on the local �ne-to-coarse defect corrections (�) are planned, aswell as full integration of the grid adaptation process into the solver.10.2 Secular equations. Discontinuous softeningA special case that involves dense-matrix multiplications is the computationaltask of �nding all the roots f�jgNj=1 of the secular equation1 + �v(�) = 0 ; v(�) = NXk=1 ukdk � � (10:1)where d1 < d2 < � � � < dN are real, � > 0 and uk > 0 for all k. This problem hasvarious applications in numerical linear algebra, such as subspace computations[80], [84], solving constrained least-squares type problems [83], [92], updatingthe singular value decomposition of matrices [68], and modifying the symmetriceigenvalue problem [75]; see survey of literature and solution methods in [125],[126]. The equations should often be solved many times as a subproblem ofa larger one. All existing solution methods cost O(N2) operation, since just31



the direct evaluation of �v(�j)	Nj=1 costs that much. In joint work with OrenLivne, we used our multilevel dense-matrix-multiplication algorithm to solve theproblem in O(CN) operations, where C depends logarithmically on the desiredaccuracy [121]. The kernel here is G(d; �) = 1=(d� �).The fast algorithms for matrix multiplication and integral transforms de-scribed above are based on the smooth softening of singular (but asymptoticallysmooth) kernels (such as G(d; �) = (d� �)�1). For high-order approximations,the softener (i.e., the modi�ed kernel in the \softened neighborhood" of thesingularity) is a high-order polynomial. This polynomial has to be calculatedfor each pair of variables in the softened neighborhood (e.g., each pair (dk; �j)such that jdk � �j j is less than the \softening radius"). In a d-dimensionalproblem, and with a target accuracy ", the softened neighborhood of each vari-able (e.g., each dk) should include at least O��log 1"�d+�� neighbors (neigh-boring values of �j), where � � 0 depends on smoothness properties of Gand the order of the polynomial is O�log 1"�; hence the total work turns outto be O�N �log 1" �d+�+1�. As shown in [121], this work can be reduced toO�N �log 1"�d� by choosing a simple (e.g., zero) but discontinuous softener.This requires a substantially more complicated algorithm, and can be advanta-geous only for a low dimensional (in particular: one dimensional, such as (10.1))problem and high prescribed accuracy. The discontinuous softening is partic-ularly advantageous to 1D kernels such as (d � �)�1 that are harder to soften(compared with jd� �j�1, the more common type).11 Dirac SolversA major part of lattice quantum �eld calculations is invested in the inversion ofthe discretized Dirac operator Mh appearing in the fermionic action. Solutionsof systems of the form Mh�h = fh (11:1)are many times called for, either for calculating propagators or for the fastupdate of detMh (see Sec. 12).In the Euclidean staggered lattice formulation [138], the discrete equationat the gridpoint z is de�ned by(Mh�)(z) = 1h dX�=1 ��(z)�U(z+ 12e�)�(z+e�)�U y(z� 12e�)�(z�e�)�+mq�(z) ;where h is the meshsize of the grid, � = �h, d is the number of dimensions, mqis the (given) quark mass, and e� is a vector of length h pointing in the �-thcoordinate direction. �� are complex numbers of modulus 1, and may be chosenas �1(z) = 1, �2(z) = (�1)n1 , �3(z) = (�1)n1+n2 and �4(z) = (�1)n1+n2+n3for the gridpoint z = h(n1; : : : ; nd), n� being integers. U(z + 12e�) is the gauge�eld value de�ned on the directed link (z; z + e�). The inversely directed link32



(z; z � e�) carries the gauge �eld U y(z � 12e�), where y denotes the Hermitianconjugate of the matrix. Each U(z + 12e�) is an element of the model's unitarygauge group.In collaboration with Michael Rozantsev, we have investigated two suchmodels: U(1) and SU(2). In the U(1) model, the gauge group elements arecomplex numbers of modulus 1, and �h(z) and fh(z) are complex numbers. (Inthe case of a trivial gauge �eld (U � 1) in 2D, the U(1) operator Mh reducesto the well known Cauchy-Riemann system.) In the SU(Nc) model the gaugegroup elements are unitary complex Nc �Nc matrices whose determinant is 1,and �h(z) and fh(z) are complex Nc-vectors. See more about these modelsin [162], [112], [113], [114], [147], and about a multigrid approach to related,simpli�ed models in [108] and [109].These systems, despite their linearity and good ellipticity measures, are verychallenging, due to their topology-induced singular (or nearly singular) eigen-modes and their disordered and non-commutative coe�cients (the gauge �eld).The disorder results from the probabilistic physical rules by which the gauge�eld is determined, and from the \gauge freedom", i.e., the fact that those rulesdetermine the �eld only up to arbitrary \gauge transformations". The latterare arbitrary multiplication of each �h(z) by an element of the gauge group andcorresponding changes of the gauge �eld U so that (11.1) is still satis�ed. Suchchanges do not change the physical content of the �eld.11.1 Geometric multigrid solversOur �rst approach, based on red/black Kacmarz relaxation (since all equationsin the Dirac system are �rst order), on pre-coarsening gauge smoothing andon multiscale iterate recombination, had previously been applied to the two-dimensional (d = 2) U(1) model (see general description in [31], and full accountin [130]). More recently we have been working on the U(1) and SU(2) gaugemodels in 4D [131], [132].For the 4D-U(1) gauge model, general conditions have been formulated un-der which the gauge �eld can be smoothed globally by gauge transformations,hence a fully e�cient multigrid solver can, and has been, constructed. An im-portant concept in this multigrid solver (as in any other geometric multigridDirac solver, for any model in any dimension) is to distinguish between di�er-ent species of unknowns and between di�erent species of equations. They canbest be distinguished at the limit of low-temperature (well-ordered) gauge �elds,for which each species of unknowns forms a grid function that must be constantfor the homogeneous equations to be satis�ed, and each species of equationsforms a grid function which changes smoothly upon a smooth change of anyone species of unknowns. The multigrid �ne-to-coarse transition must transfereach �ne residual to a coarse equation of the same species. Similarly, the coarse-to-�ne transition must interpolate a correction to a �ne unknown from courseunknowns of the same species. It is also important, in the �ne-to-coarse gaugeaveraging, to distinguish di�erent species of gauge links : Two links are in thesame species if they join the same species of unknowns.33



The conditions for global gauge smoothing are not satis�ed, however, in twokinds of topological situations. In the �rst kind, the total topological chargeover the domain does not vanish. In this case the �eld can still be smoothsemi-globally , i.e., it can be smoothed everywhere except for a certain localneighborhood which can easily be shifted away to any other place by gaugetransformations, so that good intergrid transfers can be formulated locally . Thisis enough for obtaining nearly top multigrid e�ciency.The second topological case is more severe, featuring a local topologicalobject, i.e. gauge-�eld discontinuities which cannot be shifted away. In suchcases, and in many other cases (e.g., non-abelian models), it has been foundthat global or semi global gauge smoothing is not feasible. A general procedurehas then been developed by which just local gauge smoothing at a time (overjust 5 gridpoints in each direction) allows local constructions on each grid of the�ne-to-coarse residual transfers and the coarse-to-�ne correction interpolationsrequired for the multigrid cycle. The local smoothing, which can be applied inany model, is done in a unique way, so that the resulting inter-grid transferscome out gauge invariant. Also, a general gauge-invariant procedure for the�ne-to-coarse averaging of the gauge �eld itself has been constructed, based ontransport averaging similar to that of [16], [14], [15]. This averaging has theadvantage of reproducing on the coarse level various local topological objects,facilitating good coarse-grid approximations.The local topological objects in the 4D-U(1) model are \monopol loops",and they can also appear in a U(1) component of a 4D-SU(2) con�guration.In the SU(2) case these loops would persist for only few Monte-Carlo passes ingauge simulations at the critical temperature, and it is believed that in bothU(1) and SU(2) only short loops are physically probable at critical or lowertemperatures. If not treated, these loops lead to critical slowing down (CSD) ofthe multigrid solver (i.e., the larger the grid the more computational work perunknown is required). The number of slowly converging components introducedby the loops is small, however, so they can be eliminated by recombining iterants(taking linear combinations of results of the latest multigrid cycles so as tominimize the residual L2 norm; which can also be done on coarser levels ofthe multigrid hierarchy; see [130], [59]) together with local relaxation passesadded around the local discontinuities. With these devices, and with the local-gauge intergrid transfers and transport gauge averaging mentioned above, themultigrid convergence is still slower than in the absence of loops, but it seemsfree of CSD (at least when applied to gauge �elds which are physically probableat critical or lower temperatures) [131]. We suspect that with wider regionsof local relaxation the better e�ciency may be restored; unfortunately, ourdomains were not wide enough for testing this.Indeed, a severe problem in our work on these 4D models was the hugeamount of computer time needed to produce reasonably sized, well equilibratedgauge �elds on which to test our solvers: the Monte Carlo processes for produc-ing these �elds were far too slow. A general method to overcome this problemhas only recently been devised (see Sec. 13.2 below). We hope to obtain by sucha method larger 4D gauge �elds for testing our Dirac solvers.34



11.2 Algebraic multigrid solversIncreasing complexities have been accumulating in the geometric-multigrid ap-proaches described above: the di�erent species, the treatment of various topo-logical structures, the need for local smoothing of very disordered �elds, etc.In particular, it has been found that for full e�ciency the geometric coarsening(in which a coarse-level gridlines (or grid hyperplanes) consist of every othergridline (hyperplane) of the next-�ner level) must be supplemented with si-multaneous relaxation of various gauge-dependent strongly-coupled local sets of�ne-level variables. Such sets can be identi�ed by compatible relaxation sweeps(see Sec. 17). However, it became increasingly clear that algebraic multigrid(AMG) methods (see again Sec. 17) may be more convenient for treating atonce all these di�culties. So, as already suggested in [31], we have returned tothe development of AMG Dirac solvers.Our �rst AMG Dirac solver has been based on the highly-accurate coars-ening techniques of [37] (see Sec. 17.1 below). This solver, brie
y described in[37, App. C] and detailed in [132], has been tested for the Schwinger model(two-dimension, with U(1) gauge). We use Kacmarz or least square relaxationand distributive coarsening (i.e., in the notation of Sec. 17.2 below: either(P = I; M = AT ) or (P = AT ; M = I), both in relaxation and in de�n-ing coarse variables), which is usually a very good distribution for �rst-orderPDE systems. The coarse-level set of variables is �rst selected geometrically(taking every fourth �ne-level ghost variable, in a certain �xed 2D pattern).Then this set is enhanced using the compatible relaxation tool (see Sec. 17),thereby adding another 10%{20% of the ghost variables to the coarse level. Thecoarse-level equations have been derived using either a 3 � 3 or 5 � 5 coarse-grid stencil, each including also all those extra coarse variables added (followingthe compatible relaxation test) at the corresponding region. The coarse-to-�neinterpolation of corrections has been done by several passes of compatible re-laxation. Recombination of iterants has also been employed.The di�erent tests we ran, on a 32� 32 grid, proved that all and each oneof the above devices is necessary for fast convergence in the more di�cult cases.Very good asymptotic convergence rates have been obtained (e.g., a convergencefactor of 0.2 to 0.3 per two-level cycle) with the 5� 5 coarse stencil even for hot(practically random) gauge �elds, provided some 15% extra points were addedto the coarse level and upto 8 iterants were recombined. For critical gauge �eldsonly a couple of iterants needed to be recombined.Satisfactory as these results are, they can only serve to demonstrate thepotential of the AMG approach. However, the coarsening method employedhere, even though local in principle, is far too expensive, especially for the 5� 5stencil. Even with this size of stencil some iterant recombinations have provednecessary, showing that the lowest lying eigenmodes are not yet su�ciently wellapproximated. There is no hope to e�ciently use this approach for large 4Dmodels. A far less expensive coarsening, that can well approximate even thenear-zero modes, is the improved \bootstrap" AMG approach described in Sec.17.2 below. 35



12 Fast Inverse-Matrix and DeterminantUpdatesIn parallel to the development of the multigrid fast Dirac solvers (Sec. 11),collaborating again with Michael Rozantsev, methods have been developed forusing multigrid solvers for constructing an inexpensive structure of the inverseDirac matrix, allowing fast self-updating upon each change in the matrix itself(each gauge update). This can be generalized to allow fast updating of thefermion propagators and the associated determinant (needed at each step of theMonte Carlo simulations of the unquenched gauge �eld). The approach was�rst described in [26, x12]; the substantially improved version presented hereexploits the development described in Sec. 17 below.For a large d-dimensional lattice with N = Ld sites and meshsize h =O(L�1), the storage of the Dirac inverse matrix (Mh)�1 would require O(N2)memory and O(N2) calculations, even for fully e�cient multigrid solvers. Usingthe following special multigrid structure, they can be reduced toO�N(log "�1)q1�and O�N(log "�1)q2�, respectively, where " is the relative error allowed in thecalculations and q1 and q2 depend only on d. More important, the structurewill allow very fast self-updating .The implemented multigrid structure �rst calculates and stores O(logL)accurate algebraic coarsening levels of the operator MH , from the given �nest(H = h) to the coarsest possible (H = O(1)). EachMH is constructed from thenext �ner one in the manner of [37] (see Secs. 11.2 above and 17.1 below): foraccuracy ", the stencil of MH at each point involves some nc = O�(log "�1)q2�neighbors (so each row of MH has nc non-zero terms). (With the much moree�cient methods of Sec. 17.2, substantially smaller nc will be needed.)Secondly, the proposed structure calculates and stores at each level enough\central terms" of (MH)�1. Such central terms in each column of (MH)�1 areterms corresponding to variables neighboring to the equation associated withthat column (e.g., the nc neighbors participating in the equation will su�ce).The central terms of (MH)�1 can easily be constructed from those of the nextcoarser level, since the latter are all one needs in a two-level multigrid cyclefor solving the relevant systems (at the �nest level, for example, each of thesesystems has the form (11.1), with fh being the delta function corresponding tothe calculated column of (MH)�1). See details in [132].This structure can be immediately updated upon changes in the gauge �eld.Indeed, each local change in the gauge �eld, if done in a properly distributivemanner (i.e., so that some moments of the �elds are kept unchanged) has onlylocal e�ect on the propagators. Since the calculation of the latter can be re-garded as solving by multigrid the system (11.1) with fh = �x;y, the e�ect ofeach local change can be calculated just by local relaxation sweeps around thechange on some of the �nest levels. More global changes will similarly be in-troduced (in a distributive manner) at coarser levels of the gauge �eld MonteCarlo simulations. The cost per update is O(1), i.e., independent of lattice size.With (Mh)�1 thus monitored, one can inexpensively calculate changes in36



log detMh. For a small change �Mh in the gauge �eld� log detMh = Tr�(Mh)�1�Mh� ; (12:1)which can be computed locally, based on the central terms of (Mh)�1. Forlarger changes one can locally integrate (12.1), since the local processing alsogives the dependence of (Mh)�1 on �Mh. Again, the amount of calculation perupdate does not depend on the lattice size.Simpli�ed model . The approach described above has �rst been developedfor model matrices with a simpli�ed structure: matrices Mh arising from dis-cretizing on a lattice with meshsize h the random di�usion equations Lu = f ,where Lu(x; y) = @@x �a(x; y) @@xu(x; y)�+ @@y �b(x; y) @@yu(x; y)� ;and the discrete analogs of the di�usion coe�cients a(x; y) and b(x; y) have ran-dom values, uniformly distributed in (0; 1). Excellent accuracies were obtained,but they required very expensive (though local) coarsening: 5�5 and even 7�7stencils [132]. Far less expensive algorithms, based on the BAMG methods ofSec. 17.2, are possible.13 Monte Carlo Methods in Statistical PhysicsThe general goal is the systematic development of advanced multigrid Monte-Carlo (MC) methods in statistical mechanics, molecular dynamics, quantummechanics and quantum �eld theory.A Monte Carlo simulation aimed at calculating an average of a certain ob-servable is called \statistically optimal" if it achieves accuracy � in O(�2��2)random number generations, where � is the standard deviation of the observ-able. This is just the same order of complexity as needed to calculate, bystatistical sampling, any simple \pointwise" average, such as the frequency of\heads" in coin tossing. The goal is to attain such an optimal performancein calculating much more complicated averages in statistical physics, includingin particular thermodynamic limits, i.e., limits approached by the averages ofsystem observables when the system size tends to in�nity.Two basic factors usually prevent naive Monte Carlo calculations of a ther-modynamic limit from being optimal, even when O(�2��2) independent samplesare indeed enough to average out their deviations down to O(�) accuracy. First,to achieve an O(�) approximation to the thermodynamic limit, each sampleshould be calculated on a system of su�ciently large volume, that is, a sys-tem whose linear size L grows with ��1; typically L � ��� for some � > 0.So in d physical dimensions, the required simulation volume for each sample isLd = O(���d). This factor is called the volume factor . The second factor isthe critical slowing down (CSD), i.e., the increasing number n of MC passesneeded when L grows in order to produce each new (essentially independent)37



sample; usually n � Lz, where z is typically (at least at the critical temperature)close to 2. As a result of these two factors, the cost of calculating the thermo-dynamic limit to accuracy � rises as O(�2��2��d��z). (Additional complexityfactors, that multiply these two, arise in quantum �eld theory from propagatorcalculations and fermionic interaction; separate research for eliminating them isdescribed in Secs. 11{12 above.)Two di�erent multiscale approaches have been developed for treating thesetwo complexity factors. They are respectively described in Secs. 13.1 and 13.2below, the latter being more generally applicable (e.g., for molecular-dynamicscalculations: see Sec. 14). Each of these approaches generates a sequence ofincreasingly coarser descriptions (\levels") of the simulated system. The coarserlevels basically perform three di�erent tasks:(i) Acceleration of the Monte Carlo simulations on the �ner levels (to elimi-nate the CSD). This is in general similar to the multigrid convergence acceler-ation in PDE solvers.(ii) Gathering statistics : large-scale 
uctuations can be cheaply averaged outthrough coarse-level MC, by cycling enough between these levels (much morethan usual in multigrid PDE solvers) before returning to �ner levels. Indeed,averaging out �ne-scale 
uctuations does not require many returns to the �nelevels, since such 
uctuations are largely averaged out in any one �ne-levelcon�guration.(iii) Increasingly larger computational domains can be simulated cheaply byusing increasingly coarser levels: The �nest level covers only a relatively smalldomain, or small \windows"; a coarse level created from it can then switch toa larger domain.The elimination of both the volume factor and the CSD factor implies idealperformance (statistical optimality). It also implies that on su�ciently coarselevel the derived description allows true macroscopic simulation of the system,i.e., such that does not require operations at �ner levels.Statistical optimality was �rst demonstrated in calculating various thermo-dynamic limits in Gaussian models with constant coe�cients, and also in calcu-lating the critical temperature of the Ising model [48], [86]. This led to severalyears of e�orts to develop interpolation-based multigrid algorithms, with cyclessimilar to those of multigrid PDE solvers. These are reported in Sec. 13.1 below.The increasing complicated nature of the interpolation rules and the coarse-levelHamiltonians required to treat advanced non-linear models has later brought usto favor renormalization-type methods, which are described in Sec. 13.2.13.1 Interpolation-based methodsThese methods imitate multigrid solvers of discretized di�erential minimizationproblems, where the Hamiltonian (or the energy functional which should beminimized) is automatically de�ned on increasingly coarser grids by recursivelyspecifying, level after level, coarse-to-�ne interpolation rules. They also usethe same type of cycles, except that the relaxation sweeps (each composed of asequence of local minimization steps) are replaced by Monte Carlo sweeps (local38



steps of simulating the probability distributions induced by the Hamiltonian).The cycle index (specifying how many times one switches from a given multigridlevel to the next coarser level per each switch to the next �ner level) in statisticalmultigrid algorithms for computing large-scale observables will be larger thanusual in multigrid solvers, to allow cheap averaging of large-scale 
uctuations.To obtain statistically optimal algorithms, as de�ned above, it is necessaryto choose the coarse-to-�ne interpolation so as to obtain full physical mobilityat the coarse level: poor interpolation would not allow accessing mutually inde-pendent samples at the coarse level without in-between visits to the �ne levelfor Hamiltonian updating. In addition, for statistical optimality the resultingcoarse-level Hamiltonians need to be computable in a bounded complexity percoarse-level degree of freedom; they cannot be left just expressed in terms of�ner-level variables.Statistical optimality was �rst demonstrated for Gaussian models with con-stant coe�cients [86], [48]. It was shown there, for the one-dimensional Gaussianmodel, that the susceptibility thermodynamic limit can be calculated to accu-racy � in about 4�2��2 random number generations, while the average energyper degree of freedom requires 3�2��2 generations for a similar accuracy. Itwas also found that the algorithmic 
ow (as determined by the multigrid cy-cle index ) should generally depend on the observable being calculated. In thetwo-dimensional Gaussian model, the susceptibility limit can be measured to ac-curacy � in about 20�2��2 random number generations. In the one-dimensionalmassive Gaussian model, the susceptibility limit can be calculated in less than8�2��2 random generations, essentially independently of the mass size, althoughthe algorithm 
ow may change with that size [45].For the variable-coupling Gaussian models , it was shown that in order toreach ideal performance, the algorithm should employ during the multigrid cycleweighted interpolation and variable sampling (the Monte Carlo process shouldsample more frequently regions with smaller coupling values because such re-gions have larger contributions to observable 
uctuations). Such algorithmshave been implemented for strongly discontinuous cases in one and two dimen-sions. (\Strongly" means that the couplings may change by orders of magnitudebetween adjacent regions.) For the one dimensional variable-coupling Gaussianmodel, the susceptibility limit is calculated to accuracy � in less than 8�2��2random number generations. In the two-dimensional variable-coupling Gaussianmodel, that limit can be measured in less than 20�2��2 random generations [46].These results are independent of the maximal ratio between strong and weakcouplings, unlike the severe extra slowness that large such ratios can in
ict onpointwise Monte Carlo.The development of an optimal algorithm for the variable-coupling Gaussianmodel provides an important tool for general non-linear models, where non-constant couplings stochastically emerge at coarser levels of the multigrid MonteCarlo processing.Doubts have however been raised whether ideal MC performance can reallybe obtained for non-linear models, where large-scale 
uctuations are highly cor-related with small-scale 
uctuations. By applying the new analysis methods39



to the nonlinear anharmonic crystal model we have shown, and con�rmed byactual simulations, that, down to a certain (small) �, performance similar tothat of the Gaussian models can still be obtained (although it requires carefulchoice of the multigrid cycling parameters [87], [47]). Such a performance isrealizable because the large-scale 
uctuations depend only on some averages ofthe small-scale 
uctuations, and these averages are approximated well enoughat any single �ne-level con�guration used at coarsening.For a su�ciently small �, however, and for models su�ciently dominated bythe anharmonic term, both the analysis and the numerical tests show that idealperformance can no longer be obtained by a multigrid process which employsweighted linear interpolation. In fact, the analysis shows that no interpolationin the form of a linear operator can obtain ideal performance for all �. We havetherefore introduced another type of interpolation, the minimization interpola-tion.This interpolation is best de�ned in terms of the Full Approximation Scheme(FAS; cf. [61, x7]), where the coarse-grid variables represent the full currentcon�guration (i.e., the sum of a coarsened representation of the current �ne-grid con�guration and the current coarse-grid correction) instead of just thecurrent coarse-grid correction. To de�ne a value u0 at a �ne-grid point basedon coarse-grid values (u1; u2; : : :), the minimization interpolation method is �rstto calculate U0(u1; u2; : : :), de�ned as the value of u0 that would be obtainedby some, exact or approximate, local Hamiltonian minimization with the valuesof (u1; u2; : : :) being held �xed. Then, to retain statistical detailed balance, theFAS minimization-interpolation value is de�ned byu0 = U0(u1; u2; : : :) + eu0 � U0(eu1; eu2; : : :) : (13:1)where the eui are the values of the variables at coarsening , i.e., at the last tran-sition from the �ne level to the current coarse one.Two-level unigrid experiments with the anharmonic crystal model haveshown that the volume factor, along with the CSD, can be completely eliminatedwith an exact minimization interpolation. However, this interpolation creates acomplicated coarse-level Hamiltonian, so we next designed simple approximateminimization interpolations, employing polynomial best �t. This yields a sim-ple (fourth-order polynomial) coarse level, allowing the recursive constructionof still coarser levels and application of complete multi-level cycles, which doindeed demonstrate the desired ideal MC performance [87], [47].The situation is less convenient in more advanced physical models, wheretopological structures are present, because large-scale topologies may be cor-related to speci�c �ne-scale features, such as vortex centers. Also, linear-likeinterpolation of spinors is problematic.A partial elimination of the volume factors in measuring susceptibility forIsing models was previously obtained by the three-spin coarsening technique[31], [48], as well as full elimination of that factor (namely, ideal MC perfor-mance) in determining that model's critical temperature [48].Various attempts to attain ideal performance for two-dimensional non-linear� models (several of which are described in [142]) have failed. Nevertheless, we40



have developed a variety of new stochastic coarsening procedures by which atleast partial elimination of the volume factor can be achieved. These proce-dures include: a detailed-balance way to associate the introduction of linear (orlinear-like) interpolation with a certain probability for reducing adjacent cou-pling strength; smart choice of the interpolation in a neighborhood dependingon local features at coarsening; stochastic simpli�cation of the derived coarse-grid Hamiltonian in ways which do not destroy the statistical detailed balance;and introduction of less restrictive stochastic interpolations [142]. Most of thedeveloped schemes are applicable to speci�c cases of XY and Manton's models,while some are universal for any O(N) model.Specially devised two-grid numerical experiments have demonstrated thatthe designed techniques are capable of eliminating the volume factor almostcompletely at low temperatures of the XY and Manton's model, and partiallyin the O(4) model as well as in the critical region of the XY model. The non-optimality of the latter results have been attributed to the insu�cient accuracyin representing and sampling some of the statistically important features bymeans of currently employed interpolation and stochastic coarsening procedures.This led us to an attempt to introduce the FAS minimization interpolation(13.1) also to the XY model. It yielded an improved, but not yet statisticallyoptimal, performance. The reason for non-optimality has been shown to bethe bias introduced by the FAS correction eu0 � U0(eu1; eu2; : : :). For example, ifthe coarse con�guration at coarsening (eu1; eu2; : : :) happens to be locally non-smooth, then the corresponding FAS correction is likely to be large, preventingthe coarse-level system from e�ciently sampling smooth con�gurations. A wayaround this di�culty is to replace (13.1) byu0 = U0(u1; u2; : : :) + Q0(u1; u2; : : :)Q0(eu1; eu2; : : :)�eu0 � U0(eu1; eu2; : : :)� ; (13:2)where Qo(u1; u2; : : :) is a characteristic size of the likely 
uctuations in u0 given(u1; u2; : : :). More precisely, the interpolation (13.2), like (13.1), is suitable incase ui are real variables; it has modi�ed forms to suit other types of variables,such as XY .13.2 Renormalization multigrid (RMG)The increasing complexity of the coarse Hamiltonians produced by the interpola-tion-based techniques has led more recently to a new type of algorithms. Theycombine renormalization-like derivation of increasingly coarser \descriptions" ofthe system, with multigrid-like coarse-to-�ne Monte-Carlo accelerations.This RMG approach has already yielded optimal performances (eliminatingboth the CSD and the volume factors) for certain observables in the Ising model,and it can in principle be extended to arbitrary models, since it is not based oncluster-type (such as Swendsen-Wang and Wol�) algorithms. In fact, we havealready preliminarily used this approach in several models of molecular dynam-ics: a model of polymers (see Sec. 14.6) and models of 
uids (see Sec. 14.7).41



Moreover, the approach has inspired a similar, equally-general procedure for thecoarsening of deterministic equations (see Sec. 17).For simplicity, the RMG techniques are surveyed here mainly in terms ofthe 2D Ising model, where they were �rst developed by Dorit Ron [60]. In thismodel, each �ne level con�guration U consists of an unbounded two-dimensionallattice of Ising spins ui (variables taking either the value +1 or �1), with aprobability distribution P (U) � exp ��H(U)=k�T �, and Hamiltonian H(U) =�JPhi;ji uiuj , where hi; ji runs over all distinct pairs of nearest-neighbor spins.Coarsening. Generally, each coarse-level \description" in RMG consistsof two items: The coarse-level variables , and the statistical rules that governtheir probability distributions. The rules will generally be expressed in termsof conditional probability (CP) tables (whose far-reaching generality will be dis-cussed in Sec. 13.2.2 below).Each coarse-level variable will be de�ned in terms of a small local set ofnext-�ner-level variables. For example, in 2D-Ising with majority rule blocking,the coarse level consists again of a 2D array of Ising spins (�1 variables), eachof which being a \block spin", i.e., its sign representing the sign of the sum ofthe four spins in a corresponding b� b block of the next �ner level. (The signof zero is taken to be + or �, each with probability 1/2. Usually b = 2.)There is no unique way to choose the set of coarse-level variables. Indeed,given the full description (variables + CP table) of the next �ner level, manydi�erent choices can be equally good. There exists however a general criterionto gauge the adequacy of any candidate course set . This criterion is the speedof equilibration of compatible Monte Carlo (CMC) runs. A CMC is a MonteCarlo process on the �ne level which is restricted to the subset of �ne-levelcon�gurations whose coarsening (e.g., b�b blocking) coincides with a given �xedcoarse-level con�guration. A consistently fast CMC equilibration (i.e., CMCwith very short average decorrelation time, averaging being over an ensembleof the �xed coarse con�guration) implies that the �ne-level equilibrium can beproduced from the coarse-level equilibrium just by local processing, which isindeed the main desired property of coarsening.The fast CMC equilibration implies that the set of coarse variables enjoysthe near locality property . This is the property that the conditional probabilitydistribution of a coarse variable at a point A, given �xed states of all other coarsevariables , depends mainly of the closest neighbors: the average dependencedecays exponentially with the distance from A. (For example, in 2D-Ising if theneighborhood of A is changed only at points at distances larger than r from A,the conditional probability to have +1 at A given its entire neighborhood canchange at most by O� exp(�c`r)�, with some constant c`.)The strength of near locality (the rough size of c`) can be directly measured.Strong near locality has been measured, e.g., for the 2D-Ising with the majoritycoarsening. This yields the possibility to construct CP tables for coarse levelsby the following quite general branching procedure.The CP table for each coarse level is derived by running an e�cient MC sim-ulation at the next �ner level, during which appropriate statistics are gathered.In 2D-Ising, statistics are gathered for estimating P+(u1; u2; : : : ; um), the prob-42



ability for any block spin to be +1 given that its (ordered set of) neighboringblock spins are having the values (u1; u2; : : : ; um).The sizem of the considered neighborhood is variable: If only a small amountof statistics is gathered, only the four nearest neighbors (u1; u2; u3; u4) are con-sidered. With more statistics, all eight closest (nearest and next-nearest) neigh-bors (u1; : : : ; u8) are considered. Further on, when the amount of statistics fora particular neighborhood (u1; : : : ; u8) is su�ciently large, that neighborhood issplit , i.e., statistics is gathered for its \child neighborhoods": These are neigh-borhoods (u1; : : : ; u8; u9; : : : ; u12) with the same (u1; : : : ; u8) as in the \parent"neighborhood, and with (u9; : : : ; u12) representing values of the four subsequentneighbors (those which are exactly two meshsizes away). Children with enoughstatistics may further be split into grand-children, and so on. The general rule isto split a neighborhood when (and only when) some of its children have enoughstatistics to make the di�erence between their P+ values signi�cant (i.e., largerthan their standard deviations). Between several candidate splits of a neigh-borhood, the one with the largest spread (average child deviation) should beadopted.The CP (e.g., P+) table represents the coarse-level transition probabilities.Indeed, it is all one needs, and exactly what one needs, to run an MC simulationon that level (the level of blocks). Also, due to the adaptability in the size of theneighborhoods, this method for calculating the coarse transition probabilities isstatistically optimal , in the sense that it will yield O(") relative accuracy in cal-culating large-scale averages when the amount of statistics (the total number ofrandom-number generations in producing the CP table) has been O("�2). Thisclaim has been con�rmed in a sequence of numerical tests [60]. It may dependon having a fully e�cient Monte-Carlo simulation at the �ne level. Which isthe next topic.Monte-Carlo Acceleration. For a given �nite lattice with a given CPtable, suppose now that the CP tables for all its coarser levels (the level ofblocks, the level of blocks of blocks, etc.) are also given. Then a new equilibriumcon�guration of the given action on the given lattice can e�ciently be producedusing the following \coarse to �ne equilibration" (CFE) cycle.First an equilibrium is easily obtained at the coarsest level of the �nite lattice,by few MC passes with the corresponding CP table. From this, an equilibriumin the next level will be derived, and so on, until the target level (the givenlattice) will be reached. To obtain an equilibrium in any level of spins given anequilibrium of its blocks, we use \stochastic interpolation", which is simply asmall number of CMC passes. If the coarse-level (the block) CP table has notbeen fully accurate, the CMC passes should be followed by a small number ofregular MC passes, a process we call \post relaxation".A particular advantage of this equilibration process is the ability to cheaplyproduce very far regions of the same equilibrium con�guration, without havingto produce (at the �ne levels) all the regions in between. This yields a verye�cient way to calculate far correlations . (See also below about the role of\windows".)Fast iterations. Since the derivation of a coarse CP table depends on43



e�cient simulations at the �ner levels, which in turn depends on employing thecoarse CP table, iterating back and forth between these processes is in principleneeded. However, these iterations converge very fast, since these processes onlyweakly depend on each other. Indeed, a very good �rst approximation to the P+block-spin tables is already obtained by just local equilibration at the spin level,produced by just a limited number (independent of the lattice size) of regularMonte Carlo passes (even starting from a completely random con�guration).And, on the other hand, a very good approximation to critical-temperatureequilibrium at the �ne level can be obtained from a CFE cycle even with crudeapproximations to the coarse level CP tables (as long as they are kept critical:see below), provided a small number of post-relaxation sweeps is added.In fact, an extremely simple way to obtain an approximate equilibrium ona given lattice with a critical action is by a CFE cycle employing this sameaction at all levels, plus post relaxation at each level. It can be shown that therequired number of post relaxation sweeps is small whenever the convergenceto a �xed point of the renormalization 
ow is fast. For the 2D-Ising model wehave con�rmed, in a sequence of numerical tests, the good approximation toequilibria obtained in this simple way [60].Windows. Although just local equilibration is enough to produce goodapproximations to the CP table in the Ising model, in many other models it maysu�er from too low statistics (or no statistics at all) for certain neighborhoodsthat are not generally rare, but that happen to be rare in the simulated regions(see example in Sec. 14.7.2). Hence, simulations at some coarse levels mayrun into regions whose simulation is inaccurate due to poor statistics in theCP table. In such a situation, and exactly at those regions, temporary localreturns to �ner levels should be made, in local windows , to accumulate moreCP statistics relevant to the local conditions there. This can be done by �rstinterpolating the window to the �ner level: using CMC �ne-level passes overthe window, a correct equilibrium is generated in its deep interior (far enoughfrom its borders); regular MC passes can then be done in that deep interior, toaccumulate the desired statistics.Generally then, the CFE technique would mostly be applied in windowsrather than on the entire domain, its main role really being to supply richsamples of neighborhoods.Errors. The principal sources of errors in the RMG processes are the �nitestatistics, the truncated size of the neighborhoods for which each CP table iscalculated, and the �nite size of the lattice employed at each level.The latter type of error is easily removed: arbitrarily large lattices can beused due to the fast equilibration, while the P+ calculations have nearly-localnature at all levels; and the simulation at any coarse level can be extended toits own desired domain size, since it is done directly, not through simulations ata �ner level.The �nite-statistics errors are well controlled so as to keep all of them, atall levels, at the same optimal order ", where the total amount of statistics isO("�2). The truncation errors are also kept at O("), by adjusting the neighbor-hood sizes; it is estimated that the size of the considered neighborhoods should44



grow proportionately to log("�1). The only trouble is the error enhancementfrom level to level, which is discussed next.Back to criticality. In critical-temperature calculations of the CP tables,errors introduced at any level are magni�ed in the level derived from it (thenext coarser level), and so on, due to the strong divergence of the renormal-ization 
ow away from the critical surface. To hold back this magni�cation, amechanism should be added at each level to project the CP tables back onto thecritical surface. Such a \criticalization" mechanism also facilitates calculatingrenormalization 
ows toward a �xed point when the critical temperature of theinitial (�nest-level) Hamiltonian is not known in advance.The criticalization of a given CP table can be done by multiplying the tem-perature by a suitable factor 1=�, i.e., by raising each probability to the power�, then normalizing. (Normalization is not really needed for MC simulationswith this CP tables.) The criticalization factor � can be estimated in a numberof ways. See details in [60]. Another, very accurate type of criticalization canbe done near the �xed point (see next).Fixed point algorithm. The �xed point of the renormalization groupis approached by a sequence of coarsening steps, as described above, with acriticalization factor applied to each new CP table in the sequence. At eachstep the accuracy is raised in every respect: The total amount of statistics ismuch increased, accompanied by a (slower) increase in the lattice linear size anda (logarithmically slow, as dictated by the amount of statistics) increase in thesize of the neighborhoods.Critical exponents. The calculation is done in terms of the vector p of theentries of the CP table. Each stage of the �xed point algorithm can be regardedas a transformation T , transforming p into T p. The algorithm converges to the�xed point p� = T p�. The correlation length critical exponent can immediatelybe derived from the largest eigenvalue �� of the equationT (p� + q) = p� + �q ; k q k� 1 :Denoting by q� the normalized eigenvector associated with ��, at each stage ofthe �xed point algorithm, increasingly more accurate values for �� and q� arecalculated (for the exact procedures, see [60]).If p is near the �xed point p�, further criticalizations and better approxima-tions to p� can be obtained by iterations, in each of which p is replaced with(�1Tkp�Tk+1p)=(�1� 1), where �1 is the current approximation to �� and Tkpis the CP table calculated for bk� bk spin-blocks while running spin simulationswith the CP table p; in particular T1 = T . For convergence one should usek > (�� 1)�1; we used k = 2.Once the CP table at the �xed point has been accurately calculated, theCFE cycle can be operated with the same p� table being used at all levels,cheaply producing large equilibrated con�gurations (or very far regions of thesame equilibrium con�guration, as noted above). This can be used in a varietyof ways for highly accurate calculations of various other critical exponents (awork in progress, by Ron and Swendsen).45



13.2.1 Extension to continuous-state modelsInitial steps of applying the above coarsening and acceleration techniques to theXY model are reported in [142]. Each 2� 2 block spin is here de�ned to be theaverage of its four constituent spins, without normalization (whereby the originalXY group of length-1 vectors is not preserved at the coarse levels). Comparedwith the �1 majority spins discussed above, each coarse spin here containsmuch more information; as a result, much smaller neighborhoods are needed inthe probability tables to attain a given truncation accuracy. Still, these tablesare more complicated than the Ising P+ tables, since they should describe acontinuous distribution, conditioned on continuous neighboring values.To accumulate continuous-variable statistics, one partitions the range of thisvariable into bins : Counting the number of MC hits in each bin gives an es-timate for the integral of the continuous variable over that bin. From thoseintegrals, the value of the variable at any particular point can be interpolated(by a polynomial whose integrals over several adjacent bins �t the estimates).The same is true for a vectorial variable, such as the one representing the entire(truncated) neighborhood, whose bins may each be a tensor product of elemen-tary bins, one elementary bin per each real variable participating in describingthe neighborhood. More generally, the bins of the neighborhood are constructedadaptively , similar to the adaptively branching neighborhoods in the Ising caseabove, except that here a bin can be split into several bins in two ways: eitherby adding another variable to the description of that particular neighborhood,or by re�ning the current elementary binning of one or several of the existingvariables.The set of tests with the XY model reported in [142] clearly indicates thatideal MC performance free of the volume and CSD factors can be obtained incalculating various thermodynamic limits, such as the two-point correlation andthe scaled susceptibility.Future plans. The intention is to extend the RMG techniques to moreadvanced physical problems, possibly including gauge �eld models such as U(1),SU(2) and SU(3). Together with the methods of Secs. 11{12 above, it is hopedultimately to obtain ideal MC performance also with unquenched fermionicinteractions.13.2.2 Generalizations. Driven systemsAs explained above, by a proper choice of coarse variables (checked by the CMCequilibration speed) the property of near locality is obtained for the next coarserlevel (the level of blocks), which allows the construction of that level's CP table.Notice that the near locality property indirectly holds even in the case oflong-range interactions, such as electrostatic or gravimetric interactions. Indeed,each such interaction can be decomposed into the sum of a smooth part and alocal part (where \smooth" and \local" are meant relative to the particular scaleof the next coarser level). All the smooth parts can be transferred (anterpolated)directly to the coarse level (cf. Secs. 14.3 and 14.6.1), hence it is only the local46



parts that remain to be expressed on the coarse level. For that expression thenear-locality property still holds.The CP table is a much more general representation of the \dynamics" (thetransition probabilities) of models than the Hamiltonian representation, in thesame way that, for deterministic models, systems of (di�erential or discrete)equations are much more general than variational (energy minimization) prob-lems.It has been found by Ron and Swendsen [129] that the CP representationof the renormalization-group transformation T described above provides an ex-cellent test for the validity of the more common Hamiltonian representation.They have also developed a method based on the CP representation that allowsthem to produce a stable calculation of larger sets of renormalized coupling con-stants than either the Swendsen [148] or the Gupta-Cordery [97] methods, thusreducing the e�ects of truncation in renormalization-group calculations.The CP table is particularly useful when even the given �ne-level system isnon-Hamiltonian. Such systems abound. An important case is that of time-dependent systems, such as driven di�usive systems [136]. The CP represen-tation of such systems can be renormalized in both space and time, at variousspace/time coarsening ratios, yielding long-time and large-scale dynamics of thesystem.A particular type of such renormalization leads to a �ne-level CP table forthe steady state of the driven system. The idea is to construct CP tables for thedependence of �ne-scale 
uxes on neighboring 
uxes at the same time level t andon average densities at a previous time t��t, where �t is doubled at each furtherrenormalization transformation (together with a corresponding increase of thescale at which the densities are averaged). At the limit of such transformations,the steady-state CP tables should emerge.13.2.3 Low temperature algorithms for frustrated systemFrustrated systems are those in which con
icting in
uences arise from di�erentterms of the Hamiltonian; e.g., some terms tend to align neighboring spins withrespect to each other, while others tend to anti-align them. For such systems,especially at low temperatures, simple blocking (such as b � b blocks with themajority rule) are ine�cient, yielding slow CMC equilibration. In this situation,correct coarsening can gradually be identi�ed, for increasingly larger scales, bya gradual decrease of the temperature. Cf. Sec. 14.7.3 below. See also Sec. 18for the limit case of zero temperature (strict minimization).14 Molecular Mechanics14.1 Background and objectivesMolecular mechanics (or dynamics) is a major tool of theoretical chemistry,with immense practical potential in medicine, material design and biotechnol-ogy. The Born-Oppenheimer approximation to the potential energy E(r) as47



function of the n atomic positions r = (r1; r2; : : : ; rn) can be imagined as theobjective functional of these calculations, the electrons being implicit. Explicitapproximations to E(r) as a sum of various few-atom interactions are derivedby accumulated computational experience, compared with �ner-scale calcula-tions (such as those discussed in Sec. 9 above) and with molecular measurementdata (crystal structure geometries, vibrational spectroscopy, heats of forma-tion, etc.). The most common few-atom interactions are of the following twokinds (see a typical example in Sec. 14.6): (1) The bond interactions betweenchemically-bonded atoms, including three types: length (distance) interactionbetween 2 atoms, angle interaction between 3 atoms and torsion interaction be-tween 4 atoms. The �rst is much stronger than the second, which in turn ismuch stronger than the third. (2) Non-bond interactions , including the short-range Lennard-Jones and hydrogen-bond terms and the long-range Coloumbicpotential.The aim of the calculations is usually either statics (�nding the con�gura-tion r which minimizes E), dynamics (calculating trajectories r(t) which satisfyNewton's law �rE(r) = M �r, where M is the diagonal matrix of masses),or equilibrium statistics (average properties under the probability distributionP (r) � exp ��E(r)=kBT �), where kB is the Boltzmann constant and T is theabsolute temperature).The computing cost of current molecular dynamics algorithms rises verysteeply with problem size, restricting the modeling e�orts to relatively smallmolecular ensembles and to time intervals many orders of magnitude smallerthan needed. Preliminary model studies conducted by [33], [34] have indicatedthat this steep rise in cost can be radically reduced by combining several typesof multiscale approaches.Our research objective is to develop these approaches and demonstrate theirability to perform the above computational tasks in computing times that riseonly linearly with the number n of atoms in the system. Also, the aim is toshow the possibility to blend statistical approaches in the small (for the high-frequency molecular oscillations) with deterministic dynamics or statics in thelarge (see Sec. 14.8 below). The long term goal is to establish the computationaltools for the development, scale by scale, of material \descriptions" at increas-ingly larger scales, each description being either in the form of a Hamiltonian, ormore generally in the form of conditional probability tables for properly chosencoarse-level variables (cf. Secs. 13.2 above and 14.7 below). Such tools wouldfacilitate and encourage an interactive, scale-by-scale development, by chemistsand computational scientists, of computer libraries of ab-initio material descrip-tions.14.2 Complexity factors and research strategyThe enormous complexity of molecular calculations is the product of severalfactors that multiply each other, including:(1) A very large number of long-range (electrostatic) interactions that needto be summed up to calculate the energy di�erence associated with each move48



of one atom.(2) Tiny time steps (and similarly tiny steps in Monte Carlo simulations andin energy minimization) enforced by the strong chemical bonds.(3) Multiscale attraction basins : The energy functional of the many particleproblem includes a multitude of local minima. Moreover, each small-scale basinresides, together with similar basins, inside a larger-scale basin, which itselfresides within a still-larger-scale basin, and so on. Conventional algorithms (insearch for the global minimum, or in Monte-Carlo simulations at some �nitetemperature), even when capable of escaping some small-scale basins (e.g., bysimulated annealing), remain practically trapped in larger-scale ones.(4) Thermal 
uctuations . In equilibrium statistics, to obtain accuracy � incalculating a thermodynamics quantity, one has to average over O(��2) inde-pendent con�gurations. The computational cost of producing each such inde-pendent con�guration by a Monte-Carlo process is very large due to the largenumber of degrees of freedom, multiplied by the product of the three aforemen-tioned complexity factors.To investigate multiscale techniques to deal with these obstacles, a system-atic study has been undertaken of model problems which include only one ortwo obstacles at a time. Moreover, unlike the common methodology of startinga research on macromolecular algorithms with small molecules and advancingto increasingly larger ones, the development of multiscale techniques necessarilyemploys at each stage molecules of an arbitrary (large) size n, starting withvery simple potential functionals and advancing to increasingly more compli-cated ones, progressing also from simple geometries (e.g., stretched homogeneouschains, then simple helices) to increasingly more realistic ones. At each stagejust one new type of force is added, and the study objective is to still obtainthe linear (O(n)) complexity. This research strategy is necessary since linearcomplexity and large-scale processing are indeed our ultimate aims, and sinceat small molecular systems the advantages of multiscaling cannot be observed.14.3 Fast summation of electrostatic interactionsDirect summation of all the electrostatic interactions between n particles costsCn2 computer operations, where C is around 10. Instead, several methods existto sum the forces in just C1n operations (see, e.g., survey [94]), although notethat in three dimensions C1 > 104, so these methods become advantageous onlyfor n > 103. A multiscale method for fast summation, suggested in [29] (basedon an idea described earlier in [23, x8.6], [26, App. A] and [53], and related tothe methods discussed in Sec. 10 above), is being used. It is based on a decom-position of the two-particle potential into a local part and a smooth part, thelatter being evaluated at larger scales (interpolated from coarser grids), wherea similar decomposition is being recursively used. An important advantage ofthis approach is that it gives the kind of multiscale description of the force�elds which is needed for the e�cient multiscaling of atomic motions | in stat-ics, dynamics and equilibrium calculations (see for example the description ofthe electrostatic calculations in Secs. 14.6.1 and 14.7.4 below), or for solving49



equations (e.g., polarization equations).Several important new developments by Bilha Sandak, reported in [135],include: (i) Generalization of the method to �elds generated by dipoles , inaddition to those created by charges. (ii) Substantially higher accuracy for neg-ligible additional CPU time. This has been obtained by introducing enhancedinterpolation orders and longer softening distances at the coarser levels , andby correcting for some false self-interaction, i.e., the residual interaction of acharge with itself, caused by the multiscale calculations. (iii) E�cient softwarefor general use has been implemented.14.4 Fast macromolecular energy minimizationEnergy minimization may serve here two somewhat di�erent objectives: onein statics, the other in dynamics. In statics, the objective is to calculate thelowest energy E(r), yielding the most stable conformations of the molecularstructure. In dynamics, the objective is the solution of the system of equationsarising at each time step of implicit dynamics simulations. \Implicit" refers tothe method which evaluates the forces �rE(r), at each time step, partly orwholly in terms of the particle arrival positions, i.e., positions r at the end ofthe step. This method ensures stability of very large time steps, but it doesnot yield the arrival positions explicitly. Instead, they should be calculatedby solving a large system of equations. (Also, this method damps molecularvibrations at scales not resolved by the large time step; we return to this pointin Sec. 14.8 below.) Solving the implicit system of equations is equivalent tominimizing an augmented energy functional, identical to E(r) except for anadditional quadratic kinetic term (cf., e.g., [128] and also the functional H inSec. 14.8 below). For large time steps this additional term is locally very small,but its large-scale e�ect is still profound.The macromolecular energy minimization problem is somewhat similar tothe minimization problem encountered in structural mechanics, for which verye�cient multigrid solvers have been developed. Of these, the closest to the onesneeded in molecular mechanics are the algebraic multigrid (AMG) solvers (cf.Sec. 17 below), which do not assume that the problem arises from PDE or thatthe unknowns are really placed on a grid. The methods we have developed formolecular energy minimization follow the general AMG outline: coarser levelsare constructed each by taking a suitable subset of the next-�ner-level degrees offreedoms; a coarse-to-�ne interpolation of displacements is de�ned based on the�ne-level couplings and current con�guration; the coarse-level set of equations(or rather, the coarse-level Hamiltonian) is derived based on this interpolationand on the current residual forces at the �ne level; and the algorithm consists ofrelaxation (local minimization) sweeps at all levels with �ne-to-coarse transfersof residual forces and coarse-to-�ne interpolation of displacements. The molec-ular forces, however, are much more involved than those of structural mechanics(exhibiting severe nonlinearities and large variations in strength of the di�erenttypes of interactions), so very systematic development of all these algorithmiccomponents was required. 50



Our �rst stage of developing multiscale molecular energy minimizers, in col-laboration with Dov Bai, was described in [33]. More advanced techniques formore advanced models are described in [35, x11.4] and [38, x14.4]. However,these studies inevitably led to the conclusion that macromolecular energy mini-mization is unnecessarily complicated. The energy barriers are much more easilytraversed by multiscale methods equipped with the stochasticity introduced bythe natural (e.g., room) temperature. Indeed, nearly all practical problems areactually given at �nite temperatures (including dynamic problems; cf. Sec. 14.8).Moreover, it is unlikely that at �nite temperatures the material stays exactlyat the attraction basins of the minimal energy. For these reasons, our interesthas shifted to �nite temperature calculations, discussed in the following sections.Fortunately, some of the tools acquired in the study of minimization techniques,such as coarsening in terms of a combination of internal and cartesian coordi-nates, have proved very useful also for the �nite-temperature algorithms.Notice also that �nite-temperature algorithms lead themselves to powerfulminimization techniques: see Sec. 14.7.3.14.5 Monte-Carlo methods at equilibrium: GeneralTo calculate equilibrium statistics, an atom-by-atom Monte-Carlo process isusually performed. In this process, each atom in its turn changes positionstochastically, according to the probability density distribution P (r). Makingrepeated sweeps of this process, one can calculate the desired statistics on thesequence of produced con�gurations.To calculate accurate averages of some observable, however, an extremelylong sequence of con�gurations is needed. There are two basic causes forthis complexity: (1) Due to the local nature of the Monte-Carlo process, onlyvery slowly it a�ects large-scale conformational features, hence extremely manyMonte-Carlo sweeps are needed to produce each new, statistically independentcon�guration. (2) Many such independent samples are needed to average outthe deviation observed at each of them.For some very simple lattice problems, multigrid Monte-Carlo algorithmswere developed which overcome both these complexity causes (see Sec. 13 above,where these two causes, which multiply each other, are called the CSD factor andthe volume factor, respectively). Two complementary types of multiscale Monte-Carlo methods for the fast simulation of atomistic systems have developed basedon the RMG approach (Sec. 13.2): one type for macromolecules, the other forvery large, 
owing collections of small molecules (gases, liquids). The methodsare described in the following two subsections.In the future the intention is to combine those two types of methods to treatmacromolecules in solutions.14.6 Multiscale Monte Carlo for macromoleculesMonte Carlo simulation of long polymers (and generally all macromolecules) isone of the most computationally intensive tasks. This is due mostly to the large51



variation in time scales (10�15 seconds to several hours) and length scales (1�A{1000�A) involved in each problem and the many energy barriers and attractionbasins found at all scales. While much of the interesting behavior occurs atlonger time (or length) scales, the shorter scales, where the basic equations aregiven, constrain the size of steps in simulations. However, by applying multiscalemethods these constraints can hopefully be removed as di�erent physical scalesare resolved on corresponding appropriate computational levels.Together with Dov Bai, multiscale MC algorithms for the united-atom poly-mer model of [127] were studied. The details are reported in [7] and brie
yreviewed below. For alternative coarsening schemes, see [8].The simple polymer is a non-branching long chain of n repeat units (mono-mers; see the comprehensive survey [82]). In the united-atom model eachmonomer is considered as a single unit and details of its internal structureand interactions are ignored, so mathematically the polymer is represented asa chain of points in R3, located at positions r1; r2; : : : ; rn. The internal coor-dinates employed to describe interactions are the distances ri;j = jri � rj j, theangles �i (angle between the lines ri�1ri and riri+1) and the dihedral (or tor-sion) angles �i+1=2 (angle between the planes ri�1riri+1 and riri+1ri+2). Theoverall Hamiltonian (energy) functional isH(r) = n�1Xi=1Kr(ri;i+1 � r0)2 bond-length potentials+n�1Xi=2K�(cos �i � cos �0)2 bond-angle potentials+n�2Xi=2F�(�i+1=2) bond-dihedral (torsion) potentials+ Xji�jj�4 �"� �rij �12 �� �rij �6# Lennard-Jones potentialswhere r0 = 1:52 �A, Kr = 250 Kcal/mol/�A2, �0 = 110�, K� = 60 Kcal/mol,� = 0:09344 Kcal/mol, � = 4:5 �A and F� is a function featuring three localminima with 1.5 to 2 Kcal/mol energy barriers between them. The relativeprobability associated with each con�guration r is P (r) = exp � �H(r)=kBT �,where T is the absolute temperature and kB is Boltzmann's constant. One cansee that the bond-length potentials are much stronger than the bond-angle po-tentials which in turn are much stronger than the torsion potentials. Thereforethe dihedrals are the main active degrees of freedom. The trouble is that aconventional MC simulation is extremely slow in sampling the dihedrals, �rstbecause it is constrained by the stronger bond-length and angle potentials and,more important, because each MC switch of the local minimum at which onedihedral lives is only probable provided suitable (but unknown) similar switchesare simultaneously performed at a substantial number of neighboring dihedrals.52



In our multiscale approach, simulations are mainly performed at coarserlevels, which already average over such local attraction basins. Each coarselevel consists of a reduced number N = n=m of points, or \atoms"; typically2 � m � 4. Each coarse-level \atom" stands for the average location RI of mnext-�ner level atoms. The coarse-level Hamiltonian Hc(R) = Hc(R1; : : : ; RN )is developed by extensive, but only local, Monte-Carlo simulations, iteratively�tting coarse-level distribution functions and correlations with those found in�ne-level simulations.The strategy is to calculate local terms of the coarse Hamiltonian by usingsimulations (to be described below) which involve only a local set (typically sev-eral dozens) of neighboring points (atoms). Bond interactions between pointsinside the local set and those outside are ignored: this does not signi�cantlya�ect the accuracy of the coarse Hamiltonian terms located su�ciently deep in-side (several atomic distances from the margins of) the local set. This approachis similar to the one used in Algebraic Multigrid (AMG) and in Renormaliza-tion Multigrid (RMG; cf. the near locality property in Sec. 13.2 and in Sec. 17).Such a derivation of coarse Hamiltonian terms needs to be done only once forall similarly-structured molecular neighborhoods. Due to the employment ofinternal coordinates, and with suitable coarsening ratios 1 : m, it turns out thatmost inter-coordinate coarse-level correlations can be neglected, yielding quitesimple coarse-level Hamiltonians.The coarse-level Hamiltonian includes, �rst of all, modi�ed Lennard-Jones-type interactions in terms of cartesian coordinates. The exact formula for thisinteraction has been derived once-for-all (for a given coarsening ratio), by aver-aging during MC simulations over all vectorial sums of �ne-level Lennard-Jonesforces involved in the interaction between two coarse atoms in a given distancebin.The rest of the coarse Hamiltonian is in terms of local coordinates: distances,angles and dihedral angles (between the coarse atoms, of course, which also forma chain). So the general form of the coarse Hamiltonian isHc(R) = XjI�Jj�m0 HcLJ (jRI �RJ j) +Xk AkHk(R)where HLJ (�) is the Lennard-Jones interaction between two coarse atoms atdistance � from each other, m0 is a chosen small integer (2 � m0 � 4), Akare coe�cients to be iteratively determined (as described below), and each Hkis either a single-internal-coordinate interaction or a correlation between twosuch coordinates. For each coarse internal coordinate U (either a coarse lengthRIRI+1 , or a coarse angle RIRI+1RI+2 , or a coarse dihedral RIRI+1RI+2RI+3)several single-coordinate interaction terms of the formHk = ( 1 if �k � U � �k+10 otherwise (14:1)are in principle included in Hc; except that one can include in one uni�ed termall the interactions that are expected by symmetry to have the same coe�cient53



Ak (e.g., all terms of the form (14.1) associated with angles, excluding perhapsangles near the ends of the coarse polymer).As a �rst approximation one can start with Hc that includes (besides HLJ )only such single-coordinate terms, with coe�cients Ak such that the distribu-tion of each coarse local coordinate U is the one calculated at �ne-level sim-ulations (each �ne-level con�guration implying of course a value for each U).This approximation to Hc will generally fail to give the correct correlations be-tween the coarse coordinates. So we next iteratively correct Hc, adding neededcorrelations terms and readjusting the coe�cients fAkg to still yield the cor-rect distributions. The �rst correlations to be added are those that are shownto be signi�cant in the measurements conducted during the �ne-level simula-tions; the most signi�cant, it turns out, are the correlations between every angleRIRI+1RI+2 and each of the adjacent lengths RIRI+1 , RI+1RI+2 .In each iteration a large number of MC steps over the local set are madewith the coarse-level current Hamiltonian, calculating various observables andcomparing them to corresponding values obtained by simulations of the local setat the �ne level. The di�erence is then used to get a better coarse Hamiltonian,in a Newtonian iterative way which converges fast. That is, a set of correctionsf�A`g to the set of coe�cients fA`g is calculated by solving the linear system1kBT X̀ (hHkihH`i � hHkH`i) �A` = hHkif � hHkic for all k : (14:2)hHkic is of course the average of the operator Hk calculated with the current(before correction) coarse-level Hamiltonian, while hHkif is the correspondingaverage computed by �ne level simulations. The averages on the left side of(14.2) can be calculated on either the �ne or the coarse levels. (More generally,they can be just approximated, since they only serve as iteration coe�cients. Infact, one can ignore most of these terms, only those should be calculated thatcorrespond to neighboring coordinates which might be signi�cantly correlated.)For Hk and H` that are more strongly correlated, hHkH`i is calculated both onthe �ne and on the coarse levels: In case one �nds hHkH`ic and hHkH`if to betoo di�erent, in the next iteration a new correlation term AmHm is added toHc, where Hm = HkH`.In a small number of iterations, all the coe�cients fAkg converge, with allneeded added correlation terms, yielding Hc which very faithfully reproducesall the distribution and correlations exhibited at the �ne level.Numerical experiments have been conducted with two coarsening ratios, 1:3and 1:4. The resulting coarse Hamiltonians did turn out to ful�ll our expec-tations: With vastly-reduced number of degrees of freedom and allowing muchlarger simulation steps, it very accurately reproduced large-scale statistics: see[7] for details.A separate study has shown that the coarsening ratio 1:3 is best, for thefollowing reason. Unlike the 1:4 ratio, it yields fast CMC equilibration (see Sec.14.7.2), since its coarse con�gurations fully determine the attraction basin inwhich each �ne-level dihedral resides. This means that the coarsening statistics54



can be gathered in windows of long chains , not only in short local sets. (Cf.the concept of windows at Secs. 13.2 and 14.7.2). This is important since theshort local sets may not give rich enough statistics, while long chains cannot besimulated e�ciently at the �ne level.14.6.1 Electrostatic interactionsThe next development is to test polymer models that also involve electrostaticinteractions. To add such long-range interactions to this scheme it is proposed,similar to the approach described above (Sec. 14.3) to decompose each two-body electrostatic potential into the sum of two parts: a smooth potential anda local potential. (See details of such decompositions, for charge and for dipolarinteractions, in [135].) The charges or dipoles will then be anterpolated to thecoarse level. (Anterpolation is the adjoint of interpolation; see, e.g., [11, x3]or [135, x3.2].) This will give good coarse-level approximation to the smoothpotentials.Unlike the fast summation schemes based on the same principle, in whichcharges/dipoles are anterpolated to a �xed lattice (as in [29], [135]), here theywill be anterpolated to points that move during the coarse-level simulations. Asa result, the �eld produced by the coarse-level charges/dipoles will continue toapproximate the �ne-level smooth potentials even under large global movementsof the (coarse) molecule.The local parts of the electrostatic potentials remain only to be describedat the coarse level. Being local, these interactions can be added to the localscheme described above, similar to the LJ interactions.With this approach no explicit electrostatic summations are necessary, espe-cially if the local MC simulations are made in a distributive manner (cf. [53]).This means, e.g., to move two particles at a time in such a way that their masscenter remains unchanged. Such (and higher-order) distributive moves hardlya�ect, or are a�ected by, the smooth interactions. (Such distributive movesmake sense only in a multilevel dynamics, where mass centers that remain �xedduring the �ne level motions are moved at the coarse level. This exactly is themotions of the coarse \atoms" described above.) Such distributive moves canalso serve to reduce the cuto� distance for calculating LJ interactions.14.7 Multiscale Monte Carlo for 
uidsThe e�cient equilibrium simulation of gases and liquids at the atomic level,needed for the derivation of their large-scale behavior and macroscopic equa-tions, is a central problem in scienti�c computation. Direct �ne-scale MC sim-ulations tend to be extremely ine�cient due to the very slow change of variouskinds of clusters at various scales. Especially di�cult are the calculation atcritical conditions, where clusters at all scales interact. Of particular interest isthe simulation for water , by itself or as a solvent.The main two kinds of clustering di�culties associated with water and other
uids are positional clustering and electrostatic (dipole) alignment. We will start55



out by studying in parallel the following two simple cases, in each of which onlyone kind of clustering is present. The �rst case will deal with the molecularmotions (see Sec. 14.7.1), the second | with the molecular dipole rotations(Sec. 14.7.3). Later, these studies will lead to multiscale simulations of realwater models, such as TIP4P [106], [107], in which both molecular translationsand rotations, with both Lennard-Jones and dipole interactions, are considered.14.7.1 Moving particlesTwo models of single-atom molecules have been investigated in collaborationwith Valery Ilyin [50]: a one-dimensional hard ball model, for which full ex-act thermodynamic description is known, and a two-dimensional Lennard-Jones
uid. In the latter, describing noble gases, the atoms move solely under theirmutual two-atom Lennard-Jones interaction. Clusters of atoms that move to-gether, and clusters of \holes" (i.e., absence of atoms inside a larger-scale atomiccluster) are stochastically formed, their likely scales depending on the physicalconditions, such as temperature and density. At critical conditions all scales arelikely. The larger the scale of clusters, the longer they persist in MC simulations,hence slower is their sampling.Generally speaking, the multiscale approach here is again of the RMG type(cf. Sec. 13.2), but unlike the former cases (statistical mechanics in Sec. 13.2 andmacromolecules in Sec. 14.6), here the coarse levels all di�er from the �nest onein their nature: at the �nest level we have atoms at arbitrary locations, whileeach coarse level is de�ned on a uniform lattice. In simple cases, the value de�nedat each lattice point stands for the average 
uid density in a lattice box aroundthat point. The probability distribution of this density depends on neighboring-point densities, as speci�ed in detail by a suitable conditional-probability (CP)table. The CP table for each level is calculated by extensive local simulations atthe next �ner level (the level of a lattice with half the meshsize or, eventually,the �nest level of atoms).The development of this multiscale structure along the lines described next(Sec. 14.7.2) is now in progress. It has been shown [50] that density 
uctua-tions at all scales can be accurately calculated with only a bounded number ofparticles or gridpoints employed at each level.14.7.2 General outline of the multiscale approachGenerally, the (scalar or vectorial) variable at each lattice point at each coarselevel may represent various local averages: of density, or of electrostatic charge,or dipole moment, or energy density, etc. Also, at certain physical conditions,the locations of moving blobs, each carrying its own set of properties, maybe added to the �xed lattice as additional degrees of freedom. As before (seeSec. 13.2), a general criterion in choosing the coarse level set of variables is thespeed of equilibration of compatible Monte Carlo (CMC) runs (each such runbeing an MC simulation at the �ne level, restricted to con�gurations that arecompatible with a given coarse-level con�guration); a fast-equilibrating CMC56



entails the locality property of the coarse variables and thus allows the construc-tion of the CP tables.The CP table \resolution" (i.e., the number of coarse neighbors on which theprobability distribution of a coarse variable is conditioned, and the resolutionat which each of these neighbors is tabulated) should in principle increase for,and only for, frequent neighborhoods (see the branching system in Sec. 13.2).The errors in the CP tables can be fully controlled by this resolution and bythe amount of statistics gathered at the �ne level in setting up the tables.These, together with the interpolation orders used in employing the tables atthe coarse-level simulations, determine the accuracy of those simulations.Because of the near-locality property, no global equilibration is needed; localequilibration is enough to provide the correct CP values for any neighborhoodfor which enough cases have appeared in the simulation. Thus, the �ne-levelsimulation can be done in a relatively small periodicity cell. The idea is tosimulate increasingly larger volumes at increasingly coarser levels .However, since the �ne-level canonical ensemble simulations use only a smallperiodicity cell, many types of neighborhoods that would be typical at someparts of a large volume (e.g., typical at parts with densities di�erent than usedin the periodicity cell) will not show up or will be too rare to have su�cientlyaccurate statistics. Hence, simulations at some coarse level may run into asituation in which the CP table being used has 
ags indicating that valuesone wants to extract from it start to have poor accuracy. In such a situation,a temporary local return to �ner levels should be made, to accumulate morestatistics that are relevant for the new local conditions.To return from a coarse level to the next �ner level one needs �rst to inter-polate, i.e., to produce the �ne level con�gurations represented by the currentcoarse level con�guration, with correct relative probabilities. The interpolationis performed by CMC sweeps at the �ne level; few sweeps are enough, due to thefast CMC equilibration. This fast equilibration also implies that the interpola-tion can be done just over a restricted subdomain, serving as a window : In thewindow interior �ne-level equilibrium is reached. Additional passes can thenbe made of regular (not compatible) MC, to accumulate in the interior of thewindow the desired additional CP statistics, while keeping the window bound-ary frozen (i.e., compatible with the coarse level). The window can then becoarsened and returned to the coarse level, where simulations can now resumewith the improved CP table.Iterating back and forth between increasingly coarser levels and windowprocessing at �ner levels whenever missing CP statistics is encountered, one canquickly converge the required CP tables at all levels of the system, with onlyrelatively small computational domains employed at each level. The size of thosedomains needs only be several times larger than the size of the neighborhoodsbeing used (with a truncation error that than decreases exponentially with thatsize). However, somewhat larger domains may be better, since they providesampling of a richer set of neighborhoods (diminishing the need for returninglater to accumulate more statistics), and since the total amount of work at eachlevel depends anyway only on the desired amount of statistics, not on the size57



of the computational domain.Simulating at all levels in terms of such periodicity cells and windows cane�ectively eliminate both the volume factor and the slowing down which plagueusual (one-level) MC simulations. Provided of course that the coarsening ratios(the ratio between a coarse meshsize and the next-�ner meshsize), as well asthe average number of original particles per mesh volume of the �nest lattice,are all suitably low. The typical meshsize ratio is 2, typical number of particlesper �nest-lattice mesh is between 4 and 10. More aggressive coarsening ratioswould require much longer simulations to accumulate accurate CP statistics.The particle number density at the coarsest level is equal to some inputvalue. Each �ner-level window covers only part of the coarsest-level domain, sothe particle number density may di�er from the initial one. As a result of themultilevel process, the con�gurations produced at the coarsest level correspondto the canonical ensemble; at �ner levels they yield direct accurate representa-tion of the grand canonical ensemble [103].At su�ciently coarse levels, this entire algorithm e�ectively produces macro-scopic \equations" for the simulated system, in the form of numerical CP tables.This can yield a macroscopic numerical description for the 
uid even for those(most frequent) cases where the traditional derivation of closed-form di�erentialequations is inapplicable.14.7.3 Low temperature proceduresThe multilevel algorithm can e�ciently get into equilibrium even at low tem-peratures by an adaptive annealing process. In this process the temperatureis reduced step by step. At each step, upon reducing the temperature from aprevious value T to a new one T 0, a �rst approximation to the CP tables of T 0 isobtained from those of T by raising each CP to the power T=T 0 (and renormaliz-ing; actual renormalization is not necessary since only probability quotients areneeded in using the CP table for MC simulations). Then, in just few multilevelcycles, the CP tables can easily be made more accurate, provided the quality ofthe set of coarse variables has not been deteriorated.However, the type of coarse-level variables appropriate at low temperaturesdoes generally di�er from that at high temperatures. At high temperatruesthe average density is an adequate coarse-level variable. At low temperatures,e.g., at the appearance of liquid drops in a gas or at the onset of piecewisecrystallization, other coarse-level variables should be added, such as the averagecrystal direction, and/or the average density of holes, and/or the location ofmass centers. Thus, in the annealing process one should monitor the quality ofcoarsening by occasionally checking the CMC equilibration speed. When thisspeed starts to deteriorate at some level, additional variables should be addedat that level, with a corresponding extension of the CP table. Candidate newvariables can be found by physical understanding and/or by suitably blockinghighly-correlated variables at the next-�ner level; then the new variables shouldbe admitted provided they pass the CMC-equilibration-speed test. Some of theold variables may be removable, as judged again by CMC equilibration tests.58



In fact, unlike the classical simulated annealing method (whose aim is theminimization of the energy, not the simulation of equilibrium), the chief purposeof annealing here is the gradual identi�cation of the degrees of freedom thatshould be employed at increasingly coarser levels. At the zero-temperature limitthese procedures can also yield powerful multiscale minimization procedures (seeSec. 18.2).14.7.4 Rotating dipolesThe chosen model features a large set of electrostatic dipoles, of given strengthsand �xed locations, rotating in their mutual �elds in thermal equilibrium. Clus-ters of aligned dipoles tend to form, their sizes depending on the given tempera-ture. Again, these clusters are very slow to change in ordinary MC simulations,making large-scale 
uctuations extremely slow to average out.As before (cf. Secs. 14.3 and 14.6.1), at any spatial scale the electrostaticinteractions can be decomposed into the sum of a smooth part and a local part.In addition to using this decomposition for the fast summation of the dipole�eld, here it will also be used for accelerating the MC simulations and for cheap(coarse-level) averaging over many large-scale 
uctuations.Similar to the above (Secs. 14.7.2{3), each coarse level is de�ned on a grid,the mesh size being doubled at each coarsening. The vector de�ned at eachlattice point stands for the dipole anterpolated from the next-�ne-level dipoles.With this type of coarsening, the RMG methodology is again applied: a CPtable at each level is derived by local MC simulations at the next �ner level.Then this structure can be employed both for MC acceleration (e.g., by \half-V cycles"; see Sec. 13.2), and for calculation of the large-scale electrostaticproperties.This system is currently under development in collaboration with Bilha San-dak.14.8 Small-scale statistics with large-scale dynamicsThe multiscale structure may allow a natural combination of temperature-accurate statistical simulations at small scales with time-accurate dynamics atlarge scales. The following approach has been preliminarily studied.Stochastic implicit time stepping. A �rst-order implicit discretizationto Newtonian dynamics, leading from old positions r0 = r(t) and old velocitiesv0 = v(t) to new positions r1 = r(t + �t) and new velocities v1 = v(t + �t), isgiven by v1 = (r1�r0)=�t andM(v1�v0)=�t = �rE(r1). This set of equationsin r1 and v1 is equivalent to the minimization of the functionalH(r1; v1) = E(r1) + wTMw + 14(v1 � v0)TM(v1 � v0) ;where w = (v1 + v0)=2 � (r1 � r0)=�t. In our stochastic dynamics, instead ofminimizingH at each time step, we perform a multiscale Monte Carlo simulation59



with the probability density distributionP (r1; v1) � e��H(r1;v1) ;where � = (kBT )�1 and T is the real temperature of the system. The coarse-level moves we have used in the multiscale cycle are based on interpolation (seeSecs. 13.1 and 14.4, and [35, x11.4]); an RMG approach to coarsening (cf. Secs.13.2 and 14.6) may also be considered. At increasingly coarser scales � can beincreased, to enforce practically deterministic large-scale dynamics.This approach yields two bene�ts in performing very large time steps: �rst,it allows much easier handling of local minima. Secondly it avoids the killingof highly-oscillatory modes (those vibrations that are not resolved by the timestep), which would occur if the implicit equations of a large time step wereimposed at all scales. Instead, these modes assume stochastic amplitudes, nearlyaccording to their equilibrium probability distribution. The desired temperatureis introduced very directly in this way (with the fast atomic vibrations servingas a natural heat bath), thus getting around the need for fabricating Langevinstochastic forces.Tests with this scheme on model problems with quadratic potential haveshown the expected behavior, except that the stochastic treatment at �ne levelsgradually introduces deviation from deterministic evolution also at large scales.This deviation seems generally to be of the order of the discretization error. Wehave nevertheless learned how to control this deviation by \distributive MonteCarlo" (similar to distributive relaxation [24]), forcing �ne-scale moves to be asnearly orthogonal to large-scale moves as desired.15 Image Processing. Clustering. Graphs15.1 Edge (or �ber) detectionStraight features. Fast multiscale approaches for some early vision tasks,such as edge detection and surface reconstruction from sparse, noisy or blurreddata, have been developed in collaboration with Jonathan Dym [79]. In par-ticular, fast multiscale methods for enhancing and detecting straight features(straight edges or straight �bers) have been demonstrated [43], [44]: They de-tect all such features, of all widths, lengths, positions and orientations, in justO(N logN) operations, where N is the number of pixels (picture elements) inthe given picture. This has been achieved by constructing a hierarchical collec-tion of numerical integrals of grey levels along straight segments of the pictures,with the lengths, positions and orientations of the segments in the collectionchosen in such a way that:(1) The collection is rich enough, in the sense that any other straight-segmentintegral over the picture can be readily interpolated from the collections's inte-grals; each interpolation is over a short distance, so that it is equivalent to inter-polating grey levels only between nearest-neighbor pixels. Speci�cally, the col-lection includes segments of length 1; 2; 4; 8; : : : (in pixel units), those of length `60



have locational resolution which is O(`) in the direction of the segment and O(1)in the perpendicular (width-wise) direction, while their orientational resolutionis O(`�1) (analogously to the Heisenberg principle in quantum mechanics).(2) The collection is fast to construct , by using shorter segment integrals tocalculate the next-longer ones, scale after scale, so that the construction of eachintegral requires only O(1) operations.Curved featuers. For detecting smooth curved features (edges or �bers),a variety of approaches have been proposed. One good example is the completion�elds. In this approach, the picture is described in terms of \edgels" (edgeelements), i.e., short pieces of a straight edge (or �ber), de�ned at N1 = O(N)locations in the picture, atm di�erent orientations in each location. The originalvalue of edgel i is the response ui to an elementary edge detector at i; that is, uis the result of a local integral transform which yields a higher value if the localpicture elements do indicate existence of an edge at that particular locationand orientation (and at the chosen scales of length and width, typically being,respectively, 3 and 1 times the pixel size). The completion �eld value vj of edgej can be built from the set of all elementary responses ui in a variety of ways(see di�erent approaches in [161] and [98]). As a representative example for ourdiscussion here, we can takevj = N1mXi=1 aijui ; (j = 1; : : : ; N1m) ; (15:1)where aij expresses the \a�nity" of edgels i and j: it is large if edgel j is adirect continuation of edgel i, and it falls o� with their distance and orientationdi�erence. For a given i, its \induction �eld" aij is qualitatively similar tothe �eld of a magnetic dipole. It is shown in [161] that such completion �eldsare biologically plausible, and give eye-pleasing curves. They are particularlypowerful in completing curves partly occluded by large objects. The originalmethod however has several severe shortcomings, which can be overcome bymultiscaling.Multiscale methods can contribute to the process in two fundamental ways.First, the method as described in [161] would require O(N21m2) computer op-erations; multiscale methods, resembling those of Sec. 10 above, would do thesame job in O(N1m) operations, while retaining the same (very high) degree ofcomputational parallelism.Second, and more importantly, still with this low cost, the multiscale pro-cessing can produce much better completion �elds.Indeed, a fundamental 
aw in the uniscale completion �elds is their additiv-ity, as in (15.1). In reality, the completion �eld of a long edge should be verydi�erent from (farther reaching and more orientation-speci�c than) the sum ofthe �elds of several short edgels that compose it. In the multiscale approach,this 
aw can be avoided, since completion �elds can be constructed separately ateach scale of length and width, with scale-dependent a�nity parameters. Themulti-resolution input of straight-edge responses required for such multiscale61



completion �elds is exactly the kind resulting from the O(N logN) straight-feature algorithm mentioned above.The multi-resolution of both the input (straight responses) and the output(completion �elds) also involves further cost reductions. For example, as men-tioned above, for short edgels only low orientational resolution need be used,while for long edgels a low locational resolution is needed (in the lengthwisedirection). Thus, the value of N1m mentioned above can itself be radicallyreduced. Moreover, the multiscale output of the algorithm is a very desirablestructure to interact with the higher vision processes of labeling and segmenta-tion (cf. Sec. 15.2), whether or not the latter are themselves multiscaled.A detailed study of multiscale completion �elds, their parameterization andfast implementation has been conducted with Eitan Sharon and Ronen Basri.It is summarized in [139].Intriguing possibilities of combining the developed algorithms in a variety ofways should be investigated:1. Iterating a multiscale algorithm, with the output of the �rst iteration (e.g.,the set of vj) being used in forming the input (e.g., the set of ui) for thenext iteration. This can be done in various manners: linear, nonlinear,with or without thresholding.2. Using the output from one scale in forming the input for the next coarserscale.3. Thresholding after the previous iteration, one can use in the next iterationseveral di�erent and more complex algorithms, due to the smaller set ofdata. In particular, one can a�ord at this stage specialized algorithms,such as circle and corner detection. With further iterations, increasinglyhigher levels of recognition algorithms may enter.4. Combining in various ways edge detection with picture segmentation (seenext).15.2 Picture segmentationA basic task in pattern recognition is the decomposition of a given picture intomeaningful segments. The criteria for blocking two picture elements into thesame segment include similarity in color levels, absence of separating edges, etc.Quantitatively, these can be expressed in terms of coupling coe�cients betweenneighboring pixels. It is not uniquely de�ned how to derive the segments oncethe coupling coe�cients are given. Multiscale approaches can play several es-sential roles (somewhat analogous to their variety of roles in other areas; see forexample Sec. 15.1 above).Regarding the pixels as nodes of an electric network, and each couplingconstant as the conductance (1/resistance) of a connecting wire, the approachto the segmentation problem is to de�ne a picture segment as a block of nodesthat will have approximately the same electric potential under whatever input62



currents applied to the network. The �rst possible role for a multiscale approachis in terms of a fast solver for such networks. Since the network is highlydisordered, algebraic multigrid (AMG) solvers best �t the task (see Sec. 17).As pointed out by Sorin Solomon, there is in fact no need to solve theelectric-network problem for any particular input currents: Some of the coarse-level nodes de�ned by the AMG coarsening process can directly be identi�edwith the desired picture segments. More precisely, if all the couplings of a nodeat any coarse level are weak (compared with its own couplings to �ner-levelnodes), the node can be recognized as a picture segment, containing all thepixels (�nest-level nodes) which are coupled to it (through the AMG recursivecoarse-to-�ne interpolations).The AMG hierarchical coarsening can indeed be viewed as a process of it-erated weighted aggregation. In an iterated aggregation process, the elements(pixels) are blocked in small-scale aggregates, which are then blocked in larger-scale aggregates, then still larger, etc. In the weighted aggregation process,fractions of the same element can be sent into di�erent small-scale aggregates,and similarly at all larger scales. This weighting is important in order to ex-press the likelihood of elements to belong together; these likelihoods will thenaccumulate at the higher levels of the process, automatically reinforcing eachother where appropriate.Only after larger-scale aggregates have been formed, the boundaries forsmaller-scale aggregates can be delineated more sharply, taking into accountthe larger-scale picture. Hence, into the bottom-up process of weighted aggre-gation, up-bottom procedures are added which at appropriate stages tighten andsoften the couplings between pixels or between some �ne-level aggregates, basedon higher aggregation levels. (More speci�cally, the new couplings are based onvalues of local �ne-level solutions, each obtained by an AMG-type coarse-to-�ne interpolation of a coarser-level delta function followed by intermediate-leveland �ne-level local relaxation sweeps. The couplings to be strengthened are thecouplings between those pixels that get values close to 1.) These up-bottomprocedures serve to focus the created aggregates and sharpen the boundaries ofthe emerging segments.This integrated multiscale process o�ers much more than simple segmen-tation. They in fact yield a hierarchical segmentation, where segments withinsegments can be recognized. They can also yield scaled segmentation, where thescale of the picture at which segmentation is desired can be speci�ed.More important, the multiscale weighted aggregation is free to apply newtypes of couplings at di�erent levels. The coupling between larger-scale blocks(blocks which have been created by the smaller-scale aggregation, or alterna-tively, simple geometric blocks of k � k pixels), instead of (or in combinationwith) being induced by the �ne-scale couplings (as in the AMG process), theycan employ new criteria. Such criteria can include for example similarity in theaverage color levels of the blocks. More generally, all kinds of other intra-block\observables" can be used: the block's center of mass, its diameter, principalorientation, texture measures (being, e.g., statistics on average sizes and direc-tions of smaller-scale sub-blocks), etc., with the number of observables per block63



increasing at coarser levels. For example, strong couplings can be assigned be-tween two (not necessarily neighboring) aggregates whose principal orientationsalign with the direction of the line connecting their centers of mass. More impor-tant, strong couplings should be established between two neighboring aggregateswhose boundaries (sharpened by the up-bottom procedures) seem to completeeach other (using criteria akin to those used to form aij in (15.1)). These kindsof couplings may establish a�nities even between quite distant aggregates, pro-moting the appearance of disconnected segments, presumably signifying partlyoccluded objects.Another criterion for blocking at each level can be the absence of separatingedges on the scale of that level. This will directly bene�t from the multiscaleedge-detection algorithms, as described above. Alternatively, it may be desiredto detect the large-scale edges from the large-scale blocks by applying a suitableedge detector at that level (a suitable integral transform on a chosen blockquantity, such as its average gray level or any other observable).The multilevel aggregation and hierarchical segmentation algorithms arevery fast. On coarse levels the number of variables is drastically reduced, somost of the work is at the initial, �nest levels. On those levels the geometricordering of the pixels and of the small aggregates still dominates and can beused to create very inexpensive processing, so that the entire algorithm costsonly several dozen computer operations per pixel .A detailed account of our current multiscale algorithm for image segmenta-tion is given in [140], demonstrating its properties on several line drawings andreal images.The future strategy is to enhance the algorithm in several ways indicatedabove: adding more coarse-level observables, introducing various interactionswith our multiscale edge detection processes, etc. Multiscale approaches toother aspects of image processing are also envisioned.15.3 Clustering and graph algorithmsThe problem of picture segmentation is a special case of the following clusteringproblem: Given a set of objects f1; 2; : : : ; ng and \a�nities" (or \couplings")aij = aji � 0 between the objects (i; j = 1; : : : ; n; i 6= j), �nd \clusters", i.e.,disjoint subsets of objects such that objects within the same subset are \stronglycoupled", directly or indirectly, while objects in di�erent subsets are generallyweakly coupled. The strength of direct coupling between i and j may be de�nedby the size of aij=(aiaj)1=2, where ai = maxk aik ; indirect strong coupling be-tween i and j is formed by a short chain (i = i0; i1; i2; : : : ; ik = j) such that i`�1is strongly coupled to i`, (` = 1; 2; : : : ; k). So de�ned, the clustering problemis of course fuzzy; it can be de�ned more precisely in various ways, althougha direct precise de�nition in terms of the minimization of some functional canbe coutnerproductive (cf. Sec. 18.1). In fact, as with the above special caseof picture segmentation, the best de�nition can often only be done through themultiscale clustering process, where larger-scale a�nities are de�ned or modi�edat coarser levels , depending on properties of intermediate aggregates.64



In collaboration with Eitan Sharon and Ronen Basri, the segmentation algo-rithm described in Sec. 15.2 has been extended to a general clustering algorithm.The main feature distinguishing picture segmentation was its two-dimensionallocality : a�nities were only de�ned between neighboring pixels. In general clus-tering problems, all the a�nities aij may be positive. To account for this situ-ation, a general e�cient way has been developed to involve increasing numberof a�nities at increasingly coarser levels of the algorithm.Clustering algorithms are central to many areas of applications, includingbioinformatics and data mining . In all these areas the multilevel clustering,and in particular the multilevel de�nition of a�nities, have enormous potential,which we plan to demonstrate.The clustering problem is a special case of fuzzy graph problems . Manyother problems in this class can greatly bene�t from multilevel algorithms, in-cluding such well-known problems as the traveling salesman (aiming at pro-ducing a close-to-optimal, not the optimal, route), the transportation problem(see [110] for an early multiscale approach), vertex ordering (see, e.g., in [4]),two-dimensional embedding or the problem of drawing graphs nicely (success-fully multiscaled in [99]), min-cut or max-
ow [72], sparse spanners [93], densesubgraphs [81], and others.The general approach in these graph problems is that of coarsening : re-cursive transition to increasingly coarser graphs, each having only a fractionof the number of nodes and edges at the next �ner graph. For each coarsergraph a new problem is formed such that its solution would easily lead to anapproximate solution at the next �ner level. With various variations, the AMGcoarsening (see Sec. 15.2, or the more general approach in Sec. 17.2) is the basicvehicle. Research along such lines has been initiated, in collaboration with EitanSharon and Evgeniy Bart. The emphasis is on practical algorithms, obtainingvery good approximate solutions in very low average complexity (unlike the em-phasis in theoretical comptuer science on exact solutions with low worst-casecomplexity). Linear average complexity should typically be expected from suchmultiscale algorithms.16 Tomography: Medical ImagingTo develop multiscale computational methods for tomography, we have startedby working on the two mathematically extreme cases: X-ray tomography, re-quiring the inversion of the sharp radon transform, and impedance tomography,requiring inversion of a very di�usive process.16.1 Inverting the Radon transform and related problemsReconstruction of a function of two or three variables from its Radon transformhas proven vital in X-ray computed tomography (CT), emission computed to-mography, nuclear magnetic resonance (NMR) imaging, astronomy, geophysics,and a number of other �elds [76]. One of the best known reconstruction al-65



gorithms is the convolution backprojection method (CB), which is widely usedin commercial medical CT devices [76] (with \rebinning" for divergent-beamprojection [102]). It has also been applied to spotlight-mode synthetic apertureradar (SPSAR) image reconstruction [102]. While CB provides good reconstruc-tion relatively e�ciently, it is still too slow for some purposes, requiring largecomputational resources and limiting the ability of CT machines to producereal-time 3-D images or video. A faster technique sometimes used, based ondirect Fourier method, yields images of much poorer quality.For other medical imaging and radar problems which are non-uniform, ex-isting Fourier-dependent methods (e.g., CB) are less applicable, resulting inworse performance. This includes the Positron Emission Tomography (PET),the Single Photon Emission Computed Tomography (SPECT), impedance to-mography, ultrasound and similar medical imaging techniques (see, e.g., [75]),as well as non-uniform problems in CT, such as the limited-angle problem andthe 3D cone-beam reconstruction.A new multi-level approach to the inverse Radon transform (X-ray tomog-raphy) was developed by us several years ago. While the backprojection of theconventional CB raises the computational complexity of the method to O(N3)for an N �N images, we have developed a novel O(N2 logN) multilevel back-projection algorithm and an accompanying, even less expensive, post-processingprocedure [54], [55]. Tests for a number of phantoms, and measurements ofpoint-spread functions, show that the combined method produces at least asgood images as those produced by classical CB, in far less time. Further im-provements, including an adjustment of the post-processing part to concreteCT machines and a stochastic device to obtain translation invariance in themultilevel backprojection, were introduced by Meirav Galun.Fast algorithms for other �elds with line-integral transforms are under devel-opment by Galun. Direct and inverse computation of line integrals of the two-dimensional SPECT is being done by multiscale computation in O(N2 logN).(The direct algorithm is an extension of the line integral computation for thedirect Radon transform [43].) Also being developed is a solver for the limited-angle problem, the case where the X-ray tomograph scans only part of the full180-degree view. Based on the methods described in Sec. 10.1 above, we havedeveloped a new type of multiscale transform which is applied in the processtogether with the backprojection, replacing the naive convolution which is lesssuitable in this case. The construction of the multiscale transform is done oncefor all, in o�-line iterations. Three dimensional Cone-Beam reconstruction,used by the new generation of CT machines, can be achieved by fast multi-scale solver in O(N3 logN) complexity, using a similar o�-line construction of asuitable multiscale transform together with a 3D version of our backprojectionalgorithm.A more complicated problem is the three dimensional PET reconstruction.In this case, a typical situation is that the number of emission events is muchsmaller than the number of possible rays. Multiscale processes can be appliedhere to e�ciently perform three types of tasks: the gathering and averaging ofthe event data; the backprojection; and, again, a multiscale transform to replace66



the convolution, constructed o�-line.16.2 Impedance tomography: inverse di�usion problemAn EIT (Electrical Impedance Tomography) device for medical use consists ofa set of N electrodes attached to the chest of a patient. A small known currentis passed between two driver electrodes. In each measurement the current ispassed through a di�erent electrode pair, while the voltage drops at all theelectrodes is recorded. The collected data are used in order to calculate theconductivity distribution in a part of the patient's chest and then to display iton a screen, in order to detect anomalies, such as tumors.The electrical potential satis�es the equation r(�ru) = 0, where � is theelectrical conductivity. The set of measurements gives ideally (in the limit ofmany small electrodes and as many measurements) the Neumann to Dirichletmapping: the Dirichlet (u) boundary condition resulting from any Neumann(@u=@n) condition. The inverse EIT problem is to calculate � from this map-ping.The �rst description of the inverse EIT problem was given by Calderon [69].Kohn and Vogelius [115] showed that under certain assumptions the conductiv-ity of a medium is uniquely determined by the Neumann-to-Dirichlet mapping.Then Sylvester and Uhlmann [149] provided a general framework for provinguniqueness of the solution of the inverse problem. Alessandrini [1] gave a math-ematical explanation for the blurriness of conductivity images and proved thatthe conductivity depends on the EIT data in a very weak way. Therefore theinverse problem of EIT is ill-posed, and a regularization is necessary if conduc-tivity is to be obtained stably from data.There exist some works on numerical methods for the relevant problems,but their number is rather sparse and even those papers do not consider thequestion of numerical e�ciency, despite its importance for applications.The main purpose of our work on this problem, together with Rima Gandlin,has been to demonstrate two general methodological points. First, an ill-posedproblem is not necessarily di�cult or expensive to solve. On the contrary: oncethe nature of the ill-posedness has been generally understood, the solution mayeven be much less expensive than solving the direct problem. For example, inthe inverse EIT problem, employing local Fourier decompositions one can showthat all components of wavelength � are ill-posed at distances r � � from theboundary. Hence there is no need to use at such distances �ne solution grids:all we can know about the solution can be calculated with grids whose mesh-sizes increase proportionality to r. Moreover, one can recombine the di�erentmeasurements into N new ones, such that in the k-th measurement the electriccurrent enters the k-th electrode and leaves uniformly through all other elec-trodes. Then it can be shown that in solving the k-th (direct) problem oneneeds a �ne grid only near the k-th electrode, with increasingly coarser gridsaway from it.The second general point is that such a careful choice of grids, in a suit-able multigrid algorithm, can replace the need for explicit regularization of the67



problem.Our �rst pass at the problem, employed the well known Tikhonov regulariza-tion method, reformulating the inverse problem as a variational minimizationproblem. The resulting Euler equations form a PDE system (for u, � and aLagrange-multiplier function), which make the problem suitable in principle foran e�ective numerical solution by multigrid methods. The FMG solvers weredesigned with large and then with progressively smaller regularization. Specialattention has been paid to properly adapting many features of classical multigridto the case of the problem under consideration (including intergrid communi-cations, boundary condition treatment and coarse grid solution). In the caseof large regularization, numerical experiments have demonstrated a good con-vergence of the developed solver, but the obtained solution is too smeared anddoesn't approximate the real conductivity function too well.At small regularization values the �nal approximation is much better, espe-cially near the boundary. In this case, however, the system is no longer elliptic,and much more sophisticated relaxation methods are necessary, featuring a DGSscheme [24, x3.7], which e�ectively decomposes the system into its scalar factors.With this approach, although the multigrid cycles asymptotically slow down,the �nal approximation to the conductivity is practically obtained by just onemultigrid cycle per grid re�nement, even when approaching the smallest regu-larization for which solution still exists.It took some e�ort [141], [88] to complete this part of the program. Then, thesolution method without regularization was developed. Preliminary results [89]show it to give better approximations to � than the regularized method with itsmany arti�cial parameters (the regularization coe�cients, which should changeover the domain), for less work (no Lagrange multipliers). However, it also turnsout that without regularization the solver requires a control parameter p to begradually decreased through the FMG algorithm, allowing in each stage onlythose � changes whose \pro�t" (in terms of improving the approximations tothe Dirichlet data) per unit change is at least p.17 Algebraic Multigrid (AMG): New Approa-chesAlgebraic multigrid (AMG) algorithms are solvers of linear systems of equationswhich are based on multigrid principles but do not explicitly use the geometryof grids; see [23, x13.1], [56], [58], [25], [134], [146]. The emphasis in AMG is onautomatic procedures for coarsening the set of equations, relying exclusively onits algebraic relations. AMG is widely employed for solving discretized partialdi�erential equations (PDEs) on unstructured grids, or even on structured gridswhen the coarse grid can no longer be structured, or when the PDE has highlydisordered coe�cients. AMG can also be used (as in [56]) for many types ofdiscrete systems not arising from di�erential equations.Given any system of linear equations Ax = b, where A is any (possibly68



rectangular) matrix, the starting point for all multilevel (multigrid) fast solversis the following insight. For convenience we assume, without actually losinggenerality, that the matrix A is roughly normalized , i.e., the `2 norm of everyrow in A is roughly 1.For any approximate solution ex, denote by e = x � ex the error vector, byr = Ae = b�Aex the vector of residuals, and by k � k the `2 norm. The commonfeature of all local relaxation schemes is that at each step some corrections to exare calculated based on the values of a small number of residuals. As a result,convergence must be slow when the individual residuals do not show the truemagnitude of the error, i.e., when k r k � k e k. The converse is also true(and proved in [25]): If the convergence of a suitable (e.g., Kacmarz) relaxationscheme is slow, then krk � kek must hold. Since, for a normalized matrix A,the deeper the condition kAe k � k e k is satisi�ed the more special must bethe type of the error kek, a suitable relaxation can always e�ciently reduce theinformation content of the error, and quickly make it approximable by far fewervariables . (This is true even for general nonlinear systems.)Thus, following a small number of relaxation sweeps, the remaining errorcan be approximated by a \coarser" (or \diluted") system, i.e., a system withonly a much smaller number of variables (at most half the original number, forexample). General approaches for �rst de�ning the set of coarse variables andthen for deriving the equations they should satisfy are brie
y described below.The coarse equations themselves are then (approximately) solved by a similarprocedure: a small number of relaxation sweeps followed by approximating theremaining error with a still coarser system. This recursively de�nes the multi-level cycle, which, for a work comparable to that of just few relaxation sweepsover the �nest level (the given system), can reduce the error to a small fraction(far less than .5, typically) of its pre-cycle size.The set C of coarse variables is chosen as a subset of the set of �ne(original) variables; or, more generally, each coarse variable is chosen to be alinear combination of a small number of �ne variables (or �ne ghost variables| a generalization explained in Sec. 17.2 below, and also in [37, App. A]). Inclassical AMG [56], [58], [25], [134], the set C is chosen so that each �ne vari-able is \strongly coupled" to C. More generally, a criterion for gauging, anda practical method to control, the quality of this set can be based on sweepsof compatible relaxation. This is a modi�ed �ne-level relaxation scheme thatkeeps the coarse-level variables invariant (i.e., it keeps the �ne-level con�gura-tion always compatible with the same coarse-level con�guration). The set C isguaranteed to be good when (and only to the extent that) the compatible relax-ation exhibits uniformly fast convergence rates . Where these rates are too slow,they point to variables part of which should be added to C (or, alternatively,they point to variables that should be relaxed simultaneously ; see [37]). (Ananalogous criterion for coarsening statistical �elds, involving fast equilibrationof compatible Monte Carlo, is described in Secs. 13.2 and 14.7 above.)The derivation of the coarse-level equations is described below forsystems of local equations, i.e., systems Ax = b whose variables (x1; x2; : : :) eachhas a location in a low-dimensional space, and whose equations each involves69



only few variables in a local neighborhood of that space. Generalizations existto \sparsely positive de�nite" matrices, including positive-type matrices (see[25]), to \asymptotically smooth" and \asymptotically smoothly oscillatory"matrices, including electrostatic or gravimetric interactions (see [37, x11] andSecs. 13.2.2 and 14.6.1 above), and to some other types of systems. Also, thesame procedures often work well for cases not belonging to any of these types.The fast convergence of the compatible relaxation implies that the valuesof the coarse set of variables indeed determine, up to fast local processing, thevalues of the �ne set. Moreover, it implies that the chosen coarse set satis�esthe \near locality" property, i.e., the �ne level solution at each point can becalculated locally , given just its coarse neighborhood , with very weak remnantdependence on coarse values outside that neighborhood: the remnant depen-dence decays exponentially (or even faster) as a function of the neighborhoodradius. (Cf. the \near locality" for statistical problems, in Secs. 13.2 and 14.7above.) For 2D discrete Poisson equations, for example, the remnant depen-dence tends (after enough coarsening levels) exactly to exp(��r2=2), where r isthe neighborhood radius measured in meshsizes of the coarse level [137], [167].Since each coarse variable is de�ned locally by few �ne variables, it toodepends only nearly-locally on all other coarse variables. Hence, an equation foreach coarse variable in terms of other coarse variables can be derived locally,using only a local set of �ne-level equations. The error in that coarse equationwill decrease exponentially as a function of the size of that local set.We describe below two approaches for deriving the coarse equations: In Sec.17.1 the highly accurate derivations of [37] are mentioned, and examples for theuse of very accurate coarsening are listed. A new, much more e�cient generalapproach is detailed in Sec. 17.2.17.1 Highly accurate coarseningSeveral general methods for local derivation of highly accurate coarse equationsare described and demonstrated in [37], including a method developed by IradYavneh. One approach is based on the tranditional Galerkin coarsening : thecoarse-grid equation approximating Ax = b is Acxc = (Ic)T b, where Ac =(Ic)TAIc and Ic is an accurate coarse-to-�ne interpolation derived by solving alocal optimization problem. (For highly non-symmetric A, see the more generalform in Sec. 17.1 below.) Another approach, called direct coarsening , directlyderives coarse equations by solving another local optimization problem. (Instatistical physics, the Galerkin coarsening corresponds to the interpolation-based method (Sec. 13.1 above), while the direct coarsening is analogous to theRMG method (Sec. 13.2).)In both these approaches one can control the coarsening accuracy , and thecorresponding amount of computational work per coarse equation, by choosingthe size of certain stencils. Although the work per equation is always in principleonly O(1) (i.e., it depends on the desired accuracy but not on the size of thematrix A), the actual constant can be very large, rising as some power of thesize of the local set. 70



For the purpose of multi-level (multigrid) cycles , a low coarsening accuracywould usually su�ce. For example, a coarse grid equation with at most 10%error for all \smooth" components (i.e., those slow to converge in relaxation) canyield a multilevel cycle with a convergence factor close to 0.1. By performingsuccessively any number of such cycles, any desired solution accuracy can rapidlybe obtained. This will usually be far more cost e�ective than deriving higheraccuracy coarsening.Such low coarsening accuracy can often be inexpensively obtained by theclassical AMG approach, i.e., using the Galerkin coarsening, with xc being asubset of x and the interpolation Ic having weights proportional to the size of thecorresponding terms in A (or in A2, or in ATA). This approach is particularlye�ective for simple matrices, such as positive-type ones (matrix A = faijg suchthat aij � 0 for all i 6= j and Pj aij � 0 for all i).In many other cases, however, higher degrees of coarsening accuracy, obtain-able by the techniques of [37], or those of Sec. 17.2 below, are really needed.Usually in such cases, the system involves a high degree of repetetiveness, sothe high cost of deriving very accurate coarsening can be a�orded. Examples:(i) Once-for-all coarsening, for the purpose of deriving the macroscopic equa-tions of the given system, or homogenizing it.(ii) Cases in which one needs to solve many linear systems of the formAx = b,where large parts of A and b do not change from one system to the next, sore-computing those parts at �ne levels can be avoided by having accuratelycoarsened them before. One important such case is the calculation of many de-sired terms (e.g., the main diagonal) of A�1; this requires solving many times thesystem Ax = b, each time b being another unit vector. Moreover, in importantcases (e.g., see Sec. 12 above), those desired terms of A�1 must be recalculatedupon each change in A occuring during certain Monte-Carlo simulations.(iii) Problems with a large number of almost-zero modes (AZMs), i.e., eigen-vectors with unusually close to zero eigenvalues. Such modes often re
ect someill de�ned global moves, such as rigid-body motions of the entire system inproblems of elasticity, or a gliding motion of two rigid bodies along their con-tact surface. Such AZMs also plague various disordered problems, such as Diracequations on critical gauge �elds (cf. Sec. 11). For problems with many AZMs, ageneral cure is to increase the coarsening accuracy. A small number m of AZMs(such as those associated with global rigid body motions) may still persist evenat higher accuracies, but they can be eliminated by recombining m + 1 iter-ants (each being, for example, the approximate solution obtained after anothermulti-level cycle) so as to minimize the `2 residual norm; see, e.g., [59].(iv) A computing environment which makes it preferable to use as few multi-grid cycles as possible, such as massive parallel processing with poor inter-processor communications, or a computer with a very high-speed cache memory.17.2 Bootstrap AMG (BAMG)The methods described above o�er highly accurate coarse equations. They arehowever very expensive, being practical only for highly-repetetive systems. The71



main 
aw in these and other AMG methods is the completely local derivationof the equations. This cannot yield e�cient approximation to the lowest eightmodes. More generally practical coarsening methods, developed in collabora-tion with Irad Yavneh, are described next. They develop the AMG structureiteratively , using the evolving AMG solver itself to improve its interpolationrules.The proposed coarse equations depend on the properties of the matrix A,which can be described in terms of the relaxation scheme that goes with it. Ageneral relaxation scheme for the system Ax = b is weighted distributed Gauss-Seidel (WDGS), which is a Gauss-Seidel (or SOR) relaxation of the systemA0x0 = b0, where A0 = PAM , x = Mx0 and b0 = Pb. The \weighting matrix"P and the \distribution matrix" M are chosen in various ways. If for exampleA is symmetric and semi-de�nite, or even non-symmetric but with enough di-agonal dominance, then one can choose A0 = A and P = M = I , the identitymatrix. If the system is a discretization of a PDE system, P and M are usuallydetermined at the di�erential level, or at the level of the �rst di�erential ap-proximation to the discrete operator, based on the operator matrix (cf. Sec. 2.2above; see [36]). If nothing better is available, one usually chooses either P = I ,M = AT (Kacmarz relaxation) or P = AT , M = I (least-square relaxation).This indeed guarantees convergence of the WDGS relaxation, but that may beinsu�cient. What is needed is to have good \smoothing" in the generalizedsense, that each value in a relaxed vector essentially depends only on its neigh-boring values (except possibly for a deviation that decays exponentially withthe size of the neighborhood), where the neighborhood is de�ned either geo-metrically or algebraically (in terms of strongest couplings). Such a smoothingcondition would not generally happen for discretization of integral or integro-di�erential equations. To obtain good smoothing one can then multiply eitherP or M by a matrix that corresponds to di�erencing (i.e., taking di�erences ofneighboring values), raised to su�ciently high power.The variable x0 are called \ghost variables" because they need not be known:the relaxation calculates changes �x0 for these variables, but those can be di-rectly expressed as changes �x = M(�x0) introduced to the explicit variablesx. For simplicity we will assume below that the given system Ax = b can berelaxed by Gauss-Seidel (P =M = I); otherwise, A, x, and b in the discussionbelow can be replaced by A0, x0 and b0, respectively.A comment is passing : in rare situations the matrix A0 may have few eigen-values with magnitudes much larger than all other eigenvalues. In this situation(and only in this situation) the relaxation process should use iterant recom-binations (e.g., conjugate gradient or GMRES) to reduce the correspondingoutlying error components, so that the relaxation parameters can be �tted totreat e�ciently the majority of eigenmodes.The coarse-level equations Acxc = bc proposed here are of the Galerkin type:Ac = IcAIc and bc = Icb. Here Ic is the coarse-to-�ne interpolation; i.e., if theequation Ax = b is already relaxed, a good approximation to its solution isexpected to satisfy x � Icxc. The issue treated below is how to construct Ic72



and the �ne-to-coarse transfer Ic. They will generally be constructed in severaliterations.It can easily be shown that Ic should interpolate the low eigenvectors ofA well; i.e., a vector ex which is a combination of low-eigenvalue eigenvectorsshould have a vector exc such that k ex � Icexc k�k ex k. It can also be shownthat (Ic)T should well interpolate low eigenvectors of AT . We describe here thederivation of the interpolation Ic; if A (or actually A0) is symmetric or nearlysymmetric, Ic = (Ic)T can be used; otherwise Ic will be derived by a similarprocedure, applied to AT .A general form of the interpolation Ic is(Icxc)i = niXj=1 wijxcIi;j : (17:1)The sequence fIi;jgnij=1 is the ordered set of the ni indices of coarse-level variablesfrom which interpolation to the i-th �ne-level variable is made. They are chosenin the \neighborhood" of xi, de�ned either geometrically or in terms of algebraiccouplings. A necessary lower bound for their number ni is often known inadvance. For example, in solving discretized PDEs, the orders mc and mc ofIc and Ic, respectively, should satisfy well-known rules (see [23] or [24] or [32]or [153]), so for d-dimensional problems ni � mc + d. Generally, one shouldstart with a small reasonable value for each ni, since the iterative proceduredescribed below will indicate when ni should increase, or when the set fIi;jgnij=1needs to be modi�ed.As the example of PDE systems show, to keep all the ni's small, it is bene�-cial, when possible, to divide the set of variables into disjoint \species", both onthe �ne and on the coarse levels, such that the coarse variables of each speciesare de�ned in terms of the �ne-level variables of the same species, and the in-terpolation too is de�ned within each species. For example, in discretized PDEsystems each species corresponds to the discretization of one function.First approximation. Let nc = max(ni). A �rst approximation to Icwill be derived from nc relaxed solutions x(k), (k = 1; : : : ; nc), where typi-cally nc < nc < 2nc. Namely, each x(k) is a result of several �ne-level relax-ation sweeps on the homogeneous equation Ax = 0, each starting from anotherrandom approximation. The number of sweeps for each x(k) should be small(typically less than 5) since it is enough to start with a crude approximationto Ic. A �rst approximation to the set of interpolation coe�cients fwijgnij=1for each i is determined so that it satis�es best, in the least-square sense, theover-determined set of equationsx(k)i = niXj=1 wijx(k)cIi;j ; (k = 1; : : : ; nc) (17:2)where x(k)c is the coarse vector corresponding to x(k) (see above: the coarsevariables are de�ned in terms of the �ne ones, e.g., as a subset). If the least-square procedure for a particular i does not satisfy (17.2) well enough (the least-square error is larger than a threshold), then ni is increased and the procedure73



for that particular i is repeated until satisfaction is obtained. (The thresholdshould be chosen comparable to the size of the current local normalized residualsof the homogeneous equations.) In these iterations for a particular i, one canalso try to cancel any interpolation point xcIi;j which turns out to have a smallinterpolation weight wij or which exhibits near-dependence on others (a factnaturally detected by the least-square solver).This procedure already gives a reasonable approximation to Ic, in the sensethat it well interpolates most low-eigenvector eigenvalues, except that it is notlikely to be good enough for many eigenvectors with too low eigenvalues, becausethe interpolation error should be small compared with the corresponding (nor-malized) eigenvalue. A similar �rst approximation is obtained for Ic. (Anotherway to obtain these �rst approximations is of course by the traditional AMGcoarsening, when applicable.) This yields the �rst approximation to the coarse-level matrix Ac = IcAIc, which can then be used in a similar way to obtain a�rst approximation for the next, still-coarser-level matrix. There is, however, nopoint usually in proceeding this way too far: It is useless to access very coarselevels, whose role is to approximate very-low-eigenvalue eigenvectors, when thelatter are ill approximated already in Ac.Improved approximations. Once several coarse levels have been so de-�ned, they can be used to obtain much better approximations to Ic and Ic.These are de�ned similarly to the �rst approximation described above, but in-stead of the relaxed vectors x(k), one obtains each of these vectors by a shortmultilevel procedure: Starting from a random con�guration at the coarsestcurrently-available level, one relaxes the homogeneous equation on that level,then interpolates it to the next-�ner level, where the result is again relaxedwith the (�ner-level) homogeneous equation, and so on to the �nest level. Eachinterpolation is a two-stage procedure: First one uses the already-available Ic,then the result is relaxed by compatible relaxation (before it will next be relaxedby a usual relaxation). Each relaxation (compatible or usual) employs just acouple of sweeps.Having obtained in this way improved approximations to Ac and similarlyto coarser matrices, one can use them to similarly obtain such matrices on morelevels. Then one obtains still better approximations by repeating the above pro-cedures once more, now with more levels and with much better accuracy. Thisbetter accuracy is achieved by adding to the above short multilevel procedurea multilevel correction cycle to get better approximate solution to Ax = 0 (butkeeping at the coarsest employed level still the same, relaxed but not converged,random con�guration).Accuracy and cost. The overall cost per unknown of this accurate coars-ening procedure is O�ncn2c log 1"�, where ncn2c is the work needed to set up eachof the least-square systems, and " is the desired accuracy in approximating thelowest eigenvectors . For producing a good multigrid solver, it is enough to have" which is small compared with the lowest normalized eigenvalues (except per-haps for few of them, whose corresponding error can be expelled by recombiningiterants of the multigrid cycles). 74



An important advantage of the above procedure is that it keeps all ni (andhence also nc, nc) almost as small as possible, hence producing Ac almost assparse as possible, saving much work in its calculation, and also in the actualoperation of the multigrid solver. The latter is often the most important con-sideration, as the solver is re-used many times (cf. Sec. 7.2.1).For some purposes (see item (i){(iv) in Sec. 17.1) one may want to have acertain accuracy "1 in approximating also the other, perhaps even all, eigenvec-tors . For that purpose one has to increase nc (and accordingly also nc). thelikely relation is nc = O��log 1"1�q�; for 2D-Poisson equations, for instance,q = 1. The algorithm to derive accurate Ic in this case is actually simpler thanthe above: The relaxed vectors fx(k)gnck=1 should each be obtained by a longenough sequence of compatible relaxation sweeps, starting from a random x(k)c;the sequence needs not be really long, just O�log 1"1 �, due to the fast conver-gence of such a relaxation. Despite the simplicity, this approach is of courseconsiderably more expensive: it similarly costs O�ncn2c log 1"1 �, but nc here isusually much larger. Also, the produced multigrid solver is less e�cient, sinceit involves heavier Ic, Ic and Ac at all levels.Various combinations of the two approaches are also conceivable, dependingon the nature of the desired accuracy. In such a combination, each x(k) may beproduced by interpolations (including compatible relaxation) from a di�erentlevel, and larger weights in the least square calculation may be attached to\smoother" x(k)s, i.e., x(k) produced from coarser levels. Working with verysmooth x(k)s and high accuracy (smaller ") would yield increased values offnig, e�ectively producing higher order interpolations and coarsening.17.2.1 Nonlinear and repeated problemsMost problems that require very fast solvers need to be solved again and againmany times over with small variations. This includes nonlinear problems, inwhich one repeatedly solves a linearized version, and the kind of problems listedat the end of Sec. 17.1. Most of the coarsening work described above need notbe repeated each time the problem is modi�ed. The coarsening should not berepeated at all if only the right-hand side changes (as in the cases of calculatingpropagators and determinants, described in Sec. 12 above). When the operatorA changes only in some neighborhood (as in the case of updating the determinantvalue in Sec. 12), the coarsening computations need be repeated only at thatneighborhood (plus at most several meshsizes around it, at each level); only thelast iteration may sometimes have to be repeated globally.Quasilinearity. Nonlinear problems can often usefully be written in thealgebraic quasilinear form A(x) � x = b, where the dependence of A(x) on x isnon-principal , by which we mean that k A(x+�)�(x+�)�A(x)�(x+�) k� A(x)��for any small �. For example, most nonlinear PDE systems in mathematicalphysics are di�erentially quasilinear , meaning that each term in the system islinear in the highest derivative included in it; in the discretization, only thedependence on the highest derivative (in each such term) is principal, so the75



algebraic quasilinear form comes here naturally. Unlike Newton linearizations,this quasilinear discretization is autonomous (independent on external informa-tion, such as an approximate solution) wherever the PDE is autonomous.In a quasilinear system, to a very good approximation the interpolation Icdepends only on A(x) and, furthermore, Ic need seldom be changed when xchanges. Also the form of A(x) is often simple and explicit; e.g., in CFD andother areas, each term in A depends on x linearly . It is then possible to transferthis form of dependence also to the coarse level, enabling the employment ofan FAS-like algorithm (see [19] or [23]), where the nonlinear problem is solveddirectly , without linearizations.17.2.2 Inde�nite and eigen problemsInde�nite-like systems. For some systems, at some or all regions, from acertain level of coarsening on, the numbers fnig of required interpolation points(as indicated by the inaccuracies of the least square solutions) will start to snow-ball, calling for multiplying nc by a certain factor for each further coarseninglevel, causing swelled complexity. The typical exmaples are highly inde�nitesystems, although some de�nite systems exhibit similar traits (e.g., de�nite sys-tems with inde�nite factors, such as A = BTB, where B is highly inde�nite).To check this complexity, algebraic devices generalizing the wave/ray algorithms(see Sec. 7) should be developed. Namely, the vectors fx(k)g should be recom-bined to extract from them a small, locally nearly orthonormal set of smooth\basic vectors". Any relaxed error approximates a linear combination of thosebasic vectors, similar to (7.2) in Sec. 7 above. As pointed out in [20, x3.2], thecoarse-level correction should then actually be the sum of several such correc-tions, each prolongated by another \shape function". So instead of deriving oneinterpolation Ic, several such shape functions should be identi�ed from the basicvectors. A generalized procedure is under development, closely related to thework on many-eigenfunction solvers (cf. Sec. 9.2).Eigenfunction calculation. Note that the above coarsening scheme candirectly yield very inexpensive calculations of many eigenfunctions of A. All thelowest eigenfunctions, for example, and quite many of them, would accuratelybe interpolated by the same interpolation Ic (especially with the higher orderinterpolations mentioned above). Hence, for all of them, the generalized eigen-problem (A � �B)x = 0 can simultaneously be coarsened to the eigenproblem(Ac � �Bc)xc = 0, with Ac = IcAIc, Bc = IcBIc. This joint coarsening canbe continued for several levels (using increasingly higher order interpolations, ifnecessary). Only on some coarse level the eigenfunctions are separately calcu-lated. Similarly, to calculate all the eigenfunctions with eigenvalues close to acertain �0, the same process can be repeated for the matrix A��0B instead ofA, except that now the procedure described above for dealing with inde�nite-ness may have to be invoked. One can proceed this way to increasingly coarserlevels by progressively narrowing the set of approximated eigenfunctions. Thiswill naturally lead to the construction of a multiscale eigenbasis (MEB) for thematrix (cf. Sec. 9.2). 76



18 Global Optimization: Multilevel StrategiesAn optimization problem is the task of minimizing (or maximizing | for def-initeness we discuss minimization) a certain real-valued \objective functional"(or \cost", or \energy", or \performance index", etc.) E(u), possibly under a setof constraints of the form A(u) = 0 and/or B(u) � 0, where u = (u1; u2; : : : ; un)is a vector (often the discretization of one or several functions) of unknown vari-ables (real or complex numbers, and/or integers, and/or Ising spins, etc.). Ageneral process for solving such problems is the point-by-point minimization, inwhich one changes only one variable uj (or few of them) at a time, lowering Eas much as possible in each such step. More generally, the process accepts anycandidate change of one or few variables if it causes a drop in energy (�E < 0).This process would usually su�er from the following two types of di�culties:(i) Slow convergence: due to the localness of the process, large-scale fea-tures (e.g., smooth components) in u are slow to converge. Acceleration bymultiscale (e.g., multigrid) methods is the general cure to this trouble, since itsupplement the local processing with increasingly larger scale processing, basedon information suitably gathered from the �ne scale. This in fact is the topicof many chapters above; a fairly general e�cient approach is presented in Sec.17.2.(ii) False convergence: instead of converging to the true global minimum ofE, the process converges to the minimum of E in a certain restricted \attractionbasin", in which the process is trapped. The basin is a set of con�gurationsfrom which the employed process cannot proceed to con�gurations with lowerE, although such con�gurations do exist. The emphasis in global optimizationmethods is the treatment of this type of trouble. In this chapter we do notattempt to fully cover this very extensive topic. We only outline some basicmultilevel strategies that deal with it.18.1 Multilevel formulationsIn many, perhaps most, global optimization problems, the objective functionalE is not uniquely determined by direct physical laws, but is man-constructed,somewhat arbitrarily, to give a precise meaning to a practical problem, whoseoriginal form is more fuzzy.This, for example, is the formulation of ill-posed problems, like inverse PDEproblems (system identi�cation, as in Sec. 16.2 above, or data assimilation, asin Sec. 4, etc.). The solution of such problems is often uniquely and stably �xedwith the aid of regularization, which recasts the problem into a minimizationtask. The same is true in formulating optimal control problems (see Sec. 5above). In all these cases, the objective, or the sense in which one solution isconsidered to be better than another, is not exactly apriori given; it is chosen,with somewhat arbitrary form and parameters.Another typical example is the problem of reconstructing pictures fromblurred or noised data. It is often recast as the problem of minimizing an en-ergy functional which is the sum of penalty terms, penalizing the reconstruction77



for various unwanted features, such as (i) its distance from the data; (ii) non-smoothness, except across lines recognized as \edges"; (iii) proliferation of suchedges; (iv) non-smoothness of edges; etc. This combination of penalty termscreates a monstrous minimization problem, with many nested attraction basinsat all scales. It is extremely di�cult to solve | and unnecessarily so: The di�-culty largely arises from taking too seriously a set of arbitrary choices. Indeed,the form and the numerical coe�cients of the various terms are quite arbitrarilychosen; a picture which is slightly better than another according to one choicemay well be worse according to many other, equally reasonable choices.More generally, unnecessary computational di�culties often arise from ourtradition to cast fuzzy tasks into \stationary" formulations, that is, to de�ne asa solution a con�guration which satis�es (exactly or approximately) one well-de�ned criterion, such as minimizing a certain functional under speci�ed con-straints. A more universal, and often far easier way is to admit a solution whichis just the end product of a suitable numerical process , not necessarily designedto satisfy, even approximately, any one governing criterion. In reconstructingpictures, for example, features like edges and segments can be captured verysatisfactorily by very inexpensive (multiscale) processes (few dozen operationsper picture element; see Sec. 15 above); the results may well �t our perceptioneven better than the true or approximate minimizer of the objective functionalmentioned above. Similarly, for many other fuzzy problems, a numerical pro-cess can yield excellent solutions, whose only \fault" is our inability to say whatstationary objective functional they (at least approximately) optimize.While this may be fairly obvious, one can argue that the objective-functionalformulation is still in principle the \true" one: if fully carefully chosen, it wouldprecisely re
ect what one would want to obtain, complicated or impracticalas it may be. However, even this is often not the case: a numerical processcan incorporate a host of driving directives that are impossible to include inone stationary criterion. Examples : (i) The process for detecting curved edgescan employ di�erent completion-�eld parameters at di�erent scales (see Sec.15.1). (ii) The process for detecting picture segments can introduce new a�nitiesbetween emerging intermediate aggregates, based on their internal statistics(see Sec. 15.2). The same is true in more general clustering problems andvarious other fuzzy graph problems (see Sec. 15.3 and the example of graphdrawing [99]). (iii) In solving inverse PDE problems one can apply multiscaleregularizations, which use di�erent penalty terms at di�erent scales (see forexample Item 9 in Sec. 4.3).It can be seen from these examples that an important tool in formulatingvarious problems is to have di�erent, sometimes even con
icting, objectives atdi�erent scales of the problem. The multiscale processing is thus not just amethod to accelerate convergence and escape false attraction basins (as dis-cussed below), but can often also be essential for an improved de�nition of theproblem.Incidentally, even for linear problems multi-scale formulations are sometimesneeded. An example is the case of wave equations with radiation boundary con-ditions: such conditions are most appropriately formulated at the coarsest levels78



of the wave/ray algorithm (see Sec. 7 above), while the di�erential equationsthemselves are discretized at the �nest level.18.2 Multilevel annealingA general method to escape false attraction basins is to modify the strict point-by-point minimization by a process that still accepts each candidate changewhich lowers the energy (�E < 0), but also assigns a positive probability, pro-portional for example to exp(�� � �E), for accepting a candidate step that in-creases the energy (�E > 0). This is similar to a Monte Carlo simulation of thesystem at a �nite temperature T , where � = (kBT )�1 and kB is the Boltzmannconstant. This is indeed the very way by which natural materials escape variousattraction basins and advance toward lower energies.To have a reasonable chance to escape wide attraction basins or basins withinhigh energy barriers in a tolerable computational time, a low value of �, or ahigh temperature, must of course be applied. This however makes it improbableto hit the true minimum. A general approach therefore is the gradual decreaseof temperature, hoping �rst to escape false high-energy attraction basins, thanlower-energy ones, etc. This process is called simulated annealing , since it sim-ulates the common industrial process of \annealing" | obtaining low-energymaterials (such as less brittle glass) by carefully gradual cooling. Variations onthe theme include various procedures of alternate heating and cooling.The simulated annealing algorithms are extremely ine�cient for many physi-cal problems, requiring exponentially slow temperature decrease to approach thetrue minimum. This is usually due to the multiscale structure of the attractionbasins: small-scale basins reside within larger-scale ones, which reside withinstill-larger-scale ones etc. The small-scale basins correspond to local structuresin the physical space; larger-scale basins correspond to larger physical structures.When the temperature is high enough to enable transition between large-scaleattraction basins it would completely randomize �ner-scale basins, even whenthey have already settled into low-energy local structures (by a previous cool-ing).Clearly, the transitions between basins at various scales should be bettercoordinated. It should employ much lower temperatures in switching betweenlarge-scale basins, which can be achieved only if well orchestrated large-scalemoves are constructed. This is done by what we will generally call \multi-level annealing", whose main features are described below. Its �rst, incompleteversion appeared in [61].18.2.1 Identifying multiscale variables or movesIn multilevel optimization, the main role of annealing is to identify increasinglylarger-scale degrees of freedom that are acceptable to simulation at progressivelylower temperatures. We describe two approaches to go about it.One approach is to work in term of coarse-level variables that are coupled toeach other through temperature-dependent conditional probability (CP) tables,79



as in the RMG method (cf. Secs. 13.2 and 14.7.2). Gradually, as the temperatureis lowered, new coarse-level variables are generally introduced, checked by theCMC-equilibration test. The procedure is like that of Monte Carlo simulation atlow temperatures (see Secs. 13.2.3 and 14.7.3), except that it can be executedwithout strict adherence to statistical �delity (\detailed balance"). In manycases a low-temperature-like simulation is actually more realistic than strictminimization, either because the minimization task is fuzzy anyway (see Sec.18.1), or simply because the material whose minimal energy is sought has inreality a �nite temperature.Note the similarity of this procedure to the BAMG approach in Sec. 17.2, inwhich increasingly coarser (large-scale) variables and interpolation rules associ-ated with increasingly lower eigenvalues (corresponding to lower temperatureshere) are gradually revealed, through a process that uses coarser levels alreadyaccessible by the current interpolation rules to accelerate relaxation (or theMonte Carlo simulation here) at �ner levels.In this approach each coarse level con�guration corresponds to the equi-librium of all �ne-level con�gurations that are compatible with it. When thetemperature is lowered, the equilibrium narrows down to the vicinity of fewspeci�c �ne-level con�gurations. Another approach then is to work explicitlywith the �ne level, and to identify on it increasingly larger-scale moves thatcan be done with progressively lower temperatures. If an e�cient simulationhas already been obtained at some temperature T , it can be employed to iden-tify suitable moves for a lower temperature T 0, assuming T � T 0 � T 0. Indeed,the moves already identi�ed for T are at a scale close to those required for T 0,hence each suitable T 0-move is approximately a linear combination of just asmall number of T -moves. Such combinations can be identi�ed by calculatingcorrelations between neighboring T -moves during Monte Carlo simulations withthe temperature T . Each combination can then be \reshaped" into more preciseT 0-move by optimizing around it (see Sec. 18.2.2).The work in terms of large-scale variables is perhaps preferable whenever thesystem is highly repetitive, so that the same coarse-level variables and CP tablescan be used at all (or many) subdomains, as in the case of 
uids (Sec. 14.7). Thetables then can be derived in just representative small windows of the �ne-scalesystem (see the description of windows in Secs. 13.2 and 14.7.2). On the otherhand, the identi�cation of explicit large-scale moves is perhaps more practicalfor systems that have di�erent speci�c structures at di�erent neighborhoods,making it too expensive to derive place-dependent CP tables. However, theexplicit moves are not 
exible enough, requiring the device discussed next.18.2.2 Reshaping large scale movesAny preassigned large-scale move is likely to bring about a substantial energyincrease since its �ne details would not generally quite �t the �ne details pro-duced by other large scale moves. In other words, in switching to a new large-scale attraction basins one does not generally immediately hit the lowest-energycon�gurations of that basin; since in the previous basin a process of minimiza-80



tion has already taken place, the new con�guration is likely to exhibit muchhigher energy. Thus, only rarely the large-scale move will be accepted in alow-temperature simulation, even if the new attraction basin does harbor lowerenergy con�gurations. Therefore, before applying the acceptance test to a large-scale move, one should \reshape" it, or \optmize around it", by employing in theneighborhood around it a Monte Carlo simulation of smaller-scale moves. Eachof these smaller-scale moves may itself need \reshaping" by local simulationsaround it at still �ner scales. And so on. Such nested reshaping processes areneeded when the energy landscape has nested attraction basins. Each of theseprocesses can itself employ a kind of annealing (see details in [61]).Working with the di�cult discrete optimization problem of spin glasses,it was shown already in [61] that such multiscale nested optimization tech-niques (together with the technique of Sec. 18.2.3 below) work reasonably wellever without any prior identi�cation of specialized moves at all scales (cf. Sec.18.2.1). However, the amount of work in that case turned out to increase atleast quadratically as a function of the number of spins in the system, due to theexcessive nested reshaping processes that were required. Much shorter reshap-ing procedures will su�ce with more specialized moves. (Also, as mentionedin Sec. 18.2.1, the reshaping procedure can be used to optimize the specializedmoves themselves, prior to their use in the T 0 simulations.)Note that the reshaping procedure (unless con�ned only to the prior iden-ti�cation of moves) does not satisfy the statistical detailed balance. It is verye�cient in the search for a minimum, but cannot be used for obtaining accurate�nite-temperature statistics.18.2.3 Taming local 
uctuations and genetic-type algorithmsIn any su�ciently large-scale problem with local couplings (i.e., its objectivefunctional is the sum of terms each of which depends only on a local set ofvariables, in some space), there is a large accumulation of likelihood that anystochastic simulation, even with a low temperature, will create some small-scalelocal 
uctuations, frustrating the chance to identify the global minimum. Sincethese 
uctuations are indeed likely to be local, one can eliminate them by thefollowing simple procedure.Keep in memory one or several of the best-so-far (BSF) con�gurations. Oncein a while (e.g., whenever the stochastically-evolving current con�guration yieldsa particularly low energy) compare the current con�guration with each of theBSF con�gurations. The two compared con�gurations will generally have spotsof just local disagreement, i.e., disconnected subsets where the values of the twocon�gurations di�er, but outside which the con�gurations coincide. Hence, foreach such subset, separately from all other subsets, one can decide whether ornot to replace the BSF values by those of the current con�guration, dependingwhich option would yield at that spot the lower energy. In this way all the BSFcon�gurations can be replaced by better ones. The current con�guration shouldcontinue its evolution from its previous value, in search for new optima. At theend, the BSF con�gurations can be compared to choose the best among them.81



This device should apply not only to the main optimization process, butalso to each of the auxiliary \reshaping" processes de�ned above (Sec. 18.2.2),as successfully demonstrated in [61].Analogous devices can be used even for more general problems (not justlocally coupled). The general approach can be described as a combination ofmultilevel annealing with genetic-type algorithms. Instead of one minimizationprocess, a population of such processes evolve in parallel. Once in a while oneof the evolving con�gurations (a \parent") chooses another (a \partner"), fromwhich it borrows a combination of large-scale moves, reshaping them using itsown �ner multiscale moves (see Sec. 18.2.2), then (and only then) decidingwhether to adopt the resulting con�guration (accept it as an addition to thepopulation or as a replacement). Each of the reshaping processes can itselfbe done in terms of several evolving children, and so on recursively. \Fitness"parameters can be de�ned in terms of the low-energy levels attained by theevolving con�guration and its relatives. The choice of \partner" can be basedon its �tness and criteria of compatibility with the choosing \parent".In short, one can marry the ideas of multiscale optimization with those ofgenetic algorithms and study the (fuzzy) �tness of their evolving o�springs. Thesuccess is likely to be especially high for problems dominated by a multitude oflocal couplings.19 What About Wavelets?Wavelets, perhaps the currently most popular form of multiscale representation,have not been mentioned in any of the above sections. An explanation is due.First, in all areas described above, either wavelets are not at all applicable (asin Secs. 13, 14, 15, 16, 17), or they are less developed than multigrid-type meth-ods. Part of the reason for that is historical: Multigrid methods, in either �nite-di�erence or �nite-element formulations, have appeared long before wavelets.The excitement about wavelets is probably due not only to its mathematicalelegance, but also to the fact that this has been the �rst form of multiscale rep-resentation encountered by several communities, hence the form through whichthey �rst discovered the great computational bene�ts of multiscaling. There areindeed many very e�ective algorithms developed with wavelets. But multiscal-ing had existed before, and the question is how wavelets compare with otherforms of multiscale representation from the point of view of computational ef-�ciency. The answer is that wavelets are less e�cient, at least for the kind ofproblems surveyed in this article.To explain, note that there are mainly two (related) di�erences in empha-sis distinguishing wavelets from more general formulations. The �rst, and lessessential di�erence is the incremental representation used by wavelets: whilemultigrid methods represent at the �ne level the full function, wavelets sepa-rately represent its high-resolution (e.g., high-frequency) part. All other scalesof resolution are similarly separated. This separation degrades the e�ciency intreating nonlinear problems. (In FAS multigrid the full function is represented82



at all levels; as a result the solution of nonlinear problems is usually as fast andeasy as solving linear problems: no linearizations, with their vast extra storageand iterations, are needed [19], [23].)The separate representation of the high-resolution part is considered by someto be advantageous from the point of view of self-adaptive discretization: wher-ever that part is larger than some threshold, the need for a still-�ner resolutionis indicated. However, there is no special advantage here, because, in any othermultilevel representation, that high resolution part can straightforwardly be es-timated from the di�erence between the solutions at the �nest level and at thenext level. (The true local criterion for grid adaptation is solving PDE systemsis the local error in the equation, not in the solution. In FAS multigrid methodsthis error is automatically given by the �ne-to-coarse correction �2hh [19], [23].)The second, and more important, feature that distinguish wavelets is theorthogonality of the levels: Each level of wavelet resolution is exactly orthog-onal to all other levels. This is very pleasing mathematically, but is also asource of a certain computational ine�ciency: The representation is substan-tially more complicated and costly than a simple multigrid representation atthe corresponding order. Although the latter does not enjoy orthogonality oflevels, it does always have near orthogonality : even though the processing (e.g.,relaxation) at each level does slightly a�ect other levels, this slight in
uence formost purposes is insigni�cant. For example, it does not harm the multigrid con-vergence rates, which �t the \smoothing rates" of the separate levels [19], [23],[28]. Moreover, in special cases where this is needed, one can make inter-levelin
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